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AUGMENTING DEEP LEARNING

MODELS USING CONTINUAL AND META

LEARNING STRATEGIES
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RESUMEN

Los modelos de aprendizaje profundo son entrenados con conjuntos de datos finitos

con una distribución fija, y se prueban en conjuntos que siguen la misma distribución.

Este proceso difiere mucho de cómo aprendemos los humanos, donde nos enfrentamos a

diferentes situaciones que debemos aprender a resolver continuamente.

Los modelos de aprendizaje profundo no son capaces de adaptarse continuamente a

nuevas tareas o situaciones. Cuando un modelo ya entrenado se enfrenta con una nueva

tarea, debe ser re entrenado para adaptarse a los nuevos datos. Este entrenamiento mod-

ifica completamente los pesos del modelo para enfocarse en la nueva tarea, causando

que el modelo olvide lo previamente aprendido. Este problema es conocido como olvido

catastrófico, y es el responsable de que el rendimiento de tareas entrenadas previamente

baje drásticamente.

En esta tesis nos enfocamos en dos ideas para aliviar el problema del olvido. La

primera idea es aprender pesos que favorezcan la transferencia de conocimiento entre

tareas, lo que disminuye la necesidad de modificar los pesos del modelo, reduciendo el

olvido. La segunda idea es facilitar la reutilización de los pesos del modelo, es decir, en-

tregar herramientas al modelo para que una nueva tarea utilice la información ya adquirida

y la complemente con aprendizaje de la propia tarea.

Las dos grandes contribuciones de esta tesis consisten en dos métodos que utilizan

estas ideas para aliviar el problema del olvido catastrófico en problemas de aprendizaje

continuo. Estas contribuciones muestran que incentivar la reutilización de los pesos es un

factor importante para reducir el olvido.

Palabras Claves: Aprendizaje Continuo, Meta Learning, Transferencia de Conocimiento,

Olvido Catastrófico.
ix



ABSTRACT

Deep learning models are trained with finite datasets with a fixed distribution and are

tested on sets that follow the same distribution. This process differs significantly from

how humans learn, as we are faced with different situations that we must continually learn

to resolve.

Deep learning models are not capable of continually adapting to new tasks or situa-

tions. When an already trained model is faced with a new task, it must be retrained to

adapt to the new data. This new training process completely modifies the model weights

to focus on the new task, causing the model to forget what was previously learned. This

problem is known as catastrophic forgetting, and it is responsible for drastically lowering

the performance of previously trained tasks.

In this thesis, we focus on two ideas to alleviate the problem of forgetting. The first

idea is to learn weights that favor the transfer of knowledge between tasks, reducing the

need to modify the model weights, reducing forgetting. The second idea is to facilitate the

reuse of the model weights, that is, to provide tools to the model so that a new task uses

the information already acquired and complements it with learning from the task itself.

The contributions of this thesis consist of two methods that use these ideas to alleviate

the problem of catastrophic forgetting in continual learning problems. These contributions

show that encouraging the reuse of weights is an essential factor in reducing forgetting.

Keywords: Continual Learning, Meta Learning, Machine Learning, Knowledge transfer,

Catastrophic forgetting.
x
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1. INTRODUCTION

Among the cognitive abilities of humans, memory is one of the most relevant. In ef-

fect, the ability to recall past experiences, knowledge, friendships, and emotions, is rooted

in the essence of what makes us humans. However, memories are fragile. In particular,

studies from cognitive psychology (Baddeley, 1997; McLeod, 2008) show that there are 3

main mechanisms related to loss of memories: i) retrieval failure, ii) task interference, and

iii) lack of consolidation. In terms of retrieval failure, forgetting occurs when long-term

memory is no longer accessible because the retrieval cues are no longer present. In terms

of task interference, memories can be disrupted by similar memories or related informa-

tion, leading to proactive interference where old information disrupts new learning, or to

retroactive interference where new knowledge disrupts old information. Finally, in terms

of lack of consolidation, memories can be lost during the process of molding short-term

to long-term memories.

In the case of artificial neural networks (ANN), weights accumulate knowledge. When

we train a model, an optimizer adjust its weights to minimize an objective function. How-

ever, similar to retroactive interference, as a model learns a new task, its weights are

overwritten, causing the model to forget previously learned knowledge (Rebuffi, Bilen,

& Vedaldi, 2017; Masse, Grant, & Freedman, 2018; Lee, Kim, Jun, Ha, & Zhang, 2017;

Shmelkov, Schmid, & Alahari, 2017; Serra, Suris, Miron, & Karatzoglou, 2018).

Unfortunately, in the case of ANNs, task interference is more severe than in the case

of humans. This problem is evident for the case of continual learning, i.e., the case when

data from new tasks is presented sequentially to the learner and does not have access to

previous data. Under this training scheme, when a previously trained model is retrained

on a new task, it usually suffers a significant drop in performance in the original task. This

problem is known as Catastrophic Forgetting (CF) (Zenke, Poole, & Ganguli, 2017; Rusu

et al., 2016; Kirkpatrick et al., 2017).
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Previous works had focus on three strategies to tackle CF. The first strategy consists of

avoiding the modification of parameters that are key to solve previous tasks. Specifically,

when facing a new task, a regularization term ensures that critical parameters are modi-

fied as little as possible (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi, Rohrbach,

& Tuytelaars, 2019; Aljundi, Babiloni, Elhoseiny, Rohrbach, & Tuytelaars, 2018; Dhar,

Vikram Singh, Peng, Wu, & Chellappa, 2019). In general, these approaches show satis-

factory performance in problems that involve few tasks. However, problems such as accu-

mulated drifting in weight values and interference make this approach challenging to scale

when the number of tasks increases. The second strategy consists of introducing structural

changes to the architecture of a model, either by adding new weights to the model, includ-

ing binary masks with each new task and so forth (Li & Hoiem, 2017; Mallya & Lazebnik,

2018; Mallya, Davis, & Lazebnik, 2018; W. Hu et al., 2019; Serra et al., 2018; Ebrahimi,

Meier, Calandra, Darrell, & Rohrbach, 2020). The main problems with these methods are

the extra model complexity. The third strategy are Memory-based methods that mitigate

CF by inserting data from past tasks into the current training process (Ebrahimi et al.,

2021; Rebuffi, Kolesnikov, Sperl, & Lampert, 2017; Chaudhry, Rohrbach, et al., 2019),

using it to retrain previous tasks together with the new one continuously. In general, these

methods have the best performance. However, they must have access to data from previous

tasks, which is not always feasible.

In contrast to these previous strategies, when learning new tasks, humans continuously

associate previous experience to new situations, strengthening previous memories, which

help to mitigate the forgetting problem (Karpicke, 2016 (accessed June, 2020)). Ideally,

we require a model capable of reusing previously acquired knowledge, minimizing the

need to modify the weights drastically. Taking inspiration from this mechanism, in this

thesis, we propose two methodologies focusing on training reusable knowledge.

As a first contribution of this thesis (Hurtado, Lobel, & Soto, 2021), we propose a

new method that exploits two complementary learning strategies to mitigate CF in ANN,

in particular, deep Convolutional Neural Network (CNN). These learning strategies are
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based on: i) dynamic allocation of model capacity to avoid interference between tasks,

and ii) knowledge transfer from previous to new tasks to foster weight reusability instead

of overwriting.

By dynamically allocating part of the model capacity to each task, we can separate

what was learned into different subgroups of parameters, helping avoid interference. We

achieve this by using sparse coding techniques (Donoho & Elad, 2003) to adaptively man-

age the number of parameters that are used to learn each new task, while keeping the total

model capacity fixed. We apply group-sparse regularization to foster groups of parameters

that specialize in learning a task. Then, we freeze those parameters that are key to solving

a task by adding selectors in the form of binary masks, reserving the rest of the network

to learn new tasks.

Regarding knowledge transfer to new tasks, and following the intuition that if a model

can learn useful parameters for past and future tasks there would be no need to change its

values drastically. We propose a training strategy that fosters learning patterns that can

be useful to support several tasks. In particular, in the context of few-shot learning (Ravi

& Larochelle, 2017; Finn, Abbeel, & Levine, 2017), metalearning techniques have been

used to promote the learning of weights that can be quickly adapted to handle new tasks

(Riemer et al., 2019; Chaudhry, Ranzato, Rohrbach, & Elhoseiny, 2019; Raghu, Raghu,

Bengio, & Vinyals, 2020). Taking inspiration from these ideas, we propose a metalearning

strategy that fosters the learning of weights that can be useful to favor a positive transfer

of knowledge between tasks, facilitating the acquisition of continual learning skills.

As a second main contribution of this thesis (Hurtado, Raymond-Saez, & Soto, 2021),

we propose MetA Reusable Knowledge or MARK. A new model, based on a metalearning

approach that fosters weight reusability among tasks instead of mitigating weight overwrit-

ing or learning independent weights for different tasks. In particular, we envision these

weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but

also enriched with new knowledge as the model learns new tasks. In this sense, the KB

behind MARK is not given by an external memory that encodes information in its vectors,
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but by a trainable model that encodes shared information in its weights. As a comple-

mentary mechanism to query this KB, MARK also includes trainable masks to execute a

selective addressing scheme to query the KB.

Consequently, to build and query its shared KB, MARK exploits two complementary

learning strategies. On the one hand, a metalearning technique provides the key mecha-

nism to meet two goals: i) encourage weight updates that are useful for multiple tasks, and

ii) enrich the KB with new knowledge as the model learns new tasks. On the other hand,

a set of trainable masks provides the key mechanism to selectively choose from the KB

relevant weights to solve each task.

In terms of its internal operation, MARK works by first forcing the model to reuse

current knowledge via functions that detect the importance of each pattern learned in the

KB. Later, it expands its knowledge if past knowledge is not sufficient to perform a task

successfully.

In summary, in this thesis, we propose two solutions for the Continual Learning sce-

nario, focusing on finding representations that can be reusable across tasks. We achieve

this by providing models with two fundamental tools. First, we train weights that can be

transferable between tasks. Second, we encourage the models to reuse previously learned

weights by learning functions to select relevant elements from previously learned weights.

1.1. Continual Learning

We have mentioned the the problem of Catastrophic Forgetting in Continual Learning

scenarios (CL), but what it is CL? Continual Learning studied the problem where a model

is trained in a stream of non-stationary datasets or changing environments (Parisi, Kemker,

Part, Kanan, & Wermter, 2019; Hadsell, Rao, Rusu, & Pascanu, 2020; Delange et al.,

2021). The main goal of this scenario is to have a model that can continuously accumulate

knowledge from new data without negatively interfering with what has been learned in the

past.
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The problem is that Deep Learning models are normally trained in stationary environ-

ment, where the distribution of the training data does not change over time. This causes

that when faced with a CL scenario, the new tasks modify the weights of the model, which

cause retroactive interference. As mentioned, this interference can drastically lowers the

performance of previously learned tasks by overwriting the weights of the model to learn

the new task.

Studying models that can train in CL scenarios can bring several benefits. For exam-

ple, there are many applications with a constant flow of new data, such as recommender

systems or household robots. In the second example, household robots can be trained with

with essential and generic functions but it may need to continuously learn new functions

or tasks that should be applied in specific situations. Models capable of continuous ac-

quiring new skills can learn this specific functions without forgetting the based jobs they

were trained in. Studying this problem can also bring positive consequences in stationary

environments by improving learning efficiency, by enabling knowledge transfer between

related tasks, or not needing to re-learn with the complete dataset, as new data arrive

(Hadsell et al., 2020).

There are several characteristics desired for models in CL scenarios:

(i) Models shall require minimal access to data of previous tasks, since it does not

have infinite storage capacity, nor this data are guaranteed to be accessible.

(ii) Negative interference between tasks must be eliminated or reduced as much as

possible.

(iii) Models must maintain a degree of plasticity to learn newly available tasks.

(iv) What is learned by the model must be transferable to past and future tasks, seek-

ing that what is learned to be reusable across tasks.

Following previous work on CL (Van de Ven & Tolias, 2019), in this thesis we con-

sider a task incremental scenario, where task identity is provided at training time. Each

task t consists of a new data distribution Dt = (X t, Y t, T t), where X t denotes the input
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instances, Y t denotes the instance labels, and T t is a task ID. This task ID is required

during training and inference. The goal is to train a classification model f : X −→ Y

using data from a sequence of T tasks: D = {D1, ..., DT}. Following the usual setup for

CL (Van de Ven & Tolias, 2019), each task is presented sequentially to the model. Our

scenario allows for unlimited use of data from the current task, but after switching to a

new task, this data is no longer available. Furthermore, there is no intersection between

the classes of different tasks, but they share a similar domain. This domain intersection is

key to take advantage of common patterns among the tasks.

1.2. Hypothesis and Objectives

Considering the previous definition, and the limitations of current methods, in this

thesis, we proposed the following hypothesis: By using sparse regularizers and training

methods that favor generalization, it is possible to obtain a model that learns multiple tasks

sequentially without losing performance, and that the generic learned weights can be used

across tasks, with the help of functions that provide specialization.

The proposed hypothesis is motivated by three related questions. The first question

is the holy grail of questions in CL: How can we mitigate or avoid the problem of CF?

Our first objective is to use sparse regularizations to split our model into two groups of

parameters: (1) weights that are been trained in the current task, and (2) weights that are

set to zero because of the regularization. As proposed in our first method (Hurtado, Lobel,

& Soto, 2021), we create binary mask to select does two groups after training a task, this

mask helps to freeze does trained weights. Here, we experiment with the trade-off between

plasticity and stability by freezing a percentage of the weights.

The second question is: How can we train weights that are usable across tasks? Ideally,

previously trained weight are useful for future tasks. Our second objective is to propose

new learning strategies to encourage transferable weights. As mentioned, we propose to

use meta-learning strategies. It has been shown that models trained with these strategies
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require slight modifications in their weights to adapt to new tasks in few-shot learning

problems (Raghu et al., 2020).

The third question is: How do we encourage the model to reuse previous learned

knowledge? It is not enough to have reusable information, but we also need that the model

learn to use this transferable weights. Our third objective is to provide these models with

the ability to select relevant information for each task, learning to use the information

acquired in the past.

The rest of the document is divided into the following sections. In Chapter 2 we

present Related Work in the area of Continual Learning and Metalearning. In Chapter 3

and 4 we present our proposals in more details, with their corresponding contributions,

methods, and results. Finally, we close the thesis with the conclusion and future work.
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2. RELATED WORK

2.1. Catastrophic Forgetting

A simple approach to avoid Catastrophic Forgetting (CF) is to re-train the model with

all the available data, old and new, each time a new task arrives. However, this approach

is unfeasible in many situations, for instance, when old data are no longer available. Even

when one can store every dataset, the computational cost of re-training using all data

can be highly inefficient or prohibitive. Therefore, there is a need for more efficient and

flexible solutions.

In continual learning, previous work has followed three main strategies to prevent CF.

The first strategy (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2019, 2018;

Dhar et al., 2019) consists of avoiding the modification of key parameters for previous

tasks when learning a new task. Several techniques can be used to identify these crit-

ical parameters, such as fisher matrix (Kirkpatrick et al., 2017), per-weight uncertainty

(Ebrahimi, Elhoseiny, Darrell, & Rohrbach, 2019), among others (Aljundi et al., 2019,

2018; Chaudhry, Ranzato, et al., 2019; Saha & Roy, 2021). Afterward, when facing a

new task, a regularization term ensures that critical parameters are modified as little as

possible. By using this strategy, performance on previous tasks does not decrease abruptly

when learning new ones. At the same time, the network has the flexibility to capture in-

formation from new tasks. In general, this approach shows satisfactory performance in

problems that involve few tasks. However, when the number of tasks increases, problems

such as accumulated drifting in weight values and interference, make this approach chal-

lenging to scale. Alternatives to decrease the interference between tasks are presented in

(Lomonaco, Maltoni, & Pellegrini, 2020; Masana, Tuytelaars, & van de Weijer, 2020),

here the authors propose to completely freeze previously trained weights eliminating in-

terference but inhibiting information transfer between tasks.

The second strategy consists of introducing structural changes to the architecture of the

models (Li & Hoiem, 2017; Mallya & Lazebnik, 2018; Mallya et al., 2018; W. Hu et al.,
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2019; Serra et al., 2018; Ebrahimi et al., 2020). Works like (Rusu et al., 2016; Fernando et

al., 2017) propose cloning a model and adding connections between the layers of previous

models to the new one, creating an exchange of information from old to new tasks. As

a drawback, the amount of disk space required by the model increases linearly with the

number of tasks. A popular approach is to incorporate trainable binary masks that are used

to select parameters, either through pruning, learning over a backbone model (Mallya &

Lazebnik, 2018; Mallya et al., 2018), or using the Lottery Tickets Hypothesis (Wortsman

et al., 2020). A downside of this strategy is that the masks are learned independently of

network parameters, leading to suboptimal solutions.

The third strategy is to use Memory-Based methods to recall critical information about

previous datasets, either through using elements of previous tasks (W. Hu et al., 2019;

Riemer et al., 2019; Rebuffi, Kolesnikov, et al., 2017; Ebrahimi et al., 2021), minimizing

gradient interference (Lopez-Paz & Ranzato, 2017; Chaudhry, Ranzato, et al., 2019), or

training GANs to generate past elements (Lesort, Caselles-Dupré, Garcia-Ortiz, Stoian, &

Filliat, 2019; Shin, Lee, Kim, & Kim, 2017; Hayes, Kafle, Shrestha, Acharya, & Kanan,

2020; Kemker & Kanan, 2018). The main idea is to recreate previous tasks distribution.

The main problem with these methods is the need for an efficient method to recall key

information from previous tasks and the need to have access to inputs from past tasks.

Instead of saving elements of prior dataset, (Iscen, Zhang, Lazebnik, & Schmid, 2020;

L. Caccia, Belilovsky, Caccia, & Pineau, 2020) proposed saving feature vectors. This

solution reduces privacy and memory concerns, as these vectors typically require less

memory than complete elements but still need access to previous datasets to create the

vectors.

A related topic to Continual Learning and Catastrophic Forgetting is Distribution

drifts. This field aims to train models able to adapt well to change in the distributions in

which they were trained (Arjovsky, Bottou, Gulrajani, & Lopez-Paz, 2019; Ahuja, Shan-

mugam, Varshney, & Dhurandhar, 2020). This scenario is related to the idea of transfer

learning (Weiss, Khoshgoftaar, & Wang, 2016), and data stream problems (Cao, Ming, Xu,
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Zhang, & Wang, 2019). Unlike previous scenarios, the goal of Continual Learning is to

acquire new knowledge from new distributions without loss of performance of previously

learned task, avoiding interference and CF (Lesort, Caccia, & Rish, 2021).

2.2. MetaLearning

Metalearning is the ability of “learning to learn” (Thrun & Pratt, 1998), in other words,

the ability to discover proper biases or procedural knowledge that can be used to learn new

tasks. In the context of few-shot learning, several works (Lopez-Paz & Ranzato, 2017;

Chaudhry, Dokania, Ajanthan, & Torr, 2018; Vuorio, Cho, Kim, & Kim, 2018; Finn et al.,

2017; Nichol, Achiam, & Schulman, 2018) have proposed metalearning strategies due to

the ability to find features able to adapt to new tasks quickly. As noticed by (Raghu et al.,

2020), by training a model with a metalearning strategy, we obtained a good initialization

for future meta-tasks (few-shot learning), meaning that with minor modifications to the

weights, we can found a proper solution. A popular approach fosters weight values that

can be adjusted to model a new task using just a few gradient updates. Taking inspiration

from this idea, both of our methods foster knowledge transfer from previous to new tasks

based on adapting the methods presented in (Finn et al., 2017; Nichol et al., 2018) to a

continual learning scenario.

There are different scenarios in Continual Learning where meta-learning is applied.

The first is Meta-Continual Learning, where a model is pre-trained with a metalearning

strategy to generate a good starting point, which allow minimizing forgetting in future

sequence tasks (Javed & White, 2019; Beaulieu et al., 2020). The second is Continual-

Meta Learning, where the objective is to train the model so that it can quickly remember

what it has learned in the past through local adaptations (He et al., 2019; Z. Wang, Mehta,

Póczos, & Carbonell, 2020). Finally, OSAKA (M. Caccia et al., 2020) mix previous

scenarios by needing a model that quickly solves a new task and has fast adaptation.
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The scenarios described may be applicable to different environments. In the context

of Sequence Learning, (Javed & White, 2019; Rajasegaran, Khan, Hayat, Khan, & Shah,

2020; K J & N Balasubramanian, 2020; Beaulieu et al., 2020) propose different metalearn-

ing strategies. The resulting techniques reduce task interference by avoiding conflicts be-

tween current and future gradient directions to update weights. Ina more classic Continual

Learning environment, some works (M. Caccia et al., 2020; He et al., 2019; Riemer et

al., 2019) propose a change in the learning strategy, either by using a meta-model or by

combining it with a Memory-Based method, looking to take advantage of the benefits of

both techniques.

Others methods use different approaches to combine metalearning and Continual Learn-

ing. For example, training prototypes by class has been explored by (De Lange & Tuyte-

laars, 2020), these prototypes are adapted as new classes arrive, and classification is made

using a distance metric. Others train functions as components in the network, either by us-

ing Hypernetworks (von Oswald, Henning, Sacramento, & Grewe, 2020), Deep Artificial

Neurons (DANs) (Camp, Mandivarapu, & Estrada, 2020), or Compositional Structures

(Mendez & Eaton, 2021), so that the network components are more flexible during future

training processes.
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3. OVERCOMING CATASTROPHIC FORGETTING USING SPARSE CODING

AND META LEARNING
In this chapter, we present our first proposal to avoid the CF problem. First, we discuss

the technical details behind each of the components conforming the proposal. Then, we

present the results, followed by an ablation study to better understand the contribution of

each component of the proposal.

3.1. Method Description

One solution to avoid interference between tasks is to freeze all weights after training

the first task. However, by freezing the weights of the model, we lost two fundamental

abilities for a continual learning scenario: 1) The flexibility to learn new patterns, and 2)

The positive transfer of knowledge between tasks. These restrictions confront us with two

challenges: i) How we freeze weights but at the same time keep the flexibility to learn new

patterns. ii) How we foster weights to learn new valuable knowledge across tasks.

To address the first challenge, we use a learning strategy that selectively freezes groups

of parameters instead of the entire model. Specifically, we propose a regularization mech-

anism that minimizes the number of parameters used to learn a task. Then, after learning a

task, those weights are frozen, avoiding being modified in future training. An advantage of

this approach is that it provides flexibility to learn new patterns in those unfrozen weights.

To address the second challenge, we propose a new learning strategy that fosters

weight sharing among tasks, focusing on two components. The first component focuses

on improving the communication between groups of parameters learned in different tasks,

normalizing and weighing the importance of each group depending on the task. The sec-

ond component is a new learning strategy based on metalearning that fosters knowledge

transfer between tasks, by learning weights that can be helpful to future tasks. Next, we

describe the details behind each component.
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3.1.1. Avoiding interference among tasks

As a first strategy, we directly tackle interference among tasks by introducing a mech-

anism that prevents new tasks from modifying weights that are relevant to solve previous

tasks. As a key observation, we acknowledge that, in the context of a CNN, learning a task

consists of finding suitable convolutional filters to correctly map inputs to outputs. As a

consequence, avoiding interference among tasks is directly related to avoiding that a new

task might modify a filter that is relevant to solve a previous task.

Following the previous observation, we introduce an adaptive mechanism to control

the number of convolutional filters that are available to learn new tasks. Specifically, this

mechanism avoids interference among tasks by freezing the value of weights associated to

convolutional filters that are relevant to solve previous tasks. To be effective, this mech-

anism has to balance two goals: It must provide the model with enough freedom to learn

suitable convolutional filters to solve its current task, while, at the same time, it must also

restrict this freedom in order to preserve knowledge from previous tasks. To achieve these

goals, we modify the regular loss function used by CNNs, introducing a group sparsity

regularization term (GoSpaR). This term fosters a sparse learning on convolutional filters,

leading to an adaptive use of network resources as our model incrementally learns new

tasks. We describe next the mathematical details behind this approach.

3.1.1.1. Group sparse regularization over convolutional filters

In our formulation, we consider a CNN classification model with L layers; where

L − 1 layers are convolutional and the last one, or classification head, corresponds to a

fully connected ANN. Furthermore, we consider a set of training examples {xi, yi}Ni=1,

where xi refers to input i and yi to its corresponding label. For such a model, learning can

be performed by solving the following optimization problem:

argmin
W,Θ

1

N

N�

i=1

Loss(xi, yi;W,Θ) +Rwd(W,Θ) (3.1)
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where Θ = {Θ1, . . .ΘL−1} denotes the parameters of the L − 1 convolutional layers, Θl

denotes the parameters of convolutional layer l and W represents the parameters of the

classification head.

The problem in Equation (3.1) is divided into two components. The first component

(Loss) accounts for the difference between the target output yi and the prediction of the

model with parameters {W,Θ}. We use cross-entropy as the Loss function. The second

component is a weight decay regularization term that helps to avoid overfitting, define as:

Rwd(W,Θ) = Cwd
1

2
(�W�2F + �Θ�2F ), (3.2)

where �·�2F denotes squared �2-norm and Cwd is the corresponding regularization constant.

To avoid interference among tasks, we augment Equation (3.1) by including GoSpaR

over the convolutional layers, as follows:

argmin
W,Θ

1

N

N�

i=1

Loss(xi, yi;W,Θ) + Cwd
1

2
�W�2F + CΘ

L−1�

l=1

Γl(Θ
l), (3.3)

where CΘ is a regularization constant. We define Γl as:

Γl(Θ
l) = (1− βl)

1

2
�Θl�2F + βl

Kl�

k=1

�Θl
k,∗�. (3.4)

The first term in Equation (3.4) corresponds to an �2-norm regularizer, which is weights

by coefficient (1−βl). The second term uses an �1,2-norm to penalize the number of filters

used by each layer. Specifically, K l corresponds to the number of filters in layer l; Θl
k,∗

denotes the weights of layer l associated to filter k; and, finally βl regulates the importance

of setting filters in layer l to zero.

The goal of GoSpaR is to minimize the number of groups used by the model, setting

to zero groups of unused parameters. A similar group sparsity inducing regularizer has
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been previously used in applications related to image classification (Lobel, Vidal, & Soto,

2015; Zhou, Alvarez, & Porikli, 2016; Alvarez & Salzmann, 2016; Wen, Wu, Wang,

Chen, & Li, 2016; Scardapane, Comminiello, Hussain, & Uncini, 2017; Lobel, Vidal, &

Soto, 2020). In our case, we select groups in such a way that, when learning a task, the

regularization function fosters the use of a limited number of convolutional filters, leaving

network resources available to learn future tasks.

Figure 3.1 shows the effect of GoSpaR in the operation of a generic layer l of a CNN

model. In this case, the regularization sets filter kl
i to zero which corresponds to filter i

in layer l. As a consequence, the corresponding feature map M l
i can be deactivated using

function M , shown in Equation (3.5). We use �2-norm to decide if a filter is active or not.

After training task t, filters of layer l whose �2-norm is less than threshold ε are considered

as inactive filters, therefore, they are available to be trained by future tasks.

M(Θl) = �Θl
·,·�2 ≤ ε (3.5)

For each task t and layer l with K l filters, we keep track of the list of active filters

by using a binary mask mt
l ∈ [0, 1]K

l that associates a binary coefficient to each filter. A

similar procedure has been used before in (Mallya et al., 2018) and (Serra et al., 2018).

The first trains binary masks over a fixed pre-trained model, and the second trains gates

functions that output non-binary masks.

For the initial task t = 1, the mask is initialized with all its coefficients equal to 1,

representing that all filters are available for training. After training a task t, filters of layer

l with �2-norm greater than ε are marked as used filters, and the corresponding flag is set

to zero in the associated mask mt
l . Afterwards, the resulting mask mt

l is used to initialize

mask mt+1
l to train the next task.

During training, binary masks mt
l are used to prevent interference from new tasks by

freezing weights that are relevant to previous tasks. During test, binary masks are used to
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Figure 3.1. (a) Activation maps at convolutional layer l − 1 of size
hl−1 × wl−1 × Cl−1, (b) At layer l, these activation maps are processed by
convolutional filters kl

i, i ∈ [1, . . . , K], of size kh × kw × Cl−1. (c) In this
case, GoSpaR sets filter kl

i to zero, therefore, the corresponding activation
map M l

i in layer l can be deactivated.

identify the list of active filters for each task. Using this information, we let a task to use

only the filters that were available during its training, avoiding potential interference from

filters that were learned by subsequent tasks.

One drawback of the previous training scheme is that it is not trivial for new tasks to

use knowledge acquired during previous tasks. This is mainly due to normalization prob-

lems associated to the independent training of filters that are being freezed from previous

tasks. To account for this limitation, we take inspiration from (J. Hu, Shen, & Sun, 2018)

to include a task-specific function that learns to combine the outputs of all the convolu-

tional layers available to the task. Next, we present the details behind this idea.

3.1.1.2. Calibration of filters from different tasks

In a standard single-task learning setting, when a model learns a task, it calibrates the

relevance of each weight and filter in the context of the rest of the weights and filters that
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are being concurrently trained. However, in our case, we have multiple tasks that are being

learned sequentially. In our setting, each new task can train weights of unused filters, but

it can also use previously learned filters that it can not modify. Thus, the model has to

learn how to combine both sources of information.

To facilitate the combination of filters from different tasks, we introduce a normaliza-

tion step to calibrate the outputs of all the convolutional layers available to a task. Taking

inspiration from the mechanism behind the Squeeze and Excitation Network (J. Hu et al.,

2018), for each task we learn a normalization function that scales the activation maps of

each convolutional layer.

Specifically, the Calibration of Filters (CaFil) function (Ol) is defined in Equation

(3.6). Here, each activation map M l
i is weighted by the outputs of the normalization

function Φlt, via an element-wise multiplication (·). This multiplication helps to strengthen

or weaken the activation maps on M l.

Ol(θl,M
l) = M l · Φlt(M

l) (3.6)

Function Φlt encodes the specialization and normalization weights for layer l and task

t, by squeezing and aggregating the representation M l to find the corresponding values,

according to:

Φlt(M
l;W 1,2

tl ) = σ(W 2
tlρ(W

1
tlM

l)), (3.7)

where ρ and σ represent the ReLU and Sigmoid activation functions, respectively. Weights

W 1
tl and W 2

tl are learned during training.

By adding functions Φlt, we seek to balance the outputs of all the convolutional layers.

Furthermore, by having a specific function per task, we also seek task specialization in
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the use of filters. By achieving both goals, the model learns to combine knowledge from

previous and current tasks.

3.1.1.3. Filter training

The training process of a task t is shown in Algorithm 1. For each batch {xB
i , y

B
i }, we

obtain the corresponding predictions ŷBi using the current weights Θ and Wt, i.e., weights

of convolutional layers and classification head for task t, respectively. Then, given the

classification (Loss) and the regularization (Γ) terms, we obtain the gradient for both sets

of weights (gΘ, gWt). Afterwards, we multiply gradients of Θ by the corresponding binary

masks mt to set the selected gradients to zero. Finally, we update the weights of free filters

and classifier with a learning rate α.

Algorithm 1: TaskTraining
Input: Data (Dt), Model (f ), Weights (Wt,Θ),
Binary Mask (mt), Loss Function (Loss)
Output: Trained Weights (Wt,Θ)
for xB

i , y
B
i in Dt do

ŷBi = f(xB
i ,Wt,Θ)

# Get gradients
gΘ, gWt ← �(Loss(ŷBi , yBi ) + Γ(Θ))
# Freeze used weights
gΘ ← mt · gΘ
# Update weights
Θ ← Θ− α · gΘ
Wt ← Wt − α · gWt

3.1.2. Fostering weight sharing among tasks

So far, our proposed model has the ability to mitigate the problem of interference

among tasks. However, it still lacks a mechanism to encourage sharing of weights among

tasks. As we mentioned, a highly desirable feature is to foster knowledge sharing between

tasks, i.e., learning filters that can be useful to solve several tasks. In an incremental
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learning scenario, this reduces to learn filters that, besides the current task, can also support

useful representations to solve future tasks.

The previous observation highlights a close relation between incremental and met-

alearning scenarios (Vinyals, Blundell, Lillicrap, kavukcuoglu, & Wierstra, 2016; Ravi &

Larochelle, 2017; Finn et al., 2017). In effect, the ability to generalize across tasks is at the

core of metalearning. In this context, (Vinyals, Blundell, Lillicrap, kavukcuoglu, & Wier-

stra, 2016) propose a metalearning strategy known as Episodic Training (ET) that consists

of sampling from a task pairs of support and query sets to simulate training data from a

large number of mini-tasks. This mini-tasks are then used to bias the learner to improve

its ability to generalize to future tasks. Following this strategy, (Finn et al., 2017) propose

an optimization method to find network weights that can be quickly adapted to model new

tasks. Taking inspiration from (Finn et al., 2017), we adapt its metalearning strategy to the

case of continual learning, specifically to foster weight sharing among tasks.

In our implementation, when training each new task, we alternate between using reg-

ular and ET during a predefined number of iterations. In the case of regular training, we

apply the learning strategy described in Section 3.1.1. In the case of ET, we create a set

of U mini-tasks, where each mini-task consists of randomly sampling from the current

task a set of H classes and h training instances per class. This allows us to create classes

independent of the main task, finding weights not specific to it. Specifically, we consider

a training batch {xTr
u , yTr

u } ∼ P (Dt) for mini-task u, where xTr
u refers to the inputs and

yTr
u to the corresponding labels.

Following (Finn et al., 2017), our method for ET consists of two nested loops, an inner

and an outer loop. The inner loop is in charge of training a model for the current mini-task

while the outer loop is in charge of updating weights following a gradient direction that

leads to fast adaptation to new mini-tasks. Specifically, for each mini-task u, we take as

the initial value a copy of the model parameters in epoch e, namely Θe, and obtain a new

set of parameters Θu
s , after iterating s times over mini-task u, expressed in Equation (3.8):
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Θu
i+1 = Θu

i − α�Θu
i
Lossu(fΘu

i
(xTr

u ), yTr
u ), (3.8)

where fΘu
i
(xTr

u ) represents the output of the model f with parameters Θu
i when training

mini-task u in the i step of the inner loop, we define Θu
0 = Θe. Lossu corresponds to the

loss function of task u and α is the learning rate of the inner loop. In our case, the Loss

of every mini-task is cross-entropy.

After learning U models, we update parameters Θe of the original model, sampling a

new set of mini-task xV a
u . We accumulate the loss of all the mini-tasks as the sum of all the

losses given the metatraining validation set. As shown in Equation (3.9), we accumulate

this sum by considering the model trained by s inner loop steps respective to mini-task u

and weighted by the outer loop learning rate β:

Θe ← Θe − β�Θe

U�

u

Lossu(fΘu
s
(xV a

u ), yV a
u ) (3.9)

By adding the meta-learning strategy, the complete training process of a task is de-

scribed by Algorithm 2. First, we train the model with Algorithm 1 for a few epochs to

adapt it to the new task. Afterward, we start training the model with the meta and tradi-

tional training strategy in an alternate way. We repeat this process for a given number of

epochs.

It is important to mention that during metatraining, the goal is to adapt convolutional

filters so they are useful for other tasks. For this reason, neither the task-specific functions

nor the task classifier of the current task are modified during this process. Furthermore,

during metalearning, GoSpaR is not being used, since the objective of the metalearning

strategy differs from the goals of the method proposed in Section 3.1.1. In this sense, the

interleaved application of regular and ET steps complement each other, leading to a novel

and useful method to train models under a continual learning scenario.
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Algorithm 2: MetaTraining
Input: Data (Dt), Model (f ), Weights (Wt,Θ),
Binary Mask (mt), Loss Function (Loss),
Learning Rates (α, β),
Hyper-parameters (U, s, epochs, τ )
Output: Trained Weights (Wt,Θ)
for e in epochs do

if e > τ then
for u in [1, 2, ... U] do

xTr
u , yTr

u ∼ P (Dt)
xV a
u , yV a

u ∼ P (Dt)
for i in [1, 2, ... s] do

Θu
i+1 ← Θu

i − α�Θu
i
Lossu(fΘu

i
(xTr

u ), yTr
u )

Θe ← Θe − β�Θe

�U
u Lossu(fΘu

s
(xV a

u ), yV a
u )

Θe+1 ← TaskTraining(Θe)

In this work, we introduce three key mechanisms or components to help avoiding the

CF problem: i) Group-Sparse Regularization (GoSpaR), ii) Calibration of Filters (CaFil),

and iii) Episodic Training (ET). While the first helps to reduce interference between tasks,

the other two encourage weight-sharing among tasks. Given these components, we named

our whole model GoCaT.

3.2. Experimental evaluation

In this section, we start discussing the datasets and baselines that we use in our ex-

periments. Afterwards, we explain implementation details behind our model. Finally, we

present our main results and an ablation study of the key parts of the proposed method.

3.2.1. Dataset

We test our method using 3 popular benchmarks used to test continual learning ap-

proaches. All of them correspond to visual recognition applications. First, we consider

the so-called 5-Dataset (Ebrahimi et al., 2020), which consists of sequentially training a

model using data from 5 datasets: CIFAR10, not-MNIST (nMNIST), SVHN, MNIST, and
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Table 3.1. Size and details of the datasets used in our experiments.

CIFAR10 nMNIST SVHN MNIST fMNIST CIFAR100
Train 42500 15526 62269 51000 51000 42500
Validation 7500 2739 10988 9000 9000 7500
Test 10000 459 26032 10000 10000 10000
Color images Yes No Yes No No Yes

Fashion-MNIST (fMNIST), not necessarily in that order. To maintain consistency with the

number of channels of the input, for grayscale images, we repeat the channel three times

to simulate having three channels. As the second scenario, we use 20-Split CIFAR100

dataset (Krizhevsky & Hinton, 2009), which consists of dividing the CIFAR100 dataset

into 20 different tasks, each with only 5 different classes. Finally, we use the so-called

Permuted MNIST (P-MNIST) dataset, which consists of training using a modified version

of the MNIST dataset (LeCun, Bottou, Bengio, & Haffner, 1998), where each task is a

new random permutation of the pixels in each image. Table 3.1 shows a summary of each

dataset.

3.2.2. Baselines

As a first baseline, we compare our results with a strategy based on sequential learning

without considering any modification to a regular training scheme. We refer to this strategy

as SGD, since it only applies Stochastic Gradient Descent during training without consid-

ering previous tasks or any particular regularization to avoid CF. This baseline provides us

with a lower bound in terms of accuracy. As a second baseline, we consider a multi-task

training scenario, where all tasks are learned simultaneously. We refer to this strategy as

Joint-Training (JT). This baseline provides us with an optimistic or upper-bound scenario

where the learner has access to all the data during its training process.

Besides the two previous baselines, we also compare our results against recent works

that also tackle the CF problem. Specifically, we consider works that focus on using regu-

larization techniques to avoid CF, such as, Elastic Weight Consolidation (EWC) (Kirkpatrick
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et al., 2017) and Synaptic Intelligence (SI) (Zenke et al., 2017). We also compare our ap-

proach to Hard Attention to the Task (HAT) (Serra et al., 2018) and Adversarial Continual

Learning (ACL) (Ebrahimi et al., 2020). The first one uses gate functions per task to re-

duce forgetting, and the second approach uses extra functions per task with an adversarial

training strategy. For EWC and SI, we use the implementations described in (Hsu, Liu,

Ramasamy, & Kira, 2018). For HAT and ACL, we use the original implementation of the

authors. For a fairer comparison between works, the same base model is used, adding only

the corresponding methods over it. This ensures a similar amount of parameters used by

each method, changing only techniques to avoid CF. In all cases, we perform a search for

the best hyper-parameters for every dataset.

Following previous works, we use two metrics to compare all methods. First, Mean

Accuracy (Mean Acc) measures the average accuracy obtained in each task at the end of

the final training process, as is shown in Equation 3.10, where AccT,t is the accuracy of

task t after training task T . Second, Backward Transfer (BWT) measures the performance

impact that learning a new task produces over previous tasks. Specifically, a negative BWT

score indicates that the model is forgetting more than what is learning from a new task.

On the contrary, a positive BWT score indicates that the model is improving its overall

learning when it is trained using a new task. Equation 3.11 indicates how to compute

BWT, where Acct,t indicates the accuracy obtained by task t at the end of training task t.

Acc =
1

T

T�

t=1

AccT,t (3.10)

BWT =
1

T − 1

T−1�

t=1

AccT,t − Acct,t (3.11)

3.2.3. Implementation details

For all experiments and methods, we use the same architecture. This consists of 4-

blocks of convolutional layers that are common to all tasks. Each block consists of a
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convolutional layer with 32 filters and a kernel size of 3, batch normalization, ReLU ac-

tivations, and a max-pooling layer. These blocks are followed by a task specific classifi-

cation layer. As explained in Section 3.1.1.1, the main reason for using this architecture

is that our method selects relevant convolutional filters for each task. For this reason, we

need a model that only has these kind of layers. Instead of creating a new architecture, we

use similar architecture to the one used in (Ravi & Larochelle, 2017; Finn et al., 2017). In

top to the architecture, we add method-specific functions, like the CaFil function described

in Section 3.1.1.2, the gate functions describe in HAT or the adversarial block from ACL.

For the optimization process, we train each task for 50 epochs, using an SGD optimizer

with a learning rate of 0.003 and a batch size of 64. During metatraining, we sample 25

elements and create 5 classes with them for each mini-task.

As in previous works (Serra et al., 2018; Kirkpatrick et al., 2017), we assume that

we do not have access to the total number of classes of the complete scenario, these are

revealed as the new task arrives. For this reason, a new classifier is initialized for each task

with the corresponding class number. At inference time, we have access to the ID of the

task that we are testing.

3.2.4. Results

3.2.4.1. 5-Dataset

We start by presenting our results in the 5-Dataset sequence. As a relevant feature,

tasks in this sequence are highly dissimilar because images in each dataset are coming

from different scenarios, with different scales, lighting, colors, and other variations. In

our test, we train each method 3 times using different task orders.

Table 3.2 resumes our main results in terms of Mean Acc and BWT metrics. By

training without restriction, the SGD model obtains close to 27% accuracy. Also, the value

of BWT score indicates that learning a new task catastrophically interferes with what has

been learned in previous tasks. When using our approach, we obtain 63, 7% of average
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Table 3.2. Results using the 5-Dataset. Showing the mean Accuracy, BWT
and memory required for each method.

Mean Acc. (std.) BWT KB
SGD 27.4% (0.01%) -0.6067 131.5
EWC 44.1% (0.11%) -0.1054 131.5
SI 42.6% (0.02%) -0.0718 131.5
HAT 59.2% (0.04%) -0.1182 145.0
ACL 56.4% (0.02%) -0.2484 491.1
GoCaT 63.6% (0.04%) 0.0007 147.0
JT 75.18% (-) - 131.5

accuracy and low variance between runs, outperforming all the alternative methods by a

large margin. This illustrates the positive effect of the mechanisms that we propose to

prevent CF. Furthermore, by considering BWT score in Table 3.2, we observe that our

method is the only one with a positive score, indicating effective incremental learning

during the sequence of tasks.

As expected, JT obtains the best performance for this scenario, since it has available

all the data during training. Regarding memory usage, our approach needs to store the

specialization functions and the binary mask per task, therefore, there is an small overhead

in memory requirement. In this sense, as we can observe from the third column of Table

3.2, the proposed method uses a similar amount of memory than HAT, which uses gate

functions per task.

3.2.4.2. 20-Split CIFAR100

In the case of CIFAR100, the original dataset is divided into 20 different tasks. In

contrast to the 5-Dataset sequence, here the sequence of tasks has very similar images, all

in color and same dimensions. Therefore, we expect a high degree of knowledge sharing

among tasks.

Table 3.3 summarizes our main results. As tasks are more related to each other, it

can be seen that the difference in average accuracy between SGD and the best method
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Table 3.3. Results using the 20-Split CIFAR100 dataset.

Mean Acc. BWT KB
SGD 34.9% -0.4591 169.0
EWC 37.8% -0.4542 169.0
SI 43.4% -0.2363 169.0
HAT 55.7% 0.0066 182.0
ACL 58.8% -0.1880 874.6
GoCaT 59.9% 0.0078 195.0
JT 60.1% - 169.0

is reduced. Again our method outperforms the baselines and alternative approaches. In

particular, our method outperforms HAT by 4% in terms of average accuracy and ACL by

more than 1%. HAT and our method achieve positive learning concerning the BWT score,

showing that both methods are able to exploit the close relation among the training tasks.

Given the close relation among the tasks, it is noteworthy that our method is the only

one that reaches a performance highly similar to the upper-bound given by JT. This il-

lustrates the relevance of the proposed strategy to share knowledge among the training

tasks.

3.2.4.3. P-MNIST

The last scenario to test our method is the Permuted MNIST dataset. This dataset

consists of 10 tasks that are created by applying 10 random permutations to the pixels of

the images in MNIST dataset. Due to the random permutations, patterns to identify each

class change significantly among tasks. Therefore, it is expected a low level of pattern

sharing among tasks.

Similar to the previous scenarios, our approach outperforms the alternative methods,

obtaining an average accuracy of 65%, as is shown in Table 3.4. However, given the

large difference among the training tasks, in this case there is a large gap with respect

to the upper-bound given by JT. Actually, for this dataset, we can observe that any of
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Table 3.4. Results obtained in the sequence of 10 different permutations of
the MNIST dataset.

Acc BWT KB
SGD 25.2% -0.7781 162.0
EWC 39.5% -0.3859 162.0
SI 40.6% -0.5308 162.0
HAT 54.8% -0.3553 174.0
ACL 32.5% -0.7100 766.0
GoCaT 65.1% -0.0154 181.0
JT 92.9% - 162.0

the sequential learning methods is able to obtain positive score in terms of BWT. This

illustrates the difficulty of sharing visual patterns between tasks for this dataset.

3.2.5. Ablation study

In this section, we perform an ablation study over the main components of our pro-

posal. Furthermore, we also analyze the impact of the metalearning strategy in terms of the

trade-off between model flexibility to adjust parameters and interference between tasks.

Finally, we carry out a study of the complexity of the model. All these experiments are

carried out using the 5-Dataset as benchmark.

3.2.5.1. Components analysis:

This section compares the effect of introducing each of the three components that we

are proposing. As a baseline, we use a model that does not incorporate any technique to

avoid forgetting (SGD).

Table 3.5 resumes the results of our analysis. Each column represents the accuracy

obtained for each task at the end of the last training process. As expected, SGD only

obtains a good performance when tested in the last task, indicating that it suffers from a

drastically forgetting of previous tasks. By applying GoSpaR, we manage to preserve the

accuracy of previous tasks, demonstrating its positive effect.
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Similar to Table 3.5, Figure 3.2 shows the evolution of the accuracy for individual

tasks. The vertical lines in each sub-figure indicate the transition to a new task. The

abrupt loss of accuracy in SGD after the transition to a new task reflects the catastrophic

forgetting. Instead, by adding the GoSpaR, we can preserve performance for trained tasks,

showing the effectiveness of the proposed component. Despite the flexibility to learn

unused filters, there is a gap between SGD and GoSpaR at the end of the training process

for each task, which favors SGD. However, this advantage is quickly lost due to CF.

Our two extra components, CaFil and ET, help reduce the positive gap for SGD over

GoSpaR at the end of the training process for each task. Table 3.5 shows that, used in

isolation, CaFil and ET achieve only slightly better results than SGD. However, the goal

of these components is to improve communication between frozen and learnable weights,

fostering knowledge transfer among tasks. Therefore, when CaFil is applied together

with GoSpaR, average accuracy rises about 2%, confirming the advantage of applying this

normalization and specialization on the filters. Furthermore, accuracy improves even more

when adding ET, reaching an improvement of 4%.

To verify how the combination of components reduces the gap, we check Figure 3.2.

We can observe that GoCaT improves the accuracy by reducing the gap in all tasks, while

at the same time avoiding task interference. Despite not closing the gap completely, we

can see that the proposed method encourages knowledge transfer between tasks. By better

using what is learned in the past, the model improve accuracy and keep the performance

for each task.

3.2.5.2. Metalearning strategy:

The main goal of adding a metalearning strategy is to provide model flexibility to

learn patterns that can be useful to several tasks. To achieve this, the core of the met-

alearning strategy is to select weight values that can be quickly adapted to new tasks. In

our experiments, we notice a trade-off between the flexibility provided to the metalearning

iterations and the control of task interference by freezing the values of relevant parameters.
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Table 3.5. Accuracy obtained by different components that we propose.
This table show the performance in each task after training the complete
sequence of the 5-Dataset benchmark. The final column indicates the aver-
age accuracy.

Task 1 Task 2 Task 3 Task 4 Task 5 Acc
SGD 6.8% 14.1% 10.8% 24.0% 89.1% 28.9%
GoSpaR 89.9% 57.0% 53.2% 44.2% 55.2% 59.9%
CaFil 9.8% 16.7% 10.3% 20.2% 89.2% 29.2%
ET 10.2% 8.7% 13.9% 24.1% 89.4% 29.3%
GoSpaR + CaFil 91.7% 58.4% 53.8% 46.8% 61.3% 62.1%
GoCaT 91.9% 58.8% 54.8% 47.3% 65.3% 63.6%
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(e) Task 5

Figure 3.2. Each figure represents the accuracy over the epoch for each
task. The vertical line denotes the transition to training a new task. In each
Task, the first 50 epochs shows the training using data from the current
Task, then its shows how the accuracy evolves when training the model in
the following tasks.

Specifically, the model does not learn to adapt previously learned groups of parameters by
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allowing low flexibility. Conversely, by allowing too much flexibility, the model suffers

from CF.

Table 3.6 shows mean accuracy and BWT scores for GoCaT when we change the

number of iterations of the outer loop of the metalearning strategy. It can be seen that by

giving too little flexibility, the model does not learn to adapt previously learned groups of

parameters, but by giving too much flexibility, the model suffers from CF.

Table 3.6. Performance of GoCaT when we change the number of updates
in the outer loop of the metalearning scheme.

Iterations 10 25 50 100 250
Acc 61.7% 63.7% 62.4% 61.5% 60.2%

BWT -0.0015 0.0007 -0.0029 -0.0087 -0.0187

3.2.5.3. Complexity:

The complexity of the model is related to how long it takes an input to go through

the model. This means the amount of time it can take an element, in test time, to go

through the model. However, in some methods, the additional complexity is not in the

model but in the training process, because of the changes in the training strategy. To check

the complexity of our proposal, we carried out several experiments to verify the response

times of our method, both in training and test. The results are the average of training each

method for 50 epochs with 3 different seeds.

Figure 3.3 shows the average time in seconds that different methods take in train and

test. Regularization methods (EWC, SI, and GoSparR) take similar times compare to

the baseline (SGD), showing that complexity added by regularizations technique does not

affect the training process. In contrast, when adding the calibration functions (CaFil), the

training process takes slightly longer per epoch. When changing the training strategy, via

ACL or ET, the training time goes up dramatically. Nevertheless, despite the increases in

training times, the costs of performing inference in GoCaT does not increase.
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Figure 3.3. Time in seconds that each method takes to run one epoch in
train (blue) and test (red)

(a) Batch Size (b) Image Size

Figure 3.4. The time it takes each method in two different scenarios. (a)
The number of seconds it takes to train (and test) with different batch sizes.
(b) Time in log(seconds) it takes to train (and test) one epoch with different
image sizes.

Taking SGD as a baseline, we perform two experiments to check the complexity of

GoCaT: 1) Change the batch size and 2) Change image size. By changing the batch size,

both methods decrease the time it takes to train, as shown in Figure 3.4a. SGD decreased

3 seconds between changing the batch size from 32 to 128. On the other hand, GoCaT
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decreased by almost 8 seconds when changing the batch size from 32 to 256. In both

cases, the test time remains similar despite the increase in batch size, showing that the

complexity of our proposal is in the training strategy and not in other components.

As we increase the input size, the time it takes to train goes up for both methods, as

shown in Figure 3.4b. In the case of SGD, it goes up almost 9 times when we resize the

images from 32x32x3 to 256x256x3 pixels. On the other hand, our proposal increases

the training time by almost 21 times. Similar to the batch size experiment, both SGD and

GoCaT increase in similar proportions the time during test, confirming that the complexity

of our proposal is in the metalearning strategy.

3.2.5.4. Number of epochs:

In a model that does not suffer from overfitting, with a greater number of epochs, the

accuracy of the model should increase. However, training for more epochs brings a higher

computational cost. A valid question is how much we can raise the number of epochs so

that the benefit in accuracy exceeds the associated computational cost.

To verify the amount of epochs needed, we training the model for 100 epochs and

check the accuracy every 25 epochs. By training for 25 epochs, the model achieves an

accuracy of 58.43% with a BWT 0.002. By adding 25 epochs, the accuracy increase to

63.70%, and keeping a positive BWT. From this point, we notice that the accuracy still

increases when training for more epochs (64.47% with 75 epochs and 65.16% with 100

epochs), but the gain in performance is low in comparison with the extra computational

resources.
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4. OPTIMIZING REUSABLE KNOWLEDGE FOR CONTINUAL LEARNING

VIA METALEARNING
In this chapter, we present our second proposal to avoid the CF problem. Similar to

our previous proposal, our primary motivation is to train weights to foster transferability

between tasks. However, in MARK (MetA Reusable Knowledge), we provide complete

flexibility to the model to train a task, without freezing weights. The following sections

explain how we obtained a model with reusable knowledge and how we can learn to reuse

this knowledge for each task. At the end of the section, we present results and an ablation

study.

4.1. Method Description

When learning tasks sequentially, humans build upon previous knowledge, leading to

incremental learning. In contrast, in a similar scenario, ANNs devote all of their resources

to the current task, leading to the problem of CF. Taking inspiration from the behavior of

humans, an appealing idea is to provide the model with a Knowledge Base (KB) that, as

the model faces new tasks, incrementally captures relevant knowledge. Using this shared

KB, the model can associate previous experience to new situations, mitigating the CF

problem. To implement this idea, we have to address two main challenges: i) How do we

build this KB incrementally?, and ii) How do we query this KB to access relevant pieces

of knowledge?

To address the first challenge, we leverage metalearning in order to train a KB from

data. Specifically, we use a metalearning strategy known as episodic training (Vinyals,

Blundell, Lillicrap, Wierstra, et al., 2016). This strategy consists of sampling from a task

pairs of support and query sets to simulate training data from a large number of mini-tasks.

These mini-tasks are then used to bias the learner to improve its ability to generalize to

future tasks. In turn, this generalization leads to our goal: to capture relevant knowledge

that can be reused to face new tasks.
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To address the second challenge, on top of the KB, we train mask-generating func-

tions for each task. These masks provide a suitable mechanism to selectively access the

information encoded in the weights of the KB. We can envision these masks as a query

that is used to access the intermediate activations of the KB. Following (Perez, Strub, de

Vries, Dumoulin, & Courville, 2018), these masks depend solely on each specific task and

input. In this way, given an input, MARK uses the corresponding mask to query the KB

generating a feature vector. This vector is then used by a task dependent classification

head to output a prediction.

4.1.1. Model Architecture

Since we need a trainable KB and a mechanism that can query these weights, we need

an architecture composed of several modules. Figure 4.1 shows a schematic view of the

operation behind MARK, where the main modules are:

• Feature Extractor (F t): This module is in charge of providing an initial embed-

ding for each input Xi, i.e., F t takes input Xi and outputs a vector representation

F t
i . In our case, we test our method using visual recognition applications, there-

fore, F t is given by a convolutional model. It is important to note that model F t

can be shared among tasks or specific to each task.

• Knowledge Base (KB): This is the main module behind MARK. It is in charge

of accumulating relevant knowledge as the model faces new tasks. Since we

work with images benchmarks, we use a convolutional architecture with B blocks.

This part of the model is shared across tasks.

• Mask-Generating functions (M t): These modules take as an input a feature

vector F t
i and produce a task-dependent mask M t

i for each block of the KB.

Each mask consists of a set of non-binary scalars, one for each channel of the KB

blocks, that multiply each channel’s activation. These masks are critical to select

what knowledge is relevant to each instance and task. In our implementation, we

use fully connected layers.
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• Classifier (Ct): These modules correspond to task-dependent classification heads.

Its input F t
i,KB is given by a flattening operation over the output of the last block

of the KB. Given the task ID of an input Xi, the corresponding head outputs the

model prediction. In our implementation, we use fully connected layers.

As shown in Figure 4.1, the flow of information in MARK is as follows. Input Xi

goes into F t to extract the representation F t
i . This representation is then used by M t to

produce the set of masks that condition each block in the KB. The same input Xi enters

the mask-conditioned KB leading to vector F t
i,KB used by the classification head. Finally,

classifier Ct generates the model prediction, where t is the task ID associated to input Xi.

4.1.2. Training Process

Algorithm 3 describes the training process behind MARK. The first step consists of

initializing the KB by training it end-to-end on the first task, without using metalearning

and mask functions. In other words, we perform the KB initialization using the regular

training procedure of a convolutional neural network for a classification task. After this,

we train MARK sequentially on each task by alternating three main steps:

(i) KB Querying. We train task-dependent mask-generating functions that are used

to query the KB using vector F t
i . Also, we concurrently train the task classifier

for the current task. Notice that, leaving aside the KB initialization, in this step

each new task is only trained to reuse accumulated knowledge from previous

tasks.

(ii) KB Update. We use a metalearning strategy to update the weights in the KB.

This scheme allows fostering KB updates that favor the acquisition of knowledge

that can be reused to face new tasks.

(iii) KB Querying. After updating the KB using knowledge from the current task,

we repeat the querying process to finetune the mask-generating functions and
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Figure 4.1. Given an input Xi from task t, (1) We use a feature extractor F t

to obtain F t
i . (2) F t

i is then passed to mask function M t to generate mask
M t

i . Afterwards, (3) the same input Xi enters the KB, which has interme-
diate activations modulated by M t

i . Finally, (4) the modulated features go
through a task-dependent classifier Ct that performs the class prediction
for Xi.

task classifier to use new knowledge. Notice that during this step, the KB is kept

fixed.

The intuition behind the application of the three previous steps is as follows. We

initially query the KB using the accumulated knowledge from previous tasks. This forces

mask functions and classifiers to reuse the available knowledge. When that knowledge is

exhausted, we proceed to add knowledge from the current task into the KB. Finally, we

take advantage of this newly updated KB to obtain our final mask-functions and classifiers

for a given task. We describe next the main steps behind the process to query and update

the KB.

4.1.2.1. KB Querying

Once we obtain feature vectors through feature extractor F t, the model can learn which

modules in the KB can best solve the current task. In this training stage, the model trains

functions to learn how to use the knowledge available in the KB, focusing solely on reusing
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Algorithm 3: MARK - Training Process
Components:

• Dt: Dataset for task t.
• F t: Feature extractor for task t.
• KB: Knowledge Base.
• M t: Mask-generating function for task t.
• Ct: Classifier for task t.

KB ← Train {KB(D1)} /*Init KB */
for task t ← 1 to T do

/*1. Obtain feature vectors F t
i */

F t
i ← {F t(Dt

i)}, i ∈ {1, . . . , |Dt|}
/*2. Train M t and Ct using current KB*/
Train{M t & Ct}
/*3. Update KB using metalearning*/
KB ← KB-Update /*Algorithm 4*/
/*4. Finetune M t and Ct with updated KB*/
Train{M t & Ct}

end
Output: Trained modules KB, M t, Ct.

Algorithm 4: KB-Update
Components:

• KB: Knowledge Base.
• Ck: Temporal Classifier for batch k
• Eouter: number of training updates for KB (outer loop)
• Einner: number of inner loop epochs.

for e in Eouter do
Generate K batches of data from Dt

for k in K do
KBk ← KB /*Copy of KB*/
Initialize(Ck)
Train KBk and Ck with batch k for Einner epochs.

end
∇KB ← 1

Einner

�K
k γk(KBk −KB)

SF ← KB − α∇KB
end
Output: KB /*output updated KB*/

knowledge from previous tasks, without modifying the KB. In particular, in this step, we

only train M t and Ct. Both are trained end-to-end, while keeping the KB weights frozen.
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As we generate masks for each intermediate activation of our model, strictly speaking,

we have a total of B mask-generating functions. However, to facilitate the notation, we

subsume all such functions under the term M t and think of its output as the concatenation

of the results of B functions. Equation 4.1 shows the function M t, where a mask M t
i is

obtained given an input Xi from task t. Our implementation of these functions consists of

a linear function with parameters W t,M , and an activation function ρ, which we implement

as a ReLU.

M t
i = M t(F t

i ) = ρ((W t,M)TF t
i ) (4.1)

Masks generated in this process are encouraged to have two effects: first, to give a

signal of how important a specific module from the KB is for the current input; second, to

make sure that gradient updates are done where they really matter. Suppose an activation

map is irrelevant for a particular task. In that case, the value of the corresponding mask

will be zero, making the gradient update associated with that activation being zero as well.

4.1.2.2. KB Update

The purpose of this training step is to add new knowledge from the current task to the

KB. As a further goal, we aim to enrich the KB with features that are highly general, i.e.,

they can be used to solve several tasks. To achieve this, we use metalearning as a way to

force the model to capture knowledge that can be reused to face new tasks.

Figure 4.2 shows a schematic view of the metalearning procedure that we use to train

MARK. This procedure consists of an adaptation of the training process presented in

(Nichol et al., 2018). Specifically, we create a set of K mini-tasks randomly sampling

from the current task, where each mini-task consists of a set of H classes and h training

instances per class. This procedure allows us to create a mini-task that differs from the

main task, finding weights not specific to it. We train one copy of the model using each

mini-task for Einner epochs. We refer to the copy k trained for e epochs as KBk
e . For
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each mini-task we use a temporary classifier Ck initialized with the parameters of Ct. We

discard this classifier after the final iteration of the inner-loop.

Following (Finn et al., 2017), our method for episodic training consists of two nested

loops, an inner and an outer loop. The inner loop is in charge of training the copies of our

KB for the current mini-task while the outer loop is in charge of updating the KB weights

following a gradient direction that leads to fast adaptation to new mini-tasks. During each

inner loop, KBk and Ck are trained end-to-end for Einner epochs.

To simulate the outer-loop and update the KB, we follow Equation 4.2. Specifically,

for each k, we average the difference between the parameters of the KB before KBk
0 and

after KBk
Einner

in the inner loop (see Equation 4.2). This is simply an average of the sum

of the cumulative gradients for each model KBk. The outer-loop is repeated Eouter times.

KB = KB − α∇KB ∇KB =
1

Einner

K�

k

γk(KBk
Einner

−KBk
0 ) (4.2)

The subtraction in Equation 4.2 is weighted by γk. We compute γk as shown in Equa-

tion 4.3, taking as a reference the accuracy of each model on a validation batch from the

same task t.

γk =
acck�K
j accj

(4.3)

By updating weights with a weighted average of solutions of all meta-tasks, we expect

that the new values of the entire model should be (on average) an appropriate solution for

different tasks.

4.2. Experiments

This section starts discussing benchmarks and baselines used in our experiments.

Then, we detail the implementations behind the different methods. Finally, we present
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(a) Generate mini-tasks.

KB

(b) Train copy of KB in each mini-
task.

KB

(c) Update KB using gradients.

Figure 4.2. KB update using metalearning. a) Given a task t, we randomly
generate a set of K mini-tasks, where each mini-task consists of a subset
of classes from the original task. b) For each mini-task, we train an inde-
pendent copy of the current KB for a fixed amount of epochs, leading to
K models. c) Afterwards, we calculate gradients with respect to the loss
function of each of these models using a hold-out set of training examples.
Finally, we update the KB using a weighted average of these gradients.

our results and an ablation study presenting the main contribution of each component of

our proposal.

4.2.1. Dataset

For our experiments, we use two benchmarks used in previous works (Ebrahimi et

al., 2020; Zenke et al., 2017; Chaudhry, Rohrbach, et al., 2019). The first one is 20-

Split CIFAR-100 (Krizhevsky & Hinton, 2009) that consists of splitting CIFAR-100 into

20 tasks, each one with 5 classes. The second one is 20-Split MiniImagenet (Vinyals,

Blundell, Lillicrap, Wierstra, et al., 2016) that consists of dividing its 100 classes into 20

tasks.

4.2.2. Baselines

In our experiments, we compare MARK with recent state of the art methods: Hard At-

tention to the Tasks (HAT) (Serra et al., 2018), A-GEM (Chaudhry, Ranzato, et al., 2019),

Adversarial Continual Learning (ACL) (Ebrahimi et al., 2020), GPM (Saha & Roy, 2021),
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Experience Replay and SupSup (Wortsman et al., 2020). We also include a Multitask base-

line as an upper bound for performance, where all tasks are trained jointly.

Similar to the previous Chapter, to quantify the performance of our method, we use

two metrics: average accuracy (Acc) and backward transfer (BWT). These are given by:

Acc =
1

T

T�

i=1

AccT,i BWT =
1

T − 1

T−1�

i=1

AccT,i − Acci,i (4.4)

Acc measures average performance over the T tasks after the sequential learning. BWT

measures how much performance is lost on previous tasks after sequential learning. As

a measure of efficiency, we also consider the amount of memory used by each method,

considering number of parameters and extra temporal information needed by each method.

4.2.3. Implementation details

We run all of our experiments using 3 different seeds. In terms of hyperparameters,

we use SGD with a learning rate of 0.01 and a batch size of 128. Each task is trained for

50 epochs. To update the KB, we use 10 meta-tasks (K), trained for Einner =40 epochs,

each with a learning rate of 0.001. We repeat this training stage 15 times (Eouter).

We impose no restriction on which models we can use on each part of MARK. To

better compare methods, we run all experiments with the same architecture. Specifically,

we use a similar architecture as proposed in ACL (Ebrahimi et al., 2020). Main component

can be described as:

• Knowledge Base (KB): In this case, we use 3 shared blocks, each composed

of 1 convolutional layer with 64, 128, and 256 components respectively, accom-

panied by an activation function (ReLU) and Max-Pooling. After these blocks,

we add a fully connected layer that creates a representation to be input into the

task classifier.
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• Mask-Generating functions (M t): As explained in Section 4.1.2.1, we use a

fully connected layer for each function accompanied by an activation function

(ReLU). Input dimensions depend on the dataset, output is (64 + 128 + 256) =

448.

• Classifier (Ct): Is a fully connected layer.

The feature embedding F t, used to represent input instances, can be created by any

model, pretrained or otherwise. We test the following approaches:

• MARK-Task: we train F t for each task adding a classifier on top of it that is

trained using Dt. After training F t, this classifier is discarded. As for the ar-

chitecture, we use one similar to the private model in (Ebrahimi et al., 2020),

consisting of 2 convolutional layers with an activation function, batch normal-

ization, and Max-Pooling, followed by a fully connected layer with ReLU. The

number of filters in each layer depends on the dataset used. For CIFAR-100 we

use 32 filters per block, while for MiniImageNet we use 8 filters per block.

• MARK-Random: F t consists of a set of random weights that we do not train.

All tasks share the same F t. The architecture used is the same as MARK-Task.

• MARK-Resnet: all tasks share a Resnet-18 pre-trained on Imagenet as a feature

extractor.

4.2.4. Results

We first analyze the general performance of our method with respect to the alternative

approaches. We highlight the version of MARK where we pre-train F t using data from

each task (MARK-Task). While Table 4.1 shows that MARK-Resnet leads to better re-

sults, it uses additional information due to its pre-training using ImageNet. It is important

to note that embeddings F t
i are not directly used to classify the corresponding instances.

Instead, they are applied to generate the masks used to query the KB. Aside from its impact

on accuracy, we observe no meaningful impact of the input representation on BWT.
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Table 4.1. Results using 20-split CIFAR-100 and 20-split MiniImagenet
datasets. Standard deviation for 3 runs is listed in parentheses.

CIFAR100 Mini-Imagenet

Method Acc (std.)% BWT% Mem% Acc (std.)% BWT% Mem%

HAT 76.96 (± 1.2) 0.01 146% 59.45 (±0.1) -0.04 198%
A-GEM 61.88 (± 0.2) -16.97 205% 52.43 (±3.1) -15.23 165%
ACL 78.08 (± 1.3) 0 134% 62.07 (±0.5) 0 195%
GPM 76.67 (± 3.1) -0.42 66% 60.41 (±0.6) 0 70%
Exp. Replay 65.90 (± 1.2) -16.9 130% - - -
SupSup 77.58 (± 1.3) 0 26/111%1 - - -
Multitask 84.08 (± 1.2) 0 159% 74.44 (±1.6) 0 99%

MARK-Random 60.91 (± 0.4) -1.73 41% 33.02 (±0.7) 1.29 43%
MARK-Task 78.31 (± 0.3) -0.27 100% 69.43 (±1.6) -0.39 100%
MARK-Resnet 86.29 (± 0.1) -3.05 345% 93.55 (±0.2) -2.52 126%

As shown in Table 4.1, for both datasets, MARK-Task outperforms all competing

methods in terms of average accuracy, while showing no sign of CF (BWT is close to

zero). This is especially remarkable for Mini-Imagenet, as competing methods use com-

plex AlexNet-based architectures during training versus our simple convolutional model.

It is also noteworthy that MARK-Task accomplishes this while using almost half less

memory than its closest competitor, ACL. This is because MARK-Task reuses the same

stored KB for all tasks, while for each task it needs to store a small mask-generating func-

tion and classifier. Other methods either need to store extra parameters for adversarial

training (Ebrahimi et al., 2020) or they require access to past gradients (Chaudhry, Ran-

zato, et al., 2019)(Saha & Roy, 2021).

4.2.5. Ablation study

4.2.5.1. Evolution of Weight Updates

We hypothesize that the positive results achieved by MARK are due to the knowledge

stored in its KB being highly reusable. To test this, we analyze the updated weight during

1Memory usage of SupSup depends on whether the model is generated from a seed or stored fully.
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training of all tasks. As a baseline, we consider a version of MARK that does not include

metalearning and mask-filtering steps. In this experiment, weights are considered updated

if their average deviation is over a certain threshold after training a task.

Figure 4.3 shows the percentage of weights that change after training each task. We

observe two distinct phenomena: 1) MARK changes a rather small number of weights

compared to the baseline, and 2) As more tasks are trained, the amount of weight updates

dwindles.

We attribute both phenomena to MARK’s ability to reuse previous knowledge to tackle

new tasks. Thus updates should be needed mostly when learning new knowledge. The

dwindling amount of updates can be linked to MARK’s ability to develop its KB incre-

mentally, thus new tasks are far more likely to be tackled with knowledge already in the

KB. We believe that task similarity plays a crucial part in this behaviour, with each new

task learned facilitating MARK’s ability to find similarities for future tasks. However, to

elucidate how important is task similarity to achieve these results is beyond the scope of

this study.
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(b) 20-Split MiniImageNet

Figure 4.3. Percentage of updated weights in different blocks of the KB
during sequential training. As a baseline, we consider a version of MARK
that do not include metalearning and mask-filtering. Using MARK fewer
updates are required, suggesting that new tasks add less knowledge to the
KB due to incremental learning.
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4.2.5.2. Task Learning Speed

We hypothesize that if the KB is storing reusable knowledge, then learning speed for

new tasks should increase as the KB incrementally contains more knowledge. We analyze

the accuracy curves for each task when using MARK versus a model that is sequentially

trained without including any mechanism to avoid CF. Given that MARK trains its masks

and classifiers two times per task, to be fair, we train the baseline for twice as many epochs

as MARK. Consequently, we report results for the baseline every two epochs. Figure 4.4a

shows the comparison in speed between the two models. We observe that indeed, on

average, MARK achieves higher accuracy and stabilizes quicker than the baseline. This

provides further evidence about the ability of MARK to encode reusable knowledge.
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(b) Accuracy Gain

Figure 4.4. (a) Average test accuracy in the CIFAR-100 dataset achieved
by MARK and a baseline model that is sequentially trained without includ-
ing any mechanism to avoid CF. MARK achieves both greater accuracy and
faster stabilization. (b) Accuracy in a task when we re-training the task af-
ter the model complete its sequential learning using all available tasks. We
observe an increase in performance for most tasks, suggesting successful
knowledge accumulation in the KB.
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4.2.5.3. Importance of Metalearning and Mask Functions

We study the impact of the metalearning strategy used to update the KB and the mask-

generating functions used to query the KB. To do this, we compare MARK against three

ablations:

• Baseline: Simple sequential learning with no metalearning or mask-generating

functions. We use the same architecture as the KB.

• Baseline + ML: We improve the baseline by adding metalearning, i.e., KB up-

date.

• Baseline + Mask: We improve the baseline by adding task-specific mask func-

tions.

Figure 4.5 shows that the baseline suffers from both significant forgetting and reduced

performance. In contrast, when we include metalearning (Baseline + ML) forgetting is

reduced. Similarly, when we only add mask-functions (Baseline + Mask), there is a boost

in performance but forgetting also increases. By using metalearning and mask-functions,

our full MARK-Task model achieves high accuracy with almost no forgetting.

Two important observations can be extracted from these experiments: 1) The forgetful-

ness of Baseline + ML is more significant than that obtained in MARK (−3% v/s −0.25%),

showing that learning to use prior knowledge through masks can also help reduce forget-

fulness. 2) The maximum accuracy averaged over tasks (without forgetting) is higher in

MARK than in Baseline + Mask (78% v/s 74%), showing that training with metalearning

helps knowledge transfer between tasks. This behaviour might seem counterintuitive as

we metalearn only using the current task. However, an important part of MARK is forcing

the reuse of previously useful features which biases solutions to start from a point which

is useful for previous tasks. It is also worthwhile to note that it is known (Nichol et al.,

2018) that a REPTILE-style update (as is used in MARK) optimizes for synergistic gradi-

ent updates between minitasks. This might also help learn features that are more reusable,

which might explain part of the success of MARK.
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4.2.5.4. Incremental Construction of KB

We expect that, as MARK faces new tasks, its KB should be enriched with new knowl-

edge. To test this hypothesis, we analyze the effect of training again each task after the

model completes its sequential learning using all available tasks. As expected, Figure

4.4b shows that indeed, for most tasks, there is an absolute increase of 1.24% in perfor-

mance when they are revisited after completing the sequential learning cycle. However,

this increase might have to do with relearning what was forgotten rather than learning

new knowledge. Thus, we also compared the difference between the maximum accuracy

achieved during training for a task versus its final accuracy after retraining. We observed

an absolute 0.97% average increase in accuracy as well, which shows that indeed new

knowledge was used by earlier tasks.

(a) Baseline (b) Baseline + MetaLearning

(c) Baseline + Masks (d) Full model: MARK-Task

Figure 4.5. CF and accuracy for different versions of MARK-Task tested
on 20-Split CIFAR100. (a) Without using metalearning and mask-
functions, performance is low and CF is high. (b) Adding only metalearn-
ing, performance is still low, but there is almost no forgetting. (c) Adding
only mask-functions, performance increases but forgetting is still high. (d)
MARK-Task, our full model, achieves high performance with almost no
forgetting.
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5. CONCLUSIONS AND FUTURE WORK

This thesis introduces two novel approaches for continual learning scenarios based

on combining different learning strategies. Previous works had focused on minimizing

the modification of relevant weights, either by introducing suitable regularization or using

structural changes to select relevant information. By reducing the modification of those

weights, these works narrow the hypothesis space to learn new tasks, while this avoid

weights interference, it only tackle the symptoms of the catastrophic forgetting problem.

In this thesis, we focus on learning better representations via new learning strategies. Re-

sults show that these strategies encourage learning weights that can transfer their knowl-

edge between tasks, reducing forgetting and improving classification accuracy.

In our first approach, we introduce GoCaT, which exploits two complementary strate-

gies. The first strategy avoids catastrophic overwriting weight values by using a group-

sparse regularization that reserves part of the model to learn each task. The second strategy

fosters weight sharing among tasks by using a metalearning approach to encourage learn-

ing weights that are expected to be helpful to solve future tasks.

Our experiments demonstrate that group-sparse coding (GoSpaR) and binary masks

effectively allocate the network resources to avoid catastrophic forgetting. Furthermore,

by adding normalization functions (CaFil) and a metalearning strategy (ET), our model

correctly combines previous and current knowledge, outperforming alternative approaches

by a large margin.

In our second approach we present MARK, which is a novel method for continual

learning scenarios based on the construction and query of a KB. This KB is trained via

metalearning to accumulate relevant knowledge from different tasks incrementally.

Our experiments indicate that using metalearning to build the KB is crucial to mitigate

CF, while using mask-functions to query the KB is crucial to achieve high performance.
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Specifically, MARK achieves state-of-the-art results in both 20-Split CIFAR-100 and 20-

Split MiniImageNet, while suffering almost no BWT.

5.1. Limitations

The above proposals are not exempt from issues and limitations. In the case of GoCaT,

we freeze a portion of the model weights in each task, losing some plasticity after training

a task. In extreme cases, the model loses the plasticity entirely after training many tasks,

which lower the accuracy obtained by the model, as shown in Figure 3.2 when comparing

a fully flexible model (SGD) versus GoCaT.

Considering that the group-sparse regularization and the Calibration Functions are

only applicable in Convolutional layers, the architecture that be used is limited in GoCaT.

This issue limits the scenarios where this method can be applied.

Another limitation in GoCaT is that both learning strategies modify the same set of

weights (shared weights), which can increase the risk of interference between both opti-

mization functions. This problem happen because both strategies have different objectives,

which helps find a good starting point but can also lead to interference when both objec-

tives are very different. This interference can mainly occur when tasks are very different

from each other.

Although several limitations were tackled in our second proposal, as in GoCaT, MARK

relies heavily on the assumption that there is a common structure to be learned between

tasks. Thus, if there is no common pattern between tasks, a new task will have to modify

the KB drastically to obtain good results. Therefore, MARK is sensitive to the quality and

structure of the first task.

A relevant limitation present in both methods is that both rely on task-specific modules,

which create two problems: (1) the model increase the number of parameters with the

number of tasks, and (2) make the methods dependant on the task-id in train and test time.
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This limitation hinders the practical use of our proposal since it is not always feasible to

have this identifier.

5.2. Future work

Given the limitations presented by our proposals and considering new approaches pre-

sented in the CL community, many edges remain to be researched further. Next, we will

describe the ones that we consider most interesting.

• Learning Better Representation: The central hypothesis of this thesis is that

by learning representations with reusable information we can mitigate the prob-

lem of Catastrophe Forgetting. Results in both proposed methods shown that by

applying metalearning we can mitigate the CF. However, other learning strate-

gies that achieve agnostic-to-task representations have also been explored: self-

supervised (Jaiswal, Babu, Zadeh, Banerjee, & Makedon, 2021), which is train-

ing models with non-manually created labels, or Disentangled Representation

(Tenenbaum & Freeman, 1997), which is an unsupervised learning technique.

Can we incorporate some of these ideas into new CL scenarios?

Using different learning strategies, we can find more agnostic-to-task representa-

tions. However, we need to find a balance between non-useful agnostic represen-

tations and representations that are to specific for a task. For example, a model

can be trained with a self-supervised learning strategy and obtained weights that

are only useful for an specific self-supervised task. How can we achieve this bal-

ance between representations useful across tasks and specific enough to solve the

CL scenario?

• Memory: One of the important limitations of our two proposed methods, is the

need of a Task-ID in train and test time. Both methods have specific functions

per task, which are necessary to learn to use the previously learned weights.

How can we extend these methods to eliminate the need for the task-ID?
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One way to avoid this issue, is to use a function shared between all tasks, but

this function will suffer from forgetting if not trained carefully. To mitigate this

interference, some methods save a subset of past tasks as memory and added to

the current dataset to remember, which reduce forgetting. Nevertheless, these

solutions have two major problems: (1) We need access to past elements, which

is not always feasible, either for data privacy or other reasons, and (2) We need

to dedicate disk space to store this information.

The number of elements stored in this memory can vary depending on the dif-

ferent needs. However, in general terms, the more items we save, the more we

can remember, but it also increases the space required. One question that arises

from this problem is: Can we better select the elements that we store in this

memory? Can we find a subset of the previous tasks that better represents the

whole dataset with a minimal number of elements?

• Generative Replay: An alternative of saving elements from previous tasks is

to generate them, which avoid issues like privacy and space. We can generate

new elements by using Generative Models (Shin et al., 2017), VAE (van de

Ven, Siegelmann, & Tolias, 2020) to generate elements or latent representations

(Hayes et al., 2020). However, is not trivial to train generative models, either

because of the high dimensionality of the elements or the interference between

task in the generative model.

An alternative to generative models, are trained representations that compress

the information of the whole dataset, either by using Dataset Distillation (T. Wang,

Zhu, Torralba, & Efros, 2018) or Dataset Condensation (Zhao, Mopuri, & Bilen,

2020) techniques. These techniques seek to generate a small set of elements that

can entirely represent the complete dataset. The problem is that these techniques

usually do not work very well with large elements, such as high-dimensional im-

ages. Nevertheless, it could be an exciting edge to explore.

• Efficiency: One of our motivation to work on Continual Learning is helping

in efficiency during training new tasks. This efficiency can happen because we
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need slight modifications in the weights to train new data, mainly because we

are reusing knowledge that already exists.

We have already explained why it is good to have better representations. How-

ever, we can also analyze the sparsity of the weights and in the gradient of the

model. Is it always necessary to train the entire model every time a new task ar-

rives? How much do we need to change the weights during training a new task?

How do we select which weights can be modified to learn a task and minimize

interference?

A few techniques have been proposed in this thesis to tackle how to select rel-

evant knowledge, based on feature-wise transformations. Nevertheless, other

techniques may be useful, like those based on Hyper-Networks (von Oswald et

al., 2020), which seek to generate parts of the model from a given representa-

tions.

• Shift Detection: Working with dissimilar tasks is not a limitation exclusive to

MARK or GoCaT. If a very different task arrives, more change to the weights

are necessary to learn it correctly, which can cause more interference. However,

it is not clear how much a task can change before these methods fail, nor is it

clear how to measure this difference between tasks.

Related questions are: When does a distribution drift occur? When does a new

class arrive at our continuous flow of data? When is it necessary to learn new

patterns or classes? Let imagining a model in real-world environments. Identi-

fying when an element/class that the model does not know appears in our flow, is

essential to avoid incorrect classifications. We should be able to train the model

to add a new class when needed, identifying drastic change in the distribution,

instead of making misclassifications because of unknown classes.

Overall, in this thesis we present two proposals to face the problem of continual learn-

ing. We move away from the motivation of traditional solutions as we encourage the

transfer of knowledge by training weights that can be useful across tasks. We believe this
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is a step towards alleviating the catastrophic forgetting, by thinking more about the repre-

sentations that the model is learning and less about modifying past weights. By doing this,

we avoid interference, improve accuracy and increase positive transfer between tasks.
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