
ar
X

iv
:0

90
6.

27
76

v1
  [

m
at

h.
C

V
] 

 1
5 

Ju
n 

20
09

INJECTIVITY CRITERIA FOR HOLOMORPHIC CURVES IN Cn

M. CHUAQUI, P. DUREN, AND B. OSGOOD

Abstract. Combining the definition of Schwarzian derivative for conformal mappings be-
tween Riemannian manifolds given by Osgood and Stowe with that for parametrized curves
in Euclidean space given by Ahlfors, we establish injectivity criteria for holomorphic curves
φ : D → Cn. The result can be considered a generalization of a classical condition for
univalence of Nehari.

1. Introduction

Let f : D → C be a locally injective holomorphic mapping defined in the unit disk, and
let

Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2

be its Schwarzian derivative. A classical univalence criterion of Nehari [9] relates the size of
|Sf | to the univalence of f . Nehari stated the result in the form:

(1) |Sf(z)| ≤ 2p(|z|)
implies that f is injective in D, if p(x) is a positive, even, and continuous function defined
for x ∈ (−1, 1), with the properties

(a) (1 − x2)2p(x) is non-increasing for x ∈ [0, 1);
(b) the differential equation u′′ + pu = 0 has no nontrivial solutions with more than one

zero in (−1, 1).

Condition (1) includes the criteria |Sf(z)| ≤ π2/2 and |Sf(z)| ≤ 2(1 − |z|2)−2 from [8],
but also many others. A function p satisfying the hypotheses above will be referred to as a
Nehari function. Later, in Section 5, we will also introduce the notion of an extremal Nehari

function.
Before its connection with univalence was understood, the attributes of the Schwarzian

that made it interesting are that it vanishes identically precisely for Möbius transformations,

Sf(z) = 0 if and only if f(z) =
az + b

cz + d
, ad− bc 6= 0 ,

and that it is invariant under post-composition with a Möbius transformation,

S(f ◦ g) = Sg

if f is Möbius. More generally, one has the chain rule

(2) S(f ◦ g) = ((Sf) ◦ g)(g′)2 + Sg .
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Consider now a locally injective holomorphic curve φ : D → Cn, n ≥ 1. Write φ =
(f1, . . . , fn), with each fk holomorphic in D, and define the smooth real-valued function σ
on D by

σ =
1

2
log(|f ′

1|2 + · · · |f ′
n|2) .

We define the Schwarzian derivative of φ to be

(3) Sφ = 2(σzz − σ2
z) ,

where

σz =
1

2

(
∂σ

∂x
− i

∂σ

∂y

)
.

This reduces to the classical Schwarzian when n = 1, so there is no ambiguity in using the
same name and symbol. Further background on this definition is in Section 5; it derives
from a generalization of the Schwarzian to conformal mappings of Riemannian manifolds.

A straightforward calculation based only on the definition (3) together with S vanishing
on Möbius transformations shows that

(4) S(φ ◦ T ) = ((Sφ) ◦ T )(T ′)2

when T is a Möbius transformation of D. We will need this in an number of places. We do not
consider M ◦ φ when M is a Möbius transformation of R

2n, nor do we have S(M ◦ φ) = Sφ,
since, in general, M ◦φ is not holomorphic and so its Schwarzian is not defined (at least not
so simply). However, there is a substitute for Möbius invariance that we will also need. It
involves a version of the Schwarzian introduced by Ahlfors, discussed in Section 2. A very
general version of (2) is in Section 5.

Let Σ = φ(D), which we can regard as a (real) 2-dimensional surface in R2n. The Gaussian
curvature, K(φ(z)), of Σ at φ(z) is given by

(5) K(φ(z)) = −e−2σ(z)∆σ(z) ,

and so is nonpositive. We shall prove:

Theorem 1. Let p be a Nehari function and let φ : D → Cn be holomorphic with φ′ 6= 0. If

(6) |Sφ(z)| + 3

4
|φ′(z)|2|K(φ(z)| ≤ 2p(|z|) , z ∈ D ,

then φ is injective.

We recover Nehari’s theorem if n = 1, since then φ(D) ⊂ C and K(φ(z)) = 0.
We are also able to describe just how injectivity fails on ∂D, and it does so in a rather

special way. To have such a statement make sense it is first necessary to know that a
mapping satisfying Theorem 1 extends continuously to the boundary. In Section 6 we will
give a precise analysis of the situation, but as a preliminary result we now state:

Theorem 2. A holomorphic curve φ : D → Cn satisfying Theorem 1 has an extension to D

that is uniformly continuous in the spherical metric.

Thus a function φ satisfying the condition (6) maps the unit circle to a continuous closed
curve Γ ⊂ Cn ∪ {∞}. We say that φ is an extremal function for the criterion if Γ is not a
simple closed curve. In this case there is a pair of points ζ1, ζ2 ∈ ∂D with f(ζ1) = f(ζ2) = P ,
and one says that P is a cut point of Γ. We now have the following characteristic property
of extremal mappings.
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Theorem 3. Under the hypotheses of Theorem 1, suppose the closed curve Γ = φ(∂D) is

not simple and let P be a cut point. Then there exists a Euclidean circle or line C such that

C \ {P} ⊂ Σ. Furthermore, equality holds in (6) along φ−1(C \ {P}).
In addition to these results, in Section 4 we will derive a covering theorem for holomorphic

curves satisfying (6) that generalizes some one-dimensional results. In Section 7 we will
construct examples showing that the criterion is sharp.

When we began our work on generalizing Nehari’s theorem it was in a rather different

context, namely a harmonic mapping f of D and its Weierstrass-Enneper lift f̃ mapping D to

a minimal surfaces in R3, see [2]. The lift f̃ is a conformal mapping of D, say with conformal
factor eσ, and again there is a generalization of the Schwarzian derivative, Sf = 2(σzz −σ2

z),
just as in (3). One then has: If p is a Nehari function and

(7) |Sf(z)| + e2σ(z)|K(f̃(z))| ≤ 2p(|z|) , z ∈ D ,

then f̃ is injective in D. Here K(f̃(z)) is the Gaussian curvature of the minimal surface f̃(D)

at f̃(z). There are also results analogous to Theorems 2 and 3.
It was very surprising, to us at least, that such similar statements hold in these two

different settings. Comparing (6) and (7) the most visible difference is in the multiple of
the curvature terms, 3/4 in the former and 1 in the latter. This is a reflection of the shared
nature of the proofs, with small changes in the constants in some of the preliminary results.
Things did not have to be this way, one might have thought. The cause of this commonality
comes from the differential geometry of the holomorphic curve as a surface in R

2n, to be
explained in Section 2.

We have certainly borrowed from the exposition in [2], but while the two papers run a
parallel course in many – but not all – ways, we have tried to make this paper reasonably
self-contained. There are a few instances where we refer to [2] for details that would have
been reproduced verbatim here.

2. Ahlfors’ Schwarzian and the Second Fundamental Form

We begin the same way as in [2], with Ahlfors’ Schwarzian for curves in Rm and its
relationship to curvature, but here we find an important difference with what was done in
the case of harmonic maps. Here to make use of the properties of Ahlfors’ operator to study
injectivity we must relate the second fundamental form of the holomorphic curve as a surface
in R2n to its Gaussian curvature.

Ahlfors [1] defined a Schwarzian derivative for mappings ϕ : (a, b) → Rm of class C3 with
ϕ′(x) 6= 0 by generalizing separately the real and imaginary parts of the Schwarzian for
analytic functions. We only need the operator corresponding to the real part, which is

S1ϕ =
〈ϕ′, ϕ′′′〉
|ϕ′|2 − 3

〈ϕ′, ϕ′′〉2
|ϕ′|4 +

3

2

|ϕ′′|2
|ϕ′|2 ,

where 〈· , · 〉 denotes the Euclidean inner product. If T is a Möbius transformation of Rm

then, as Ahlfors showed,

(8) S1(T ◦ ϕ)(t) = S1ϕ(t) .

We also record the fact that if γ(t) is a smooth function with γ′(t) 6= 0 then

S1(ϕ ◦ γ) = ((S1ϕ) ◦ γ)(γ′)2 + Sγ ,
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analogous to the chain rule (2) for the analytic Schwarzian.
As in the introduction, let φ : D → Cn be a holomorphic curve, and let Σ = φ(D). Ahlfors’

Schwarzian enters the proof of Theorem 1 for two reasons. First, it is related to Sφ via the
geometry of Σ as a surface in R2n. Second, bounds on S1ϕ imply injectivity along curves,
and this will be sufficient to prove injectivity in D. We take up the first point in this section
and the second point in Section 3.

We recall the notion of the second fundamental form of a submanifold. Let M be a
submanifold of Rm with the metric induced by the Euclidean metric on Rm. Let D be the
covariant derivative on R

m and let D′ be the covariant derivative on M . If X and Y are
vector fields tangent to M then DXY need not be tangent to M but rather has components
tangent and normal to M :

DXY = D′
XY + II(X, Y ) .

The normal component is the second fundamental form, II(X, Y ). It is a tensor.
For holomorphic curves the second fundamental form is related to the Gaussian curvature

of Σ in the following way.

Lemma 1. Let φ : D → Cn be holomorphic with φ′ 6= 0, and let V (x) = φ′(x)/|φ′(x)|,
x ∈ (−1, 1). Then along φ the second fundamental form of Σ = φ(D) satisfies

(9) |II(V, V )|2 =
1

2
|K(φ)| .

Proof. We need to find the components of DV V tangent and normal to Σ. First, using
V (x) = φ′(x)/|φ′(x)| = e−σ(x)φ′(x) we have, along (−1, 1),

(10) DV V = e−σ(e−σφ′)′ = e−σ(e−σφ′′ − e−σσxφ
′) = e−2σ(φ′′ − σxφ

′) = e−2σ(φxx − σxφx) .

Next let Y be the vector field e−σφy along (−1, 1). Since φ is conformal the pair {V, Y } is an
orthonormal frame for Σ along the curve φ((−1, 1)). In order to determine the component
of DV V normal to Σ we will compute 〈DV V, V 〉 and 〈DV V, Y 〉.

¿From 〈V, V 〉 = 1 it follows that 〈DV V, V 〉 = 0. Then,

〈DV V, Y 〉 = e−3σ〈φxx − σxφx, φy〉 = e−3σ〈φxx, φy〉 ,

because 〈φx, φy〉 = 0. But φ is also harmonic, hence

〈DV V, Y 〉 = −e−3σ〈φyy, φy〉 = −1

2
e−3σ ∂

∂y
〈φy, φy〉

= −1

2
e−3σ ∂

∂y
(e2σ) − e−σσy .

It follows that

DV V = −e−σσyY + II(V, V ) ,

that is, from (10),

II(V, V ) = e−2σ(φxx − σxφx + σyφy) .
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Therefore

e4σ|Π(V, V )|2 = |φxx|2 + e2σσ2
x + e2σσ2

y − 2σx〈φxx, φx〉 + 2σy〈φxx, φy〉
= |φxx|2 + e2σ(σ2

x + σ2
y) − 2σx〈φxx, φx〉 − 2σy〈φyy, φy〉

= |φxx|2 + e2σ(σ2
x + σ2

y) − σx
∂

∂x
(e2σ) − σy

∂

∂y
(e2σ)

= |φxx|2 − e2σ(σ2
x + σ2

y) .

More compactly,

(11) e4σ|II(V, V )|2 = |φxx|2 − e2σ|∇σ|2 .
On the other hand, using φ = (f1, . . . , fn) and σ = (1/2 log ( |f ′

1|2 + · · · + |f ′
n|2), together

with φx = φ′ = (f ′
1, . . . , f

′
n) and φxx = (f ′′

1 , . . . , f
′′
n), we obtain

(12) 2σz =
f ′

1f
′′
1 + · · ·f ′

nf
′′
n

|f ′
1|2 + · · ·+ |f ′

n|2
,

and after some algebra,

|∇σ|2 = |2σz|2 = e−4σ

∣∣∣∣∣
∑

i

f ′
if

′′
i

∣∣∣∣∣

2

.

This inserted in (11) gives

(13) e6σ|Π(V, V )|2 =
∑

i

|f ′′
i |

2
∑

j

∣∣f ′
j

∣∣2 −
∑

i

f ′
if

′′
i

∑

j

f ′
jf

′′
j =

∑

i<j

∣∣f ′
if

′′
j − f ′

jf
′′
i

∣∣2 .

Finally we compute K(φ(x)) = −e−2σ(x)∆σ(x). From (12) it follows that

1

2
∆σ = 2σzz̄ =

|f ′′
1 |2 + · · · + |f ′′

n |2
|f ′

1|2 + · · ·+ |f ′
n|2

−
∣∣f ′

1f
′′
1 + · · · f ′

nf
′′
n

∣∣2

( |f ′
1|2 + · · · + |f ′

n|2)2 ,

and after some manipulation one obtains

(14) ∆σ = 2e−4σ
∑

i<j

∣∣f ′
if

′′
j − f ′

jf
′′
i

∣∣2 .

Comparing (13) with (14) we deduce that

|Π(V, V )|2 =
1

2
|K(φ)| ,

as desired.
�

Ahlfors’ Schwarzian S1 and the holomorphic Schwarzian S from (3) appear together in
the following relationship.

Lemma 2. Let φ : D → C
n be holomorphic with φ′ 6= 0. Let γ(t) be a Euclidean arc-length

parametrized curve in D with curvature κ(t), and let ϕ(t) = φ(γ(t)) be the corresponding

parametrization of Γ = φ(γ) on Σ = φ(D). Let V (t) be the Euclidean unit tangent vector

field along ϕ(t), given by

V (t) =
ϕ′(t)

|ϕ′(t)| =
φ′(γ(t))γ′(t)

|φ′(γ(t))| .
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Then

(15) S1ϕ(t) = Re{Sφ(γ(t))(γ′(t))2} +
3

4
|φ′(γ(t))|2K(ϕ(t)) +

1

2
κ2(t) .

This is the most general form of the relationship between S1 and S. Compare this formula
to the one in Lemma 1 in [2]. We will also need (15) in the special case when γ(t) is a
diameter of D, say from −1 to 1. In this case κ = 0 and we can write the equation as

(16) S1φ(x) = Re{Sφ(x)} +
3

4
|φ′(x)|2|K(φ(x))| .

Here, by S1φ(x) we mean S1 applied to φ restricted to the interval (−1, 1).

Proof of Lemma 2. Let v(t) = |ϕ′(t)|. The proof is based on a formula of Chuaqui and
Gevirtz in [3], according to which

(17) S1ϕ =

(
v′

v

)′
− 1

2

(
v′

v

)2

+
1

2
v2k2 ,

where k is the Euclidean curvature of the curve ϕ(t) in R2n. We compute the terms on the
right-hand side.

First, by definition,

v(t) = |ϕ′(t)| = |φ′(γ(t))| = eσ(γ(t)) ,

and hence
v′

v
= 〈∇σ , γ′〉 ,

(
v′

v

)′
= Hess σ(γ′, γ′) + 〈∇σ , γ′′〉 ,

where

Hess σ =

(
σxx σxy

σxy σyy

)

is the Hessian matrix regarded as a bilinear form and γ′ is identified with unit tangent vector
(x′(t), y′(t)). Moreover, with a similar identification, γ′′ = κn, where n is the unit normal to
γ(t). Thus

(18)

(
v′

v

)′
− 1

2

(
v′

v

)2

= Hess σ(γ′, γ′) + κ〈∇σ , n〉 − 1

2
〈∇σ , γ′〉2 .

Next we work with the curvature term k2v. We can write

(19) k2 = k2
i + |II(V, V )|2 ,

where ki is the intrinsic (geodesic) curvature of ϕ(γ(t)) on the surface ϕ(D) = Σ ⊂ R2n.
Furthermore, ϕ : (D, e2σg0) → (Σ, g0) is a local isometry between Σ with the Euclidean
metric, denoted here by g0, and D with the conformal metric e2σg0, and so ki = κ̂, the
curvature of γ(t) in the metric e2σg0. In turn, a classical formula in conformal geometry
states that

eσκ̂ = κ− 〈∇σ , n〉;
see, for example, Section 3 in [10]. Combining these formulas gives us

(20) v2k2 = k2e2σ = κ2 − 2κ〈∇σ , n〉 + 〈∇σ , n〉2 + e2σ|II(V, V )|2 .
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For S1ϕ in (17) we combine (18) and (20) and manipulate some terms to write

S1ϕ = Hess(σ)(γ′, γ′) − 1

2
〈∇σ , γ′〉2 +

1

2
〈∇σ , n〉2 +

1

2
κ2 +

1

2
e2σ|II(V, V )|2

= Hess(ϕ)(γ′, γ′) +
1

2
|∇σ|2 − 〈∇σ , γ′〉2 +

1

2
κ2 +

1

2
e2σ|II(V, V )|2

= Hess(σ)(γ′, γ′) − 〈∇σ , γ′〉2 − 1

2
(∆σ − |∇σ|2) +

1

2
∆σ +

1

2
κ2 +

1

2
e2σ|II(V, V )|2

Next, one finds by straight calculation (see also Section 5) that

Hess(σ)(γ′, γ′) − 〈∇σ , γ′〉2 − 1

2
(∆σ − |∇σ|2) = Re{Sφ(γ)(γ′)2}

while from (5),
1

2
∆σ = −1

2
e2σK(φ) =

1

2
e2σ|K(φ)| .

Substituting these and e2σ = |φ′|2 gives

S1ϕ(t) = Re{Sφ(γ(t))(γ′(t))2} +
1

2
|φ′(γ(t))|2(K(ϕ(t)) + |II(V (t), V (t))|2) +

1

2
κ2(t) .

Now appealing to Lemma 1 brings this into final form,

S1ϕ(t) = Re{Sφ(γ(t))(γ′(t))2} +
3

4
|φ′(γ(t))|2K(ϕ(t)) +

1

2
κ2(t) .

�

3. Injectivity, Extremal Functions, and the Proofs of Theorems 1 and 3

We recall the hypothesis of Theorem 1, that φ satisfies (6),

|Sφ(z)| + 3

4
|φ′(z)|2|K(φ(z))| ≤ 2p(|z|) , z ∈ D .

The proof of injectivity rests on a result of Chuaqui and Gevirtz [3] giving a criterion for
univalence on (real) curves in terms of S1.

Theorem A. Let p(x) be a continuous function such that the differential equation u′′(x) +
p(x)u(x) = 0 admits no nontrivial solution u(x) with more than one zero in (−1, 1). Let

ϕ : (−1, 1) → Rm be a curve of class C3 with tangent vector ϕ′(x) 6= 0. If S1ϕ(x) ≤ 2p(x),
then ϕ is univalent.

We pass immediately to

Proof of Theorem 1. If φ satisfies (6) then, from (16), along the diameter (−1, 1),

S1φ(x) ≤ 2p(x) ,

and so φ is injective there by Theorem A. The same holds for any rotation φ(eiθz) of φ and
hence φ is injective along any diameter of D.

Suppose now that z1 and z2 are distinct points not on a diameter. Let γ be the hyperbolic
geodesic through z1 and z2. By a rotation of D we may assume that γ meets the imaginary
axis orthogonally at a point iρ. The Möbius transformation

T (z) =
z − iρ

1 + iρz
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maps D onto itself, preserves the imaginary axis, and carries γ to the diameter (−1, 1). The
function

ψ(z) = φ(T (z))

is a holomorphic reparametrization of Σ = φ(D) with ψ′ 6= 0 and we claim that

|Sψ(x)| + 3

4
|ψ′(x)|2|K(ψ(x))| ≤ 2p(x) , −1 < x < 1 .

If so, then S1ψ(x) ≤ 2p(x) as above, whence ψ is injective along (−1, 1) and φ(z1) 6= φ(z2).
For this, first note that

|ψ′(x)| = |φ′(T (x))| |T ′(x)|
while also

Sψ(x) = Sφ(T (x))T ′(x)2 ,

from (4). Next, by hypothesis,

|Sφ(T (x))| |T ′(x)|2 +
3

4
|φ′(T (x))|2|T ′(x)|2|K(φ(T (x)))| ≤ 2p(|T (x)|)|T ′(x)|2 ,

and so the claim will be established if we show

(21) p(|T (x)|T ′(x)|2) ≤ p(|x|) , −1 < x < 1 .

But now a simple calculation gives that

(22) |x| ≤ |T (x)|
for this particular Möbius transformation, whence

(1 − |T (x)|2)2p(|T (x))| ≤ (1 − x2)2p(|x|)
by the assumption that (1 − x2)2p(x) is non-increasing for x ∈ [0, 1). Furthermore

|T ′(x)|
1 − |T (x)|2 =

1

1 − x2

for any Möbius transformation of D onto itself. Thus

|T ′(x)|2p(|T (x)|) =
(1 − |T (x)|2)2

(1 − x2)2
p(|T (x)|) ≤ p(|x|) ,

finishing the proof. �

The trick of passing from injectivity along diameters to the general case via this special
Möbius transformation, using (22) to obtain (21), goes back to Nehari. We used the same
argument in [2].

Theorem 3 states that if φ satisfies the univalence criterion (6) and fails to be injective on
∂D (assuming continuous extension) then it must do so in a particular way, that the surface
Σ = φ(D) contains a Euclidean circle minus the cut point where injectivity fails. Moreover,
equality holds in (6) along the preimage of the circle. These properties of such extremal
functions depend upon another result of Chuaqui and Gevirtz in the same paper [3]. To
state it we need one additional construction, which will be used again in later sections.

If the function p(x) of Theorem A is even, as will be the case for a Nehari function, then
the solution u0 of the differential equation u′′ + pu = 0 with initial conditions u0(0) = 1 and
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u′0(0) = 0 is also even, and therefore u0(x) 6= 0 on (−1, 1), since otherwise it would have at
least two zeros. Thus the function

(23) Φ(x) =

∫ x

0

u0(t)
−2 dt , −1 < x < 1 ,

is well defined and has the properties Φ(0) = 0, Φ′(0) = 1, Φ′′(0) = 0, Φ(−x) = −Φ(x), and
SΦ = 2p. Furthermore, S1Φ = SΦ since Φ is real-valued, and so S1Φ = 2p as well.

In terms of Φ, the second Chuaqui-Gevirtz theorem is as follows.

Theorem B. Let p(x) be an even function with the properties assumed in Theorem A, and

let Φ be defined as above. Let ϕ : (−1, 1) → Rm satisfy S1ϕ(x) ≤ 2p(x) and have the

normalization ϕ(0) = 0, |ϕ′(0)| = 1, and ϕ′′(0) = 0. Then |ϕ′(x)| ≤ Φ′(|x|) for x ∈ (−1, 1),
and ϕ has an extension to the closed interval [−1, 1] that is continuous with respect to the

spherical metric. Furthermore, there are two possibilities:

(i) If Φ(1) <∞, then ϕ is univalent in [−1, 1] and ϕ([−1, 1]) has finite length.

(ii) If Φ(1) = ∞, then either ϕ is univalent in [−1, 1] or ϕ = R ◦ Φ for some rotation R
of Rm.

We can now proceed with

Proof of Theorem 3. Suppose that φ satisfies (6) and fails to be injective on ∂D, and let
ζ1, ζ2 ∈ ∂D be points for which φ(ζ1) = φ(ζ2) = P . We first show that we can form
ψ = φ ◦ T for a suitable Möbius transformation of D onto itself, with ψ still satisfying (6)
and with ψ(1) = ψ(−1) = P . We refer to the calculations in the proof of Theorem 1, and
we distinguish two cases.

Suppose first that (1−x2)2p(x) is constant. Then the condition (6) is fully invariant under
the Möbius transformations of D, and for a Möbius modification ψ = φ ◦ T with T (1) = ζ1,
T (−1) = ζ2 we obtain ψ(1) = ψ(−1) = P .

Now suppose that (1 − x2)2p(x) is not constant. Suppose also, by way of contradiction,
that ζ1 and ζ2 are not on a diameter. Since (6) is, in any case, invariant under rotations
of D, we may assume that ζ1 and ζ2 are both in the upper half plane and are symmetric in
the imaginary axis. Just as in the proof of Theorem 1, let T (z) = (z − iρ)/(1 + iρz) with
T (−1) = ζ1, T (1) = ζ2, and let ψ = φ ◦ T . Then (6) holds for ψ, together with ψ(1) =
ψ(−1) = P and S1ψ(x) ≤ 2p(x). Moreover we must have a strict inequality S1ψ(x) < 2p(x)
on some interval in (−1, 1) because (1−x2)2p(x) is not constant. However, this last statement
stands in contradiction with Theorem B. To be precise, there is a Möbius transformation M
of R2n such that M ◦ψ satisfies the hypotheses of Theorem B with (M ◦ψ)(−1) = (M ◦ψ)(1),
and because ψ is not injective on [−1, 1] we have, using (4), S1(M ◦ ψ) = S1ψ = 2p. The
contradiction shows that ζ1 and ζ2 must lie on a diameter.

In all cases, by a suitable modification we can now assume that the injectivity of φ on ∂D

fails by φ mapping the interval [−1, 1] to a closed curve on φ(D) with φ(−1) = φ(1) = P ,
and by a post composition with a Möbius transformation of R2n we may further assume
that φ is normalized as in Theorem B. Then again by Theorem B, φ = V ◦ Φ for some
Möbius transformation of R2n. Hence S1φ = S1Φ = 2p and φ maps [−1, 1] to a Euclidean
circle or a line, since Φ maps [−1, 1]] onto R ∪ {∞} and V preserves circles. Finally, since
S1φ(x) = 2p(x) and φ satisfies (6), it follows from (16) that

|Sφ(x)| + 3

4
|φ′(x)|2|K(φ(x))| = 2p(x), x ∈ [−1, 1] .
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This concludes the proof. �

4. A Covering Theorem

We continue to assume that φ satisfies the injectivity criterion (6). In this section we will
derive a lower bound for the radius of a metric disk centered at φ(0) on Σ. We will assume
an additional normalization of |φ′(0)| = 1, and then the lower bound will depend on |φ′′(0)|
and on a second extremal function associated with the Nehari function p. We also need to
assume that p is nondecreasing on [0, 1), which is the case for many examples. The result
we obtain is very much in line with those from classical geometric function theory, see, for
example, [6].

Let U be the solution of

U ′′ − pU = 0 , U(0) = 1 , U ′(0) = 0

(note the minus sign in the differential equation) and define

Ψ(x) =

∫ x

0

U(t)−2 dt .

Theorem 4. Let φ be a holomorphic curve satisfying (6) with |φ′(0)| = 1, and suppose that

p(x) is nondecreasing on [0, 1). Then

(24) min
|z|=r

dΣ(φ(z), φ(0)) ≥ 2Ψ(r)

2 + |φ′′(0)|Ψ(r)
,

where dΣ denotes distance on Σ = φ(D). In particular, Σ contains a metric disk of radius

2Ψ(1)

2 + |φ′′(0)|Ψ(1)

centered at φ(0).

Proof. The proof relies ultimately on comparing solutions of two differential equations, one
involving the extremal Ψ, where the relevant inequalities come to us by way of the formulas
from Lemma 2 and its proof. This requires some preparation.

Let zr be a point on |z| = r for which the minimum on the left hand side of (24) is attained.
Since φ is injective the minimum is positive and zr 6= 0. The geodesic, Γ, on Σ that joins
φ(0) with φ(zr) is contained in φ({|z| ≤ r}) and we let γ = φ−1(Γ). Write γ(t) for the
parametrization of γ by Euclidean arc-length, and let ϕ(t) = φ(γ(t)) be the corresponding
parametrization of Γ. Further, let

v(t) = |φ′(γ(t))| .
Now compare the expressions for S1ϕ(t) in (15) and (17), using (19) relating the Euclidean
and intrinsic curvatures of Γ and the second fundamental form of Σ:

(v′/v)′−1

2
(v′/)2 +

1

2
v2

(
k2

i + |II(V, V )|2
)

=

Re{Sφ(γ)(γ′)2} +
1

2
v2

(
|K(φ(γ))| + |II(V, V )|2

)
+

1

2
κ2 ,

where κ is the Euclidean curvature of γ and V is the Euclidean unit tangent vector field
along Γ; all expressions are to be evaluated at t. Since Γ is a geodesic ki = 0 and this



INJECTIVITY CRITERIA FOR HOLOMORPHIC CURVES IN C
n 11

becomes

(v′/v)′ − 1

2
(v′/v)2 = Re{Sφ(γ)(γ′)2} +

1

2
v2|K(φ(γ))| + 1

2
κ2 .

But the univalence criterion (6) implies that

Re{Sφ(γ)(γ′)2} ≥ −|Sφ(γ)| ≥ −2p(γ) +
3

4
v2|K(φ(γ))| ,

hence

(v′/v)′ − 1

2
(v′/v)2 ≥ −2p(|γ|) +

5

4
v(t)2|K(φ(γ))| + 1

2
κ2

≥ −2p(|γ|) .
Now let

h(t) =

∫ t

0

v(τ) dτ .

Then Sh = (v′/v)′ − 1
2
(v′/v)2, and from the preceding estimate,

Sh(t) ≥ −2p(|γ(t)|) ≥ −2p(t) ,

the final inequality holding because |γ(t)| ≤ t and we have assumed that p(x) is nondecreasing
on [0, 1).

The result Sh(t) ≥ −2p(t) is the main inequality we need in order to apply the Sturm
comparison theorem. For this, first note that the function w = v−1/2 is the solution of

w′′ +
1

2
(Sh)w = 0 , w(0) = 1 , w′(0) = −1

2
v′(0) .

Next, consider also the solution y(t) of

y′′ − py = 0 , y(0) = 1 , y′(0) =
1

2
|φ′′(0)| .

Since −1
2
Sh(t) ≤ p(t), and also

w′(0) = −1

2
v′(0) ≤ 1

2
|φ′′(0)| ,

it follows by comparison that

w(t) ≤ y(t) .

Finally, observe that, explicitly, y = (H ′)−1/2, where

H =
2Ψ

2 + |φ′′(0)|Ψ .

Consequently,

h(t) =

∫ t

0

w−2(τ) dτ ≥
∫ t

0

y−2(τ) dτ =

∫ t

0

H ′(τ) dτ = H(t) ,

and hence

dΣ(φ(zr), φ(0)) =

∫

γ

v ≥
∫ r

0

v(t) dt = h(r) ≥ H(r) .

This completes the proof.
�
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5. Conformal Schwarzians, Extremal Nehari Functions, and Convexity

To advance further in the analysis of mappings satisfying (6), in particular to study con-
tinuous extension to the boundary, we need estimates based on convexity. This requires
a notion of the Schwarzian for conformal metrics and an associated differential equation.
This section generally follows the treatment of these ideas in [2], abbreviated somewhat and
modified to serve the case of holomorphic maps rather than lifts of harmonic maps. We refer
to that paper and also to [10] for (many) more details.

Let g be a Riemannian metric on the disk D. We may assume that g is conformal to the
Euclidean metric, g0 = dx ⊗ dx + dy ⊗ dy = |dz|2. Let σ be a smooth function on D and
form the symmetric 2-tensor

(25) Hessg(σ) − dσ ⊗ dσ.

Here Hess denotes the Hessian operator. If γ(s) is an arc-length parametrized geodesic for
g, then

Hessg(σ)(γ′, γ′) =
d2

ds2
(σ ◦ γ) .

The Hessian depends on the metric, and since we will be changing metrics we indicate this
dependence by the subscript g.

We now form

Bg(σ) = Hessg(σ) − dσ ⊗ dσ − 1

2
(∆gσ − || gradg σ||2)g .

The final term has been subtracted to make the trace zero.
This is the Schwarzian tensor of σ. Before explaining its connection to conformal maps,

metrics and the Schwarzian derivative, first note that in standard Cartesian coordinates one
can represent Bg(σ) as a symmetric, traceless 2 × 2 matrix, say of the form

(
a −b
−b −a

)
.

Further identifying such a matrix with the complex number a+bi then allows us to associate
the tensor Bg(σ) with a+ bi, and then

||Bg0
(σ)(z)||g0

= |a+ bi| .
A locally injective holomorphic curve φ : D → Cn is a conformal mapping of D with

the Euclidean metric into R2n with the Euclidean metric and if, as before, we write φ =
(f1, . . . , fn) then the conformal factor is

φ∗(g0) = e2σg0 , σ =
1

2
log(|f ′

1|2 + · · · |f ′
n|2) .

The Schwarzian derivative of φ is defined to be

Sgφ = Bg(σ) .

When n = 1 and σ = log |φ′| we find that

Bg0
(log |φ′|) =

(
ReSφ −ImSφ

−ImSφ −ReSφ

)
,
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writing the tensor in matrix form as above, where Sφ is the classical Schwarzian derivative
of φ. When n ≥ 1, identifying the tensor with a complex number leads to

Sφ = 2(σzz − σ2
z) ,

the definition that we gave in Section 1.
The tensor Bgσ changes in a simple way if there is a conformal change in the background

metric g. Specifically, if ĝ = e2ρg then

Bg(ρ+ σ) = Bg(ρ) +Bbg(σ).

This is actually a generalization of the chain rule (2) for the classical Schwarzian. An
equivalent formulation is

(26) Bbg(σ − ρ) = Bg(σ) − Bg(ρ) ,

which is what we will need in later calculations.
Next, just as the linear differential equation w′′ + (1/2)pw = 0 is associated with Sf = p,

there is also a linear differential equation associated with the Schwarzian tensor. If

Bg(σ) = p ,

where p is a symmetric, traceless 2-tensor, then η = e−σ satisfies

(27) Hessg(η) + ηp =
1

2
(∆gη)g .

We now turn to convexity. In this setting, a function η is convex relative to the metric g

if

Hessg η ≥ αg ,

where α is a nonnegative function. This is equivalent to

d2

ds2
(η ◦ γ) ≥ α ≥ 0

for any arc-length parametrized geodesic γ.
Convexity is an important notion for us because we will find that an upper bound for Sgφ

coming from the injectivity criterion (6) leads via (26) and (27) to just such a positive lower
bound for the Hessian of an associated function, and this is what we need to study boundary
behavior. This fact obtains, however, not relative to the Euclidean metric but when the
background metric g is a complete, radial metric coming from an extremal Nehari function.
We explain this now.

It follows from the Sturm comparison theorem that if p is a Nehari function then so is
a multiple kp for any k with 0 < k < 1. This need not be so if k > 1 and we say that p
is an extremal Nehari function if kp is not a Nehari function for any k > 1. For example,
p(x) = 1/(1− x2)2 and p(x) = π2/4 are both extremal Nehari functions. In [5] it was shown
that some constant multiple of each Nehari function is an extremal Nehari function. Observe
that since a holomorphic curve φ satisfying a condition of the type |Sφ| + · · · ≤ 2p, as in
(6), also then satisfies |Sφ| + · · · ≤ 2kp for any k > 1 we may always assume when (6) is in
force that p is an extremal Nehari function.
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There is another way to describe this situation in terms of the extremal function associated
with a given p. Recall the definition from (23),

Φ(x) =

∫ x

0

u0(t)
−2 dt , −1 < x < 1 ,

where u0 is the solution of u′′ + pu = 0 with initial conditions u0(0) = 1 and u′0(0) = 0. We
use Φ to form the radial conformal metric

(28) gΦ = Φ′(|z|)2|dz|2

on D. It is implicit in [5], without the terminology, that the following conditions are equiv-
alent:

(a) p is an extremal Nehari function.
(b) Φ(1) = ∞.
(c) The metric Φ′(|z|)2|dz|2 is complete.

We recall that for a complete metric any two points can be joined by a geodesic and that a
geodesic can be extended indefinitely. We let dgΦ

be the distance in the gΦ metric and note
that since gΦ is radial

dgΦ
(0, z) = Φ(|z|) .

The curvature of a radial metric of the form (28), complete or not, can be expressed as

(29) KgΦ
(z) = −2Φ′(|z|)−2(A(|z|) + p(|z|)) , r = |z| ,

where

(30) A(r) =
1

4

(
Φ′′(r)

Φ′(r)

)2

+
1

2r

Φ′′(r)

Φ′(r)
, r ≥ 0 .

¿From the properties of Φ it follows that A(r) is continuous at 0 with A(0) = p(0) and that
the curvature is negative. Thus, as we will need,

(31) |KgΦ
(z)| = 2Φ′(|z|)−2(A(|z|) + p(|z|)) .

If the metric (28) is complete, or equivalently comes from an extremal Nehari function, then
as was shown in [5]

(32) p(r) ≤ A(r) .

All of these comments go into the proof of the following theorem.

Theorem 5. Let φ satisfy the injectivity criterion (6) for an extremal Nehari function p.
Then

(33) w(z) =

√
Φ′(|z|)
|φ′(z)|

satisfies

(34) HessgΦ
(w) ≥ 1

8
w−3|KgΦ

|gΦ ,

In particular, w is a convex function relative to the metric gΦ.
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Compare this result to the corresponding result, Theorem 4 in [2], for lifts of harmonic
mappings (in [2] we did not use the term “extremal Nehari function”) where the constant in
the inequality bounding the Hessian from below is 1/4 rather than 1/8.

As in [2] we formulate a separate lemma.

Lemma 3. Let φ satisfy the injectivity criterion (6) for an extremal Nehari function p and

let ρ = log |Φ′|. Then

(35) ‖BgΦ
(σ − ρ)‖gΦ

+
3

4
e2(σ−ρ)|K(φ)| ≤ 1

2
|KgΦ

| .

Here recall that K(φ(z)) is the Gaussian curvature of the surface Σ = φ(D) at φ(z).

Proof. The proof is very much like the proof of Lemma 2 in [2], but to show how the
assumptions enter we will present the argument.

First note from (31) that, in terms of ρ, the absolute value of the curvature of gΦ =
φ′(|z|)2|dz|2 = e2ρ(z)|dz|2 is

(36) |KgΦ
(z)| = e−2ρ(z)(A(|z|) + p(|z|)) .

Also, from (26) we have
BgΦ

(σ − ρ) = Bg0
(σ) − Bg0

(ρ) .

Since gΦ = e2ρg0, the norm scales to give

‖Bg(σ − ρ)‖gΦ
= e−2ρ‖Bg0

(σ) − Bg0
(ρ)‖g0

= e−2ρ|Bg0
(σ) −Bg0

(ρ)| ,
where in the last equation we have identified the Euclidean norm of the tensor with the
magnitude of the corresponding complex number.

Next, a calculation (see also [5]) produces

Bg0
(σ) − Bg0

(ρ) = ζ2Sφ(z) + A(|z|) − p(|z|) , ζ =
z

|z| .

In light of these statements, establishing (35) is equivalent to
∣∣ζ2Sφ(z) + A(|z|) − p(|z|)

∣∣ +
3

4
e2σ(z)|K(φ(z))| ≤ A(|z|) + p(|z|)| .

This in turn follows from the assumption that φ satisfies the injectivity criterion (6) and,
crucially, from the inequality (32):

∣∣ζ2Sφ(z) + A(|z|) − p(|z|)
∣∣ +

3

4
e2σ|K| ≤ |ζ2Sφ(z)| + |A(|z|) − p(|z|)| + 3

4
e2σ|K|

= |Sφ(z)| + 3

4
e2σ|K| + A(|z|) − p(|z|)

≤ A(|z|) + p(|z|)| .
�

The deduction of Theorem 5 from Lemma 3, relies on (27). Write w = e(ρ−σ)/2, v = w2 =
eρ−σ, and then, according to (27),

HessgΦ
v + vBgΦ

(σ − ρ) =
1

2
(∆gΦ

v)g .

With this, the proof is almost word-for-word the same as the corresponding proof in [2], and
we omit the details. Instead, let us present one consequence of Theorem 5 here, with more
to come in the next section.
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Lemma 4. Under the assumptions of Theorem 5, if w has at least two critical points then

the range of φ lies in a plane.

Proof. Suppose z1 and z2 are critical points of w. Then, because w is convex, w(z1) and
w(z2) are absolute minima, and so is every point on the geodesic segment γ (for the metric
gΦ) joining z1 and z2 in D. Hence Hessg(w)(γ′, γ′) = 0, which from (34) implies that |K| ≡ 0
along Γ = φ(γ). From (14) in Section 2 we have that

|K| = 2e−6σ
∑

i<j

∣∣f ′
if

′′
j − f ′

jf
′′
i

∣∣2 ,

hence f ′
if

′′
j − f ′

jf
′′
i = 0 along γ, for all i < j. By analytic continuation, f ′

if
′′
j − f ′

jf
′′
i = 0

everywhere, and using that φ′ 6= 0, it follows that for some i and all j there are constants
aj , bj such that fj = ajfi + bj . This proves the lemma.

�

A corresponding result for harmonic maps is Lemma 3 in [2].

6. Boundary Behavior and the Proof of Theorem 2

We now study the boundary behavior for functions φ satisfying (6). As in the results just
above we suppose that p is an extremal Nehari function and we set

w(z) =

√
Φ′(|z|)
|φ′(z)|

where Φ is the extremal function associated with p. We just saw that if w has at least two
critical points then the range of φ lies in a plane, and so the setting is effectively that of an
analytic function satisfying Nehari’s criterion (1). The boundary behavior in this case has
been thoroughly studied; see [7], [4] and also the summary of the classical results in [2].

We next consider the situation when w has a unique critical point, and here the basic
estimate is as follows.

Lemma 5. If w has a unique critical point then there are positive constants a and b and a

number r0, 0 < r0 < 1, such that

(37) |φ′(z)| ≤ Φ′(|z|)
(aΦ(|z|) + b)2

, r0 < |z| < 1 .

Proof. Let z0 be the unique critical point of w. Let γ(s) be an arc-length parametrized
geodesic in the metric g starting at z0 in a given direction. Let w̃(s) = w(γ(s)). Now the
critical point is unique, and therefore w̃′(s) > 0 for all s > 0. Thus there is an s0 > 0 and an
a > 0 such that w̃′(s) > a for all s > s0. This implies that w̃(s) > as + b for some positive
constant b and s > s0. It is easy to see from compactness that the constants s0, a, and b in
this estimate can be made uniform, independent of the direction of the geodesic starting at
z0. In other words,

w(z) ≥ adgΦ
(z, z0) + b

for all z with dgΦ
(z, z0) > s0. By renaming the constant b and for suitable r0 we will then

have

w(z) ≥ adgΦ
(z, 0) + b
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for all z with 1 > |z| > r0. The theorem follows from the definition of w because dgΦ
(z, 0) =

Φ(|z|). �

The estimate in this lemma allows one to deduce that φ has a continuous extension to D,
and the argument is just as in [2]. We will give only a few details here, enough for a more
precise accounting of the regularity of the extension (also as in [2]).

Since the function (1 − x2)2p(x) is positive and decreasing on [0, 1), we can form

λ = lim
x→1

(1 − x2)2p(x) .

It was shown in [5] that λ ≤ 1, and that λ = 1 if and only if p(x) = (1− x2)−2. In this case,
the function Φ is given by

Φ(z) =
1

2
log

1 + z

1 − z
.

Thus (37) amounts to

|φ′(z)| ≤ 1

(1 − |z|2)
(
a

2
log

1 + |z|
1 − |z| + b

)2 , |z| > r0 .

¿From this, the technique of integrating along hyperbolic segments in D, see also [7], leads
to

(38) |φ(z1) − φ(z2)| ≤ C

(
log

1

|z1 − z2|

)−1

,

for some constant C and points z1, z2 for which the hyperbolic geodesic segment joining
them is contained in the annulus r0 < |z| < 1. This implies that φ is uniformly continuous
in the closed disk, and its continuous extension also satisfies (38). Thus when λ = 1 the
extension has a logarithmic modulus of continuity.

Suppose now that λ < 1. We appeal to a result from [5], according to which

lim
x→1

(1 − x2)
Φ′′

Φ′ (x) = 2(1 +
√

1 − λ) = 2µ .

Note that 1 < µ ≤ 2. It follows that for any ǫ > 0 there exists 0 < x0 < 1 such that

µ− ǫ

1 − x
≤ Φ′′

Φ′ (x) ≤
µ+ ǫ

1 − x
, x > x0 ,

which implies that
1

(1 − x)µ−ǫ
≤ Φ′(x) ≤ 1

(1 − x)µ+ǫ
, x > x0 ,

Then
Φ′(x)

(aΦ(x) + b)2
≤ C

(1 − x)α+3ǫ
,

where α = 2 − µ = 1 −
√

1 − λ and C depends on a, b and the values of Φ at x0. This
estimate, together with the technique of integration along hyperbolic segments, implies that

|φ(z1) − φ(z2)| ≤ C|z1 − z2|1−α−3ǫ = C|z1 − z2|
√

1−λ−3ǫ ,

for all points z1, z2 for which the hyperbolic geodesic segment joining them is contained in
the annulus max{r0, x0} < |z| < 1. This shows that φ admits a continuous extension to the
closed disk, with at least a Hölder modulus of continuity.



18 M. CHUAQUI, P. DUREN, AND B. OSGOOD

We also point out that if one has the additional information that x = 1 is a regular singular
point of the differential equation u′′+pu = 0, then from an analysis of the Frobenius solutions
at x = 1 one can deduce that

Φ′(x) ∼ 1

(1 − x)µ
, x → 1 .

This then provides exact Hölder continuous extension when λ > 0 and a Lipschitz continuous
extension when λ = 0.

All of this discussion has been under the assumption that w has a unique critical point.
The argument in the case where w has no critical points, though still based on convexity,
requires additional work. This, too, is very close to what was done in [2], so we only sketch
the key points.

As will be explained momentarily, it is necessary to consider shifts T ◦φ of the holomorphic
curve φ by Möbius transformations T of R2n. The composition T ◦ φ will not, in general, be
holomorphic, though it is still conformal as a mapping of D into R

2n. Write the corresponding
conformal metric on the disk as e2τg0 and, restricting τ to the radial segment reiθ, 0 ≤ r < 1,
let

Υθ(r) = eτ(reiθ)

Also, let s = Φ(r) be the arc-length parameter of [0, 1) in the metric gΦ, so that r = Φ−1(s).
Replacing Theorem 5, along radial segments, we find that the function

ωθ(s) =

{
Φ′(Φ−1(s))

Υθ(Φ−1(s))

}1/2

is convex, meaning in this case simply that ω′′
θ (s) ≥ 0.

This is Lemma 5 in [2], in a slightly different notation, and we will not give the (identical)
proof. The reason, however, why one can compose with a Möbius transformation of the
range and still get a convexity result on radial segments is that S1(T ◦ φ) = S1φ on radial
segments, from (4). Then via Lemma 2, bounds on Sφ entail bounds on S1(T ◦ φ) and the
convexity of ω(s) can be deduced from such bounds for S1.

Now one shows, as in [2], that for any θ0 it is possible to choose a Möbius transformation
T so that ω′

θ0
(0) > 0. Therefore by convexity ωθ0

(s) ≥ as+ b, a, b > 0, and then

Υθ0
(r) ≤ Φ′(r)

(aΦ(r) + b)2
,

which provides a substitute for (37). By continuity this estimate holds for θ near θ0, so in a
small angular sector about the radius reiθ0. This in turn implies that T ◦φ has a continuous
extension to the part of D in the sector. Since θ0 was arbitrary and since we allow for
Möbius transformations of the range, we obtain an extension of φ to D that is continuous in
the spherical metric.

7. Examples

In this section we present some examples to show that the injectivity criterion (6) is
sharp. In the setting of lifts of harmonic maps the corresponding examples were provided
by mappings into a catenoid in R3. Surprisingly, the formulas are similar here, though some
of the analytical details are different.
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Example 1. Let p(x) = π2/4. Then the criterion (6) becomes

(39) |Sφ| + 3

4
|φ′|2|K| ≤ π2

2
.

Define φ : D → C2 to be
φ(z) = (c eπz, e−πz) ,

where the constant c is to be chosen later. Then

e2σ = π2(c2 e2πx + e−2πx) .

Straightforward calculations produce

σx = π
c2e4πx − 1

c2e4πx + 1
,

and

σxx =
8π2c2e4πx

(c2e4πx + 1)2
.

Hence for the Schwarzian,

Sφ = 2(σzz − σ2
z) =

1

2
(σxx − σ2

x) =
4π2c2e4πx

(c2e4πx + 1)2
− π2

2

(
c2e4πx − 1

c2e4πx + 1

)2

.

If c is chosen large enough, then

|Sφ| =
π2

2

(
c2e4πx − 1

c2e4πx + 1

)2

− 4π2c2e4πx

(c2e4πx + 1)2
.

Thus

|Sφ| + 3

4
|φ′|2|K| = |Sφ| + 3

4
σxx =

π2

2

(
c2e4πx − 1

c2e4πx + 1

)2

+
2π2c2e4πx

(c2e4πx + 1)2
=
π2

2
.

Therefore, equality holds in (39) everywhere, and φ is injective, but barely, since φ(1) =
φ(−1).

Example 2. The previous example can be extrapolated to give a general construction.
Let p be a Nehari function with the additional property that it is the restriction to (−1, 1)
of an analytic function in the disk p(z) that satisfies |p(z)| ≤ p(|z|). Typical examples are
p(z) = (1−z2)−2 and p(z) = 2(1−z2)−1. The extremal map Φ is then analytic and univalent
in the disk, and satisfies SΦ(z) = 2p(z) there. Moreover, the image Φ(D) is a parallel strip
like domain, symmetric with respect to the real and imaginary axes, and containing the
entire real line. Let

f(z) =
cΦ(z) + i

cΦ(z) − i
,

where c > 0 is to be chosen later and sufficiently small so that i/c /∈ Φ(D) (it can be shown
that the map Φ is always bounded along the imaginary axis, see [4]). The function f maps
D onto a simply-connected domain containing the unit circle minus the point 1. The smaller
the value of c the thinner the image of f .

Define φ : D → C2 by

φ(z) = (f(z),
1

f(z)
) .
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Then

e2σ = |f ′(z)|2
(

1 +
1

|f(z)|4
)
,

and a lengthy calculation results in

(40) Sφ = 2(σzz − σz) = SΦ + 6
(ff ′)2

(1 + |f |4)2
,

and

(41) e2σ|K| = 8
|ff ′|2

(1 + |f |4)2
.

Condition (6) then reads

(42)

∣∣∣∣SΦ + 6
(ff ′)2

(1 + |f |4)2

∣∣∣∣ + 6
|ff ′|2

(1 + |f |4)2
≤ SΦ(|z|) .

Suppose, for example, we let p(z) = (1 − z2)−2, for which the extremal function is

Φ(z) =
1

2
log

1 + z

1 − z
.

Then Φ′(z) = (1 − z2)−1 and f ′ = −2icΦ′/(cΦ − i)2, and after some simplifications (42)
becomes
∣∣∣∣

2

(1 − z2)2
− 24c2(cΦ − i)2

(1 − z2)2(cΦ + i)2(cΦ − i)4(1 + |f |4)

∣∣∣∣+
24c2|cΦ + i|2

|1 − z2|2|cΦ − i|6(1 + |f |4) ≤ 2

(1 − |z|2)2
,

which further reduces to

(43)

∣∣∣∣1 − 12c2(1 + c2Φ2)2

(|cΦ − i|4 + |cΦ + i|4)2

∣∣∣∣ +
12c2|1 + c2Φ2|2

(|cΦ − i|4 + |cΦ + i|4)2
≤ |1 − z2|2

(1 − |z|2)2
.

Let

ζ =
12c2(1 + c2Φ2)2

(|cΦ − i|4 + |cΦ + i|4)2
.

In order to guarantee (43), we need the following estimates for |1 − Re{ζ}| and |Im{ζ}|.

Lemma 6. If c is small then there exist absolute constants A, B, C such that

(44) |1 − Re{ζ}| ≤ 1 − |ζ | + Ac4|Im{Φ}|2 ,

(45) |Im{ζ}| ≤ Bc3|Im{Φ}| ,
and

(46) |1 − ζ | ≤ 1 − |ζ | + Cc4|Im{Φ}|2 .

Proof. It is clear that |ζ | < 1 if c is small, hence |1−Re{ζ}| = 1−Re{ζ}. Thus (44) amounts
to

(47) |ζ | − Re{ζ} ≤ Ac4|Im{Φ}|2 .
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We have

|ζ | − Re{ζ} =
12c2

(|cΦ − i|4 + |cΦ + i|4)2

[
|1 + c2Φ2|2 − Re{(1 + c2Φ2)2}

]

=
12c6(|Φ|4 − Re{Φ4})

(|cΦ − i|4 + |cΦ + i|4)2

= − 6c6(Φ2 − Φ
2
)2

(|cΦ − i|4 + |cΦ + i|4)2

=
24c6(Φ + Φ)2|Im{Φ}|2
(|cΦ − i|4 + |cΦ + i|4)2

which shows (47) and thus (44) because c2(Φ + Φ)2/(|cΦ − i|4 + |cΦ + i|4)2 is bounded for
small c.

To establish (45) observe that

2i Im{(1 + c2Φ2)2} = (1 + c2Φ2)2 − (1 + c2Φ
2
)2 = c4(Φ4 − Φ

4
) + 2c2(Φ2 − Φ2) ,

from which (45) follows directly. Finally, (46) is a consequence of (44) and (45) because for
ζ = x+ iy small then |1 − ζ | ≤ |1 − x| + 2y2.

�
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