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GERARDO ANDRÉS SILVA OELKER

Thesis submitted to Pontificia Universidad Católica de Chile and
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ABSTRACT

Two avenues of research on numerical simulations to achieve robust designs in ther-

mophotovoltaic (TPV) energy conversion devices are explored. For the first of these, a

recently proposed numerical scheme able to quantify performance changes due to shape

perturbations and its application to one-dimensional (1D) gratings is investigated. The

second avenue, also based on numerical simulations, focuses on the study of gratings as

selective emitters to enhance TPV cell energy conversion efficiency.

In the first part, we present a novel deterministic method capable of calculating statisti-

cal moments of transverse electric polarized fields scattered by perfect electric conductor

gratings with small surface random perturbations. Based on a first-order shape Taylor ex-

pansion, the resulting electric field integral equations are solved via the method of moments

with constant hierarchical basis or Haar wavelets. This allows for a sparse tensor approxi-

mation, significantly reducing the number of required unknowns and yielding a higher rate

of convergence than a dense approximation. Moreover, the proposed approach converges

faster than Monte-Carlo simulations with significantly less computational effort. Valida-

tion of the proposed approach is performed for several cases, and simulations applied to

the calculation and prediction of grating efficiency for realistic grating structures reveal the

applicability of the method.

In the second part, we explores the performance potential of gratings based on tung-

sten/hafnia (W/HfO2) stacks for thermophotovoltaic thermal emitters via numerical sim-

ulations. Structures consisting of a W grating over a HfO2 spacer layer and a W substrate

are analyzed over a range of geometries. For shallow gratings (W grating thickness much

smaller than the grating pitch), an emittance of 99.9% can be achieved for transverse mag-

netic (TM) polarization, but the transverse electric (TE) performance is appreciably lower.

For deep gratings (W grating thickness on the order of the grating pitch), peak emittances

xv



of 97.7% and 99.7% for TE and TM polarizations, respectively, are achieved. We find that

both surface plasmon polaritons and magnetic polaritons play a crucial role in shaping the

emittance for TM radiation. On the other hand, cavity resonances are responsible for the

almost perfect emittance in the case of TE polarization. These results suggest that by intro-

ducing an HfO2 layer it is possible to reach high emittance for operating temperatures that

match the absorption characteristics of GaSb and InGaAs photovoltaic cells.

In addition, tungsten-hafnia (W-HfO2) selective thermal emitters with high hemispheri-

cal emittance for thermophotovoltaic (TPV) applications are explored through numerical

simulations. Two structures were analyzed: a planar multilayer stack and a grating. In both

cases, through suitable design choices high thermal emittance with low directional sensi-

tivity can be obtained. The designs are obtained by optimization of the structures using

a genetic algorithm and a suitable cost function, along with simulations of the structures’

emittance by using rigorous coupled wave analysis. Calculations show that these opti-

mized structures possess high hemispherical thermal emittance for the wavelength range

that matches the optical response of GaSb photovoltaic cells. For each structure, both the

output power from the TPV cell and the conversion efficiency are studied as a function of

emitter temperature and physical understanding of the optimized structures is developed.

xvi



Keywords: Thermophotovoltaics, gratings, periodic structures, boundary elements
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electromagnetics.
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RESUMEN

En esta tesis se exploran dos lı́neas de investigación basadas en simulaciones numéricas

para aplicaciones en celdas termofotovoltaicas (TPV por sus siglas en inglés). En primer

lugar, se investiga un método numérico propuesto recientemente, el cual permite cuantificar

cambios en el desepeño de estructuras periódicas unidimensionales, llamadas gratings, de-

bido a perturbaciones de forma en su superficie. La segunda lı́nea, también basada en

simulaciones numéricas, está enfocada en el estudio de estructuras periódicas como parte

de emisores térmicos en sistemas TPV y en como estas estructuras permiten mejorar la

eficiciencia de dichas celdas.

En la primera parte, presentamos un nuevo modelo capaz de calcular momentos estadı́sticos

del campo dispersado en gratings en forma determinı́stica. Se estudian estructuras con

superficies perfectamente conductoras perturbadas estocásticamente, las cuales dispersan

radiación incidente polarizada en forma transversal eléctrica. El método se basa en una

expansión de Taylor de la derivada de forma a primer orden, resultando en ecuaciones in-

tegrales las cuales son resueltas a través del método de los momentos con bases jerárquicas

llamadas wavelets de Haar. Dichas bases permiten una aproximación no densa, la cual re-

duce significativamente el número de incógnitas requeridas y, además, entrega una mayor

tasa de convergencia al compararlo con una aproximación densa. Junto a lo anterior,

mostramos que el método propuesto converge más rápido que el conocido método de

Monte-Carlo, requiriendo menor esfuerzo computacional. El modelo es validado mediante

la comparación con diferentes casos y, junto con ello, simulaciones aplicadas a problemas

de eficiencia de difraccción en gratings revelan la aplicabilidad del método propuesto.

En la segunda parte, se investiga el potencial desempeño de gratings basados en capas

de tungsteno (W) y hafnia (HFO2) como emisores térmicos selectivos en celdas TPV. Es-

tructuras que consideran un grating de tungsteno sobre una capa de hafnia y un substrato
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de tungsteno son analizadas para diferentes geometrı́as. El primer caso considera gratings

poco profundos (donde el espesor del grating de tungsteno es mucho menor que el paso

del grating), logrando una emitancia térmica del 99 % para ondas transverales magnéticas

(TM), no obstante, el desempeño que presenta dicha estructura es deficiente para la ra-

diación transversal eléctrica (TE). Un segundo caso considera gratings profundos (donde

el espesor del grating de tungsteno es del orden de magnitud del paso del grating), para

el cual peaks de emitancia del 98% y el 99% son obtenidos para las polarizaciones TE y

TM, respectivamente. En ambos casos encotramos que tanto plasmones polaritones super-

ficiales y polaritones magnéticos juegan un rol crucial para la polarización TM. Por otra

parte, las resonancias de cavidad son las responsables de la alta emitancia térmica en el

caso de la polarización TE. Estos resultados sugieren que introduciendo una capa de HfO2

es posible alcanzar altas emitancias para temperaturas de operación las cuales se ajustan a

las caracterı́sticas ópticas de las celdas fotovoltaicas compuestas de GaSb y InGaAs.

Junto a lo anterior, presentamos dos estructuras unidimensionales de sencilla fabricación

compuestas por tungsteno y hafnia como emisores térmicos para aplicaciones en celdas

TPV. Analizamos numéricamente y comparamos dos estructuras; una multicapa y una grat-

ing para los cuales se obtuvo alta emitancia térmica y baja sensibilidad a la dirección de la

radiación. Se realizó una optimización de la geometrı́a a través de un algoritmo genético

(GA por sus siglas en inglés) y una adecuada función de costo junto con el método riguroso

de acoplamiento de ondas. Los cálculos muestran que estas estructuras poseen alta emi-

tancia térmica hemisférica para rangos de longitudes de onda que se ajustan a la respuesta

óptica de celdas fotovoltaicas tales como InGaAs y GaSb. Para cada estructura analizamos

la emisividad en-banda (in-band emissivity) y la eficiencia espectral, ası́ como también la

potencia emitida por los emisores. El desempeño de dichos emisores es evaluado tanto para

diferentes longitudes de onda de corte de emisión como temperaturas. Además, a través

de simulaciones numéricas y consideraciones teóricas, entregamos explicaciones acerca

de la mejora en la emitancia. Por último, dado que el algoritmo de optimización sugiere

espesores de tungsteno delgados, también se ha realizado un análisis de tolerancia.

xix
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You can know the name of that bird in all the languages of the world, but when you’re

finished, you’ll know absolutely nothing whatever about the bird. You’ll only know about

humans in different places, and what they call the bird. ... —RICHARD FEYNMAN

I can live with doubt and uncertainty and not knowing. I think it is much more interesting

to live not knowing than to have answers that might be wrong. —RICHARD FEYNMAN
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NOTATION

General notation

D electric displacement

E electric field

B magnetic flux

H magnetic field

Js surface current density in Chapter 1

ζ surface current density in Chapter 2

Ω probability space

�·, ·� inner product

D spatial domain

Γ := ∂D surface of the spatial domain D

n̂ unitary vector

θi angle of incidence

Λ structure period

Ω stochastic domain

ε dielectric constant

µ permeability

σ electrical conductivity

n refraction index

k wavevector

k := |k| wavenumber with components ki, i = x, y, z

λ wavelength

ω angular frequency in Chapter 1
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ω stochastic parameter in Chapter 2

M number of realizations of Monte Carlo method

Nk number of oscillators in the Lorentz’s model

l,m, n integers

ı imaginary

ϕ basis functions

G Green functions

en diffraction efficiency of the n-mode

I index set

u scalar electric or magnetic field

� perturbation in Chapter 2

�in in-band emissivity in Chapters 3 and 4

ηsp spectral efficiency in Chapters 3 and 4

Operators

A linear operator

d derivative

∂n normal derivative

∇t tangential gradient

SL single layer potential

DL double layer potential

V weakly singular operator

Var variance

Cor correlation

E expected value

Δ = ∇ ·∇ = ∇2 Laplacian operator

M(q) q-moment operator

∂n normal derivative
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Subscripts i, j, k integers

Upper scripts p periodic

s scattered

i incident

Accents () complex conjugate

(̇) shape derivative
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1. INTRODUCTION AND BACKGROUND

1.1. Introduction and Motivation

Thermophotovoltaic (TPV) energy conversion is a novel technology that may offer

some unique advantages. The use of a TPV cell is a clever way to use solar energy or to

recycle waste heat from industrial processes, such as nuclear generation (Teofilo, Choong,

Chang, Tseng, & Ermer, 2008), concentrated solar power (CSP) waste heat (Seyf & Henry,

2016), and other high temperature industrial processes. TPV cells are static energy conver-

sion devices—which means no moving parts—composed of a thermal emitter coupled to a

photovoltaic (PV) cell. The PV cell is responsible for converting the thermal radiation from

the emitter into electricity. A key enhancement of this approach is to use an emitter with

an output spectrum that has been tailored to match the response of the PV cell (vs. using

blackbody radiation). Furthermore, according to Carnot’s efficiency, it is possible to reach

efficiencies as high as 80%—depending on the operation temperature. These characteris-

tics make TPV cells a promising alternative for energy harvesting. Proposing new ways to

improve their design is what motivates this work.

Periodic electromagnetic structures have been intensively studied over the last few

decades due to their remarkable properties. One, two, and three dimensional photonic

crystals—periodic structures in which the characteristic wavelength is of the same or-

der of magnitude as the period of the structure—have been modeled and implemented

in different novel technologies. On the other hand, metamaterials—structures for which

the characteristic wavelength is much greater than the characteristic periodicity within the

structure—have also been studied numerically and experimentally, and successfully imple-

mented since being proposed by Veselago (Veselago, 1968). Among these periodic struc-

tures, gratings are particularly useful in a wide range of applications. Examples of applica-

tions include waveguide grating couplers (Taillaert et al., 2006; Xiao, Liow, Zhang, Shum,

& Luan, 2013), optical spectrometers (Fortin & McCarthy, 2005), X-ray spectroscopy in

space missions (McEntaffer et al., 2013), and thin film tandem solar cells (Solano et al.,

2013). Critical to their usefulness, gratings present Wood’s anomalies (Wedlockt, 1963)
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(a)

-0.04 m

0.17 m

x: 2.0 m

y: 2.0 m

(b)

FIGURE 1.1. (a) SEM and (b) AFM images of a sinusoidal grating. The grating
was obtained from Richardson gratings, model 53-220H.

allowing, for example, the management of optical properties, such as transmittance, re-

flectance, and absorptance. As a result, they have been utilized in TPV cells for improving

the thermal-electric energy conversion efficiency (Y.-B. Chen & Zhang, 2007; Nguyen-

Huu, Chen, & Lo, 2012; Ghanekar, Sun, Zhang, & Zheng, 2017).

In the scientific community, it is commonly accepted that experimentalists must, to the

extent possible, provide a measure of the uncertainty in their data. However, the compu-

tational science community rarely provides similar estimates for simulation results. Un-

certainties remain important in a simulation context, though, because these simulations are

typically attempting to represent a physical system, which inherently has uncertainties re-

lated to input parameters (e.g., geometry, material, parameters, etc). For this reason, most

analyses of gratings are based on idealized and simplified representations. For example,

one typically assumes that the surfaces of the gratings are smooth and that the structure is

perfectly periodic. In practice, these assumptions are not perfectly satisfied due to random

fluctuations. Let us consider the following example. Manufacturing processes lead to some

imperfections or variability in the products. These imperfections are random and, to a cer-

tain extent, it is not possible to fully eliminate them. In Fig. 1.1 measured SEM and AFM

images of a grating surface are shown. In both cases it can be noticed that even though

the grating is manufactured to exacting tolerances it still exhibits surface roughness. One

branch of mathematics, called Uncertainty Quantification (UQ), seeks to provide powerful
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tools to quantify this sort of randomness. However, in many cases these tools are computa-

tionally too expensive to be used routinely. Providing a reliable and fast tool to quantify the

impact of surface random perturbations on important properties of gratings, such as diffrac-

tion efficiency, would be valuable in the design and analysis of grating–based components

as the case of TPV devices.

One of the main components of a TPV cell is the selective emitter. These components

are intended to emit thermal radiation that matches the PV cell response in order to improve

the conversion efficiency. To tune the emittance of the emitters, periodic structures have

demonstrated enormous potential. Despite a considerable body of the extensive literature

dedicated to their theoretical and experimental analysis as well as simulations, further im-

provements can be made, for example, by considering different materials and geometries

that can facilitate the manufacturing of TPV devices. Management of the thermal emittance

of gratings to improve the spectral matching between the emitter and PV cell is the second

motivation of this thesis.

In this thesis, two different goals have been raised. On the one hand, we demonstrate

the formulation and implementation of algorithms able to quantify the impact of surface

roughness on grating efficiency. On the other hand, this work explores ways to improve the

energy conversion efficiency of TPV cells, by simulating different grating-based thermal

emitters and understanding the new phenomena that arise under different configurations.

The primary scope of this work is numerical, providing key details of the simulations and

design guidelines, although connections to experimental results are also considered in order

to validate the developed approaches.

1.2. Goals

To provide direction to the research, two over-arching goals are proposed. The first

of these is to quantify the impact of random surface perturbations on the performance of

gratings, including practical figures of merit such as diffraction efficiency. The second goal

centers around the development and use of mathematical tools to improve the efficiency
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of TPV devices by managing the thermal emittance spectrum of gratings-based thermal

emitters.

1.2.1. Impact of Surface Perturbations on Grating Performance

The following specific sub-tasks have been performed:

(i) Develop a model based on the Method of Moments (MoM) to obtain the scat-

tered electromagnetic field from a perfectly conducting grating and to calculate

the grating efficiency;

(ii) Develop a model based on shape derivatives to quantify surface perturbations;

(iii) Using the models developed above, apply the MoM formalism to the case of

transverse electric polarized incident radiation to quantify the impact of surface

perturbations on the grating efficiency;

(iv) Analyze and evaluate the limitations of the proposed models, as well as their

advantages for computational efficiency, accuracy, etc.

1.2.2. Spectrally Selective Thermal Emitters for Thermophotovoltaics

For the second research thrust, the proposed research included the following tasks:

(i) Evaluate the optical properties, such as transmittance, reflectance, and absorp-

tance in metallic gratings incorporating dielectric layers, based on the rigorous

coupled wave analysis method to improve thermal emittance for TPV applica-

tions;

(ii) Calculate the emittance spectrum under different conditions, including polariza-

tion effects;

(iii) Study the nature of the improvements of thermal emittance through numerical

simulations and theoretical considerations;

(iv) Optimize the geometry of the proposed thermal emitters through the implemen-

tation of a genetic algorithm (GA);

(v) Quantify the efficiency of selective thermal emitters;
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(vi) Analyze the limitations of the approach, and benchmark against prior theoretical

and experimental reports.

1.3. Thermophotovoltaic (TPV) Cells

1.3.1. Principles

TPV cells operate under the same basic principles as conventional photovoltaic cells,

namely, they transform incident electromagnetic radiation into DC electrical power. The

key differentiation between conventional PV solar cells and TPV cells is the intended radia-

tion source and spectrum. While PV cells generally target solar radiation and consequently

light in the visible and near infrared, TPV cells use a hot thermal emitter as the source

of energy, and thus work much further into the infrared. Thermophotovoltaic cells have a

range applications due to their flexibility. For example, solar concentrators (Bermel et al.,

2016; Coutts, 1999) and microgenerators (Bermel et al., 2010; W. R. Chan et al., 2013,

2015) are illustrated in Fig. 1.2. In addition, TPVs are promising for powering deep-space

probes, and for power generation without moving parts (e.g. for quiet operation). As is

well-known, the energy of photons must be greater than the electronic band gap (Eg) of

the cell. Materials used in TPV cells therefore are typically made using much lower band

gap materials than are solar PV cells. TPV cells using materials such as GaSb (Eg = 0.72

eV) (Ungaro, Gray, & Gupta, 2015), In0.53Ga0.47As (Eg = 0.74 eV) (Zhou, Sakr, Sun, &

Bermel, 2016), and Ga0.82In0.18As0.16Sb0.84 (Eg = 0.55 eV) (Dashiell et al., 2006) have

been considered.

The reason why TPV cells are typically made with materials having band gaps between

0.5 and 0.8 eV comes from the relationship between the blackbody emission law (Wien’s

law) and the photovoltaic effect. This is illustrated in Fig. 1.3. Since the source of radiation

for TPV cells is a heated thermal emitter, typically to temperatures on the order of 1500 K,

the peak spectral irradiance according to Wien’s law is approximately 1.9 µm (0.65 eV). As

can be seen in Fig. 1.3, however, the emission spectrum is quite broad and with much of the

total energy carried by photons with energies well below the peak. This makes realizing an



9

b)

(a)

(b) (c)

FIGURE 1.2. Example applications of TPV cells: (a) a microgenerator
(W. R. Chan et al., 2013), (b) a solar power TPV system (Coutts, 1999), and (c) a
parabolic concentrator (Bermel et al., 2016).

efficient TPV cell with blackbody radiation very difficult. One of the keys for improving

TPV energy conversion efficiency is more sophisticated spectral control to tailor the emis-

sion spectrum to allow efficient absorption. This can be achieved by using periodic struc-

tures, such as metamaterials (Deng, Wang, Gao, & Yang, 2014; H. Wang, Chang, Yang, &

Wang, 2016) and photonic crystals (Rinnerbauer & Lenert, 2014; Celanovic, O’Sullivan,

Jovanovic, Qi, & Kassakian, 2004) to engineer the emission spectrum (Celanovic, 2006).

1.3.2. Components

In order to design and optimize a TPV system, an understanding of the main com-

ponents of a TPV device and how they interact is needed. Figure 1.4 shows the major

components schematically. A source of heat, shown in pink in Fig. 1.4, is the prime source

of energy. This can be derived from combustion, an exothermic chemical reaction, radioac-

tive decay, or other physical processes. This heat source, by its nature, typically exhibits

a blackbody emission spectrum. To enhance cell performance, this emission spectrum can

be “reshaped” to reduce the energy in the long-wavelength “tail” below the TPV band gap

(see Fig. 1.3). One approach for this is to absorb the energy from the heat source (using
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FIGURE 1.3. Spectrum of black body emission at 1300 and 1500 K. The wave-
length corresponfing to the peak of the emission is given by Wien’s law. A band
gap of 0.6 eV is shown to compare it with the emission peak.

an absorber) followed by re-emission using a spectrally-selective emitter (see the light blue

boxes in Fig. 1.4)

The main goal of the emitter is to re-emit radiation in a range of frequencies/wavelengths

just above the band gap of the PV cell. As stated above, thermal emitters typically operate at

high temperatures; as an example, emitters suitable for use with GaSb PV cells (Eg = 0.72

eV) require an operating temperature of approximately 1683 K. For this reason, the emit-

ter must be made of high melting point materials. As a result, structures built of refractory

metals such as tungsten (Yeng et al., 2012), tantalum (Rinnerbauer et al., 2013), and molyb-

denum (Zhou, Chen, & Bermel, 2015) have been proposed and analyzed.

The PV cell performs the conversion from the incident thermal radiation into electric-

ity. Each component of the TPV cell has been evaluated as a function of the cell band gap.

As mentioned above, some common materials used in TPV designs are GaSb (Celanovic et

al., 2004; Deng et al., 2014; Yong, Sid-ahmed, & Ming, 2014; Babiker, Shuai, Sid-Ahmed,

& Xie, 2014), InGaAs (Tan et al., 2014; Sinharoy et al., 2005; Su, Fay, Sinharoy, Forbes, &

Scheiman, 2007), and InGaAsSb (Nam et al., 2014). In addition, in practice a filter is often
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FIGURE 1.4. Components of a TPV cell: Heat source (pink), absorber and emitter
(light blue), PV cell (yellow), and the heat sink (orange). Also noted are typical
magnitudes for temperatures of each component.

placed between the emitter and the PV cell in order to recycle below band gap photons and

to prevent the cell from absorbing photons that greatly exceed the band gap, and a heat

sink is used to ensure the temperature of the cell does not rise too much (since cell reverse

current increases with temperature, lowering conversion efficiency) (Mbakop, Djongyang,

& Raidani, 2016).

1.3.3. Efficiency

The maximum efficiency attainable by a TPV cell is given by the well-known Carnot

efficiency, which is given by η = 1− Tlow/Thigh. The theoretical limit for TPV conversion

has been calculated to be 85 % (Harder & Würfel, 2003). It has been shown theoretically

that for solar TPV (STPV) under the right conditions— no optical losses, only radiative

recombination in the solar cell, and full concentration of the incident sunlight on a black

absorber—STPV energy conversion can exceed the Shockley-Queisser limit (Rephaeli &
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TABLE 1.1. Reported energy conversion efficiency for TPV and STPV cells

Work Description PV cell Efficiency Year Ref.

Simulation STPV InGaAs 6.93 % 2005 (Sinharoy et al., 2005)

Sim./Exp. STPV InGaAs/InAsP 7.8 % 2007 (Su et al., 2007)

Sim./Exp. STPV InGaAsSb 10 % 2014 (Nam et al., 2014)

Experimental STPV InGaAsSb 5.8 % 2014 (Lenert et al., 2014a)

Experimental STPV, 2483 suns GaSb 6.2 % 2015 (Ungaro et al., 2015)

Experimental PhC Si 1.18 % 2015 (Yeng et al., 2015)

Simulation PhC Si 6.40 % 2015 (Yeng et al., 2015)

Simulation Metamaterials InGaAsSb 10 % 2016 (H. Wang et al., 2016)

Simulation Spectral optimization c-Si 44.32 % 2017 (Rabady, 2017)

Fan, 2009; Zhou et al., 2015). However, actual reported efficiencies to date are well be-

low these theoretical limits. In Table 1.1 a sampling of simulation and experimental TPV

studies and their energy conversion efficiencies is shown. As can be observed, there is

considerable scatter among the results due to different designs, operating conditions, and

material choices. However, one can see that efficiency of 10% or less is typical, unless

careful spectral optimization is performed.

1.4. Fundamentals of Electromagnetism

The main focus of this thesis is on electromagnetic modeling for scattering problems,

particularly from periodic structures. We start with Maxwell’s equations, which describe

how the electric and magnetic fields are related as well as the interaction between electro-

magnetic fields and matter.
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1.4.1. Maxwell’s Equations and Constitutive Relations

In their non-relativistic, macroscopic, and differential form, Maxwell’s equations are

given by (Sheng & Song, 2012):

∇ ·D = ρ, (1.1)

∇ ·B = 0, (1.2)

∇× E = −∂B

∂t
, (1.3)

∇×H = J+
∂D

∂t
, (1.4)

where E and D are the electric field intensity (Vm−1) and electric displacement (Cm−2),

respectively, H is the magnetic field intensity (Am−1) and B is the magnetic flux density

(Wbm−2). In addition, J is the volume current density (Am−2) and ρ is the free charge

density. The interaction between electromagnetic fields and matter can be described by the

constitutive relations:

D = εE, (1.5)

B = µH, (1.6)

J = σE. (1.7)

In these equations, ε, µ, and σ stands for permittivity (Fm−1), permeability (Hm−1),

and electrical conductivity (Sm−1), respectively.

This set of differential equations requires a set of boundary conditions, which are given

by the continuity of the electric and magnetic fields at interfaces. By applying Maxwell’s

equations to a thin control volume surrounding an interface between two different media—

called media 1 and 2—we obtain the following boundary conditions (Sheng & Song, 2012;
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G. Chen, 2005)

n̂ · (D2 −D1) = ρs, (1.8)

n̂× (E2 − E1) = 0, (1.9)

n̂ · (B2 −B1) = 0, (1.10)

n̂× (H2 −H1) = Js. (1.11)

Equations (1.8) and (1.11) establish that the difference between perpendicular components

of the electric displacement and the magnetic fields must be equal to the charge density (ρs)

and surface current density (Js) across the interface, respectively. Meanwhile, Equations

(1.9) and (1.10) enforce the continuity of parallel and perpendicular components of the

electric field and the magnetic flux, respectively. In this work, we are interested in finding

the electromagnetic fields in the frequency space in order to analyze their spectral behavior.

Threfore, we are going to assume a time-harmonic fields (eiωt). With this assumption,

Maxwell’s equations can be written in the frequency domain form as:

∇ ·D = ρ, (1.12)

∇ ·B = 0, (1.13)

∇× E = −iωB, (1.14)

∇×H = J+ iωD. (1.15)

In addition to the boundary conditions (1.8)–(1.11) , for scattering problems—where

the domain is unbounded—a condition when r → ∞ is required. This the the so-called

Silver–Müller radiation condition (Sheng & Song, 2012; Chandler-Wilde, 1995) and it is

given by the following limit:

lim
r→∞

r

�
∇×


E

H


+ ikr̂


E

H




�
= 0, (1.16)
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TE TM

(a) (b)

FIGURE 1.5. Description of the (a) transverse electric (TE) and (b) transverse mag-
netic polarizations (TM) of a plane propagating in a direction (k) with the x − y
plane in a domain D and impinging on a surface Γ.

where i :=
√
−1, k is the wavenumber defined as k := ω/c, and ω and c are the angular

frequency and the speed of light in the media, respectively.

1.4.2. Transverse Electric and Transverse Magnetic Problems

Part of this thesis is focused on scattering from perfect electric conductor (PEC) sur-

faces. On a PEC surface, the tangential component of the electric field as well as the normal

component of the magnetic field must vanish. In general, scattering from a PEC surface

under TE or TM radiation is known as a Dirichlet or Neumann problem, respectively. It is

not hard to show the relation between the TE (also TM) radiation and the Dirichlet (also

Neumann) boundary condition. In the case of TE radiation, since the electric field must

vanish at the surface (Γ := ∂D, Fig. 1.5) we have:

u = 0 on Γ, (1.17)

which is the Dirichlet boundary condition. For the case of the TM radiation, let us assume

that u represents the z-component of the magnetic field, whose polarization is pointing out

the plane of incidence (Fig.1.5 (b)). In this case, it can be shown that the z-component of

the magnetic field must satisfy

Hz =
−iky

k2 − k2
x

�
∇tHz

�
, (1.18)
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where ∇t is the tangential gradient, and kx and ky are the x and y components of the

wavevector, k. In addition, since n̂ ·H = 0 (PEC condition), where n̂ is a normal unitary

vector (Fig. 1.5), we have:

n̂ ·H = n̂ ·Hz ẑ =
−iky

k2 − k2
x

�
n̂ ·∇tHz

�
= 0, (1.19)

where n̂ ·∇tHz =: ∂nHz is the normal derivative and

∂nHz = 0 on Γ, (1.20)

which is the Neumann boundary condition.

1.4.3. Scalar Equations for Electromagnetic Fields

Solving Maxwell’s equations in their vectorial form can become cumbersome depend-

ing on the nature of the problem. For this reason, simplifications are made in order to

handle fields in a more straightforward way through a scalar formulation. This assumption

leads to the frequency domain Helmholtz equation.

In the general case, electromagnetic fields at a constant given time t, depend on the

position x, y, and z. However, if we want to obtain the electric field propagating in a

direction lying on an infinite (unbounded) x−y plane and assume isotropic media, constant

phase, then one can see that the electric field is constant on x and y. This defines the

transverse electric (TE) polarization (Ex = Ey = 0) as shown in Fig. 1.5 (a). Alternatively,

we can assume similar conditions for the magnetic field, which leads to the transverse

magnetic (TM) polarization (Hx = Hy = 0) as shown in Fig. 1.5 (b). Solutions for

arbitrary excitation can be expressed as a superposition of these two basis forms. With

these simplifications, we can then write the problem in terms of a scalar equation—defined

on the semi-infinite domain D, according to Fig. 1.5— given by Helmholtz equation for

both TE and TM cases.

Δu+ k2u = 0 in D, (1.21)

where u can represent either the z-component of the electric or magnetic field, whose

polarization is pointing out of the plane of incidence—plane x− y in Fig. 1.5.
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1.4.4. Optics of Solids

Electromagnetic waves interact with matter, and this interaction can be used to design

and engineer novel devices, such as phtovoltaic (PV) and thermophotovoltaic (TPV) cells,

photodiodes, etc. Electromagnetic waves can propagate in vacuum, whose properties are

given in terms of the permittivity (ε0) and permeability (µ0). When an electromagnetic

wave penetrates into a media different than vacuum, the propagation characteristics change

due to the constituent atoms, electrons, etc. present inside the media. Atoms and electrons

can drastically alter the behavior of light inside a media, for example, by decreasing the

phase velocity (Grant, 1969).

1.4.4.1. Propagation of Light in Dielectrics and Metals

In a non-conductive medium, electrons are bonded to the atoms present in that medium.

In addition, electrons can be moved away from equilibrium, resulting in a polarization ef-

fect. This behavior can be describe as a harmonic oscillator model, for which it is pos-

sible to find resonances. The presence of these resonances translates to large variations

of medium refraction index and high optical absorption for frequencies close to those res-

onances. In addition, it is well known that the index of refraction is given by n =
√
ε

where, in general, ε ∈ C. Therefore, the general form of the refraction index is given

by N = n + iκ, where κ is the extinction coefficient. Moreover, due to the fact that not

all electrons are identically bonded, the general description is given as a sum of several

oscillators as

N 2 = 1 +
Ne2

mε0

N�

j=1

fj
ωj − ω2 − iΓjω

, (1.22)

where fj is the oscillator strength, Γj is the damping constant—related to the lifetime

as 1/Γj—and N the number of oscillators with frequency ωj . For light propagation in

conductive media, such as metals, one common model is the Lorentz–Drude model. This

model plays a crucial role in the study of light-matter interaction in different fields such

as polarizers (Nguyen-Huu et al., 2011) and nanophotonics simulations (Gallinet, Butet,

& Martin, 2015). It is based on a spring-damper model, which represents the restoring

forces due to charged ions when an external electromagnetic field is applied. The complex
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dielecric constant in this model is written as (Grant, 1969)

εr(ω) = 1− Ω2
p

ω(ω − iΓ0)
+

N�

j=1

fjω
2
p

(ω2
j + iωΓj)

, (1.23)

where ωp is the plasma frequency, and Ωp is the plasma frequency associated with intraband

transitions with oscillator f0 and damping constant Γ0. The first two terms on the right hand

side of equation (1.23) represent the intraband effects or free electrons and it is known

as the Drude model. On the other hand, the third term in (1.23), the sum of oscillators,

represents the interband effects, known as bound electron effects (Rakic, Djurisic, Elazar,

& Majewski, 1998).

1.4.4.2. Surface Plasmon Polaritons

Plasmons are collective oscillations of free electrons in a plasma. In particular, surface

plasmons (SPs) are coherent electron oscillations that appear at the interface between a di-

electric and a metal. When a SP is coupled with an incident photon, the resulting excitation

is called a surface plasmon polariton (SPP). The resulting surface wave consists of both the

charge motion in the metal as well as the evanescent electromagnetic wave in the dielectric

or metal. The simplest geometry that sustains SPP is shown in Fig. 1.6 (a). If we consider

the dielectric permittivity εd ∈ R+, for example air, then the conditions for the existence of

these surface waves can be obtained by examining the dispersion relation:

k2
x = k2

0

εdεm
εd + εm

, (1.24)

where kx is the surface component of the wavevector and εd and εm are the (possibly

complex) permittivities of the dielectric and the metal, respectively. Normal components

of the wavevector are obtained by using k2
0 = k2

z+k2
x, where k0 is the vacuum wavenumber.

Then, for each media (d and m), we obtain:

k2
z,d = k2

0

ε2d
εd + εm

, and (1.25)

k2
z,m = k2

0

ε2m
εd + εm

. (1.26)
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FIGURE 1.6. (a) Schematic diagram illustration of SPP excitation. The fields
shown shown are for TM polarized light; En is the normal electric field and Ht is
the tangential magnetic field, which coincides with the z axis. (b) Absorptance of
a Ag square grating for different angles of incidence θ = 0◦, 10◦, and 20◦.)

With these relations, it is possible to find the constraints for the existence of surface waves.

The first requirement is that kx ∈ R− and the second kz,i is imaginary for i = m, d. These

two conditions can be simultaneously fulfilled if εm ∈ R and εm < −εd. In real metals,

however, there will be attenuation of the waves along the surface, due to the imaginary part

of the dielectric constant. Nevertheless, in most good conductors at optical frequencies

Re(εm) < 0 and |Im(εm)| � |Re(εm)|. Therefore, surface waves at the metal-dielectric

interface can exist. A qualitative illustration of these surface waves is shown in Fig. 1.6

(a). The externally applied (optical) electric field induces a polarization inside the material.

This polarization contributes to the total electric field, generating a collective oscillation

between the electron plasma and the electromagnetic field. The dispersion relation for

SPPs lies below that of free space. Therefore, a way to couple light in free space to the

SPPs is by augmenting the photons with additional momentum. In particular, gratings are

an effective way to excite SPP, since they provide the required additional momentum due to

their periodicity. For example, Fig. 1.6 (b) shows the absorptance of an Ag square grating.

It can be noticed the existence of absorptance peaks for different angles of incidence (0◦,

10◦, and 20◦) generated through the excitation of SPPs.
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This coupling of the incident photons to surface waves enables one to engineer the op-

tical properties of the surface, such as the reflectance and transmittance. This can be under-

stood simply by considering power flow; if a surface wave is excited it carries energy along

the surface with it. Thus the reflectance is reduced, producing a peak in transmittance. It

is also possible enhance the absorptance above that of the native material properties, which

can be valuable in applications such as solar cells. For simplicity, the examples shown

here have been restricted to the case of a single interface between two materials. However,

there are other ways to excite SPPs, including more complex multilayer structures, the Otto

configuration ((Maier, 2008), p.42), or metal nanoparticles ((Toropov & Shubina, 2015),

p.39).

1.4.5. Metal-Insulator-Metal Resonators (MIM)

Energy confinement can be used as an alternative option to excite SPPs, particularly in

multilayer systems consisting of alternating metals and dielectrics. SPPs in such systems

can be excited at each interface, when the thickness of two adjacent layers is smaller than

the decay length of the interface mode. Furthermore, multilayers able to excite SPPs are

also capable of energy localization below the diffraction limit (Maier, 2008). In particular,

MIM resonators have gained attention since they are able to couple internal and external

SPPs, resulting in excitation of a magnetic polariton (MP) (Xuan & Zhang, 2014). These

type of quasiparticles represent a strong coupling between a magnetic resonance inside

the structure and an external electromagnetic field (Zhao, 2016). For readers interested in

further details, we refer to (Maier, 2008; Enoch & Bonod, 2012) and references therein.

1.5. Grating Equation, Diffraction Modes, and Efficiency

Gratings are periodic structures that can be periodic in one or two dimensions. For

example, Fig. 1.7 shows a sinusoidal—also called holographic— grating with period Λ and

height h, where an incident wave with angle of incidence θi impinges on the structure. Due

to its periodicity, the reflected wave is diffracted in different modes l = . . . , 1, 0,−1, . . .
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l

Incident wave
Diffraction modes: ..., -1, 0, 1, ...

FIGURE 1.7. One-dimensional sinusoidal or holographic grating with period Λ
and depth h. The shaded area depicts regions with refraction index, nm; the region
above the grating has a refractive index of ni. An incident plane wave with angle
of incidence θi is shown along with the angle three different modes of diffraction
l = −1, 0, and 1.

with their respective angle of diffraction, θl. The direction of the diffracted waves, l, are

called modes.

When electromagnetic fields interact with periodic structures, they take on the period-

icity of the host structure. Due to this periodicity, an incident wave can be expressed as

the superposition of spatial harmonics. The directions of these harmonics—or modes—are

described by the grating equation, which is the most fundamental equation for the study of

gratings:

kx,l = kx,i − lKx (1.27)

Equation 1.27 is also known as the phase matching condition, because it captures the re-

quirement that the tangential component of the wavevector, kx , must be continuous. Here,

kx,l is the tangential component of the wavevector for a certain diffracted mode (l) and

kx,i is the tangential component of wavector for the incident medium (i). In addition,

Kx = 2π/Λ is the x-component of the wavevector of the grating and l ∈ Z. Equation

1.27 can be recast in a more useful form, given in terms of the incident angle, θi , and the

wavelength, λ (Fig. 1.7). Thus, the angles of the diffracted modes, θl (their directions) are
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related to the incident wavelength and the grating period by:

nj sin(θl) = ni sin(θi)− l
λ

Λ
. (1.28)

Here ni is the index of refraction of the incident medium and nj for j = i,m is the index of

refraction of the incident medium (i) or the grating material (m) as shown in Fig. 1.7. This

equation represents one of the fundamental ways to study gratings and their fundamental

properties such as Wood’s anomalies (Wood, 1902). There are two kinds of these anom-

alies. The first kind, explained by Lord Rayleigh (Rayleigh, 1907), occurs at the wave-

lengths where diffracted orders appear or disappear. On the other hand, the second kind of

anomaly—produced only for the transverse magnetic (TM, also called p) polarization—are

the SPP described above. The explanation of SPPs was given by Fano (Fano, 1941). SPPs

are excited in metallic gratings due to the momentum conservation between the incident

light, the SPP, and the grating periodicity.

Efficiency is an important consideration for any engineered system. For a grating, the

absolute efficiency is defined as the percentage of the incident monochromatic radiation

on the grating that is diffracted into the desired order/mode. It is determined by both the

grating’s cross sectional profile (i.e. the shape of the grooves) and the grating’s periodicity

(Thorlabs, 2017). One configuration that is particularly important since it corresponds to

the maximum grating efficiency is the Littrow configuration (Erwin G. Loewen & Popov,

1997). In this configuration, the reflected mode with l = 1 (Eq. (??)) is parallel to the

incident wave vector. As a result, the grating acts as a spectrally-selective mirror. The

grating equation gives the condition for the Littrow configuration by setting θi = θl, which

yields:

ni sin(θi) =
λ

Λ
. (1.29)
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1.6. Numerical Methods for Scattering Problems

As a consequence of the importance of scattering problems for science and technol-

ogy, a range of numerical methods have been developed to calculate the scattered electro-

magnetic fields; the finite differences in time domain (FDTD), the finite element method

(FEM), the method of moments (MoM), and the rigorous coupled wave analysis (RCWA)

are the most popular. In this section, MoM, FEM, and RCWA—the frequency-domain

approaches—are briefly discussed, since these methods are used as the basis for the work

reported here. In the case of FDTD, interested readers are referred to (Jin, 2010; Kah-

nert, 2003; Gallinet et al., 2015) and references therein. Figure 1.8, shows the general

description of the electromagnetic scattering problem. In this case D also represents an

infinite domain and Γ := ∂D represents the boundary of the illuminated (scattering) ob-

ject. Further, Dc represents the complement of the domain D, which in this case stands for

the domain inside the object. The fields Ei and Hi represent the incident electromagnetic

waves and Es and Hs the scattered ones. In addition, n̂ is a unitary vector normal to the

surface Γ and ε and µ are the material properties.

1.6.1. Finite Element Method (FEM)

The finite element method (FEM) is used to find approximate solutions to both or-

dinary and partial differential equations. It is based on a weak form of the differential

equation, where the solution is approximated by a set of functions using, for example, the

Galerkin method (see appendix A). The FEM requires the discretization of the entire space,

for instance, the entire volume of a waveguide. Even though this is helpful and intuitive

in some applications, this requirement can impose some limitations for unbounded prob-

lems such as electromagnetic or acoustic scattering. Scattering problems require infinite

domains; therefore, some tricks, such as absorbing boundary conditions (ABC), perfectly

matched layers (PML) (Jin, 2010), or FEM-BEM coupling (Johnson & Nedelec, 1980) are

necessary. Another important impact that arises from the need to consider a mesh over

the entire domain is the large number of degrees of freedom (DOF) that this entails. This

implies a large associated linear system. Even though the number of DOF can be large, the
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FIGURE 1.8. Description of the electromagnetic scattering problem. D is the un-
bounded domain in d-dimensions (d = 1, 2, 3), ε and µ are the permittivity and
permeability, respectively, where the subscript 0 stands for vacuum and r for rela-
tive. The domain Dc is the complement of D, which represents the domain inside
the scattering object, whose surface is defined by Γ with a normal unitary vector
n̂ . Finally, E and H are the electric and magnetic fields, respectively, where the
superscripts i and s stand for incident and scattered field, respectively.

associated matrix is sparse because typically elements only interact with their neighbors.

This sparsity makes it easier to solve.

To show how the FEM works, let us consider Helmholtz equation in 1D (1.21) sub-

ject to Dirichlet boundary conditions (1.17). We can choose a set of basis functions to

approximate the electric field as

u(r) ≈ uM(r) =
M�

i=1

ciϕi(r) (1.30)

where r is the position vector and ϕi, i = 1, 2, . . . ,M are basis functions. Part of the

versatility of the FEM, and the mesh-based approximation methods in general is the variety

of basis functions that can be adopted to approximate the solution with different accuracies

and computational performance. The discretization or the basis functions considered to

approximate the electromagnetic fields can take different forms (Jin, 2003; Sheng & Song,
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2012; Johnson, 1987). Using Green’s first identity (Appendix B), we can obtain a linear

system given by:

N�

i=1

ci

�
�∇ϕi(r),∇ϕj(r

�)�+ k2�ϕi,ϕj�
�

=

�

Γ

fϕjdΓ, j = 1, 2, . . . , N. (1.31)

where the right hand side, in general, depends on the boundary conditions and the char-

acteristics of the functions ϕ. This system allows us to calculate coefficients ci, which

approximate the field u.

1.6.2. Method of Moments (MoM)

The method of moments—also called boundary elements method (BEM)—is based

on the field representation in terms of two integral potentials called single layer (SL) and

double layer (DL). In this thesis, we are considering scalar field problems, which means

that representation of a field u in terms of those potentials in the domain D (shown in

Fig. 1.8) is given by:

u(r) = (SL∂nu)(r) + (DLu)(r), ∀ r ∈ D. (1.32)

In its expanded form, the last equation can be written in terms of the derivatives of both

the Green’s function and the field u as follows (Buffa & Hiptmair, 2003; Sauter & Schwab,

2011)

u(r) =

�

Γ

G(r, r�)∂nu(r
�)dΓ(r�)+

�

Γ

∂n�G(r, r�)u(r�)dΓ(r�), r ∈ D and r� ∈ Γ. (1.33)

The normal derivative of u in the first term in the right-hand side is evaluated on the bound-

ary Γ (usually known as the Neumann trace). On the other hand, the value of the field u in

the second term of the right hand side is also evaluated on the boundary Γ (usually known

as the Dirichlet trace). The formulation for the Dirichlet problem (as well as the Neumann

problem) can be written in terms of both the SL and the DL potentials. In this section, and

considering the context required for the next chapters, we intend to give a brief explanation

of the formulation based on the SL potentials. For interested readers, others formulations

can be found in (Steinbach, 2008; Sauter & Schwab, 2011) and references therein.
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For the scalar Helmholtz’s equation (Eq. (1.21)), the scattered electric field polarized

in the TE direction can be represented as (Sauter & Schwab, 2011)

us(x) = (SL∂nu)(x) =

�

Γ

G(x, x�)∂nu(x
�)dΓ(x�), x� ∈ Γ and x ∈ D. (1.34)

Here G is the Green’s function associated with the problem, ∂nu(x) is the normal derivative

of the field u, which in this case is related to the current density through Js = i∂nu. Based

on this formulation, and using the Galerkin method (Appendix A), it is possible to write

down a linear system to find the coefficients ci that approximate the surface current density,

such that

Js(r) ≈
N�

i=1

ciϕi(r), (1.35)

where ϕi, with i = 1, 2, . . . , N is an orthogonal basis set of functions. Therefore,

N�

i=1

ci�SLϕi(r),ϕj(r
�)� = �ui(r),ϕj(r

�)�, j = 1, 2, . . . , N, (1.36)

where �·, ·� represents the inner product. As can be noticed from the integral formulations

given above, the Green’s functions are the keystone of these representations. In the case of

Helmholtz’s equation in free space for a 2D problem, the Green’s function is given in terms

of Hankel functions (Jin, 2010) by

G(r, r�) =
i

4
H

(1)
0 (k|r− r�|), (1.37)

where H(1)
0 are the zero-th order Hankel functions of the first kind. The Green’s function for

a one-dimensional periodic array can be easily derived (Tsang, Kong, Ding, & Ao, 2001)

by using the Floquet-Bloch condition u(x + Λ) = eikxΛu(x), which allows us to write the

Green’s function as a sum of modes

Gp(r, r�) =
i

4

∞�

m=−∞
eikxmΛH

(1)
0 (k

�
(x− x� −mΛ)2 − (y − y�)2) (1.38)

This form of the Green’s function involves an infinite sum over the Floquet modes and, in

general, exhibits poor convergence or contains singularities. For example, when θ > 0, this

series has a non-decaying component, which translates to poor convergence. Moreover,
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due to the Hankel function it possesses a logarithmic singularity when r = 0, i.e., when

the observer is in the same location as source (on-plane condition). To deal with slow

convergence, spectral forms of the Green’s function have been considered (Petit, 1980):

Gp(r, r�) =
i

2Λ

�

m

eikx,m(x−x�)+iky,m|y−y�|

ky,m
, (1.39)

where kx,m and ky,m are wavevector components for a one-dimensional periodic array. In

this case, the situation is different; the Green’s function possesses singularities for each

ky,m = 0, which occurs for the grazing anlgle, θ = π/2 since ky,m =
�

k − kx,m. In

addition, if y = y� the summation converges slowly and a large value of m is required to

obtain convergence. For this reason, several techniques devoted to improve the convergence

and deal with singularities have been investigated (Bruno & Haslam, 2009; Bruno, Lyon,

Pérez-Arancibia, & Turc, 2016; Bruno, Shipman, Turc, & Venakides, n.d.; Chandler-Wilde

& Graham, 2009; Desanto, Erdmann, Hereman, & Misra, 1998).

1.6.3. Rigorous Coupled Wave Analysis

For certain classes of problems, more specialized approaches can be beneficial. To

evaluate scattering from periodic structures, rigorous coupled wave analysis (RCWA) is

especially well suited (Moharam & Gaylord, 1981; Li, 1996; Chateau & Hugonin, 1994;

J. & G., n.d.). The RCWA is a method that gives an exact solution of Maxwell’s equations

for flat surfaces; for more complex geometries its accuracy depends on the number of

diffraction orders in the expansion of the fields.

Let us consider a time harmonic (eiωt) and linearly polarized incident wave with elec-

tric field Ei and wavevector ki (Fig. 1.9), whose components are given by:

ki
x = k0n1 sin(θ) sin(φ)

ki
y = k0n1 cos(θ)

ki
z = k0n1 sin(θ) cos(φ),
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(a)

Discretization

(b)

FIGURE 1.9. Representation of the rigorous coupled wave analysis (RCWA)
method. (a) The domain is separated into three different regions (the incident elec-
tric field (Ei) with wavevector ki are also illustrated). (b) Discretization of complex
geometries using rectangles

where nj with j = 1, 2, 3 is the refractive index of each region (1, 2, and 3, respectively)

and it is related to the permittivity through ni =
√
εi for µi = 1. In region 1 (Fig.1.9), the

electric field is given, as usual, as a sum of the incident and reflected fields by

E1(r) = Eieik
i·r +

�

m,n

Er
mne

i(kx,mx+kz,nz−kry,mny), (1.40)

where kx,m = ki
x+2πm/Λx and kz,m = ki

z+2πm/Λy. The z components of the wave vec-

tors are determined by kr
y,mn =

�
k2
1 − k2

x,m − k2
z,n, which is real when ε1k02 ≥ k2

x,m+k2
z,n

and imaginary if k2
0 < k2

x,m+k2
z,n. In region 2, the electromagnetic fields are represented as

Fourier series, which depends on the period of the structure. In the general case, the struc-

ture can be periodic in x and y, but in the cases considered here, structures are only periodic

in x as shown in Fig. 1.9 (a). To simulate more complicated structures, it is possible to

discretize the region 2 in layers as is shown in Fig. 1.9 (b). In this case, the permittivity

tensor takes the form:

εi :=




εi,x 0 0

0 εi,y 0

0 0 εi,z


 (1.41)
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Then, the electric and magnetic fields can be written as:

E2(r) =
�

m,n

ψe
m,n(y)e

i(kx,mx+kz,nz), (1.42)

H2(r) = i

�
ε0
µ0

�

m,n

ψh
m,n(y)e

i(kx,mx+kz,nz), (1.43)

where the fields ψe
m,n and ψh

m,n can be related to the permittivity tensor (Eq. 1.41) using

Maxwell’s equations (1.4) and (1.3). It is also possible to write an equation for the region 3

E3(r) =
�

m,n

Etei(kx,mx+kz,nz+kty,m,ny), (1.44)

where kt
z is the z-component of the transmitted wavevector. This equation depends in

general on polarization and the transmitted propagating waves. Finally, the coefficients

given in the representations of the electromagnetic fields in each region can be determined

applying the boundary conditions. For a detailed description of the RCWA method and its

matrix formulation we refer to (Zhao, 2016; Soifer, 2017) and references therein.

1.7. Numerical Methods for Uncertainty Quantification (UQ)

All mathematical models and numerical simulations of the types considered here can

be used to represent phenomena in the real world. In general, to build a mathematical and,

consequently, a computational model, it is necessary to make simplifications and idealiza-

tions. However, this can lead to imprecision in the model predictions. For instance, in an

engineering design and analysis context, one typically assumes that the relevant physics

is known and that the boundary conditions or other constraints of the problem are known

in an exact or analytical way. In reality, however, these input parameters are often not

perfectly known. Uncertainty quantification (UQ) gives us tools to deal with these sorts

of uncertainties, thereby allowing us to obtain a better model description of the world. A

succinct description of UQ is given by the U.S. Department of Energy (Higdon et al., 2006).

UQ studies all sources of error and uncertainty, including the following: systematic and
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stochastic measurement error; ignorance; limitations of theoretical models; limitations of

numerical representations of those models; limitations of the accuracy and reliability of

computations, approximations, and algorithms; and human error. A more precise defini-

tion is UQ is the end-to-end study of the reliability of scientific inferences.

A good introduction is also given in (Sullivan, 2015) and references therein. One espe-

cially important application of UQ in the area of numerical simulations is to understand

and quantify the impact of variations or imprecision in the structure (i.e. the geometry)

or material properties within a system being simulated. Mathematically, this is equivalent

to the input parameters of the system being imperfectly known. An increasingly popular

approach is to model such parameters as random variables (Harbrecht, 2010, 2014). For

this reason, UQ is taking an increasingly important role in simulations, since it allows one

to make better predictions, perform more sophisticated analyses, and ultimately arrive at

better designs. In Fig. 1.10 a schematic example is presented. Experimental results (solid

triangles), predictions by numerical simulations not including UQ methods (red continuous

line), and UQ predictions (standard deviation in orange continuous lines and the mean in

dashed lines) are put together for comparison. It can be noticed that the experimental values

lie inside the predicted uncertainty range (standard deviation) and that the mean predicted

by the UQ model is not necessarily equal to either the simulation results or the experiments.

1.7.1. Methods for UQ

Uncertainty quantification methods have been increasing popularity; therefore, several

methods and modifications to improve their performance, i.e., convergence, accuracy, etc.

have been studied and proposed. Here the two considered approaches of this work, Monte

Carlo and deterministic approaches, are briefly explained. In addition, since the implemen-

tation of a deterministic approach requires some non-conventional mathematical tools, a

brief introduction on sparse grids as well as the the shape derivative are given in Sections

1.7.1.3 and 1.7.1.4, respectively.
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FIGURE 1.10. Cartoon illustration of uncertainty quantification (UQ). It can be
noticed that the results of simulations, experiments and UQ predictions are not nec-
essarily equal. UQ can predict a range or bounds on the expected results through,
for example, the standard deviation.

1.7.1.1. Monte-Carlo method

The Monte Carlo (MC) method is tremendously popular and it has been applied to

practically every area of research in science and engineering, for example, electromag-

netism (Matthew N O Sadiku, 2009), fluid mechanics (Han et al., 2012), MOSFET device

simulations (Ezaki, Werner, & Hane, 2003), just to name a few. This method revolves

around the idea of generating a vast number of randomly generated samples to then calcu-

late the statistical moments, i.e., mean, variance, skewness, etc.

The most general way of describing the MC approximation is by considering a function

g(y) : Rd → Rd, where y is characterized by a probability density. The function g is a

quantity of interest that can be, for example, a solution from FEM or MoM. Once we have

generated a set of samples y(i), i = 1, 2, , . . . ,M , it is straightforward to approximate the

mean by:

I ≈ IM =
1

M

M�

j=1

g(y(j)), (1.45)
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where I is the exact value of the mean and IM is an approximation using M randomly

generated samples. It is also easy to prove that E[IM ] = I (an unbiased estimator). In the

case of variance, we have:

Var[IM ] =
1

M2

M�

j=1

E[g(y(j))− I2]. (1.46)

The MC method is computationally expensive due to the fact that its convergence is slow.

Moreover, the convergence is even slower when the variance of the problem is high. How-

ever, one of the advantages of the MC method is that the convergence does not depend on

the dimensionality of the problem. To improve the convergence of the MC methods, some

approaches based on variance reduction have been investigated. For example, stratified

sampling (Keramat & Kielbasa, 1997; Owen, 2013), latin hypercube (Stein, 1987), and

quasi MC (L’Ecuyer & Lemieux, 2005).

1.7.1.2. Deterministic approaches

As an alternative to the MC methods, some deterministic approaches have been pro-

posed. In particular, approaches that are related to this work are the cases of random surface

perturbations, where Poisson’s equation with Dirichlet boundary conditions (Harbrecht,

Schwab, & Schneider, 2006; Dambrine, Greff, Harbrecht, & Puig, 2014), Robin and Neu-

mann boundary conditions (Harbrecht, 2014), and Maxwell’s equations (Jerez-Hanckes &

Schwab, 2016) equations have been investigated. Knowing the stochastic source, one can

write down a set of tensorized differential equations to approximate the different statistical

moments, such as mean and variance, with no generation of random samples as is the case

of MC methods. For example, let us consider the following operator equation:

Ag = f, (1.47)

where A is a linear bounded operator defined over a Hilbert space V such that A : V → V �,

where V � is its dual. We are interested in computing the statistical moments of a randomly

dependent solution g. To define them, we need the q-fold tensor product of a Hilbert space
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X , defined as:

X(q) = X ⊗X . . .⊗X� �� �
q−times

(1.48)

Therefore, the q-moment is defined as:

M(q)g = E[g ⊗ g . . .⊗ g� �� �
q−times

] =

�

ω∈Ω
g(ω)⊗ g(ω) . . .⊗ g(ω)� �� �

q−times

dP (ω) (1.49)

If we have the tensor product of the operator A, which maps A(q) : V (q) → (V �)(q) we can

write

A(q)g(q) = f (q), (1.50)

where g(q) = g ⊗ . . .⊗ g and f (q) ∈ L1(V �)(q), which implies

A(q)M(q)g = M(q)f. (1.51)

This equation provides a way to compute the moments of g in a deterministic way, avoiding

the generation of random samples. Theorems about these results as well as their proofs can

be found in (von Petersdorff, Schwab, von Petersdorff, & Schwab, 2006; Schwab & Git-

telson, 2011). Since they are based on tensor products to find higher statistical moments,

sparse tensor approximations are considered in order to deal with the curse of dimension-

ality.

1.7.1.3. Sparse Grids

Sparse grids are a special discretization technique which allow us to cope with the

curse of dimensionality, i.e., the exponential dependence of conventional approaches on the

dimension d (Gertsner & Griebel, 2008). They are based on hierarchical bases and a sparse

tensor product construction. Sparse grids have been successfully implemented in FEM

and BEM to solve different kinds of problems in different fields such as electromagnetism

(Jerez-Hanckes & Schwab, 2016; Liu, Gao, & Hesthaven, 2011), turbulence models (Tran,

Webster, & Zhang, 2016), dynamic models in economy (Johannes & Simon, n.d.) among

others. The underlying idea of sparse grids was developed by Smolyak (Smolyak, 1963),

who first implemented this technique for numerical integration. To give an idea on how
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sparse approximations work, let us start by considering a set hierarchical increment spaces

Wl (Fig. 1.11)

Wl := span{φl,j, j ∈ Il}, (1.52)

where the index set Il is defined as

Il := {j ∈ N : 1 ≤ j ≤ 2l − 1, j odd}. (1.53)

These increment spaces satisfy the relations

Vl =
�

j≤l

Wj. (1.54)

Therefore, given an approximation space of resolution l, the spaces Wl are the complement

of the next resolution level l + 1, which can be expressed as

Vl+1 = Vl ⊕Wl. (1.55)

Figure 1.11 (a) shows a representation of the approximation spaces for l = 3. It is shown

how the Wj spaces are contained in Vl. When computing tensor products, if all possible

combinations of the basis functions ϕl,j are considered, we obtain a dense approximation.

This kind of approximation suffers from the curse of dimensionality since the number of

degrees of freedom increases exponentially as the dimension, d, increases. However, it is

possible to choose a number of basis functions of Vl, for example as shown in Fig. 1.11 (b),

where combinations of basis functions with small support or contribution are not included.

Then a sparse approximation of level l can be defined as:

V̂l :=
�

l1≤l+d−1

Wl, (1.56)

where |l|1 :=
�d

t=1 lt with a multi-index l := (l1, l2, . . . , ld) ∈ Nd and direction t =

1, 2, . . . , d. On the other hand, a full or dense approximation of level l can be expressed as

Vl :=
�

l∞≤l

Wl, (1.57)
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(a) (b)

(c)

FIGURE 1.11. Representations of sparse grids. (a) shows three different levels for
spaces W1, W2, and W3 as well as V3 as well as their elements φj,l. (b), shows the
construction of a sparse grid for two-dimensional subspaces from a dense approx-
imation by choosing Wj spaces (black). The dense grid is formed considering the
gray boxes. Finally, (c) shows the tensor product between two elements W1 and
W2 from (Bungartz & Griebel, 2004).

where |l|∞ := max1≤t≤d lt. Sparse approximations consider only a subset of functions of

Vl (Fig. 1.11). The advantage of sparse grids is that it allows us to construct approximation

spaces where the same number of points of a given grid leads to a higher order of accuracy.

For details on proofs and convergence we refer to the reader to (Bungartz & Griebel, 2004)

and references therein.

1.7.1.4. Shape Derivative

In this work, we intended to study geometric variations of a domain D into a perturbed

domain D� due to stochastic perturbations. For this purpose, the definition of a different

kind of derivative, able to quantify those changes, is necessary and where the so-called
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shape derivative is well suited. A rigorous definition and study of the shape derivative can

be found in (Sokolowski & Zolesio, 1992) and example applications in (Markus Kollmann,

2008). The shape derivative can be defined as a pointwise limit

u̇ := lim
�→0

u� − u

�
, (1.58)

where u is a quantity in a reference or unperturbed domain and u� is the same quantity, but

obtained from a the perturbed domain, D�. It can be shown that the shape derivative can

be applied to solve boundary value problems (BVP) for perturbed domains in the case of

Dirichlet and Neumann boundary conditions (Harbrecht, 2014; Harbrecht et al., 2006). In

general to find the shape derivative, it is necessary to solve an associated BVP with a special

set of boundary conditions, which can be derived by defining and taking the derivative of

an associated functional.

1.8. Quantifying Small Perturbations

In Chapter 2, we solve the electromagnetic scattered field from a PEC grating with

small random surface perturbations by solving the Helmholtz equation with a Galerkin

method (See Appendix A) and using Haar’s wavelets as the hierarchical bases (Steinbach,

2008). To quantify small perturbations, we solve the adjunct problem of the shape deriva-

tive with a prescribed Dirichlet boundary condition. This boundary condition can be found

by the derivation of a functional (also called Eulerian derivative) related to the weak form

of the Helmholtz’s equation. It can be shown that the same type of boundary condition

can be found using a Taylor expansion as is customary in the small perturbation methods

(SPM). For readers interested in further details as well as derivations for other BVP, such

as the TM (or Neumann) problem, etc., we refer to (Potthast, 1996b, 1996a; Hiptmair &

Li, 2013, 2017) and references therein. On the other hand, for a more detailed description

about the SPM, we refer to (Tsang et al., 2001; Shin & Kong, 1984; Kong, 1986).
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perturbation 
boundary

FIGURE 1.12. Representations of of a perturbed surface, where the perturbations
are given as a function of the normal unitary vector to the surface. Γ and Γ� repre-
sent the unperturbed and perturbed domains, respectively.

1.8.1. Shape Derivative for Dirichlet BVP

Let us consider the Helmholtz equation subject to Dirichlet boundary conditions:

−Δu− k2u = f in D (1.59)

u(D) = z(Γ) on Γ (1.60)

First, let us find the associated problem for the shape derivative by multiplying 1.59 by a

test function ϕ ∈ C∞(D) such that ∂nϕ = 0; applying the Green theorem (Appendix B)

results in �

D

(∇u ·∇φ− k2uφ)dD =

�

D

fφdD. (1.61)

Let us call the terms on the left and right hand sides as Jl and Jr, with shape derivatives dJl

and dJr, respectively. We can obtain these derivatives by using the formulas in (Sokolowski

& Zolesio, 1992)

dJl =

�

D

( ˙[∇u ·∇ϕ]− k2 ˙[uϕ])dD +

�

Γ

(∇u ·∇ϕ− k2uϕ)�U, n̂�dΓ. (1.62)

Note that the second term on the right hand side is a boundary term; therefore, its derivative

is different from one over the domain. This boundary term possesses an inner product

between a the unitary normal vector to the surface and the vector field U := �κn̂ given
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in terms of the perturbation, � and a smooth—and in general stochastic— function κ. In

addition, ϕ̇(Γ,U) = ∂nU · n̂. Equation (1.62) can be simplified

dJl =

�

D

∇u̇ ·∇ϕ− k2u̇ϕdD +

�

Γ

(∇u ·∇ϕ− k2uϕ)�U, n̂�dΓ (1.63)

Following the same procedure for the right hand side term, and comparing the volumetric

and boundary terms, we get
�

D

∇u̇ ·∇ϕ− k2u̇ϕdD =

�

D

f �ϕdD, (1.64)
�

Γ

(∇u ·∇ϕ− k2uϕ)�U, n̂�dΓ =

�

Γ

fϕ�U, n̂�dΓ. (1.65)

Following the same procedure used above for the boundary condition (1.60), we obtain
�

Γ

u̇ϕdΓ+

�

Γ

(∂n(uϕ) + κuϕ)�U, n̂�dΓ =

�

Γ

żϕ+ κzϕ�U, n̂�dΓ. (1.66)

For the last step, it is necessary to note that the shape derivative is being applied over

a function defined on a boundary and, therefore, a new term called the mean curvature

κ := divΓn̂ appears in the derivations of the functionals. Then, applying the boundary

conditions (1.60), we get
�

Γ

u̇ϕ+ ∂nuϕ�U, n̂�dΓ = ∂żϕdΓ. (1.67)

which in its strong form becomes:

u̇ = ż − ∂nu�U, n̂�, (1.68)

which is the general form of the boundary condition for the shape derivative. This form

is valid for both Poisson and Helmholtz equations as well as flat and periodic surfaces.

Equation (1.68) can be expressed in terms of the electric field and the surface perturbation,

assuming that z = f = 0 and that the total field is given in terms of the incident and

scattered fields as u = ui + us; therefore,

u̇s(r) = −�κ(r)∂n(u
i + us)(r) r ∈ Γ. (1.69)
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1.8.2. Small Perturbation Method (SPM)

As we mentioned above, by using a Taylor expansion we can derive the first order cor-

rection to the scattered field from a perturbed surface. To do so, let us consider the Taylor

expansion for the total field, u = ui + us, around the surface Γ with normal perturbations

with respect to the domain given by U:

u(r+ U(r)) = u(r) +U(r)∇u(r) +O(h2), r ∈ Γ, (1.70)

and the expansion of the scattered field, us, as:

us(r) = us
(0)(r) + �us

(1)(r) + �2us
(2)(r) + · · ·+, r ∈ Γ, (1.71)

where us
(0) is the scattered field from the unperturbed domain and us

(i) with i = 1, 2, . . . are

the corrections to the field due to the perturbations. Taking equation (1.70) to first order

and applying PEC boundary conditions on the perturbed surface, r + h(r,ω), with r ∈ Γ,

yields

u(r) ≈ −U(r)∇u(r), r ∈ Γ, (1.72)

which can be written as:

ui(r) + us(r) ≈ −U(r)∇(ui + us)(r), r ∈ Γ. (1.73)

Then, using (1.71) up to first order:

ui(r) + us
(0)(r) + �us

(1)(r) ≈ −U(r)∇(ui + us)(r), r ∈ Γ (1.74)

we conclude that

�us
(1)(r) ≈ −U(r)∇(ui + us)(r), r ∈ Γ, (1.75)

which can be written as:

us
(1)(r) ≈ −κ(r)n0 ·∇(ui + us)(r), r ∈ Γ. (1.76)
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Using the definition of the normal derivative ∂n := n̂ · ∇, equation (1.76) leads to the

boundary condition (1.69). Therefore, the shape derivative as described above can be inter-

preted as a first order correction. The Taylor expansion and the shape derivative boundary

condition are the keystones when quantifying small random perturbations by deterministic

approaches as we will see in Chapter 2.

1.9. Summary of Contributions

By pursuing the research goals outlined previously, several new and original contri-

butions have been obtained. Among them, we expect that the most significant are the

development and demonstration of a reliable and fast numerical approach to quantify the

impact of surface perturbations on gratings, and the exploration of new thermal emitter

designs using high-k materials such as hafnia to improve spectral emittance performance.

1.9.1. Impact of Surface Perturbations on Grating Performance

(i) Implementation of the MoM for periodic structures using hierarchical bases to

solve the Helmholtz’s equation subject to perfect electric conductor boundary

conditions

(ii) Quantification of small random surface perturbations through a fast deterministic

approach based on sparse tensor approximations

(iii) Show the applicability of the proposed method through the calculation of the

grating’s diffraction efficiency

1.9.2. Gratings for Spectrally Selective Thermal Emitters for Thermophotovoltaics

(i) Provide paths to improve the thermal emittance by using easy to fabricate peri-

odic structures by the excitation of different resonance phenomena to reach high

thermal emittance with high melting point materials obtaining almost polariza-

tion insensitivity
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(ii) Optimization of the tungsten grating with dielectric materials, reaching very high

emittance with almost polarization insensitivity and weak dependence of the an-

gle of incidence

1.10. Thesis Structure

The purpose of this thesis is to improve the design of TPV cells through numerical sim-

ulations. As mentioned, two research thrusts have been investigated. In following chapters,

the main results as well as details will be given. In Chapter 2, we present the study the

impact of surface random perturbations on electromagnetic scattering from perfectly re-

flecting gratings. We developed a method based on the shape Taylor expansion to quantify

these perturbations and we successfully applied the approach to quantify the effect on the

grating efficiency. In Chapter 3, an application of gratings to TPV energy conversion is

studied. We used tungsten gratings with hafnia layers to improve the thermal emittance

due to the excitation of surface plasmon polariton, magnetic polaritons, and cavity reso-

nances. We show that by exciting these resonances, the emitter presents peaks of almost

perfect emittance for both TE and TM polarizations. To complement the study on selec-

tive thermal emitters, in Chapter 4 we study the optimization of tungsten-hafnia gratings

through a genetic algorithm. In this study, we compare the grating selective emitter with

one based on a multilayer resonator, showing that in both cases it is possible to reach very

high hemispherical thermal emittances with weak dependence of the angle of incidence.

Finally, in Chapter 5, a review of the main results and conclusions is given as well as possi-

ble paths and guidelines for future research according to the results that have been obtained

in the previous chapters.
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2. QUANTIFYING THE IMPACT OF SURFACE RANDOM PERTURBATIONS

ON REFLECTIVE GRATINGS1

2.1. Introduction

Gratings are ubiquitous in optical and electromagnetic systems due to their remark-

able properties. For example, they can be used to excite surface plasmon polaritons (SPPs)

or waveguide resonances (WR), which allow for the engineering of thermal emission in

energy conversion devices such as thermophotovoltaic (TPV) cells (Y.-B. Chen & Zhang,

2007; D. Chan, Soljačić, & Joannopoulos, 2006). Perfectly reflective gratings are also

well known for their applications to spectroscopy (Loewen & Popov, 1997),(Fortin & Mc-

Carthy, 2005). Gratings can act as polarizers as they are sensitive to transverse electric (TE)

and transverse magnetic (TM) polarizations (Shiraishi, Higuchi, Muraki, & Yoda, 2016).

Thus, a large body of literature is dedicated to their analysis and simulation. Yet, most

works assume an ideal deterministic shape, generally neglecting the effects of roughness

or geometric uncertainty that the surface in reality may portray.

Roughness can be produced, for example, by manufacturing processes. Though gener-

ally small, these shape distortions can undermine a grating’s performance. Consequently,

robust engineering design must accurately account for such shape randomness. Providing

an efficient tool for this purpose motivates the present work.

Due to the random nature of the perturbations, it is necessary to formulate the problem

in terms of stochastic parameters. The most popular method employed for solving stochas-

tic partial differential equations (SPDEs) is Monte-Carlo (MC) simulation (Matthew N O

Sadiku, 2009). MC methods compute statistical moments—mean, variance, and so on—by

simply taking large numbers of realizations or samples of the underlying random shapes to

then solve the related boundary value problems and compute the statistics directly. This en-

tails generating a large quantity of geometrical meshes (Khankhoje & Cwik, 2014), with the

ensuing increase in computational burden and slow convergence rates. As an alternative to

MC methods, the so-called analytical methods such as Kirchhoff approximation (KA) and

small perturbation method (SPM) have been studied (Tsang et al., 2001). The work of Shin
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et al. (Shin & Kong, 1984) based on KA and Yueh et al. (Yueh, Shin, & Kong, 1988) based

on SPM have addressed the problem of random perturbations on gratings. Recently, studies

of multilayer structures have extended the applicability of the SPM (H. Wang et al., 2016; Sanamzadeh, Tsang,

Deterministic approaches for SPDEs have recently been proposed to avoid the calculation

of a set of samples (von Petersdorff et al., 2006; Bieri, Andreev, & Schwab, 2009; Har-

brecht et al., 2006). These approaches revolve around the idea that if the randomness

comes from known source terms and the operators are deterministic, then tensorized deter-

ministic equations for the statistical moments can be obtained. In this approach, efforts are

directed towards developing efficient computational frameworks for the tensor systems, in

comparison to MC simulations.

In this work, we seek to compute the expected value and second statistical moments of

fields scattered by a perfect electric conductor (PEC) grating with random surface pertur-

bations. Assuming sufficiently small perturbations with respect to a nominal deterministic

periodic shape, we perform a first-order shape Taylor expansion wherein perturbations are

stochastic. One can show that the first shape derivative also satisfies a volume problem for

the same partial differential operator, but with a different boundary term over the nominal

domain (Potthast, 1996b). It can be shown that the shape derivative approach is mathemat-

ically equivalent to the SPM. However, the former allows to straightforward calculation of

the expected value and the variance of the scattered field by knowing the mean and two-

point correlation of the boundary perturbation field, while this is not straightforward in the

SPM formulation.

As is customary, we reduce volume problems to ones cast over boundaries by establish-

ing integral equations using suitable Green’s functions. This dimension reduction dimin-

ishes considerably the number of degrees of freedom (DOFs) required to solve the problem

in comparison to volume methods and avoids the implementation of fictitious boundaries

(Jin, 2010). This basic approach has been recently developed for full 3D Maxwell scat-

tering (Jerez-Hanckes & Schwab, 2016; Hiptmair, Jerez-Hanckes, & Schwab, 2013), but

to our knowledge the application to periodic structures, such as gratings, remains an open

problem.
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The rest of the chapter is organized as follows: in Section 2.2, we define the scattering

problem, shape derivatives and random perturbations as well as the the shape Taylor ex-

pansion. Boundary reduction for the scattering problem is described in Section 2.2.3 with

boundary integral equations explained in Section 2.2.4. Section 2.3 introduces the defini-

tion of the tensorized equations for the second moment. In Section 2.4, we present related

variational formulations and full and sparse discretizations. Galerkin MC simulations used

for validating the proposed deterministic approach are described in Section 2.5. Section

2.6 presents numerical validation, convergence analysis and numerical examples including

grating efficiency computations. Lastly, main conclusions are summarized in Section 2.7.

2.2. Model Problem

As shown in Figure 2.1, we consider a PEC grating with surface Γ̃× R where Γ̃ ∈ R2

is parametrized by a Λ-periodic mapping R � t → (t, y(t)), i.e. y(t + Λ) = y(t). This

defines the infinite open domain of propagation D̃×R ⊂ R3 as the upper half-space above

the grating. We assume this volume to be free space, characterized by the impedance

η0 =
�

µ0/ε0 and phase velocity c = 1/
√
ε0µ0, where ε0 and µ0 are the permittivity and

permeability of vacuum, respectively. Due to the periodicity of the grating, we denote by

Γ and D the surface and volume associated with a single period, respectively.

We decompose the electric and magnetic fields—denoted by E and H, respectively—

in cartesian coordinates (x, y, z). Although both transverse electric (TE) and transverse

magnetic (TM) polarizations are possible, for the sake of brevity we only consider the TE

case (Ex = Ey = Hz = 0). Furthermore, we assume time-harmonic excitations with

angular frequency ω0. Thanks to the z-invariance of the grating, the problem is further

reduced to that of finding the total electric field space component Ez on a perpendicular

plane to the grating:

u(r) := Ez(r), r ∈ D̃ ⊂ R2, (2.1)

satisfying the homogeneous Helmholtz equation:

Δu+ k2u = 0 in D̃, (2.2)
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and a homogenous Dirichlet boundary condition. The wavenumber k := ω0/c yields a

wavelength λ = 2π/k. By linearity, the total wave can be decomposed as u = ui +

us, where ui and us are the incident and scattered waves, respectively. Without loss of

generality, we consider incident plane waves (PW), i.e.

ui = E0e
−ıki·r, r ∈ D̃, (2.3)

with incident wavevector ki = (kx, ky) = (k sin θi, k cos θi), where θi is the impinging

angle. The amplitude E0 can then be calculated through the Poynting vector (S = E×H),

which for TE waves leads to the following relation for power (Jin, 2010):

P =
E2

0Λ cos θi
2η0

. (2.4)

As PWs satisfy (2.2), we seek the scattered field us such that

Δus + k2us = 0 in D̃, (2.5)

us = −ui on Γ̃, (2.6)

y1/2(∂y − ık)us → 0 as y → ∞. (2.7)

In this case, the periodicity and infinite length of the grating prevents the use of stan-

dard Sommerfeld radiation conditions (Kirsch, 1993) Equivalently, we can write down the

boundary value problem for a quasi-periodic field us over D (Petit, 1980):

Δus + k2us = 0 in D, (2.8)

us = −ui =: g on Γ, (2.9)

us(x+ Λ, y) = eıkxΛus(x, y) and (2.10)

us =
�

n∈Z
une

iKn·r, y > �y�∞, (2.11)

2.2.1. Small Random Shape Perturbations

As it will be shown in Section 3.1, we will consider wave scattering from small random

perturbations of a nominal, sufficiently regular reference domain D0 associated to a grating
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FIGURE 2.1. One-dimensional perfect electric conductor grating with periodicity
in the x-direction, Λ, and angle of incidence θi defined with respect to the y-axis.
The height of the grooves is 2d. (a) shows the semi-infinite domain, D̃ its boundary
Γ̃, the reference domain defined over one period, D0, and its boundary, Γ0. (b),
shows a perturbed domain, D�, and its boundary, Γ�.

period Λ (Fig. 2.1). Without loss of generality, let us define perturbed surfaces

Γ� := {r+ �κ(r)n0(r) : r ∈ Γ0}, 0 < � � 1, (2.12)

where n0 is the outward unitary normal to Γ0 and κ ∈ R is a bounded amplitude over Γ0.

The perturbed domain over a period, denoted by D�, is defined as the upper plane to Γ� for

x ∈ (0,Λ). Observe that the domain D� and D0 match, except for a region relatively close

to the grating surface.

In order to introduce shape randomness, we first set a standard probability space

(Ω,Σ,P), where Ω is the sample space with elements ω ∈ Ω, Σ is a σ-algebra, and P

is a probability measure. With this, we define random fields by further assuming a known

random amplitude κ(r,ω). We require the amplitude to be bounded from above and below,

i.e.

max
ω∈Ω

|κ(r,ω)| < C, C > 0, ∀ r ∈ Γ0. (2.13)
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Let us define the amplitude’s first and second statistical moments as:

E[κ](r) :=

�

Ω

κ(r,ω)dP(ω), (2.14)

Cor[κ](r,q) :=

�

Ω

κ(r,ω)κ(q,ω)dP(ω), (2.15)

where r, q lie on Γ0. We further assume E[κ] = 0 so that only centered perturbations are

considered. Explicitly, for � � 1 and k� � 1, we set the randomly perturbed surface with

respect to Γ0:

Γ�(ω) := {r+ �κ(r,ω)n0(r) : r ∈ Γ0,ω ∈ Ω}, (2.16)

so that E(Γ�) = Γ0. We define perturbed domains D�(ω) as described before. Even though

the surface Γ� is periodic, which means that the random perturbations are also periodic, this

is not a serious limitation, since it is possible to perform simulations over several periods.

2.2.2. Shape Taylor Expansion

The scattered field us
� over Dε(ω) must solve the same volume periodic problem (2.8)–

(2.11) with a Dirichlet boundary condition equal to g�(ω). Since the perturbations are small,

we make use of a shape Taylor expansion. This entails evaluation of the shape derivative

(Sokolowski & Zolesio, 1992; Harbrecht et al., 2006), defined as

u̇s(r,ω) := lim
�→0

us
�(r,ω)− us

0(r)

�
, r ∈ D0 ∩D�(ω), (2.17)

where us
0 is the scattered solution over the nominal domain D0. In this definition, u̇s can

be interpreted as the infinitesimal variation of the electric field due to the grating surface

variations. Moreover, u̇s satisfies the reference problem equations (2.8), (2.10), (2.11),

over D0 with a different right-hand side for the boundary condition (2.9) (Harbrecht et al.,

2006). The boundary value problem satisfied by the shape derivative is (Sokolowski &
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Zolesio, 1992):

Δu̇s + k2u̇s = 0 in D0, (2.18)

u̇s = −κ(·,ω)n0 ·∇(us
0 + ui) on Γ0, (2.19)

+ conditions (2.10), (2.11) . (2.20)

Hence, instead of computing u� in the perturbed domain, we will consider the first order

approximation:

us
�(r,ω) = us

0(r) + �u̇s(r,ω) +O(�2), r ∈ D0 ∩D�(ω), (2.21)

and ω ∈ Ω. Observe that us
0 is purely deterministic, while the shape derivative u̇s depends

on ω through the boundary condition term κ(r,ω). Moreover, by construction one can

show that

E [u̇s] (r) = 0, r ∈ D0, (2.22)

since the expectation of (2.19) yields a zero boundary condition, implying a field equal

to zero by unique solvability (Harbrecht et al., 2006). It can be shown that the boundary

condition given for the shape derivative is the same as for SPM.

2.2.3. Boundary Reduction

Using (2.21), to approximate us
� we require us

0 and u̇s, both of which satisfy the same

Helmholtz equation over D0 differing solely in Dirichlet conditions. At the same time,

both problems are set on an unbounded domain, which is why we resort to the use of

boundary integral formulations. This requires the computation of a fundamental solution

of the volume problem as will be shown.

In particular, our method is based on the so-called indirect formulation (Sauter &

Schwab, 2011; Steinbach, 2008): for any scattered field us, we can write

us(r) = (SLζ)(r), r ∈ D0, (2.23)
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where SL is the single layer potential given as the convolution of the quasi-periodic Green’s

function, Gp, and a surface density ζ , in our case unknown:

(SLζ)(r) := ıkη0

�

Γ0

Gp(r, r�)ζ(r�)dΓ(r�), r ∈ D0. (2.24)

Hence, the same representation can be used for us
0 and u̇s. In fact, in Section 2.2.4 we show

it suffices to find a suitable ζ rendering us
0 and then obtain n0 ·∇(us

0 + ui
0) on Γ0 to derive

an equation for u̇s. With this definition, the integral equation defined on D0 can be written

as:

ıkη0

�

Γ0

Gp(r, r�)ζ(r�)dΓ(r�) = −ui(r) r ∈ D0. (2.25)

The quasi-periodic Green’s function must satisfy the 2D Helmholtz equation for 1D

quasi-periodicity:

(Δ+ k2)Gp = δ(y)
∞�

n=−∞
δ(x− nΛ)eıkxmΛ. (2.26)

The solution of (2.26) has the spectral representation (Tsang et al., 2001):

Gp(r, r�) =
ı

2Λ

∞�

n=−∞

eıkx,n(x−x�)+ıky,n|y−y�|

ky,n
, (2.27)

where

kx,n = k sin θi + 2nπ/Λ, n ∈ Z, and (2.28)

ky,n =





�
k2 − k2

x,n if k2 ≥ k2
x,n,

ı
�
k2
x,n − k2 if k2 < k2

x,n

. (2.29)

Since this representation of Gp is known to converge slowly when |y − y�| is small (Bruno

& Haslam, 2009), we consider the following alternative:

Gp(r, r�) =
ı

4
H

(1)
0 (k�r− r��) + G̃(r, r�), (2.30)

where H
(1)
0 is the Hankel function of first kind and G̃ is a smooth function whose formula

can be found in (Bruno & Haslam, 2009). This representation is well behaved close to

its singular points. Moreover, it also allows a straightforward extraction of its singular
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component: singular integrals in (2.24) can be computed semi-analytically while regular

parts are integrated via Gauss-Legendre quadrature.

2.2.4. Boundary Integral Equations

By taking the values on the boundary of (2.24), we define the weakly singular (V)

boundary integral operator, V , as Vζ(r) := SLζ(r) with r on Γ0 (Sauter & Schwab, 2011;

Steinbach, 2008). With this, we can derive the first kind Fredholm integral equation for the

scattered field us
0:

us(r) = (Vζ)(r) = g0(r), ∀ r ∈ Γ0, (2.31)

using the boundary condition (2.9) with � = 0. Equation (2.31) is known as the Electric

Field Integral Equation (EFIE) (Jin, 2010) given by:

ıkη0

�

Γ0

Gp(r, r�)ζ(r�)dΓ(r�) = −ui(r) r ∈ Γ0, (2.32)

where ζ : Γ0 → C is the surface current density. Notice that ζ is extended quasi-

periodically over Γ̃. For a PEC surface ζ = n0 · ∇(us + ui) on Γ0, which allows the

straightforward evaluation of (2.19). After solving (2.31), a similar equation holds for the

shape derivative, i.e. there exists a ζ̇(r,ω) : Γ0 × Ω → C such that:

(V ζ̇)(r,ω) = κ(r,ω)ζ(r), ∀ r ∈ Γ0, and (2.33)

u̇s(r,ω) = (SLζ̇)(r,ω), ∀ r ∈ D0. (2.34)

As in the case of (2.32), we can write (2.33) as follows:

ıkη0

�

Γ0

Gp(r, r�)ζ̇(r�)dΓ(r�) =

κ(r,ω)n0 ·∇(us + ui) r ∈ Γ0.

(2.35)

Observe that while (2.31) has a deterministic right-hand side (2.33) has an stochastic one.

Throughout this manuscript, the following convention has been adopted: vectors are written

in bold text, e.g. the position vector r, potentials in sans-serif font, e.g. the single layer

potential SL, operators in calligraphic font, e.g. the weakly singular operator V , and all



51

functions and variables (discrete and continuous) in normal font, e.g. the grating profile

y(t) or the quasi-periodic Green’s function Gp.

2.3. Deterministic Tensor Equations

Our main goal is to obtain the first two statistical moments for the scattered field us
�:

namely, the field’s expected value and covariance. In general, p-order moments are given

by:

Mpu := E[u⊗ . . .⊗ u]

:=

�

ω∈Ω
u(ω)⊗ . . .⊗ u(ω)dP(ω), (2.36)

for p ∈ N. Hence, first and second moments are denoted by M1u = E[u] and M2u =

Covar[u], respectively. For a complex-valued random field u(ω), the variance and pseudo-

variance (Neeser & Massey, 1993) are

Var[u] := E[(u− E[u]) (u− E[u])], (2.37)

PVar[u] := E [(u− E[u]) (u− E[u])] , (2.38)

with overline denoting complex conjugation.

2.3.1. Abstract Setting

We follow the theory described in (von Petersdorff et al., 2006; Harbrecht et al., 2006)

where full proofs and details are presented. Given a probability space (Ω,Σ,P) and a

separable Hilbert space H with dual H �, we define a random source f(ω) ∈ H � and a

deterministic linear operator A : H → H �. We then consider the operator equation for

h(ω) ∈ H:

Ah(ω) = f(ω) ω ∈ Ω. (2.39)



52

Taking moments (2.36) of the equation above, we can deduce

AM1h = M1f, (2.40)

(A⊗A)M2h = M2f. (2.41)

Since the Helmholtz operator Δ+k2, for k constant, is linear and deterministic, it fulfills the

conditions prescribed to derive equations (2.40) and (2.41) (von Petersdorff et al., 2006).

2.3.2. Application to Periodic Helmholtz Scattering

Based on the first-order approximation (2.21) and due to the fact that E[u̇s] = 0, the

mean scattered field, E[us
� ], can be approximated by the solution of the unperturbed grating:

E[us
� ] = us

0 +O(�2) on D0, (2.42)

which, for � � 1, can be well approximated by the first term us
0 after solving the deter-

ministic boundary integral equation (2.31). The first-order formulation does not conserve

power, since when calculating the expected value of the Poynting vector, terms contain-

ing the mean shape derivative and its complex conjugate, or the incoherent power, do not

vanish. It is possible to obtain a second order approximation (that does strictly conserve

power) by setting the boundary conditions of Eq. (2.19) properly (Harbrecht et al., 2006).

Recalling that E[κ] ≡ 0, one can show that the variance Var[us
� ] of the randomly

perturbed domain solution, for a first order approximation, satisfies:

Var[us
� ](r) = �2E[u̇s(r, ·)u̇s(r, ·)] +O(�3), r ∈ D0. (2.43)

Using (2.22), we retrieve the relation:

Var[u̇s](r) = E
�
(u̇s − E[u̇s]) · (u̇s − E[u̇s])

�
(r)

= E[u̇s(r, ·)⊗ u̇s(q, ·)]
��
r=q

= Cor[u̇s](r,q)
��
r=q

(2.44)
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It is worth mentioning that r and q are both position vectors used to denote correlation

variables. In contrast, r and r� in (2.24) are both position vectors used to denote an ob-

server and a source of the electromagnetic field, respectively. As in (2.41), we can derive

Cor[u̇s](r,q) as the solution of the volume tensor deterministic equation:

(Δ+ k2)⊗ (Δ+ k2)Cor[u̇s] = 0 in D0 ×D0, (2.45)

Cor[u̇s] = Cor[κ]
�
ζ ⊗ ζ

�
, on Γ0 × Γ0, (2.46)

(eıkxΛ ⊗ eıkxΛ)Cor[u̇s](r,q) =

Cor[u̇s](xr + Λ, yr, xq + Λ, yq), (2.47)

Cor[u̇s](r,q) =
�

n,n�∈Z
Un,n�ei(K·r+K�·q), (2.48)

By employing the integral formulation (2.34) and linearity, the tensorized SL potential

representation is

Cor[u̇s](r,q) = (SL⊗ SL)MV (r,q), (2.49)

where MV (r,q) : Γ
(2)
0 → C is a bivariate surface density with Γ

(2)
0 := Γ0 × Γ0. Conse-

quently, following (2.33) we must solve the tensor integral equation defined on the bound-

ary Γ
(2)
0 :

(V ⊗ V)MV = Cor[κ]
�
ζ ⊗ ζ

�
, (2.50)

which can be explicitly written as:

−k2η20

�

Γ
(2)
0

Gp(r, r�)Gp(q,q�)MV (r
�,q�)dΓ(2)(r�,q�) =

Cor[κ][ζ ⊗ ζ],

(2.51)

where
�
Γ(m) :=

�
Γ(1) . . .

�
Γ(m) . The derivation for the calculation of pseudo-variance is

analogous and is omitted here for the sake of brevity. In this case, the associated bivariate

surface density satisfies

(V ⊗ V)MPV = Cor[κ] [ζ ⊗ ζ] . (2.52)
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2.4. Variational Formulation and Discretization

In what follows, we present variational formulations for the mean scattered field and

shape derivative covariance. Our approximation method for both equations is based on

the Method of Moments (MoM) (Jin, 2010), also known as Boundary Element Method

(Sauter & Schwab, 2011), with hierarchical piecewise constant functions (Haar wavelets)

(Steinbach, 2008) as the discretization basis. This basis is chosen to mitigate the so-called

curse of dimensionality, typical in uncertainty quantification methods (von Petersdorff et

al., 2006; Bieri et al., 2009). Indeed, direct tensorization of the approximation basis in-

creases the number of DOFs from N to N2. By using a hierarchical basis, we can naturally

perform a sparse approximation for the tensor quantities (2.50) and (2.52) with DOFs grow-

ing as O(N logN) thereby achieving a more efficient calculation. Hence, we will compare

sparse versus full tensor approximations. Finally, we present the derivation for the variance

MV , as similar steps apply to computation of pseudo-variance.

2.4.1. Variational Formulations

The variational formulation for the first moment or mean field us
0 is derived from (2.31)

as follows:

�Vζ, w�Γ0 = �g0, w�Γ0 or, (2.53)
�

Γ0

w(r)

�

Γ0

Gp(r, r�)ζ(r�)dΓ(r�)dΓ(r) =

−
�

Γ0

w(r)ui(r�)dΓ(r)

(2.54)

where w are test functions and �u, w�Γ0 is a duality pairing. For the density MV in (2.50),

the tensorized variational form is obtained:

�(V ⊗ V)MV ,W �
Γ
(2)
0

= �Cor[κ]
�
ζ ⊗ ζ

�
,W �

Γ
(2)
0
, (2.55)
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which can be written in an expanded form as:

−k2η20

�

Γ
(2)
0

W (r,q)

�

Γ
(2)
0

Gp(r, r�)Gp(q,q�)×

MV (r
�,q�)dΓ(2)(r�,q�)dΓ(2)(r,q) =

�

Γ
(2)
0

W (r,q)Cor[κ][ζ ⊗ ζ]dΓ(2)(r,q),

(2.56)

where W is a real bivariate test function and ζ is the solution of (2.53). It should be

noted that the tensor duality product is just the multiplication of individual duality products.

Therefore, if separable, tensor duality components can be written as linear combinations of

one-dimensional tensor products, i.e.

�v1 ⊗ v2, w1 ⊗ w2�Γ0×Γ0 = �v1, w1�Γ0�v2, w2�Γ0 . (2.57)

Hence, in the following, we will approximate M and W by tensor products of independent

functions defined over Γ0.

2.4.2. Discretization and Sparse Approximation

Haar wavelets are defined by first introducing the function (Steinbach, 2008):

φ(ξ) =





1 if 0 < ξ ≤ 1/2,

−1 if 1/2 < ξ ≤ 1,

0 otherwise.

(2.58)

All basis functions are generated by using a change of variables from [0,Λ] to [0, 1]. Scaling

functions ψ̃l
j are given by:

ψ̃l
j(t) =





1 if j = 1 and l = 0,

2l/2φ(2lt− (j − 1)) otherwise,
(2.59)

with levels l = 0, . . . , L, L ∈ N being the maximum approximation refinement level, and

j = 1, . . . , 2l. To compute the boundary integrals of (2.53), we require the Jacobian of the

parametrization in t ∈ [0,Λ] as J(t) =
�

x�(t)2 + y�(t)2. The definition of the following
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modified discretization basis, allows for the elimination of J(t) from the boundary integrals

ψl
j(t) :=

ψ̃l
j(t)

J(t)
, l = 0, 1, . . . , L, and j = 1, . . . 2l. (2.60)

Then, the approximation of a univariate surface density ζ in (2.53) through a hierarchical

basis with a maximum refinement level L, denoted PL
1 ζ , is written as:

PL
1 ζ(t) :=

L�

l=0

2l�

j=1

aljψ
l
j(t), t ∈ [0,Λ]. (2.61)

As we need to model oscillatory wave behavior, a minimum or a base level L0 ∈ N,

dependent on the wavenumber k, is necessary before observing asymptotic convergence.

For the tensorized equation (2.50), the dense approximation of MV is computed in

terms of tensorized basis functions:

PL
2 MV (t, s) :=

L�

l1=0

L�

l2=0

2l1�

j1=1

2l2�

j2=1

Al1,l2
j1,j2

ψl1
j1
(t)ψl2

j2
(s), (2.62)

where Al1,l2
j1,j2

are unknown coefficients. Hence, tensorization increases the DOFs from N

to N2 and again we enforce the minimum resolution level 0 < L0 ≤ L in each direction.

Therefore, in order to compute the second moment efficiently it is necessary to introduce a

sparse approximation. Following Schwab & von Petersdorff (von Petersdorff et al., 2006)

or Hiptmair et al., (Hiptmair et al., 2013), we define the index set:

I(L0, L) := {0 ≤ l1, l2 ≤ L : 0 ≤ l1 + l2 ≤ L+ L0}

with which the sparse approximation of MV is given by

P̂L
2 MV (t, s) :=

�

(l1,l2)∈I(L0,L)

2l1�

j1=1

2l2�

j2=1

Âl1,l2
j1,j2

ψl1
j1
(t)ψl2

j2
(s), (2.63)

with Âl1,l2
j1,j2

as unknown coefficients. This particular choice reduces the number of DOFs

from N2 to O(N logN).
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As is customary in MoM approximations, for the first moment test functions w are

chosen as ψl
j . Combining (2.53) and the discretization in (2.61), the following linear system

is obtained:

L�

l=0

2l�

j=1

aljV
l,l�

j,j� = bl
�
j� , l� = 0, . . . , L, j� = 1, . . . , 2l

�
. (2.64)

The entries of this matrix and the right-hand side can be computed as (Vl,l�

j,j�) :=
�
Vψl

j,ψ
l�
j�
�
Γ0

,

and (bl
�
j�) = �g0,ψl�

j��Γ0 , respectively. For the case of the covariance, applying a full (2.62)

or sparse (2.63) approximation to (2.55), the matrix can be easily computed by multiply-

ing V
l1,l�1
j1,j�1

V
l2,l�2
j2,j�2

, where l�1, l
�
2 = 0, . . . , L, and j�1, j

�
2 = 1, . . . 2{l

�
1,l

�
2} for the dense case or

(l�1, l
�
2) ∈ I(L0, L) for the sparse one. The right-hand sides for both dense and sparse

approximations depend on the approximation of PL
1 ζ in (2.61) as

B
l�1,l

�
2

j�1,j
�
2
=

��

Γ
(2)
0

Cor[κ](t, s)

×PL
1 ζ(t)P

L
1 ζ(s)ψ

l�1
j�1
(t)ψ

l�2
j�2
(s)dΓ(t)dΓ(s).

(2.65)

Further computational efficiency is achieved by employing the combination technique

(Harbrecht, Peters, & Siebenmorgen, 2013). This allows for the parallel calculation of

2(L − L0) + 1 independent linear systems of order O(N) instead of a large O(N logN)

system. Finally, the goal of this work is to solve (2.54) to obtain the surface current density,

ζ , and (2.56) to obtain the density function, MV , (or MPV in the case of pseudo-variance).

With them, it is possible to reconstruct the mean and variance fields. This can be applied

to compute the mean and variance of the grating efficiency (Section 2.6.4).

2.5. Galerkin Monte-Carlo Approximation

Monte-Carlo simulation has been extensively used for electromagnetism (Sy, van Beur-

den, Michielsen, Vaessen, & Tijhuis, 2010) in combination with different numerical schemes

such as the Finite Element Method (FEM) (Ozgun & Kuzuoglu, 2013) or MoM (Ohnuki,

Chew, & Hinata, 2005) in order to solve SPDEs. Moreover, various techniques have been

implemented in order to speed up MC simulations (Khankhoje & Cwik, 2014; Yang & Du,
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2014). In this work, to compare and validate the first and second statistical moments ob-

tained via sparse and dense tensor deterministic equations, MC simulations were performed

(von Petersdorff et al., 2006). To achieve this, we consider J realizations for domains

D�(ωj), with ωj ∈ Ω, j = 1, . . . , J , uniformly distributed. The expected convergence rate

for the MC method is O(J−1/2) (von Petersdorff et al., 2006); therefore, a large number of

realizations is required to obtain a given precision.

The boundary of each domain is given by Γ�(ωj) := ∂D�(ωj) for j = 1, . . . , J . These

domains are generated by considering the function κ(·,ω) ∈ C∞[0,Λ] and (2.16). Then,

we solve (2.31) variationally J-times, i.e.

�Vζ(ωj), w�Γ�(ωj)
= �g�(ωj), w�Γ�(ωj)

, j = 1, . . . , J. (2.66)

The expanded form of this equation is given by (2.54), integrating over randomly generated

surfaces, Γ(ωj). For each realization, the scattered field is obtained by applying the SL

operator to the solution of (2.66), i.e.

us
�(r,ωj) = SLζ(r,ωj), r ∈ D�(ωj), j = 1, . . . , J. (2.67)

The mean field is directly obtained by computing:

E[us
� ](r) ≈

1

J

J�

j=1

us
�(r,ωj), r ∈

J�

j=1

D�(ωj). (2.68)

Once the expected value in (2.68) is obtained, as well as the scattered field for each random

surface Γ(ωj), the variance of the scattered field can be directly approximated as:

Var[us
� ](r) ≈

1

J

J�

j=1

(us
�(ωj)− E[us

� ])(u
s
�(ωj)− E[us

� ]). (2.69)

Similar steps hold for the pseudo-variance.
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2.6. Validation and Numerical Results

To validate our model we performed several simulations and examples. As a first step,

we calculated the surface current density, given by ζ in the MoM approximation, with a

simulation based on FEM using COMSOL Multiphysics 5.1 (Comsol, 2015) and compared

it to our results. Next, the MC method described above was implemented to validate the

mean and variance fields as well as the grating efficiency.

For the aforementioned purposes as well as for providing convergence tests, a nominal

sinusoidal grating geometry is considered:

r(t) = (x(t), y(t)) =

�
t, 2d cos

�
2πt

Λ

��
t ∈ [0,Λ], (2.70)

which defines Γ0.

Finally, it should be mentioned that all linear systems for both the first and second

moment were directly solved by using a LAPACK subroutine (Anderson et al., 1992).

2.6.1. Boundary Elements Validation

MoM solutions are checked by analyzing two different gratings. Firstly, a case with

zero angle of incidence for which the wavelength is greater than the period was used. Sec-

ondly, a case with an angle of incidence other than zero for which the wavelength is lower

than the period was evaluated. The simulations performed with COMSOL consider ∼ 106

DOFs, while the MoM simulations consider a level of refinement of L = 9 (512 DOFs).

Both cases show an almost perfect match (Fig. 2.2).

2.6.2. Stochastic Simulation Validation

We now compare the deterministic approach with the MC method. The construction of

the perturbed domain is given in terms of Fourier series. Set a number of modes Nn = 5.

Then, for Ci,n(ωj), i = 1, 2 and j = 1, . . . , J , uniformly distributed in [−
√
3,
√
3], build
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FIGURE 2.2. Comparison of the normalized surface current densities for MoM
validation. The simulation parameters for the first case (a) are θi = 0, Λ/λ = 0.2,
and 2d/λ = 0.1. For the second case (b) θi = π/4, Λ/λ = 2.14, and 2d/λ = 2.86.
In the insets, the simulated grating geometries (2.70) are shown.

κ(t,ωj) ∈ C∞[0,Λ] as

κ(t,ωj) =
Nn�

n=1

C1,n(ωj) sin

�
2πnt

Λ

�
+ C2,n(ωj) cos

�
2πnt

Λ

�
. (2.71)

The formulation for the rough sinusoidal profile considered here differs from that in (Shin & Kong, 1984)

and (Yueh et al., 1988), in which the surface perturbations are treated as a random Gaussian

process. Instead, we consider uniformly distributed Fourier coefficients so as to guarantee

the small perturbation assumption. This perturbation field allows for the calculation of the

correlation function and their integrals easily, since

Cor[κ](t, s) =
Nn�

n=1

sin

�
2πnt

Λ

�
sin

�
2πns

Λ

�

+cos

�
2πnt

Λ

�
cos

�
2πns

Λ

�
. (2.72)

We considered L = 6 (64 DOFs) and a perturbation of � = 0.001, which corresponds to

1% of the amplitude. For this example, J = 5000 realizations were performed to obtain
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convergence of the mean and variance fields. Comparing the MC simulation with the deter-

ministic approach, the calculated variance error is approximately 3.2% for distances greater

than λ. Moreover, when y < 2d the error is approximately 4% with a peak of 6.5 % (Fig.

2.3).

3.15%

6.46%

0 2d λ

0.521
0.538

y-coordinate

Variance MC

Variance Det.

Error

Variance

Error Var[us]

FIGURE 2.3. Normalized variance of the scattered field (us) for both MC method
and the deterministic sparse approach, and the error between the fields as a function
of the y coordinate for x = Λ/2 = 0.1. The simulation parameters are: θi = 0,
2d/λ = 0.1, and Λ/λ = 0.2 (Fig. 2.2). The maximum discretization level is L = 6
(3072 DOFs for the sparse approximation) for both methods.

2.6.3. Convergence

We now study the convergence rates of the deterministic method for both statistical

moments by calculating the errors for different values of the wavenumber, k, and angle of

incidence, θi. Moreover, all errors were quantified by using the relative L2-norm of the

densities and considering a dense maximum refinement level of L = 11 (4.2× 106 DOFs)

as the “overkill” solution (denoted as M11 in Table 2.1).

We obtained a convergence rate of 1.0 for mean field as expected for the cases de-

scribed (see inset of Fig. 2.4). For the second moment, the dense approximation presents
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a convergence rate of 0.50 for two different wavenumbers, k = 6 and 42, with θi = 0 and

π/3, respectively. Notice that in the case of sparse approximation a base level L0 = 5

(1024 DOFs) is necessary before obtaining convergence (see Fig. 2.4). For the sparse ap-

proximation, we obtained convergence rates that behave as O(N−1 logN), implying faster

convergence with increasing number of DOFs (see Table 2.1).

One of the advantages of our approach is the reduction in computational time. For one

of our numerical examples (Fig. 2.3), the total time required to obtain both the mean and

variance field is roughly 607 s for a 10 AMD Opteron cluster (2.8 GHz). Meanwhile, with

the MC method the required time took approximately ∼ 68 hours.

TABLE 2.1. Sparse Approximation Convergence Rates, k = 42

L DOFs �M11 −ML�L2 rate

5 1024 0.5402 –

6 3072 0.2880 0.57

7 8192 0.1470 0.69

8 20480 0.0773 0.70

9 49152 0.0409 0.73

10 114688 0.0217 0.75

2.6.4. Variance and Mean of the Grating Efficiency

Gratings exhibit a diffraction efficiency measured as a function of wavelength, period,

diffraction order, and polarization. The efficiency can be obtained by defining the scattered

field for a region in y > max {y(t)}, denoted by us
+, in terms of propagation modes in the

far-field, which is known as the Rayleigh expansion (Petit, 1980):

us
+ =

∞�

n=−∞
cne

ıKn·r, (2.73)

where Kn := (kx,n, ky,n) with kx,n and ky,n defined in (2.28) and (2.29), respectively, and

cn =
ı

2Λky,n

�

Γ

e−ıKn·r�ζ(r�)dΓ(r�). (2.74)
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Then, the efficiency of the n-th mode is defined as:

en =
Re(ky,n)

ky
|cn|2. (2.75)

In the far field, evanescent modes (Re(ky,n) = 0) do not contribute to the scattered field and

are, consequently, disregarded. In view of this formulation, where the Rayleigh coefficients

are obtained directly from ζ , the sum of the propagating modes is equal to one, conserving

power. By considering the expected value, the variance, pseudo-variance, their related den-

sities, and the shape Taylor expansion we can find closed form expressions to calculate the

expected value of the grating efficiency as well as its variance. Let us consider en(ω) and

cn(ω), the grating efficiency and Rayleigh coefficient for the n-th mode on the perturbed

domain Γ�(ω) defined as in (2.16). Then, the expected value of the grating efficiency can
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be approximated at order O(�2) as the nominal efficiency:

E[en] =
Re(ky,n)

ky
E[cncn] ≈

Re(ky,n)
ky

|cn|2. (2.76)

For the variance of the efficiency, we have

Var[en] =
�

Re(ky,n)
ky

�2

Var[cncn]. (2.77)

Therefore, we must consider:

Var[cncn] = E[(cncn)2]− (E[cncn])2, (2.78)

which at O(�3) can be obtained as follows:

Var[cncn] ≈
1

(2Λky,n)4

�

Γ
(4)
0

e−ıKn·QZ(R)dΓ(4)(R), (2.79)

where Γ
(4)
0 := Γ

(2)
0 × Γ

(2)
0 . In this case Q = r− r� + q− q�, R = (r, r�,q,q�), and

Z(R) = �2[MV (r, r
�)⊗ ζ(q)⊗ ζ(q�)

+ MPV (r,q)⊗ ζ(r�)⊗ ζ(q�)

+ MV (r,q
�)⊗ ζ(r�)⊗ ζ(q)

+ MV (r�,q)⊗ ζ(r)⊗ ζ(q�)

+ MPV (r�,q�)⊗ ζ(r)⊗ ζ(q)

+ MV (q,q
�)⊗ ζ(r)⊗ ζ(r�)],

(2.80)

where Z(R) : Γ
(4)
0 → C.

For a holographic grating with medium modulation 2 µ = 0.2, and a Littrow mounting—

where the angle of incidence is equal to the diffracted angle for a chosen mode—we calcu-

lated the efficiency for the mode n = 1. The predicted efficiency is compared with the one

reported experimentally, for a Richardson grating (model 53-220H) (Palmer & Loewen,

2014) as well as validated with MC simulation for one wavelength (λ/Λ = 0.52) and a

20.15 < µ = groove height/groove spacing < 0.25
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perturbation equal to 1% of the amplitude. Our approach matches very well with the re-

ported data (Fig. 2.5) as well as with the MC simulation. The predicted expected value

and standard deviation (σ =
√

Var) are E[e1] = 0.43229 and σ = 0.01107, respectively.

Meanwhile, the calculated expected value and standard deviation for the MC simulation

with a set of 9000 samples are EMC [e1] = 0.43209 and σMC = 0.01118, respectively.

To assess the limitations of our proposed approach, we performed several simulations

and compare them with MC (running 2500 samples) for the zero-th mode efficiency (not

shown). The variance and mean was obtained using L = 5 for both approximations. We

found that for medium modulation gratings (µ = 0.2) the error increases as the angle of

incidence increases; nevertheless, in all cases the error is less than 1%. On the other hand,

the results show that when increasing from medium to high modulation (µ = 0.6) the error

also increases. Also, for very deep gratings impinged by small wavelengths, the method

fails because the perturbation parameter (fixed as 1% of the amplitude) and the small per-

turbation assumption, k� ∼ �/λ � 1, is no longer satisfied.

2.7. Conclusions

A fast deterministic method based on the MoM for simulating TE polarized wave

diffraction by randomly perturbed grating surfaces was studied and implemented. Instru-

mental to this approach is the approximation of the perturbed domain via a shape Taylor

expansion. The convergence rate obtained for the mean field by using the MoM and piece-

wise constant Haar wavelets as basis functions is 1.0. For the second statistical moment, a

sparse approximation leads to a system of O(N logN) DOFs, while a dense solution is of

order N2. Furthermore, for the dense approximation the rate of convergence is equal to 0.5,

while for sparse approximation the convergence rate increases as the number of DOFs in-

creases. Calculations were validated by comparison with FEM and MC simulations; good

agreement for the obtained surface densities, mean, and variance of the scattered fields was

obtained.
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The calculation of the grating efficiency requires the calculation of the surface current

density for each wavelength. If the MC method is used to quantify the error produced by

shape uncertainty, a large number of sample simulations is required for each wavelength.

This generates a huge number of simulations, which leads a tremendous computational

cost. In contrast, by using the approach described here, only the solution of the Helmholtz

equation and its tensorization for each wavelength is required, reducing the computational

cost dramatically. The approach presented in this work can be extended to TM polarization

as well as dielectric gratings by considering the associated integral operators and boundary

conditions.
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3. STUDY OF W/HFO2 GRATING SELECTIVE THERMAL EMITTERS FOR

THERMOPHOTOVOLTAIC APPLICATIONS 1

3.1. Introduction

Thermophotovoltaic (TPV) cells are a promising way to efficiently convert thermal en-

ergy into electricity, providing an environmentally-friendly energy source from waste heat

or other thermal sources. As just a few examples, TPV cells have been used in solar ap-

plications using optical concentration and selective absorbers (Bermel et al., 2016, 2010),

portable microgenerators through the incorporation of photonic crystals (W. R. Chan et

al., 2015), and hybrid waste-heat converters, combining a TPV cell with solid oxide fuel

cells (Liao, Cai, Zhao, & Chen, 2016). The design of TPV cells for a given application is

a multi-faceted optimization problem; prior studies include study of the details associated

with near-field thermal radiation (Ilic, Jablan, Joannopoulos, Celanovic, & Soljacić, 2012)

and global optimization of the system (Nam et al., 2014), as well as experimental devel-

opment and characterization of TPV devices (Lenert et al., 2014b; Aljarrah, Wang, Evans,

Clemons, & Young, 2011; Xu et al., 2014). Detailed reviews of the design and optimization

of the key components of TPVs can be found in (Zhou et al., 2016; Pfiester & Vandervelde,

2016) and references therein. TPV cell design relies on two main components: an emitter,

which emits thermal radiation at high temperatures, and a photovoltaic (PV) cell that con-

verts this radiation into electricity. Selective emitters are designed to reshape the thermal

radiation spectrum, shifting the maximum emittance to a wavelength that matches the ab-

sorption characteristics of the PV cell. Since PV cell technology based on semiconductor

junctions is mature and well understood, the primary opportunity for further improvement

of TPV cell conversion efficiency is the development and optimization of efficient selective

emitters.

For conventional TPV cells based on blackbody emission, the emitters must operate at

high temperatures. For example, from Wien’s displacement law one can see that a black-

body emitter would need to be at 1680 K in order for the peak emittance to match the band

gap of a GaSb PV cell (Eg = 0.72 eV). For this reason, high melting point materials are
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required. Consequently, structures built of refractory metals, such as tungsten (Yeng et al.,

2012), tantalum (Rinnerbauer et al., 2013), and molybdenum (Zhou et al., 2015) have been

proposed and analyzed previously. On the other hand, the use of periodic structures such as

metamaterials (Deng et al., 2014; H. Wang et al., 2016) and photonic crystals (Rinnerbauer

& Lenert, 2014; Celanovic et al., 2004) has been shown to modify the emittance spec-

trum of selective emitters. Due to their simplicity and ease of fabrication, gratings are a

promising practical option. Chen and Zhang (Y.-B. Chen & Zhang, 2007) studied complex

tungsten gratings, and showed that the excitation of surface plasmon polaritons (SPP) can

greatly improve the thermal emittance. Nguyen-Huu et al. (Nguyen-Huu, Pištora, & Cada,

2016) studied tungsten pyramidal nanogratings that combine structures with low and high

filling ratios. This combination was shown to improve the emittance as well as to reduce the

sensitivity to the angle of incidence for transverse magnetic (TM) polarization. Song et al.

(Song, Wu, Cheng, & Zhao, 2015) proposed trilayer metal-insulator-metal (MIM) gratings

made of W-SiO2-W, and Shuai et al. (Shuai, Tan, & Liang, 2014) studied more general

multilayer metal-dielectric gratings. In both (Song et al., 2015) and (Shuai et al., 2014),

perfect emittance at the design wavelength was achieved for TM polarization, through the

excitation of SPPs and magnetic polaritons (MP). To achieve improved polarization insen-

sitivity, Nguyen-Huu et al. (Nguyen-Huu et al., 2012) evaluated a deep grating that takes

advantage of Wood’s anomalies (WA) (Erwin G. Loewen & Popov, 1997), cavity reso-

nances (CR), and SPPs. Recently, multilayer W-HfO2 metamaterial structures have been

shown to enable thermal emission control through topological transitions (Dyachenko et

al., 2016). In addition, Yeng et al. (Yeng et al., 2014) filled a 2D tantalum photonic crys-

tal with SiO2 or HfO2, and obtained omnidirectional and polarization insensitive thermal

emitters by exploiting CRs. The HfO2 dielectric in these structures appears promising for

TPV applications due to its high melting point (3031 K).

As noted above, both SPPs and MPs have been used to manage and improve the ther-

mal emittance. However, these improvements are only obtained for TM–polarized incident

radiation. For general TPV applications, the incident radiation is randomly polarized, and
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thus both the transverse electric (TE) and TM response are important. However, the strate-

gies used for TM emittance control are not effective for TE; instead, for TE polarization,

CRs are required to enhance the thermal emittance. Unfortunately, for gratings able to

excite both SPPs and CRs (Nguyen-Huu et al., 2012), the wavelength associated with the

emittance peak is typically close to the visible range (0.4–0.8 µm), which translates to very

high operating temperatures. Therefore, in order to improve thermal emitters and make

them suitable for infrared TPV applications, it is necessary to develop strategies to enable

efficient TPV operation at lower emitter temperatures.

In this work, we explore simple structures combining the use of a thin HfO2 spacer and

deep W gratings to achieve high emittance at technologically relevant temperatures. We

show that a grating with an embedded HfO2 layer supports both SPPs and MPs, while the

deep grating grooves allow the excitation of CRs. By using rigorous coupled wave analysis

(RCWA), two kinds of gratings have been studied. First, a shallow grating designed to

excite MPs is evaluated. A peak emittance of 99.9% for λ = 1.73 µm is obtained for the

case of TM polarization, but the performance with TE radiation is appreciable lower. To

improve on this performance, a deeper grating that supports CRs is evaluated for TE waves.

It is found that by the simultaneous excitation of SPPs, MPs, and CRs it is possible to reach

normal thermal emittances of 97.7% and 99.7% for TE and TM waves, respectively, at

wavelengths close to λ = 1.65 µm. These gratings are promising for use with low bandgap

PV cells, such as GaSb (0.72 eV) and In0.53Ga0.47As (0.75 eV).

3.2. Emitter Design

Hafnia is a high permittivity oxide that has favorable properties for use in selective

emitters. HfO2 has a very high refractive index (n ∼ 4) for short wavelengths, and remains

almost constant, close to n = 2, for wavelengths λ > 0.4 µm. Moreover, the absorption

coefficient—which is related to the imaginary part of the index of refraction—is negli-

gible in the optical and near-IR where TPV systems can be expected to operate (Padma

Kumar et al., 2015). In addition, hafnia has a large energy bandgap (Eg ∼ 6 eV) and, criti-

cally for thermal emitters, possesses a very high melting point, 3031 K, which translates to
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good thermal stability (Kar, 2013). Moreover, its thermal expansion coefficient is compat-

ible with W (Knibbs, 1969)—a key factor when operating at high temperatures. Recently,

hafnia layers have been deposited onto photonic crystals to prevent degradation when op-

erated at high temperatures (?, ?; Lee et al., 2013; Stelmakh, Chan, Joannopoulos, Soljacic,

& Celanovic, 2016), providing experimental validation of its promise for high temperature

applications.

The gratings evaluated here consist of a tungsten substrate, a hafnia spacer layer, and

a tungsten grating similar to the structure proposed by Wang and Zhang (L. P. Wang &

Zhang, 2012). In addition, to help clarify the physics of operation, a W grating without

a HfO2 spacer layer has also been simulated for comparison. To simulate the selective

emitter explored here, Helmholtz’s equation is solved by using the RCWA method (Zhang,

2007; Moharam & Gaylord, 1981) in order to find the reflectance (ρ) and transmittance

(τ ). The absorptance (α) is calculated indirectly by energy conservation using α = 1 −
ρ − τ . Finally, the emittance is obtained through Kirchhoff’s law, which states that in

thermal equilibrium the absorptance is equal to the emittance (α = ε) (Zhang, 2007).

To obtain more realistic estimations of thermal emittance for selective emitters operating

at high temperatures, we considered a temperature dependent Drude model for tungsten

(Minissale, Pardanaud, Bisson, & Gallais, 2017; Alabastri et al., 2013). The properties

of HfO2 are taken from (Padma Kumar et al., 2015). In addition, both the electric and

magnetic fields inside the structures are obtained by using the finite element method (?, ?).

Two gratings with the same geometry except for their height have been evaluated. First, a

shallow grating with a period Λ = 1.1 µm, thickness h = 0.1 µm, and a filling factor f =

w/Λ = 0.2 (with a distance between ridges a = 0.88 µm) above a hafnia layer of thickness

d = 0.15 µm was considered (inset Fig. 3.1(a)). As shown in Fig. 3.1(a), simulations of this

structure result in nearly perfect normal emittance, 99.9%, for TM incident radiation. The

incorporation of a hafnia spacer significantly improves the emittance, generating a peak at

λ = 1.73 µm, due to MP excitation as explained by the concentration of the magnetic field

(Fig. 3.1(b)). However, the emittance in response to TE radiation is modest, with a peak

emittance that is both blueshifted to λ = 1.255 µm, as well as being appreciable lower,
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close to 88.13%. However, as can be seen in the comparison in Fig. 1(a), the TE and TM

responses of the W/HfO2/W structure are much better than that of a plane W grating.

To develop a polarization–insensitive selective emitter, a deep grating with Λ = 1.1

µm, h = 1.0 µm, f = 0.2, a = 0.88 µm, and d = 0.15 µm, is considered (inset Fig. 3.2(a)).

This deep grating produces an emittance peak of 97.7% for TE radiation at λ = 1.614 µm

and 99.7% for TM waves at λ = 1.674 µm, thereby demonstrating that the polarization

sensitivity can be greatly reduced by using the deep grating design in combination with the

HfO2 spacer.
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FIGURE 3.1. Simulated normal emittance for the studied shallow grating. (a)

Emittance for both TE and TM polarizations for W gratings with and without haf-

nia spacer layers. The inset shows the geometry of the structure. (b) Magnetic field

strength for λ = 1.73 µm.

To understand the physical origins of these results, we note that it is well-known that

metallic gratings can excite SPPs for TM polarization. This excitation is given by the

collective oscillation of electrons and photons, due to the perpendicular component of the

electric field. On the other hand, for TE incident radiation, the tangential component of the
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FIGURE 3.2. Simulated normal emittance for the studied deep grating. (a) Emit-
tance for both TE and TM polarizations for W gratings with and without hafnia
spacer layers. The inset shows the geometry of the structure. (b) Electric field
magnitude for λ = 1.614 µm and the magnetic field magnitude for λ = 1.674 µm.

electric field must vanish on the surface (Maier, 2008), and therefore no surface polariza-

tion can be produced. For this reason, design of a polarization-insensitive selective emitter

requires the use of different mechanisms to control the thermal radiation in each polariza-

tion. For TE radiation, CRs in deep gratings are an attractive option. These resonances can

be predicted by λmn = 2/
�

(m/h)2 + (n/a)2, where by choosing m = 0 and n = 1 we

obtain a maximum wavelength λ01 = 2a (Borisov, Garcı́a De Abajo, & Shabanov, 2005).

The SPP excitation can be predicted by using the dispersion relation for a metal-dielectric

interface, together with momentum conservation kx = kspp(ω) + jK, where kx is the hori-

zontal component of the wavevector, kx = (2π/λ) sin θi, kspp = (2π/λ)
�

εmεd/(εm + εd)

is the wavenumber of the surface wave, K = 2π/Λ is the grating momentum, and j is

an integer (Nguyen-Huu et al., 2012). By including a dielectric spacer below the grating,

MPs are generated as a result of the coupling between internal and external SPPs (Xuan &

Zhang, 2014).
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As noted above, the incorporation of a dielectric layer enables the excitation of MPs.

Moreover, by using an LC circuit model (L. P. Wang & Zhang, 2012) to predict the exci-

tation wavelength of the MPs (λMP ), it can be shown that when the dielectric constant of

this layer is high, as is the case of HfO2, MPs can be excited at longer wavelengths which

allows for lower working temperatures. Figure 3.3 illustrates these trends for deep and

shallow gratings as a function of the spacer permittivity.

Regarding the polarization-insensitive deep gratings, emittance enhancement results

from the simultaneous excitation of CRs, SPPs, and MPs. By combining these three effects,

emittance is improved for wavelengths larger than 1.6 µm for both TE and TM polarizations

(Fig. 3.2(a)). The peak for TE polarization at λ = 1.614 µm (highlighted with the blue dot

in Fig. 3.2(a)) is due to CRs as predicted by the slab waveguide cut-off for the TE10 mode,

λ10 (Borisov et al., 2005); as shown in Fig. 3.2 (b), the waveguide mode concentration of

the electric field at resonance produces an increase in the absorptance. On the other hand,

to understand the phenomena that enhance the emittance in the near IR frequency range,
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we find that the emittance peak at λ = 1.14 µm for TM polarization is generated by the

excitation of SPPs, according to momentum conservation for radiation in free space above

the grating. The emittance peak at λ = 1.674 µm is due to the excitation of MPs as can be

inferred from the long-wavelength TM peak (highlighted by the orange dot in Fig. 3.2(a)).

As shown in Fig. 3.2(b), the magnetic field at that wavelength is concentrated in the hafnia

layer.

The angular dependence of the directional emittance is presented for both polarizations

in Fig. 3.4. For TE incident radiation, the emittance is close to one up to an angle of θ =

30◦, but decreases abruptly at larger angles. For the TM case, the emittance peak redshifts

from 1.674 µm to 2.47 µm and it is reduced from 99.7% to 58.9% as the angle increases

to θ = 60◦. The dependence on the angle of incidence is detrimental to the efficiency of

a TPV cell, due to the fact that thermal emission is an hemispherical property. Ideally, the

structure should present high emittance over as large a range of angles as possible, as well

as to maximize the peaks for both TE and TM polarizations.
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To evaluate the efficiency performance of the selective emitters, we consider the normal

in-band emittance (�in) (Stelmakh et al., 2016) given by:

�in,i(T ) =

� λg

0

εi(λ)Eb(T,λ)dλ

� λg

0

Eb(T,λ)dλ

, i = TE,TM, (3.1)

where Eb = 2hc2/[λ5(ehc/λkbT − 1)] is the blackbody thermal radiation, c is the speed

of light, h is the Planck’s constant, and kb is the Boltzmann constant. ε(λ) is the normal

emittance for either TE or TM polarizations (or denoted as a subscript i =TE, TM). Fig-

ure 3.5 shows the normal radiated power for both the shallow grating (Fig. 3.5(a)) and the

deep grating (Fig. 3.5(b)). The in-band emittance for the shallow grating in the case of TM

polarization, �in,TM , is 77.04%, while as noted above the emittance in response to TE ra-

diation is lower; the normal in-band emittance, �in,TE , is 67.26%. In contrast, for the deep

grating case we obtained �in,TM = 85.17% and �in,TE = 82.25%, thereby demonstrating

the performance potential of this structure. These in-band emittances were calculated by

using λg = 1.72 µm and λg = 1.65 µm for the shallow and deep gratings, respectively,

in order to match the thermal radiation peak with the emittance peak obtained for TM ra-

diation. Regarding the operating temperature, the peaks for shallow and deep gratings are

approximately 1680 K and 1750 K, respectively. Given the peaks for both shallow and

deep gratings, they match well with GaSb (0.72 eV) and In0.53Ga0.47As (0.75 eV) PV cells,

respectively.

The in-band polarization–averaged hemispherical emittance was also calculated. For

the shallow grating a modest in–band hemispherical emittance of �in,h = 57.63% was

obtained; the value is low because the performance of the TE radiation is poor. In the case

of the deep grating an in–band hemispherical emittance of �in,h = 67.66% was achieved.

This value is lower than the normal in–band emittance due to the fact that the CRs start

disappearing for θ > 45◦ and, in the case of TM radiation, the peak is red shifted for

wavelengths larger than the bandgap of the PV cell.
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FIGURE 3.5. Thermal radiation for (a) shallow and (b) deep gratings at T = 1680
K and T = 1750 K, respectively. The blackbody thermal radiation is shown for
comparison. An in-band emittance of 88.25% and 85.17% is achieved for the deep
gratings for TE and TM polarization, respectively.

3.3. Conclusion

Gratings based on W with and without HfO2 spacer layers have been explored through

numerical simulations. We see that use of an HfO2 layer can improve the performance of

tungsten grating-based selective thermal emitters. The use of shallow gratings results in a

maximum emittance of 99.9% at λ = 1.73 µm, but with appreciable lower TE performance.

To improve the polarization insensitivity, a deep grating was investigated. The deep grating

exhibits emittance peaks of 97.7% and 99.7% for TE and TM radiation, respectively. The

mechanisms responsible for the improvement in the emittance have been explored; it was

found that for TM radiation SPPs and MPs play a crucial role, while for the case of TE po-

larization, CRs are responsible for the high emittance. The peak emittance wavelength for

both polarizations, close to λ = 1.65 µm, requires a working temperature of approximately

1750 K. Both tungsten and hafnia can operate up to this temperature due to their high melt-

ing points and material compatibility. The performance of the emitters was evaluated by the

normal in-band emittance, obtaining �in,TM = 85.17% and �in,TE = 82.25% for the deep
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grating case. In addition, we estimated the hemispherical in–band emittance. The shal-

low and deep gratings exhibit hemispherical in–band emittances of 57.63% and 67.66%,

respectively. The results show that deep gratings with a high dielectric constant spacer

are promising alternatives for TPV applications, whose performance can be improved by

further optimization.
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4. HIGH-TEMPERATURE TUNGSTEN-HAFNIA OPTIMIZED SELECTIVE

THERMAL EMITTERS FOR THERMOPHOTOVOLTAIC APPLICATIONS1

4.1. Introduction

Thermophotovoltaic (TPV) energy conversion has emerged as a promising approach

for harvesting energy from a range of heat sources. For example, recycling waste energy

from industrial processes (Utlu & Önal, 2018), conversion of energy from solid oxide fuel

cells (Liao et al., 2016), and capture of long-wavelength solar energy are all possible ap-

plications of TPV cells (H. Wang et al., 2016; Chirumamilla et al., 2017). The design of

a conventional TPV cell relies on two main components: an emitter and a photovoltaic

(PV) cell. Careful design of these components is critical to maximize the TPV perfor-

mance. Among the components of a TPV cell, the emitter is the most amenable to opti-

mization, since reshaping the thermal radiation emission spectrum, significantly enhance

performance. Since the radiation from the emitter is captured by the PV cell, it is important

to match the emitters radiation spectrum to the optical response of the PV cell. This leads

to high emitters temperatures for practical PV cells; for an emitter to match a GaSb PV cell

(Eg = 0.72 eV), an operating temperature of approximately 1700 K is needed.

Since selective emitters for TPVs must operate at high temperatures, high melting point

materials are required. Additionally, to optimize the match between the power spectrum

radiated by the emitter and the optical response of the PV cell, several physical phenomena

such as surface plasmon polaritons (SPP), magnetic polaritons (MP), and cavity resonances

(CR) have been investigated. For example, high temperature tantalum (Ta) and tungsten

(W) 2D photonic crystals that exploit CRs have been studied to enhance hemispherical

thermal emittance (Nam et al., 2014; Yeng et al., 2014; Chou et al., 2013). In addition,

Stelmakh et al. studied a 2D photonic crystal with a HfO2 coating, where it was shown that

using a Ta-W alloy enhanced thermo-mechanical properties at high temperatures (Stelmakh

et al., 2013). As an alternative to photonic crystals that require high-resolution pattern-

ing, planar multilayer stacks made of refractory metals and dielectrics have also been
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studied numerically and experimentally. For example, asymmetric multilayer stacks of

ultra-thin metal-dielectric layers exhibit emittance peaks for both transverse electric (TE)

and transverse magnetic (TM) polarizations (Fu, Zhong, Tu, Chen, & Lin, 2016). In this

context, metal-insulator-metal (MIM) resonator structures made of W-Al2O3-W with an

Al2O3 protective coating (PC) has been shown to exhibit omnidirectional emittance, po-

larization-insensitivity, and thermal stability up to temperatures of 1073 K (Chirumamilla

et al., 2016). Furthermore, Kim et al. investigated W-SiO2 multilayers, proving that this

structure is thermally stable up to 1300 K (Kim, Jung, & Shin, 2017). One-dimensional

periodic structures (gratings) made of tungsten (Y.-B. Chen & Zhang, 2007; Nguyen-Huu

et al., 2016) or combinations of metallic gratings with dielectric layers (Song et al., 2015;

L. P. Wang & Zhang, 2012; Song, Si, Cheng, & Luo, 2016; Shuai et al., 2014; Silva-

Oelker, Jerez-Hanckes, & Fay, 2018) have also been intensively studied since they are able

to exploit SPPs and MPs, obtaining peaks of near perfect emittance, albeit under resonant

conditions. Moreover, high emittance has also been achieved using topological transitions

and epsilon-near-zero metamaterials (Dyachenko et al., 2016; Molesky, Dewalt, & Jacob,

2013).

The optimal design for a selective emitter should exhibit high emittance for wave-

lengths shorter than the one associated with the bandgap of the PV cell (λ < λg = hc/Eg),

while at the same time having a low emittance for wavelengths longer than the bandgap

(λ > λg). Previously, Nguyen-Huu et al. (Nguyen-Huu et al., 2012) used a genetic al-

gorithm (GA), minimizing a cost function given by the squared error between the struc-

ture emittance and an ideal emittance profile to obtain an optimized structure. Similarly,

Ghanekar et al. (Ghanekar et al., 2017) used a GA and a cost function based on the maxi-

mization of the TPV cell output power while limiting waste heat to optimize SiO2/W grat-

ings with periodicity in one and two dimensions. Yeng et al. (Yeng et al., 2014) optimized

two-dimensional tantalum structures filled with hafnia by using a multi-level single-linkage

method, ultimately obtaining a high hemispherical thermal emittance of nearly 90% for the
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wavelength range of operation.

While remarkable progress has been achieved in the design of thermal emitters, the

most promising structures reported to date rely on complex fabrication techniques, making

them difficult to implement in practice. Common challenges include requiring small fea-

tures that require advanced lithography, or with resulting structures sensitive to either the

angle of incidence or polarization.

In this work, two different types of MIM structures with the explicit goal of obtaining

high performance while also minimizing fabrication challenges have been explored. The

devices consist of a W-HfO2-W stack and a top hafnia layer that induces resonances, while

also acting as a protective coating. These structures are designed to operate at high tem-

peratures and provide high hemispherical thermal emittance. Two structures have been put

forward (see Figure 4.1). The first structure is a simple multilayer stack, while the second

is a linear one-dimensional grating combined with a multilayer structure. The optimization

of the emitters is carried out by using a GA (MATLAB Optimization Toolbox, 2017) cou-

pled to rigorous coupled wave analysis (RCWA) for the emittance calculation (Moharam

& Gaylord, 1981). Based on a two-band model (Chubb, 2007)—in which a gray-body

emitter is combined with a filter—the GA adjusts the geometrical parameters of the emit-

ter to make it closely track the emittance of an ideal selective emitter. Then, to evaluate

the overall effectiveness of the emitter design for TPV applications, the output power and

TPV conversion efficiency have been calculated. In these calculations, the measured char-

acteristics of a GaSb PV cell are combined with a GaSb optimized filter (O’Sullivan et

al., 2005) (i.e., a filter that reflects photons with energies below the PV cell bandgap) and

an energy balance between the emitter and the PV cell. In this way, both the in-band and

out-of-band response of the emitter, and realistic properties of the intended PV cell are in-

cluded in the performance projections. In addition, a sensitivity analysis was also carried

out to determine the robustness of the design to manufacturing variation. Wide tolerances

on layer thickness can be acceptable in the case of the grating emitter; while changing the
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nanometer-scale W layer thickness by 150 % results in almost no change (less than 1 %) in

either output power or efficiency.

4.2. Design and optimization

Figure 4.1 depicts the two structures considered. For the planar multilayer stack

(Fig. 4.1(a)), the thermal emittance is controlled primarily by the thicknesses of the hafnia

layers (h1 and h3 in Fig. 4.1(a)); the thin W interlayer only weakly influences the perfor-

mance. On the other hand, for the grating-based structure in Fig. 4.1(b), the emittance is

governed by not only the thicknesses of the hafnia layers, but also the grating period (Λ),

the grating filling ratio (f = w/Λ), and the tungsten thickness (h2).

4.2.1. Thermal emitter design and optimization

A theoretical ideal thermal emitter would emit only photons with energy equal to

the bandgap of the PV cell in order to maximize conversion efficiency. However, such

a monochromatic emitter is impossible to realize in practice, and physically-realizable

narrow-band emitters typically operate with high performance only in specific directions

(i.e., they exhibit strong polarization or angle of incidence dependence). In this work, the

evaluation of the TPV performance is based on the two-band model (Chubb, 2007), in

which a gray-body emitter with a reflective highpass filter between the emitter and the PV

cell is used to maximize the performance of the TPV cell. For this TPV cell architecture,

a thermal emitter that follows the trend of the ideal one exhibits high hemispherical emit-

tance for wavelengths shorter than the bandgap of the PV cell (λ < λg) and minimizes

emittance otherwise (λ > λg). Such a cell maximizes performance because the emitter

promotes the generation of photons that are able to generate current in the PV cell, while

the filter reflects back all the photons below Eg that are inevitably generated by the emitter

and that would otherwise be wasted.

In addition, due to the high operating temperatures required for the emitters, materials

used in their design require high melting points (Tm). For this reason, tungsten (Tm = 3695
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K) as the metal and hafnia (Tm = 3031 K) as the dielectric have been considered. Another

advantage of both tungsten and hafnia is their thermal expansion compatibility (Knibbs,

1969)—an important consideration when operating at high temperatures.

HfO2

W

�

w = f�

a

W

HfO2HfO2

W

h1
h2
h3

W

HfO2

(a) (b)

x

y
θ

FIGURE 4.1. Structures under study. h1, h2, and h3 are the thicknesses of the haf-
nia (orange) spacer, the tungsten layer (blue) and the hafnia top layer, respectively.
In addition, an optically thick tungsten substrate is assumed. (a) planar multilayer
stack structure, (b) grating with a fill factor f , period Λ, and width w = fΛ.

To estimate the emitter performance, directional emittance is computed by using RCWA.

This method calculates the transmittance (τ ) and reflectance (ρ) by using a decomposition

of the fields into Fourier modes. Once the transmittance and the reflectance are obtained,

the absorptance (α) is calculated indirectly by an energy balance: α = 1 − τ − ρ. Then,

employing Kirchhoff’s law of thermal radiation, the emittance (ε) of the structure is ob-

tained. To model the dielectric constant for W, a temperature dependent Lorentz-Drude

model with several oscillators was used (Minissale et al., 2017; Alabastri et al., 2013):

εr(ω, T ) = 1− f0ω
2
p(T )

ω(ω − ıΓ0(T ))
+

N�

j=1

fjωp(T )
2

(ω2
j − ω2 + ıωΓj)

, (4.1)

where T is the temperature, εr is the relative permittivity, N is the number of oscillators

with frequency ωj , strength fj and f0, damping constants Γj and Γ0 (associated with a life-

time 1/Γ), and ωp is the plasma frequency.

The hemispherical emittance is given by

ε(λ) =
1

π

� π/2

0

� 2π

0

ε�(λ, θ,φ) cos(θ)dΩ, (4.2)
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where dΩ = sin(θ)dθdφ is the solid angle, ε� is the directional emittance, and cos(θ)

represents Lambert’s cosine law. By symmetry, the emittance of the multilayer structure is

insensitive to polarization and azimuthal angle (φ). As a consequence, the hemispherical

emittance of the multilayer stack can be obtained as a function of the polar angle (θ) by

averaging both the TE and TM polarizations, eq.(4.3). Due to the fact that the gratings are

periodic in only one dimension, the emittance can also depend on φ. However, it has been

shown that for omnidirectional gratings—as is the case of the grating structure optimized

in this work—the φ dependence is negligible (Herv, Drvillon, Ezzahri, & Joulain, 2018;

Marquier, Laroche, Carminati, & Greffet, 2007; Marquier, Arnold, Laroche, Greffet, &

Chen, 2008). Therefore, the same simplified form used for the multilayer can be used for

the grating emitter:

ε(λ) =

� π/2

0

[ε�TE(λ, θ) + ε�TM(λ, θ)] cos(θ) sin(θ)dθ, (4.3)

where ε�TE(λ, θ) = ε�(λ, θ,φ = 0) and ε�TM(λ, θ) = ε�(λ, θ,φ = π/2). This simplifica-

tion improves the speed of the optimization algorithm since for each evaluation of the cost

function it is only necessary to integrate the sum of the TE and TM polarization over the

polar angle θ. Although the azimuthal dependence for the grating emittance is weak, dif-

ferences in emittance due to polarization can be very strong. Therefore, the exploitation of

different physical phenomena, such as SPPs, Fabry-Perot (FP) resonances, or CRs for each

polarization are required to enhance thermal emittance.

4.2.2. Optimization

A GA (MATLAB Optimization Toolbox, 2017) along with RCWA was used to opti-

mize the geometry of the emitters. The GA starts with an initial population and performs

three fundamental operations: selection, crossover, and mutation. These operations enable

extraction of the best “genes” (crossover) and add diversity to a population to increase the

probability of finding an optimum value of the cost function (mutation) (MATLAB Opti-

mization Toolbox, 2017; Goldberg, 1989). For the optimization reported here, a population

size of 300, based on a stochastic uniform selection, and crossover = 0.1 was used. In
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addition, the cost function, E(T ), is taken as the L2-norm of the difference between the

hemispherical emittance (obtained using eq. (4.3)) and the ideal hemispherical emittance

(εideal = 1 for 0 < λ < λg and ε = 0 otherwise, with λg corresponding to the GaSb PV

cell bandgap (λg = 1.72 µm)).

E(T ) =

� ∞

0

|ε(λ, T )− εideal(λ, T )|2dλ. (4.4)

To ensure the GA converges to physically meaningful solutions, the thicknesses of the

hafnia layers were limited to be below quarter wavelength, and the W interlayer was limited

by the skin depth (at λ ∼ 1.5 µm). Same thickness constraints were used for the grating

design, constraining the period to be below λg/2 to minimize diffraction losses (Yeng et

al., 2014).

4.2.3. Efficiency and performance

For the designs reported here, a GaSb PV cell was assumed. To evaluate the perfor-

mance of the overall TPV cell (i.e., emitter, filter, and PV cell), the output power and TPV

efficiency were obtained using an energy balance between the emitter and the cell by as-

suming no losses (radiative, convection, etc.). The power per unit area incident on the filter,

qi,c, is given by:

qi,c(λ, Te) =
εe(λ)Eb,e(λ, Te)

1− ρe(λ)ρc(λ)
, (4.5)

where the energy emitted from the PV cell has been neglected since its temperature is much

lower than the emitter temperature (Tpv = 300 K � Te = 1680 K). In (4.5),

Eb,e(λ, Te) = 2πhc2/[λ5(ehc/λkbTe − 1)]

is the blackbody emissive power at the emitter temperature, with c being the speed of light

and kb is the Boltzmann constant. In addition, ρe and ρc are the reflectance of the emitter

and the cell. The cell reflectance (normal and hemispherical) was obtained based on a

Si/SiO2 multilayer filter structure, which has been optimized for GaSb PV cells (O’Sullivan

et al., 2005) in order to pursue a two-band optimum design. The hemispherical emittance

of the emitter, εe, is obtained using (4.3). Realistic parameters for the PV cell were used
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(Bett & Sulima, 2003). The output power density per unit area from the PV cell is

Pout

A
= FFVocJsc(Te), (4.6)

where FF is the fill factor and Voc is the open-circuit voltage (Bett & Sulima, 2003). Jsc is

the short-circuit current density, given by

Jsc(Te) = e

� ∞

0

qi,c(λ, Te)ηEQE(λ)λdλ

hc
, (4.7)

where ηEQE is the external quantum efficiency. The total energy flux entering into the

emitter can likewise be calculated from the emitter and cell properties using:

Qth(Te) =

� ∞

0

(1− ρc(λ))qi,c(λ, Te)dλ. (4.8)

Finally, the conversion efficiency of the TPV cell can be obtained by using

ηTPV (Te) =
Pout(Te)

Qth(Te)
. (4.9)

4.3. Results and discussion

4.3.1. Hemispherical and directional emittance

Used of the GA resulted in determination of the optimal geometry for the two proposed

structures. It was found that the optimum planar multilayer emitter design consists of

h1 = 0.0342 µm, h2 = 0.0072 µm, and h3 = 0.1070 µm. Similarly, for the grating

selective emitter, the optimum design is h1 = 0.08702 µm, h2 = 0.0440 µm, h3 = 0.1598

µm, Λ = 0.5032 µm, and f = 0.3548. Figure 4.2 shows a comparison of the normal and

hemispherical emittance (Fig. 4.2 (a) and (b), respectively) for both the planar and grating

emitter. For reference, the emittance of a planar W emitter, as well as the ideal emittance,

and the Si/SiO2 bandpass filter reflectance considered in the design (O’Sullivan et al., 2005)

are also shown. Since the emittance in gratings is sensitive to polarization, both TE and

TM polarizations are shown in Fig. 4.2 (a). It can be seen that in the case of the grating

emitter the TM normal emittance is high, above 99%, for wavelengths between 0.82 to

1.28 µm; however, the TE normal emittance is lower with a peak of 84% close to λ = 1.0
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µm. On the other hand, the planar multilayer stack’s normal emittance is also high with

a peak of 91% close to λ = 1.1 µm. The filter normal emittance has also been plotted to

highlight the portion of the emittance that is reflected back to the emitter. Of more direct

relevance to TPV operation, however, is the hemispherical emittance. Figure 4.2(b) shows

hemispherical emittances of 88% and 91% for both the multilayer and grating structures

close to λ = 1.0 µm, respectively. The high hemispherical emittance indicates that the

emittance does not strongly depend on θ. To explore this in more detail, the directional

emittance for both designs as a function of the angle of incidence was computed. Figure 4.3

shows the angle of incidence dependence in the case of the planar multilayer structure. This

emitter presents presents very high peak emittance (above 90 %) for θ ≤ 60◦ for both TE

and TM polarizations. For the grating emitter case the angle dependence is more complex,

as illustrated in Fig. 4.4. Resonances within the grating structure give rise to the peaks and

troughs seen in Fig. 4.4. For TE polarization, a very high peak emittance (above 80 %) up

to θ = 80◦ is obtained close to λ = 1.1 µm. The TM polarization emittance is also very

high and presents a broader passband; however, it decreases abruptly between θ = 60◦

and 80◦. Table 4.1 summarizes the output power and the projected TPV efficiency for the

structures proposed in this work along with a planar tungsten emitter and an ideal emitter at

T = 1680 K. The grating emitter exhibits the best performance, due to broadband response

that results from the excitation of multiple resonances.

TABLE 4.1. Performance comparison among structures evaluated.

Planar W Multilayer Grating Ideal
Pout (W/cm2) 1.1336 2.0983 2.2444 2.6874
ηTPV (%) 24.03 27.12 29.95 39.83

The markedly higher performance of the grating emitter is due to its broader frequency

and angular response. This enhancement originates from several physical phenomena. To

elucidate these mechanisms, Figs. 4.5 and 4.6 show the simulated electric and magnetic

fields profiles (Comsol, 2015) inside the grating for TE (Fig. 4.5) and TM (Fig. 4.6) polar-

izations at several selected wavelengths, which are highlighted in the insets of Fig. 4.4 using
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FIGURE 4.2. (a) normal emittance of the grating for TE (green-dashed line) and
TM (blue-dotted-dashed line) polarizations of the incident radiation as well as the
planar multilayer emittance (red-continuous line). (b) comparison of the hemi-
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line) structures. In both figures the ideal emitter (orange-continuous line), with
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comparison.
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FIGURE 4.3. Directional emittance for the multilayer for both TE (a) and TM (b)
polarizations for five different angles of incidence (θ = 0, 30, 45, 60, and 80◦).

blue dots. Figure 4.5(a) is consistent with an electric field cavity resonance inside the top

hafnia layer, giving rise to the λ = 0.93 µm, θ = 0◦ peak in Fig. 4.4. Similarly, Figs. 4.5 (b)

and (c) show a strong magnetic field confinement inside the top hafnia layer; this suggests
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FIGURE 4.4. Directional emittance for the grating for both TE (a) and TM (b)
polarizations for five different angles of incidence (θ = 0, 30, 45, 60, and 80◦).
Insets highlight the peaks studied in Figs. 4.5 and 4.6.
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that the two peaks for θ = 60◦ and 80◦ arise from FP resonances excited at λ = 0.93 µm and

1.05 µm, respectively. Furthermore, Figs. 4.6(a), (b), and (c) show the electric field profile

for peaks observed at θ = 0◦, 60◦, and 80◦, respectively, in the case of TM polarization.

The strong concentration of the electric field in these three cases is consistent with SPP

excitation at wavelengths of λ = 1.2, 1.4, and λ = 1.45 µm. The SPP origin of these peaks

is corroborated by a simple analysis. By using the dispersion relation for a metal-dielectric

interface and momentum conservation kx = kspp(ω) + jK, where kx is the horizontal

component of the wavevector, kx = (2π/λ) sin θi, kspp = (2π/λ)
�

εmεd/(εm + εd) is the

wavenumber of the surface wave, K = 2π/Λ is the grating momentum, and j is an inte-

ger, the wavelength of SPP excitations can be predicted as a function of incident angle θ.

Though simple, this relation gives the correct trend for the peak wavelengths as a function

of the angle of incidence (λ = 1.16, 1.33, 1.41, 1.48, and 1.53µm for θ = 0◦, 30◦, 45◦, 60◦,

and 80◦, respectively).

TE polarization

|E|,  = 0o 

HfO2

W

HfO2

W

|H|,  = 60o |H|,  = 80o

(a) (b) (c)
,  = 0.93 m ,  = 0.93 m ,  = 1.05 m

FIGURE 4.5. Electric (a) and magnetic (b, c) fields inside the grating structure for
both the TE polarization. Three angles of incidence are considered (a) θ = 0◦,
(b)60◦, and (c) 80◦ for the wavelengths that match the peaks in the inset of
Fig. 4.4(a).

4.3.2. Temperature dependence analysis

Since blackbody radiation depends on temperature, the influence of the emitter tem-

perature on performance was evaluated. Figure 4.7 shows the output power and efficiency

as a function of temperature from 1000 to 2000 K. A planar tungsten emitter as well as the

ideal emitter have also been plotted for reference. As expected, curves for output power
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TM polarization

HfO2

W

HfO2

W

|E|,  = 0o |E|,  = 60o |E|,  = 80o

(a) (b) (c)
,  = 1.20 m ,  = 1.40 m ,  = 1.45 m

FIGURE 4.6. Electric field inside the grating structure for the TM polarization.
Three angles of incidence are considered (a) θ = 0◦, (b) 60◦, and (c) 80◦ for the
wavelengths that match the peaks of Fig. 4.4(b).

(Fig. 4.7 (a)) increase as a function of temperature, and both the planar multilayer and grat-

ing exhibit similar performance trends to the ideal emitter, well above the performance of

the planar tungsten emitter. The efficiency (Fig. 4.7 (b)) also increases with temperature

for both of the optimized structures reported here as well as for the plain tungsten emitter.

As can be seen, the efficiency for the ideal emitter follows a different trend from that of

the planar tungsten and optimized designs. This difference is due to the fact that the ideal

emitter’s out-of-band emitted power is zero, while in the case of the other emitters, the out-

of-band emitted power becomes comparable at lower temperatures. As the temperature is

lowered for the ideal emitter, fewer photons with λ < λg are produced, so the ideal emitter

approaches a monochromatic emitter at low temperatures. This is an artifact of the abrupt

drop in emittance assumed for λ > λg in the ideal emitter. For more realistic emitters, the

fail of photons with λ > λg becomes more significant at lower temperatures, reducing the

efficiency.

4.3.3. Geometric tolerance and sensitivity

Since the genetic optimization algorithm produces very small thicknesses for the tung-

sten layers for both emitter designs, a simple sensitivity analysis has been performed in

order to assess the impact of inevitable variations that can arise in fabrication of these

structures. Fabrication involving refractory metals such as tungsten can be challenging. In
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FIGURE 4.7. (a) Output power and (b) efficiency as a function of temperature for
the multilayer (red) and grating (blue). Planar tungsten (green) and ideal (gray)
emitters are shown for comparison.

particular, since refractory metals tend to form grains, fabrication of smooth, thin layers

can be problematic.



93

The proposed emitter designs feature central tungsten layers with thicknesses of 7 to

44 nm, both of which are of the same order of magnitude as tungsten’s typical grain size

(∼ 5 to 20 nm (Hao, Chen, & Xiao, 2015)). Figure 4.8 shows output power density and

efficiency as a function of the tungsten thickness. The multilayer emitter efficiency remains

approximately constant and close to 27 % for tungsten thicknesses between 0.01 and 0.05

µm. Furthermore, the output power density remains above 2 W/cm2 within variations

of 10 % of the tungsten thickness. Oppositely, for the grating emitter the output power

remains almost constant for thicknesses above 20 nm. Furthermore, the efficiency of both

emitters show very weak dependence on the central tungsten layer thickness. Since hafnia

is typically deposited by atomic layer deposition (ALD), very conformal HfO2 films with

very precise thicknesses can be easily obtained.
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FIGURE 4.8. Output power (left axis) and TPV efficiency (right axis) as a function
of tungsten thickness for both the multilayer (red lines) and the grating (blue lines)
emitters at 1680 K.
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4.4. Conclusions

Two tungsten-hafnia thermal emitter designs for TPV applications with high hemi-

spherical thermal emittances have been evaluated. The designs are intended to match the

optical response of GaSb PV cells. The designs were optimized by using a GA along

with the RCWA method. Along with the hemispherical emittance, both output power and

efficiency were studied. A comparison of both structures was performed by calculating

the hemispherical emittance, where it was found that the grating emitter exhibits better

performance due to several resonance mechanisms, such as CRs and SPPs. Furthermore,

both output power and efficiency were obtained as a function of emitter temperature and

tungsten thickness. Even though the performance of both structures is similar, the grating

emitter design exhibits higher power density and efficiency as well as reduced sensitivity to

metal thickness variations. Structures of this type can be further considered for the design

of selective emitters with different metals, such as Mo or Ta as well as dielectrics such as

Al2O3 or AlN.
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5. CONCLUSION AND FUTURE RESEARCH

In this chapter, we summarize the contents and main results presented throughout this

thesis. In addition, we present some recommendations for future work.

5.1. Review of the Results and General Remarks

Following an overview in Chapter 1, the detailed results that have been obtained are

detailed in Chapters 2–4. In Chapter 2, a novel method based on the Methods of Mo-

ment (MoM) and a first-order Taylor expansion of the shape derivative is used to quantify

how random surface perturbations impact on the performance of perfect electric conductor

gratings under transverse electric (TE) polarized radiation. A MoM solver based on hier-

archical bases was implemented and validated using a commercial software package. This

implementation allowed us to develop a fast algorithm for quantifying higher order statis-

tical moments, by way of sparse tensor approximations. This deterministic approach was

benchmarked against the Monte-Carlo method, and very good agreement was obtained with

dramatically less computational effort. We showed the applicability of this method through

the calculation of the variance of the grating diffraction efficiency and a comparison with

the experimental uncertainty obtained from measurements.

Chapter 3 was focused on the design and simulation of periodic structures as selective

thermal emitters, where structures made of tungsten (W) and hafnia (HfO2) were consid-

ered. In this part of the research, we show that by using a deep grating with a hafnia spacer,

peaks of almost perfect emittance for both polarizations (TE and TM) can be obtained.

This results in a selective thermal emitter with very low polarization sensitivity. We also

show numerically and theoretically that the improvements in thermal emittance are due to

surface plasmon polaritons (SPP) and magnetic polaritons (MP) in the case of TM polar-

ization, and due to cavity resonances in the case of TE polarization.

In Chapter 4, based on the promising results obtained in Chapter 3, we presented two
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easy-to-fabricate structures made of tungsten and hafnia. Two structures—a planar multi-

layer stack and a grating—were optimized through a genetic algorithm (GA). In both cases,

we obtained high hemispherical emittance as required for efficient TPV cells. We analyze

the performance of both structures as a function of the emission cutoff wavelength as well

as emitter temperature. Since the implemented GA suggests the use of very thin tungsten

layers, a tolerance analysis was also performed, where it was found that the grating struc-

ture possesses more relaxed fabrication tolerances. Analysis of the nature of the emittance

enhancement was supported by both numerical simulations and theoretical considerations.

In Chapters 3 and 4 we showed that it is possible to obtain high emittance for both TE

and TM polarization—as required for TPV applications—using one-dimensional periodic

structures.

5.2. Future Research Topics

In this work, we presented two main tracks of research, broadly focused on the im-

provement of TPV cells. However, several paths for further investigation—not only for

TPV cells, but also in different engineering devices—remain open. In the following, I will

describe a few possible directions for future work based on the main results obtained in this

thesis.

• We have shown and implemented an UQ model for TE polarization. A logi-

cal next step is to extend the model for TM polarization as well as impedance

boundary conditions. To accomplish this goal, it is necessary to code the TM

part by including new boundary conditions for the shape derivative and the dou-

ble layer potential operator (Harbrecht, 2014). The calculation of the dispersion

efficiency of the grating is set in the same way as it was for the TE polariza-

tion. Finally, the prediction of Wood’s anomalies can be performed by using

the grating equation. Since the impedance boundary conditions, Robin type, are

a linear combination of Dirichlet and Neumann boundary conditions that have
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already been studied, the impedance boundary condition problem can be imple-

mented in order to evaluate the impact of spatial variation in properties such as

reflectance and absorptance in materials with small skin depth.

• The extension of the model to transmission problems, as well as to full 3D

Maxwell equations for 1D and 2D periodic structures, will allow us to model

different shapes and materials.

• Since the model was implemented based on the MoM, other periodic structures

can also be modeled. This will allow us to quantify the effect of shape pertur-

bations, for example, in the case arrays of cylinders (Watanabe, Nakatake, &

Pištora, 2012).

• More fundamental studies are possible through the extension of the models de-

veloped here. For example, near–field light–matter interaction, where it has been

show that surface roughness influence strong light–matter interaction (Lu, Li, &

Liu, 2018), or hyperbolic metamaterials used in plasmonic lithography, where

surface roughness produce drops in intensity patterns (X. Chen et al., 2017),

could be studied.

• Other engineering applications that involve the shaping of the thermal radiation

spectrum, such as radiative cooling (Zhao, Hu, Ao, Xuan, & Pei, 2018; Wong,

Tso, Chao, Huang, & Wan, 2018), can be explored.

• Finally, since this work is purely numerical, measurements to validate models

can be a path to follow in the case of experimental research.
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APPENDIX A. GALERKIN METHOD

In this appendix a general procedure for the Galerkin-Bubnov method is given. For

readers interested in the more abstract setting, theorems, and convergence see (Steinbach,

2008) and references therein.

Let us consider a bounded elliptic operator A : X � → X . For a given f ∈ X � we want

to find the solution u ∈ X of

Au = f. (A.1)

Instead of solving A.1 we may consider an equivalent variational problem:

�Au, v� = �f, v�, ∀ v ∈ X. (A.2)

According to Lax-Milgram theorem there exists a unique solution of A.2. We consider the

sequence

XM := span{φk}Mk=1 ⊂ X, (A.3)

then we can write the approximate solution

uM :=
M�

k=1

ukφk ∈ XM (A.4)

so that

�AuM , vM� = �f, vM� ∀ vM ∈ XM , (A.5)

where uM is defined as the solution of the Galerkin-Bubnov variational problem A.5. In-

serting the approximate solution A.4 in the last equation, we obtain:

M�

k=1

uk�Aφk,φl� = �f,φl� for l = 1, 2, . . . . ,M. (A.6)

For k, l = 1, . . . ,M this is equivalent to the linear system of equations:

AMu = f , (A.7)

where AM [l, k] := �Aφk,φl� and fl := �f,φl�.
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APPENDIX B. GREEN INTEGRAL THEOREMS

Green’s integral theorems are a generalization of the integration-by-parts formula. Let

us consider an open and bounded domain of dimension N D ⊆ RN with a regular boundary

Γ = ∂D and a unitary vector n̂ to that surface. Considering the function u and v we have:

• Green’s first integral theorem
�

D

Δuvdx = −
�

D

∇u∇vdx+

�

Γ

∂nvdΓ. (B.1)

• Green’s second integral theorem
�

D

(uΔv − vΔu)dx =

�

Γ

(u∂nv − v∂nu)dΓ. (B.2)


