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Abstract

A self-referencing technique for measuring amplitude and phase of ultrashort laser pulses is
presented. In contrast to the other methods the relative-phase ambiguities do not appear in our
method. Thus, we can characterize ultrashort pulses with well-separated frequency
components. The relative-phase ambiguities can be avoided by the use of a cross-correlation
technique with two independent laser pulses. Further we propose and demonstrate
experimentally a new realtime phase-retrieval algorithm that reconstructs both pulses fast and
uniquely.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interferometric and noninterferometric methods have been
developed for the full characterization of ultrashort optical
signals as complex electric fields. While the spectral phase
interferometry for direct electric field reconstruction (SPIDER
[1]) or measurement of electric field by interferometric
spectral trace observation (MEFISTO [2, 3]) as interferometric
methods allow field reconstruction by algebraic inversion
algorithms, noninterferometric spectrographic techniques
such as frequency-resolved optical gating (FROG [4, 5]) or
temporal analysis of spectral components (TASC [6, 7]) rely
on the solution of a phase-retrieval problem.

Ultrashort pulses with well-separated frequency
components as shown in figure 1 cannot be recovered by
any of these self-referenced methods (including SPIDER and
MEFISTO) due to relative-phase ambiguities as discussed in
[8]. The phase reconstruction procedure of SPIDER involves a
step referred to as ‘concatenation’ [1, 9], basically a numerical
integration of the derivative of the spectral phase. However,
the spectral phase is undefined between well-separated
components in the frequency domain. Therefore, SPIDER
is prone to suffer from undetermined spectral phase jumps,
and hence ambiguous temporal profiles. In order to illustrate
this, we show in figure 1 an explicit example in the frequency
domain and in the time domain. The π jump in the spectral

phase changes the modulus of the double pulse in the time
domain. Instead of the π jump any other phase jump could
also appear and yield different double pulses in the time
domain. Numerical integration causes the same problems in
techniques such as MEFISTO [2] and blind-MEFISTO [3].

The principal task of a pulse characterization technique
should be the characterization of arbitrary pulses because there
are many experiments where completely unknown ultrashort
pulses are generated [10]. Ultrashort pulses with well-
separated frequency components appear rather frequently (e.g.
in soliton molecules [11] or in the secondary emission from
semiconductor quantum wells [12]).

Non-self-referenced methods (e.g. the non-self-
referenced variants of FROG and SPIDER such as XFROG
[13] and XSPIDER [14, 15]) require well characterized
reference pulses and are therefore not applicable in all cases.
It can be laborious to characterize reference pulses in a
given setup. Moreover measurement errors of the reference
pulses propagate into the final result. Nevertheless, there
is no general guarantee that XFROG gives a unique field
reconstruction [16].

Another cross-correlation technique is blind-FROG
[5, 17]. Blind-FROG works with two independent and
arbitrary laser pulses without a priori knowledge. Unlike
XFROG and XSPIDER, blind-FROG is a self-referenced
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(A)

(B)

Figure 1. Two double pulses with different spectral phase functions.
Here with a π jump at a spectral position with low intensity.
(A) Modulus and phase in the frequency domain. (B) Modulus of
the two double pulses in the time domain.

method and unlike blind-MEFISTO, blind-FROG requires no
spectral overlap between the two independent laser pulses. But
blind-FROG faces two serious problems, that of uniqueness,
i.e. under which mathematical constraints a unique solution
exists, and the problem of the reconstruction algorithm. The
latter issue has been under intense discussion (see, e.g., [17])
in the last years. All known algorithms have the drawback
of slow convergence and stagnation (see table 1 of [17]).
In reality, the former problem is much more severe, as no
algorithm can reconstruct lost information. The issue of the
uniqueness of several schemes suggested for FROG and TASC
has been thoroughly analyzed only recently [16]. The result
of this analysis is that from a FROG measurement in general
the fields are not uniquely reconstructable. This remains true
even when one employs the additional information about the
spectral intensities of the pulses, obtained from independent
measurements. However, the derived ambiguities do not
appear with non-centro-symmetric spectrograms and suitable
constraints of the spectral pulse intensity of one of the pulses
in the blind-FROG scheme. The relative-phase ambiguities
can be avoided in this way. Based on this knowledge, we
developed a new technique for the full characterization of
arbitrary complex-shaped ultrashort optical signals.

A successful characterization of ultrashort laser pulses
with a new technique is presented in this paper. We introduce
a new phase reconstruction algorithm which generally
converges even for complex and noisy pulses. It is fast
and reconstructs ultrashort laser pulses with well-separated
frequency components without ambiguities or stagnations.
We show a simulation with such pulses and compare the
new algorithm with the well-known PCGP algorithm [17].
Furthermore, we have reconstructed the spectral phases of
chirped Gaussian pulses in an experimental setup by the
application of our method.

Recently, our technique was successfully applied to
characterize soliton molecules experimentally [11].

2. The VAMPIRE technique

We have found that the uniqueness issue [8, 16] can be
solved efficiently by a cross-correlation technique with two
independent and arbitrary laser pulses without a priori
knowledge. This is because in such a scheme one of the
pulses can be modified to prevent any ambiguities while the
other pulse remains unchanged. The new self-referencing
technique that we present in this paper, and which we suggest to
label a very advanced method for phase and intensity retrieval
of e-fields (VAMPIRE), is a spectrographic technique. A
VAMPIRE spectrogram can be written as a two-dimensional
function of time and frequency:

I (�, τ) ∝
∣∣∣∣
∫ ∞

−∞
dωG(ω,�) exp{iP(ω,�)} exp(iωτ)

∣∣∣∣
2

,

(1)

where we define

G(ω,�) = |Ẽ1(ω)||Ẽ2(� − ω)|, (2)

P(ω,�) = φ1(ω) + φ2(� − ω), (3)

with the spectral phases φ1 and φ2 of the pulses.
The conditioning filter is the key element in the typical

VAMPIRE arrangement as shown in figure 2. A temporal
phase modulator and a spectral phase modulator are two
successive parts of the conditioning filter.

2.1. The spectral phase modulator

An unbalanced Mach–Zehnder interferometer (MZI) can be
used as a spectral phase modulator. Two replicas of signal 2
in figure 2 are generated. One of the replicas is changed by a
dispersive element, for example, a slab of fused silica in one
arm of the MZI. The linear response of such a MZI is given
by the complex transfer function

RMZ(ω) ∝ (1 + Q exp[iq̃(ω)]). (4)

Here q̃(ω) is the sum of the spectral phase function of the
dispersive element and the linear spectral phase corresponding
to the different arm lengths of the MZI. The constant Q
determines the splitting ratio. For the characterization of
signal 1 in figure 2 it is not necessary to characterize the
conditioning filter exactly; RMZ(ω) may be unknown and
just some qualitative properties of the generated spectrograms
should be fulfilled. A sufficient temporal distance between
the two replicas from the MZI gives the zero line shown in
figure 3 in the VAMPIRE spectrogram. The intensity
at the zero line is negligible. In this way, non-centro-
symmetric spectrograms (no centro-symmetry for each �) can
be generated with an unbalanced MZI. The phase function
q̃(ω) should be at least quadratic, otherwise no additional
information would be available. The temporal distance
between the two replicas should not be too large so as to
avoid sampling problems and to get rid of too many fringes in
the spectrum of the filtered signal 2.
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Figure 2. Optical scheme of the VAMPIRE technique.

(C) (D)

(A)

(B)

(E)

Figure 3. (A) Signal 1 (test pulses). The solid line: a1 = −1,
b1 = 4. The dashed line: a1 = −1, b1 = 3.2. (B) Signal 2 (filtered
pulses). Without filtering the pulses are defined as follows: the solid
line: a1 = −4, b1 = −2. The dashed line: a1 = −4, b1 = −5.2.
Without filtering the solid line pulse pair and the dashed line pulse
pair yield analytically identical spectrograms. The filtered solid line
pulse pair generates the VAMPIRE spectrogram in (C) and the
filtered dashed line pulse pair generates the VAMPIRE spectrogram
in (D). (E) Modulus of the difference between the VAMPIRE
spectrograms in (C) and (D). A grid with 128 × 128 points has been
used.

To give a simple example, for the signals 1 and 2 in
figure 2 we choose the electric fields

Ẽ1(ω) = exp[(ã1 + ib̃1)ω
2]

Ẽ2(ω) = exp[(ã2 + ib̃2)ω
2]

(5)

with the parameters ã1, b̃1, ã2 and b̃2 defining two different
pulse pairs for nontrivial ambiguities as derived in [16].
By construction, the first pulse pair has exactly the same
spectral intensities as the second one. The unfiltered
signal 1, the filtered signal 2 and the two corresponding

VAMPIRE spectrograms are shown in figure 3. The two
VAMPIRE spectrograms are different for the two different
pulse pairs; however, two usual XFROG spectrograms are
indistinguishable as shown in the left side of the zero line in
figure 3(E). The main property of a VAMPIRE spectrogram
is the non-centro-symmetry as demanded in [16] for the
uniqueness. |Ẽ2| in (2) and φ2 in (3) are changed by the
conditioning filter for that purpose but |Ẽ1| and φ1 remain
unchanged.

2.2. The temporal phase modulator

The spectral phase modulator avoids ambiguities caused
by the symmetry properties of the measured VAMPIRE
traces. However, it cannot avoid relative-phase ambiguities.
Ultrashort pulses with well-separated frequency components
generate relative-phase ambiguities caused by traces with very
low intensities between spectral components in the trace as
described in [8, 16]. This problem can be solved by a cross-
correlation technique such as VAMPIRE because signal 2 in
figure 2 can be modified to prevent low intensities between
spectral components in the trace. The spectrum of signal 1 has
to be covered by the spectrum of signal 2, and there should be
no gaps in the spectrum of signal 2. The central frequencies
of signals 1 and 2 have not to be equal, and it is not necessary
to characterize signal 2 exactly. Such a signal 2 could be
generated by an external and independent fs-oscillator.

However, there is a way to generate a suitable signal 2
without an external source. The idea is to use a part of signal
1, generated by a beamsplitter, and to modify its spectrum.
This can be done with a temporal phase modulator, such as
a self-phase modulation introduced by the Kerr nonlinearity
of an optical fiber. That way the spectral bandwidth of
ultrashort pulses with well-separated frequency components
can be broadened.

3. Reconstruction of the pulses

3.1. Reconstruction algorithm

To reconstruct the pulses the function G(ω,�) has to
be known, i.e. the spectral pulse intensities are added as

3
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Figure 4. Block diagram of the new phase-retrieval algorithm.

constraints to the problem. So the functions I (�, τ) and
G(ω,�) are given and the phase functions φ1 and φ2 have to
be reconstructed.

Based on the idea for the uniqueness proof in [16] a
new phase-retrieval algorithm can be developed. The block
diagram of this algorithm is depicted in figure 4. To start
the algorithm, we solve the one-dimensional phase-retrieval
problem,

|E�(τ)| =
∣∣∣∣
∫ ∞

−∞
dω G�(ω) exp{iP�(ω)} exp(iωτ)

∣∣∣∣ , (6)

for every � in the first step. The input of the algorithm
is the function |E(�, τ)|, given by the square root of the
measured VAMPIRE spectrogram, and the function G(ω,�),
given by the measured spectra of the pulses. When a solution
for one of the given one-dimensional phase-retrieval problems
is found, it can be used as an initial function for the next
one. In this way, we always provide very good initial guesses
and can therefore use the Gerchberg–Saxton algorithm [18]
with a strongly reduced probability of stagnation for this step.
This kind of problem solving yields excellent convergence and
significantly improves the performance of the algorithm. In
this way one gets the function h(ω,�) = P(ω,�) + F(�)

with P defined in equation (3) and F being an arbitrary
function [16]. By construction the input functions |E(�, τ)|
and G(ω,�) are non-centro-symmetric and thus P is unique.
Noise or distortions in the VAMPIRE spectrogram, or even
stagnations of the phase-retrieval algorithm for (6), could cause
unacceptable errors, so G is modified in the second step of
the algorithm by, e.g., omitting this set of data. This can
be done because the problem of decomposing h(ω,�) yields

(A)

(C)

(B)

Figure 5. (A) Vampire spectrogram generated with the signal in
(B) and a filtered single Gaussian on a grid with 512 × 512 points.
The signal in (B) is a pulse with well-separated frequency
components. (C) Rate of convergence plots. 100 plots on the right
side show the convergence behavior of the PCGP algorithm [17] for
random start values, and one plot in the left lower corner shows the
convergence of the new algorithm which is independent of the start
values. The quality of the retrieved signals is acceptable below the
straight line.

an overdetermined linear system of equations. The modified
function Gmod and the function h are subsequently sent to the
third step of the algorithm where despite the indefiniteness of
the function F, h is uniquely decomposed into φ1 and φ2 by a
singular value decomposition algorithm.

3.2. Comparison with the PCGP algorithm

To compare the new algorithm with the well-known PCGP
algorithm [17] we used a rather complex pulse,

E1(ω) = exp[(−0.03 − 0.02i) × (ω − N/2)2]

+ 0.3 exp[(−0.03 − 0.02i) × (ω − N/2 − 30)2]

+ 0.3 exp[(−0.03 − 0.02i) × (ω − N/2 + 30)2]

+ 0.05 exp[(−0.03 + 0.02i) × (ω − N/2 − 60)2]

+ 0.05 exp[(−0.03 + 0.02i) × (ω − N/2 + 60)2], (7)

consisting of a superposition of five Gaussian spectra which
represent well-separated frequency components as shown in
figure 5(B). As a second pulse we took a single Gaussian pulse,

E2(ω) = exp[(−0.0005 + 0.002i) × (ω − N/2)2], (8)

which is modified by the conditioning MZI filter (ratio Q =
0.5, temporal distance 110 points, referred to a grid of 512 ×
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Figure 6. VAMPIRE setup. BS: beamsplitters, NG: neutral density glass filter, SF10: 15 mm thick SF10 glass, MZI: Mach–Zehnder
interferometer, L1: lens with a focal length of 50 mm, L2, L3: lenses with a focal length of 75 mm, L4: cylindrical lens with a focal length
of 80 mm, BBO: 300 μm thick type I BBO crystal, F: neutral density glass filter, SM: spherical mirror with a radius of curvature of
200 mm, DG: reflecting diffraction grating (150 grooves per mm), CC: 8-bit CMOS camera.

512 points, N = 512, 0 � ω � N − 1). The nonlinear part
of the spectral phase function of the dispersive element in the
MZI is given by

q̃nonlinear(ω) = 0.0018 × (ω − N/2)2. (9)

In figure 5(C), we show the rms FROG error [5] versus
the number of iterations, where one iteration is a complete
reconstruction cycle consisting of Fourier transforming the
data back and forth. Despite the uniqueness, the PCPG
algorithm (including the spectra as additional constraints)
shows the well-known problems of slow convergence and
stagnation. On average more than 40 steps are needed to
achieve acceptable errors, and a considerable fraction of
iterations does not give convergence. In contrast, the new
algorithm is always converging within a few steps.

We have found this fast convergence for simulated
VAMPIRE spectrograms generated from a substantial set
of different and complex-shaped pulse pairs. Additive and
multiplicative noise was added to both the trace and the
spectra. The speed of the algorithm is fast even for very large
VAMPIRE grids up to 1024 × 1024 points. The second and
third steps are much faster than the first step of the algorithm.
Further speed improvements of the first step are expected with
new numerical methods [19] for the solution of (6).

3.3. The chirp z-transform

The spectra and traces are usually measured with CCD
detectors or CMOS detectors and are therefore arrays of data
points. As many points as possible should be used to increase
the resolution and to decrease sampling effects. It is well
known that the broader the peak of a function (e.g. in the
frequency domain), the narrower the Fourier transform (e.g.
in the time domain). Therefore, there are often many unused
points in the trace arrays. ‘Unused’ means that the points
contain the background noise. This problem can be solved by
replacing the usual discrete Fourier transform (DFT) with a

chirp z-transform [20, 21] (CZT). The CZT is given by

f̃ (k) =
N−1∑
n=0

f (n) exp

(
i
2π

N
nkα

)
for 0 � k � N − 1

(10)

and is identical to the DFT for α = 1. The width of the discrete
signal f̃ (k) in (10) can be changed by the arbitrary scalar value
α. The smaller the α the broader is the signal f̃ (k). With the
CZT the signals can be broad in the frequency domain and in
the time domain simultaneously. The VAMPIRE trace can be
blown up in that way.

For a sensitive measurement of the spectral phase one
should ensure a high spectral resolution. In that case
many points on the frequency axis will contain useful
information. Gaussian pulses with weak chirp will generate
very narrow traces on the time axis when the DFT is used.
The discretization error due to the sampling on the given
grid cannot be neglected anymore and can result in poor
reconstructions. The CZT solves this problem. Corresponding
measured VAMPIRE traces are shown in the following section.
On the one hand, the CZT reduces discretization errors and
despite small grids it makes it possible to increase the spectral
resolution of the spectral phase. On the other hand, the CZT
necessitates more calculations and thus more time for the
reconstruction. We replaced the DFT in the Gerchberg–Saxton
algorithm by the CZT. This almost quarters the speed, but it
is acceptable for us due to the high performance of the new
algorithm.

Finally, we note that a larger grid size generally increases
the resolution. However, in practice, the size of the grid is
limited by the detector and cannot be increased arbitrarily.
Thus, one should use as many points as possible of the given
grid.

4. Experimental setup and results

Figure 6 shows a schematic of the VAMPIRE arrangement.
The beamsplitter BS1 splits the beam from our homemade
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Figure 7. Two 128 × 128 pixel traces. The left VAMPIRE trace is a measured trace, and the right VAMPIRE trace is the corresponding
reconstructed trace.

Ti:sapphire laser oscillator into two parts. One part passes
the MZI while the other one is running through a translation
stage. The pulses are brought back together and focused into a
300 μm thick type I BBO crystal. The generated sum-
frequency light and the two fundamental beams are frequency
resolved by a Czerny–Turner spectrometer. The sum-
frequency light is detected in the second order of the grating,
and the spectra of the pulses are detected in the first order.
In this way, the spectra of the pulses and the VAMPIRE
traces can be measured simultaneously. The spectrometer
camera is a triggered 8-bit CMOS camera and transmits
the images to a computer where the data are processed and
visualized by a Delphi 5 program. Synchronized moving iron
loudspeakers were used for the translation stage and for the
generation of a tilt angle of the sum-frequency beam. Thus, the
frequency-resolved sum-frequency beam moving up and down
is generating the VAMPIRE traces on the chip of the camera.
Lens L4 in front of the camera is a cylindrical lens for the
astigmatism compensation in the Czerny–Turner spectrometer.
The setup in figure 6 is a prototype of the VAMPIRE technique.
It can be enhanced by replacing the speakers with piezo-driven
positioning systems because the linearity of the generated time
axis is degraded by the use of speakers. The prototype is a
multishot configuration but a single-shot arrangement should
be straightforward.

Figure 7 shows measured and reconstructed VAMPIRE
traces. The agreement is quite good. The left parts of the
traces acquired a tilt from the chirp generated in one arm
of the MZI. The speed of 10 reconstructions per second
on a 1.4 GHz Intel Pentium computer was not optimal
because the reconstruction and the trace measurement were
not simultaneously initiated and stopped. Note that the time
axis is stretched by a factor 3.85 due to the value α = 0.26 in
the CZT, by which a considerable improvement in the temporal
or spectral resolution is obtained. The reconstructed pulses are
not used as improved initial values for the next reconstruction.
Every reconstruction is independent of the previous one. The
retrieved pulses are shown in figure 8. Signal 1 in figure 2
is usually the signal to be characterized and appears in
figure 8(A) as a single Gaussian pulse. The phase obtained

(A)

(B)

Figure 8. (A) Retrieved signal 1 with a FWHM of 64 fs. (B)
Retrieved signal 2 with a FWHM of 113 fs for the left Gaussian and
a FWHM of 71 fs for the right Gaussian.

shows that our laser provides pulses that are transform
limited. The central wavelength of the pulses is 800 nm.
The group-velocity dispersion of SF10 glass at 800 nm is
β(2) = 1566 fs2 cm−1 and can be calculated from the Sellmeier
dispersion formula [22]. For a L = 1.5 cm thick SF10 glass
one gets a group-delay dispersion (GDD) of β(2)L = 2349 fs2.
A comparison of the reconstructed pulses from the two arms
of the MZI (the two Gaussians of signal 2 in figure 8(B))
gives a stretch factor of 113 fs/(71 fs) = 1.59. The theoretical
stretch factor calculated from the GDD of the SF10 glass is
1.63. The deviation from the measured value is less than 3%.
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One reason for the deviation is that the pulses from the MZI
arm without SF10 glass have a weak linear chirp caused by
the dispersion of the beamsplitters and of the neutral density
glass NG, which defines the constant Q in (4). However,
the calculated theoretical stretch factor is based on transform-
limited Gaussian pulses. Another reason for the deviation is
the weak nonlinear time axis due to the speakers.

5. Discussion and conclusions

We have demonstrated a new self-referencing technique for
simultaneously measuring the amplitude and phase of two
independent ultrashort laser pulses. It is different from recently
developed reconstruction techniques [5, 17, 23] because a
conditioning filter is used which guarantees the uniqueness
of reconstruction. For the characterization of just one signal
it is not even necessary to characterize the conditioning filter
exactly. The main advantage of VAMPIRE over methods
like SPIDER or FROG is that no relative-phase ambiguities
appear. Complex-shaped pulses with zeros in the spectral
intensity profile can be reconstructed with VAMPIRE. For the
simultaneous measurement of two signals, the conditioning
filter must be characterized beforehand. This can be done
by the VAMPIRE technique itself because the two signals in
figure 2 can simply be swapped for that purpose in the
experiment. The complex transfer function of the conditioning
filter can be calculated from the spectral phase changes of
the signals. The new reconstruction algorithm has several
advantages. The fact that all solutions of the one-dimensional
phase problems in the first step in figure 4 are unique enables
the fields to be retrieved without stagnation. The algorithm
generally converges even for complex and noisy pulses. The
performance is especially good for highly resolved VAMPIRE
grids. Note that iterative techniques such as the Gerchberg–
Saxton algorithm [18] can have difficulties in retrieving
measured data due to stagnation. We solved the problem
by modifying the function G and using the overdetermination
of the considered system of equations. Moreover, we have
introduced a new feature for the reconstruction. This is about
increasing the resolution by the use of the CZT.
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