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ABSTRACT

Fluid-structure interaction problems for a Stokes flow have a wide variety of applica-

tions, especially in biomechanics. The presence of an immersed elastic interface in the

domain produces a local force on the fluid which causes discontinuities in its velocity

field and pressure. Because the solution of the problem is discontinuous, standard finite

element methods need to be modified in order to achieve optimal convergence rates. In this

thesis we develop a high-order finite element method where the mesh does not need to be

modified to match the interface, and thus can easily be extended to moving-interface prob-

lems. We show that our method recovers the optimal convergence rate of standard finite

element methods for non-interface Stokes problems by precalculating correction functions

that hold all discontinuities across the interface. We finally show numerical examples that

suggest that our method is more stable than the standard immersed boundary finite ele-

ment method schemes, in the sense that it preserves physical quantities like energy and

mass for different initial configurations of the interface.

Keywords: Stokes flow, immersed boundary, moving interface, finite element method,

correction functions, Fourier interpolation.
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RESUMEN

Los problemas de interacción fluido-estructura en flujos de Stokes tienen una gran

cantidad de aplicaciones, especialmente en biomecánica. La presencia de una interfaz

elástica sumergida en el dominio genera una fuerza local en el fluido, lo cual produce

discontinuidades en el comportamiento de la velocidad y presión del fluido a través de ella.

Debido a que la solución del problema es discontinua, los métodos de elementos finitos

tradicionales deben ser modificados para alcanzar la tasa de convergencia óptima. En esta

tesis presentamos un método de elementos finitos de alto orden donde la malla no necesita

ser modificada para coincidir con la interfaz, lo que nos permite extender fácilmente el

método a problemas temporales con una interfaz en movimiento. El método desarrollado

recupera la convergencia óptima de los métodos de elementos finitos tradicionales debido a

que es capaz de precalcular funciones correctoras que cumplen todas las discontinuidades

de la solución a través de la interfaz. Finalmente se muestran ejemplos numéricos para

problemas temporales donde nuestro método es más estable que los métodos tradicionales

de elementos finitos de frontera inmersa, en el sentido que conserva ciertas cantidades

fı́sicas del problema como la energı́a del sistema o la cantidad de masa para distintas

configuraciones iniciales de la interfaz.

Palabras Claves: flujo de Stokes, frontera inmersa, interfaz en movimiento, método de

elementos finitos, funciones correctoras, interpolación de Fourier.

xi
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1. INTRODUCTION

1.1. Motivation

Moving interface problems have many applications in engineering and physics, in

fields such as fluid mechanics, gas dynamics, biomechanics, among others. In the par-

ticular case of laminar flow (low Reynolds number), i.e. where the fluid velocity is low,

viscosity is large or the length-scales of the flow are small, the Stokes flow equations

provide a good approximation to the flow field (Kim & Karrila, 1991). This is the case,

for example, of the dynamics of swimming microorganisms (Lauga & Powers, 2009) and

blood flow through the veins (Siddiqui, Sohail, Naqvi, & Haroon, 2017). If we consider

an immersed elastic interface in a Stokes flow, the presence of such interface produces

local forces on the fluid causing it to move, while at the same time the velocity of the fluid

determines how the interface moves.

Solving the fluid-structure interaction on a Stokes flow has many applications in biome-

chanics, which makes the problem not only interesting and challenging mathematically,

but also a powerful tool for designing prosthetic valves or membranes, since it would

be possible to approximate the flow field and shear stress for a specific design (Yang &

Wang, 1983). In order to study the fluid dynamics of heart valves, Peskin developed the

Immersed Boundary method (Peskin, 1977) to solve the equations of motion of a fluid

in presence of cardiac valves, and it has been applied to model both natural and pros-

thetic cardiac valves. Another example is the vibration of the basilar membrane within the

cochlea (inner ear), which can be modeled by considering both rigid (surrounding bone)

and flexible (basilar membrane) parts (Beyer, 1992). The main function of the cochlea is

to convert mechanical vibrations induced by sound waves into electrical nerve impulses.

A two-dimensional model of the cochlea is studied in (Beyer, 1992) and is solved using

the Immersed Boundary Method to model the vibration of the basilar membrane. Solving
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this problem can help us understand the mechanical impulses that cause hearing and thus

design prosthetic cochleas to fix hearing loss.

Because of the presence of an immersed interface, local forces are applied in the fluid

causing discontinuities on the solution. Different approaches have been followed to con-

sider this local force using both finite difference and finite element methods. The Im-

mersed Boundary method proposed by (Peskin, 1977) uses a finite difference approach

to approximate the Dirac delta function, but have shown to be highly unstable on explicit

schemes and stable on implicit schemes that are too expensive for practical computations

(Tu & Peskin, 1992). For a finite element method approach we need to consider triangu-

lations of the domain. Standard finite element methods usually give continuous approx-

imations of the solution and are only able to consider discontinuities across the faces of

the elements. Since the solution is discontinuous across the interface, these methods need

to be modified either matching the mesh to the interface or changing the finite element

spaces. Boundary integral equation methods have also been proposed to approximate the

solution of this problem (Mori, 2008; Mori, Rodenberg, & Spirn, 2019), which are based

on approximating the Green function for the interface Stokes problem, giving a solution

for the velocity and pressure fields in R2.

In this thesis we will develop a high-order finite element method to approximate the

solution of a steady-state Stokes interface problem. Our method is able to consider inter-

faces that not necessarily match the mesh, and thus it is easy to extend the steady-state

method to approximate the solution of a moving Stokes interface problem.

1.2. Stokes flow physics

The Navier-Stokes equations are a set of partial differential equations that describe the

motion of a viscous fluid by conserving certain physics properties. If we consider that

mass should be conserved at any point of the domain, the following equation must hold in
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the fluid

@t⇢+r · (⇢u) = 0,

or equivalently,

Dt⇢ = �⇢r · u, (1.1)

where the nonlinear operator Dt = @t + u ·r is the material derivative. Here ⇢ and u are

the density and velocity field of the fluid, respectively.

The conservation of momentum can be expressed using Newton’s second law, which

result in the Cauchy momentum equation

⇢Dtu = r · � + f , (1.2)

where � is the stress tensor and f are all external forces per unit of volume acting on the

fluid. For example, if we consider the gravitational acceleration g, the external force is

given by f = ⇢g. The Cauchy stress tensor can be split into two separate terms,

� = �pI + T ,

with T being the so-called deviatoric stress tensor. This can be interpreted as two separate

forces acting on the fluid. The force caused by the pressure is given by r · (�pI) = �rp,

while the viscous forces of the fluid are given by r · T . In the case of a compressible

Newtonian fluid, it is possible to write the deviatoric stress tensor as

T = µ
�
ru+ (ru)>

�
+ �(r · u)I,

where µ is the dynamic viscosity and � is the second viscosity coefficient, which is defined

such that trace (T ) = 0. Replacing this in (1.2) yields the Navier-Stokes equations for

compressible Newtonian fluids

⇢(@tu+ u ·ru) = �rp+r ·
�
µ
�
ru+ (ru)>

�
+ �(r · u)

�
+ f .
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Stokes flow equations can be easily obtained as a linearization of the Navier-Stokes

equations. The Reynolds number Re is defined as the ratio of inertial forces to viscous

forces caused on a fluid (Kim & Karrila, 1991),

Re =
⇢uL

µ
,

where L is a characteristic linear dimension of the domain, for example, for flow in a pipe

L is the diameter of the pipe. The Reynolds number quantifies the relative importance of

both forces, and can be used to predict whether a certain flow will be turbulent or not.

When viscous forces are dominant, i.e. Re ⌧ 1, it is possible to observe a laminar flow,

while when inertial forces are dominant, i.e. Re � 1, turbulent flow can occur. The

Reynolds number is small in situations where the fluid velocity is low enough, viscosity is

high enough or the length-scale of the problem is small, like in blood flow through veins.

In these cases the non-linear part of the Navier-Stokes equations can be neglected. If we

also consider a stationary flow (@tu = 0), we obtain the Stokes flow equations

�r ·
�
µ
�
ru+ (ru)>

�
+ �(r · u)

�
+rp = f . (1.3)

In the case where the density ⇢ is constant, conservation of mass (1.1) becomes a

condition of an incompressible flow,

r · u = 0.

By replacing this in (1.3) and assuming a constant viscosity µ we obtain the equations

describing a Stokes flow for an incompressible fluid

�µ�u+rp = f , (1.4)

where we used the fact that r · (ru)> = r(r · u) = 0.
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1.3. Fluid-structure interaction

In this section we will derive the model and introduce the strong formulation of the

problem following a similar procedure as outlined in (Dunn, Lui, & Sarkis, 2021). Con-

sider a bounded Lipschitz domain ⌦ ⇢ Rd. Throughout this thesis we assume d = 2, but

the results can be easily extended to d = 3.

Inside ⌦ there is a closed, smooth curve � representing a massless, elastic interface,

which the fluid cannot go through. This interface splits the domain ⌦ in two, which we

will denote by ⌦� for the region enclosed by � and by ⌦+ for the exterior region, with

boundaries defined as @⌦� = � and @⌦+ = � [ @⌦, respectively. At a given time t � 0,

we denote the cartesian coordinates of the interface in parametric form by X(s, t), such

that �(t) = {X(s, t), s 2 [0, 2⇡]}. We assume that this parametrization is known at

t = 0. This is not necessarily an arc-length parametrization, which allows us to define

an initial elastic interface with both bending and stretching. Physically, we can interpret

the point X(s, t) as the material point on the elastic membrane that moves from an initial

position X(s, 0).

The unit tangent vector to the interface is defined as

⌧ = @sX/k@sXk.

The boundary tension T (s, t) is modeled using a generalized Hooke’s law

T (s, t) = �(k@sXk, s, t),

where �(k@sXk, s, t) is a function defining the stress caused on a point X(s, t) of the

interface given its local deformation at any time t. To compute the elastic force between

two points a and b, we note that

(T⌧ )(b, t)� (T⌧ )(a, t) =

Z
b

a

@s(T⌧ )(s, t) ds =
Z

b

a

@s(T⌧ )(s, t)

k@sXk
· k@sXk ds.



6

Since this holds for any open interval (a, b), we can write the density force � acting on �

per unit length as

�(s, t) =
@s(T⌧ )

k@sXk
.

If we consider �(k@sXk, s, t) to be proportional to k@sXk, i.e., the deformation of the

interface is withing elastic range, then the density force is given by

�(s, t) = �
@
2
s
X

k@sXk
,

where  > 0 is a constant depending on the material and the negative sign is chosen so the

energy of the system dissipates (see Section 4.1).

The deformed and stretched interface applies a local force when computing the fluid

velocity and pressure, which can be incorporated into equation (1.4) as a force B

�µ�u+rp = f +B,

B(x) =

Z

�

� · �(x�X) dS.

From its definition, we can easily check that B = 0 when x 2 ⌦\�.

Two additional constraints must be added on the interface. We impose a no-slip con-

dition between the fluid and the interface. This condition is considered by taking

JuK = 0 on �

@tX = u(X, t).

where J�K denotes the jump of a function � across �.
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1.4. Previous work

To solve this problem, Peskin introduced the Immersed Boundary Method (Peskin,

1977) to approximate the fluid dynamics of blood flow through heart valves, a finite dif-

ference method with a specific smoothness of the � function. See also the review pa-

per (Peskin, 2002). The stiffness which arises from the singular force and the time-step

limit in computations showed a high instability on explicit schemes and suggests the use

of a fully implicit method for solving the Stokes equations (Tu & Peskin, 1992), how-

ever the method proposed by Tu and Peskin was too expensive for practical computations

(much higher computational time and storage space required when compared to the ex-

plicit method). The analysis of a simplified model for the Stokes equation is done in

(Mori, 2008) and in (Mori et al., 2019) they proved the well-posedness and global be-

haviour. Subsequently, several finite difference methods were proposed to integrate the

natural discontinuity of the equations and hence obtain higher order approximations, see

for instance the immersed interface method (LeVeque & Li, 1994, 1997; Li & Lai, 2001;

Li & Ito, 2006) and the corrected method (Marques, Nave, & Rosales, 2011).

As we will see in Section 3.1, the presence of a local force B on � causes a discon-

tinuity on p and the derivatives of both u and p across the interface. It is possible to

strongly include the discontinuity conditions to the Stokes equations, which allow us to

use different finite element methods to solve the problem. The basis functions used on

the approximation by finite element can be easily replaced by higher order functions to

obtain a better convergence rate, thus suggesting that a finite element method may be used

to obtain more scalable methods.

If standard finite element methods were used to solve the problem without taking the

discontinuities into account, the convergence rate of the methods have proven to be non-

optimal (see Section 3.6). These methods usually consider continuous solutions and only

are able to consider discontinuities across the element edges. Because of this, a natural



8

Figure 1.1. Schematic depiction of a deforming-mesh method (Scott, 2015).

approach to recover optimal convergence rates in the steady-state Stokes interface problem

is to define a mesh that matches the elements with the interface �. However, this approach

is not efficient when solving moving interface problems, because it would be necessary

to obtain a new mesh every time the interface moves to a new position, forcing us to

recalculate integrals between basis functions on the elements that were changed, and invert

the new matrix of the linear system.

Figures 1.1, 1.2 and 1.3 (Scott, 2015) show how different approaches may be used to

consider discontinuous solutions in different finite element methods applied to immersed

boundary problems. In deforming-mesh methods, the nodes of the domain evolve along

with the points of the interface. This method may give really good results when the mesh

is adapted to more complex geometries of the interface, for example, if curved elements

are considered for triangles touching the interface �. This may seem like a good approach

at first, but it is possible that the deformations lead to meshes with a poor aspect ratio, thus

resulting in much worse convergence rates.

On the other hand, universal meshes only adapt a small number of triangles near the

interface by maintaining (or slightly changing) the aspect ratio of the original mesh and
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Figure 1.2. Schematic depiction of a universal mesh (Scott, 2015).

matching the interface � to the element boundaries. On both deforming-mesh and uni-

versal mesh methods, it is necessary at every time step to adapt the mesh to the domain

depending on the position of the interface. Even a little movement of the interface forces

us to obtain a new mesh and calculate integrals over each modified element again, which

can be computationally expensive if we want to solve the problem for several different

interfaces.

Fixed-mesh methods do not modify the mesh at any time step. The main advantage

of this method is that it only needs to obtain a good-quality mesh once. This eases the

calculations on integrals between basis functions on each triangle, since they are always

the same except possibly for triangles which the interface intersects due to the local elastic

force, but need to consider additional constraints on those triangles in order to recover opti-

mal accuracy. Finite element methods with fixed mesh have been comprehensively studied

for elliptic interface problem. For instance, the corrected schemes (Guzmán, Sánchez, &

Sarkis, 2016a, 2016b), the immersed interface finite element method (Li, 1998; Gong, Li,

& Li, 2008; Adjerid, Chaabane, & Lin, 2015; He, Lin, & Lin, 2011; Guzmán, Sánchez,

& Sarkis, 2017) and unfitted Nitsche scheme or cut finite element methods (Burman &
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Figure 1.3. Schematic depiction of a fixed-mesh method (Scott, 2015).

Hansbo, 2010; Burman & Zunino, 2011; Burman & Hansbo, 2012; Burman, Guzmán,

Sánchez, & Sarkis, 2018)

Throughout this thesis we will derive a fixed-mesh method that is able to compute the

discontinuities across the interface before solving the equations in the domain ⌦. This

method is based on obtaining local correction functions that capture the discontinuities

of the solution (of any arbitrary order) across the interface, which allows us to consider

discontinuous solutions while preserving the convergence rate of different finite element

methods without modifying the mesh nor the finite element spaces at any time step.
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2. PRELIMINARIES

2.1. Notation

First we introduce some definitions

DEFINITION 1. Let u : Rn
! Rn

be a sufficiently smooth vector field such that

u = (u1, . . . , un)> and let A,B : Rn
! Rn⇥n

be sufficiently smooth tensors. We will use

the following operations.

ru =
⇥
@xjui

⇤n
i,j=1

�u = (�u1, . . . , �un)
>

r · A =

"
nX

j=1

@xjAij

#n

i=1

A : B =
nX

i,j=1

Ai,jBi,j

Note that ru is a matrix which i-th row is given by rui, while r · A is a vector

which i-th component is obtained by taking divergence of the i-th row of A, and thus

�u = r ·ru just like for scalar functions.

DEFINITION 2. Let u,v : Rn
! Rn

be sufficiently smooth vector fields and let p, q :

Rn
! R be scalar functions. Let ⌦ be any open subset of Rn

and let � be any (n � 1)-

dimensional surface in Rn
. We will use the following notation

(p, q)⌦ =

Z

⌦

pq dx

(u,v)⌦ =

Z

⌦

u · v dx

(ru,rv)⌦ =

Z

⌦

ru : rv dx

We define the bilinear forms h·, ·i� the same way as integrals (·, ·)⌦ but integrating over �.
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DEFINITION 3. We will use the following vector spaces for scalar functions

L
2(⌦) = {' : ⌦ ! R,

Z

⌦

|'|
2

dx < 1}

L
2
0(⌦) = {' : ' 2 L

2(⌦),

Z

⌦

' dx = 0}

H
1(⌦) = {' : ' 2 L

2(⌦), @xi' 2 L
2(⌦), for i = 1, . . . , n}

H
1
0 (⌦) = {' : ' 2 H

1(⌦), �0' = 0}

For any vector field u = (u1, . . . , un)> and any vector space V of scalar functions

defined on ⌦ ⇢ Rn
, we say that u 2 [V ]n if ui 2 V for i = 1, . . . , n. The functional

�0 : H1(⌦) ! H
1/2(@⌦) is called the Dirichlet trace and restricts the function to the

domain boundary @⌦. See (Brezis, 2010) for a definition of fractional Sobolev spaces

H
s(⌦) for s 2 (0, 1).

We also introduce some standard definitions for domain and triangulations to be used

in a finite element setting. We follow (Ern & Guermond, 2013). See also (Brenner, Scott,

& Scott, 2008), (Braess, 2007).

DEFINITION 4. A domain ⌦ ⇢ Rn
is an open, bounded, connected set with Lipschitz

continuous boundary @⌦. We say that ⌦ is of class C
m

, for m � 1, if the respective local

Lipschitz maps are of class C
m

.

We define a triangulation Th of the domain ⌦ 2 Rn
as the union of a finite number of

non-empty interior simplices K (triangles for n = 2) such that Th forms a partition of ⌦,

i.e.

⌦̄ =
[

K2Th

K̄ and int(K) \ int(K 0) = ; for K,K
0
2 Th, K 6= K

0

The subsets K are called elements. Moreover, for all K,K
0
2 Th the intersection K̄ \ K̄ 0

is:

• Either empty or a common vertex in dimension n = 1,



13

• Either empty, or a common vertex, or a common edge in dimension n = 2,

• Either empty, or a common vertex, or a common edge, or a common face in

dimension n = 3.

The subscript h refers to the level of refinement of the mesh. Defining the diameter of

an element K 2 Th as

hK = diam(K) = max
x1,x22K

kx1 � x2k2

where k · k2 is the Euclidean norm in Rn
, the parameter h (mesh-size) is defined by

h = max
K2Th

hK

We will denote a sequence of triangulations by {Th}h>0.

2.2. Stokes Problem

In this section we derive a mixed weak formulation for the standard steady-state Stokes

problem and state its well-posedness.

Let ⌦ be an open, bounded, connected set in R2 with Lipschitz boundary and assume

that the flow is stationary, @tu = 0. Given a function f : ⌦ ! R2, a body force acting on

the fluid, we seek for the velocity u : ⌦ ! R2 and pressure p : ⌦ ! R2 solution of

�µ�u+rp = f in ⌦, (2.1a)

r · u = 0 in ⌦, (2.1b)

u = 0 on @⌦, (2.1c)
Z

⌦

p dx = 0. (2.1d)

These equations are termed as the momentum equation (2.1a) and the mass conservation

equation (2.1b). We first derive the weak formulation for (2.1a) multiplying by a vector
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field test function v 2 [H1
0 (⌦)]

n and integrating over ⌦. We obtain

�(µ�u, v)⌦ + (rp, v)⌦ = (f , v)⌦

Integrating by parts the two terms on the left-hand side and imposing the zero boundary

condition of the test function we obtain

(µru, rv)⌦ � (p, r · v)⌦ = (f , v)⌦

Similarly, we obtain the weak form of the second equation (2.1b) multiplying by a scalar

test function q 2 L
2
0

(r · u, q)⌦ = 0

Thus, the mixed weak formulation reads as follows. Find u 2 [H1
0 (⌦)]

n and p 2

L
2
0(⌦) such that

(µru,rv)⌦ � (p,r · v)⌦ = (f ,v)⌦ 8v 2 [H1
0 (⌦)]

n
, (2.2a)

(q,r · u)⌦ = 0 8q 2 L
2
0(⌦). (2.2b)

Observe that these equations are well-defined for u 2 [H1
0 (⌦)]

n and p 2 L
2
0(⌦), and the

given force f 2 [L2(⌦)]n.

Equivalently, it is possible to rewrite (2.2) in a more general setting introducing the

bilinear forms a : [H1
0 (⌦)]

n
⇥ [H1

0 (⌦)]
n
! R and b : [H1

0 (⌦)]
n
⇥ L

2
0(⌦) ! R defined by

a(', ) = (µr',r )⌦, b(',�) = �(�,r ·')

for all functions ', 2 [H1
0 (⌦)]

n and � 2 L
2
0(⌦), obtaining the formulation: Given

f 2 [L2(⌦)]n, find u 2 [H1
0 (⌦)]

n and p 2 L
2
0(⌦) such that

a(u,v) + b(v, p) = (f ,v)⌦ 8v 2 [H1
0 (⌦)]

n
,

b(u, q)⌦ = 0 8q 2 L
2
0(⌦).
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Note that if f and @⌦ are sufficiently smooth then the solution (u, p) of the weak

formulation (2.2) is also smooth and solves the Stokes problem (2.1).

For the sake of completeness, we state the well-posedness of problem (2.2). See

(Girault & Raviart, 1981; Ern & Guermond, 2013) for a more detailed proof.

THEOREM 1. The mixed weak form Stokes problem (2.2) is well posed, i.e., there exists

a unique solution (u, p) 2 [H1
0 (⌦)]

n
⇥ L

2
0(⌦) and there is a constant C > 0 such that for

f 2 [L2(⌦)]n

kukH1(⌦) + kpkL2(⌦)  CkfkL2(⌦)

PROOF. To prove existence and uniqueness of this problem, it is convenient to con-

sider the vector space H0(div,⌦) = {v 2 [H1
0 (⌦)]

n
, r · v = 0}, with the norm

k · kH1(⌦) = | · |1,⌦, where we used that in H
1
0 (⌦) the semi-norm | · |1,⌦ = kr · kL2(⌦) is an

equivalent norm.

From the definition of the bilinear form a(', ), we can easily see that it is continuous

in H0(div,⌦) and that it is H0(div,⌦)�elliptic, since a(v,v) = µ|v|21,⌦ = µkvkH1(⌦).

From Lemma 3.2 from (Girault & Raviart, 1981), we know that r · (·) is an isomorphism

from H0(div,⌦)> to L
2
0(⌦). Using this result and the open mapping theorem, we obtain

that for any function q 2 L
2
0(⌦) there is a unique function vq 2 H0(div,⌦)> such that

q = r · vq and |vq|1,⌦  ckqkH1(⌦) for some constant c > 0 independent of q. Therefore

b satisfies the inf-sup condition

inf
q2L2

0(⌦)
sup

v2[H1
0 (⌦)]n

(q,r · v)⌦
kqkL2(⌦)kvkH1(⌦)

� inf
q2L2

0(⌦)

(q,r · vq)⌦
kqkL2(⌦)kvqkH1(⌦)

�
1

c
.

Since both a and b are continuous, a is H0(div,⌦)-elliptic and b meets the inf-sup con-

dition, by using the Ladyzhenskaya-Babuška-Brezzi Theorem (see Theorem 4.1, Chapter

I, from (Girault & Raviart, 1981)), we conclude that problem (2.2) has a unique solution,

and the solution depends continuously on the data. ⇤
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REMARK 1. We observe that the two key components in the proof of Theorem 1 are the

coercivity of the bilinear form a and the surjectivity of the divergence differential operator

from the space for the velocity onto the space of the pressure. The last one in particular

is a major restriction in order to define conforming finite element spaces for the Stokes

problem.

REMARK 2. The results of Theorem 1 can be extended to the nonzero Dirichlet bound-

ary condition u = g on @⌦, where g 2 [H1/2(@⌦)]n. Note that for this we have the

compatibility condition
R
@⌦ g · n dS = 0, because

0 =

Z

⌦

r · u dx =

Z

@⌦

u · n dS =

Z

@⌦

g · n dS.

It is possible to write u = u0 + ug where u0 2 [H1
0 (⌦)]

n
and ug is an extension to

[H1(⌦)]n of g. This extension ug is not unique, but for every such extension there is a

unique u0 that solves the problem. If two different extensions are considered, we obtain

two possibly different solutions, namely (û, p̂) and (ũ, p̃). By subtracting the weak formu-

lations for both extensions of g, we obtain

(µr(û� ũ),rv)⌦ � (p̂� p̃,r · v)⌦ = 0 8v 2 [H1
0 (⌦)]

n
,

�(q,r · (û� ũ))⌦ = 0 8q 2 L
2(⌦).

Since û = ũ = g on @⌦, then û � ũ 2 [H1
0 (⌦)]

n
. Thus, we obtain that (û � ũ, p̂ � p̃)

must be a solution of problem (2.2) for f = 0, therefore it must be zero, concluding that

the Dirichlet boundary problem also has a unique solution.

REMARK 3. It is convenient to rewrite the zero integral condition on the pressure

space of problem (2.2) by adding a Lagrange multiplier for the
R
⌦ q dx = 0 constraint.
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Then the problem reads as: Find (u, p,�) 2 [H1
0 (⌦)]

n
⇥ L

2(⌦)⇥ R such that

(µru,rv)⌦ � (p,r · v)⌦ = (f ,v)⌦ 8v 2 [H1
0 (⌦)]

n
, (2.3a)

�(q,r · u)⌦ + �(q, 1)⌦ = 0 8q 2 L
2(⌦), (2.3b)

⌧(p, 1)⌦ = 0 8⌧ 2 R. (2.3c)

It is easy to see that any solution of equations (2.2) will also yield a solution for equations

(2.3) with � = 0. To prove this, let (u, p) be the solution of problem (2.2), then it holds the

first condition of (2.3). For the second equation, consider any q 2 L
2(⌦) and let q 2 R

be its mean value over ⌦, then q � q 2 L
2
0(⌦) and thus

�(q,r · u)⌦ + �(q, 1)⌦ = �(q � q,r · u)⌦ � q(1,r · u)⌦ + �(q, 1)⌦,

= �qh1,u · ni@⌦ + �(q, 1)⌦,

= �(q, 1)⌦,

and since this must be zero for all q 2 L
2(⌦), we conclude that � = 0. We can see that

this is also true for the nonzero Dirichlet boundary condition u = g on @⌦, because of

the compatibility condition
R
@⌦ g · n dS = 0.

The solution of problem (2.3) is also unique. Indeed, we consider the case f = 0 and

use test functions v = u and q = p. The second equation now becomes (p,r · u)⌦ = 0.

Replacing this in the first equation yields µ(ru,ru)⌦ = 0, thus giving u = constant.

Since u = 0 in @⌦, we conclude that u = 0. By replacing u = 0 in equations (2.3) with

f = 0, we obtain

(p,r · v)⌦ = 0 8v 2 [H1
0 (⌦)]

n
,

�(q, 1)⌦ = 0 8q 2 L
2(⌦),

(p, 1)⌦ = 0.
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By choosing v 2 [H1
0 (⌦)]

n
such that r · v = p (this is possible from Lemma 3.2

in (Girault & Raviart, 1981), and because p integrates 0), the first equation becomes

(p, p)⌦ = 0 and thus p = 0. From the second equation, we can easily see that � = 0.

Since the only solution to the homogeneous problem is the trivial solution, we conclude

that a solution for problem (2.3) exists and is unique, and such solution must give � = 0.

2.3. Finite Element Methods for Stokes flow

In this section we discretize the Stokes problem (2.2) using finite element methods. We

first write the approximation in abstract setting for conforming finite-dimensional spaces

Vh ⇢ [H1
0 (⌦)]

n and Qh ⇢ L
2
0(⌦), and seek the approximations uh 2 Vh and ph 2 Qh to

the velocity field u and the pressure p, respectively, solution of

a(uh,v) + b(v, ph) = (f ,v)⌦ 8v 2 Vh, (2.4a)

b(uh, q)⌦ = 0 8q 2 Qh. (2.4b)

As we mentioned in Remark 1 the finite element spaces for approximating the solution

of the Stokes problem (2.2) must satisfy a so-called compatibility inf-sup conditions. We

state this condition next

THEOREM 2. The discrete problem (2.4) is well-posed if and only if the spaces Vh and

Qh satisfy the discrete inf-sup compatibility condition, i.e., there is a constant ch > 0 such

that

inf
q2Qh

sup
v2Vh

(q, r · v)⌦
kqkL2(⌦)kvkH1(⌦)

�
1

ch

PROOF. See Proposition 4.13 in (Ern & Guermond, 2013). ⇤
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2.3.1. Finite element discretization

To define stable finite element approximation for the Stokes problem we need a pair of

finite element spaces (Vh, Qh) satisfying the discrete inf-sup condition. Below we provide

examples of these. Also, there are several documented examples of unstable finite element

spaces such as the P1 � P1 and the P1 � P0 finite elements.

Consider a shape-regular triangulation Th of the domain ⌦. We now introduce the

Taylor-Hood finite element by

Vh = {vh 2 [C(⌦)]2 : vh|K 2 [Pk+1(⌦)]n, 8K 2 Th, vh = 0 on @⌦},

Q0,h = {qh 2 L
2
0(⌦) \ C(⌦) : qh|K 2 P

k(⌦), 8K 2 Th}.

LEMMA 1. Assume that n = 2, 3 and that every element K 2 Th has at least n edges

in the interior of ⌦. Then, there is C > 0 such that for the Taylor-Hood element spaces Vh

and Qh,0 we have

sup
v2Vh

(q, r · v)⌦
kvkH1(⌦)

� C

 
X

K2Th

h
2
K
kqk

2
L2(K)

!1/2

and hence satisfy the discrete inf-sup condition uniformly with respect to h

PROOF. See Lemma 4.23 and 4.24 in (Ern & Guermond, 2013). ⇤

In the following chapters we will present our model problem under Stokes flow in

two dimensions (n = 2). As we observed in Remark 3, for an easier implementation

of the method it is convenient to rewrite problem (2.4) introducing a Lagrange multiplier

imposing the zero integral condition of the pressure space. Thus, we obtain the following
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system: Find (uh, ph,�) 2 Vh ⇥Qh ⇥ R such that

(µruh,rvh)⌦ � (ph,r · vh)⌦ = (f ,vh)⌦ 8vh 2 Vh, (2.5a)

�(qh,r · uh)⌦ + �(qh, 1)⌦ = 0 8qh 2 Qh, (2.5b)

⌧(ph, 1)⌦ = 0 8⌧ 2 R, (2.5c)

where

Qh = {qh 2 C(⌦) : qh|K 2 P
k(⌦), 8K 2 Th}.

We solve these equations instead of problem (2.2) simply because it is easier to work

with spaces Qh ⇢ L
2(⌦) than spaces Q0,h ⇢ L

2
0(⌦) where the basis functions should be

continuous and integrate zero.

2.3.2. Some implementation details in 2D

To fix ideas, consider continuous piecewise P2
� P

1 functions, i.e., the lowest order

Taylor-Hood element. Since we are working in R2, to obtain a linear function in each

triangle K 2 Th we need 3 degrees of freedom, while for quadratic functions we need 6.

For a reference element K̂ with nodes v̂1 = (0, 0)>, v̂2 = (1, 0)>, v̂3 = (0, 1)>, we will

use the basis functions

'̂1(x̂, ŷ) = 1� x̂� ŷ, '̂2(x̂, ŷ) = x̂, '̂3(x̂, ŷ) = ŷ.

such that '̂i(v̂j) = �i,j . Every linear function in K̂ can be expressed as a linear combi-

nation of functions '̂i. For quadratic functions we consider the Bernstein basis functions

 ̂1 = '̂
2
1,  ̂2 = '̂

2
2,  ̂3 = '̂

2
3,  ̂4 = 2'̂1'̂2,  ̂5 = 2'̂1'̂3,  ̂6 = 2'̂2'̂3, such that any

quadratic function in K̂ can be expressed as a linear combination of functions  ̂i. To

define the basis functions in an arbitrary element K 2 Th with nodes v1 = (x1, y1)>,
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v2 = (x2, y2)>, v3 = (x3, y3)>, consider the function FK : K̂ ! K, defined as

FK

✓
x̂

ŷ

◆
=

0

@x2 � x1 x3 � x1

y2 � y1 y3 � y1

1

A
✓
x̂

ŷ

◆
+

✓
x1

y1

◆
= BK

✓
x̂

ŷ

◆
+

✓
x1

y1

◆
.

This is an affine function such that FK(v̂i) = vi for all i. The basis functions in K are

defined as

�
K

i
= �i � F

�1
K

, i = 1, 2, 3, (2.6a)

 
K

i
=  i � F

�1
K

, i = 1, . . . , 6. (2.6b)

Defining r̂ as the gradient operator in the coordinates of K̂, and r as the gradient in the

coordinates of K, we can now obtain the derivatives of �K

i
by applying the chain rule in

equations (2.6):

r�
K

i
= B

�>
K

r̂�̂i � F
�1
K

, i = 1, 2, 3, (2.7a)

r 
K

i
= B

�>
K

r̂ ̂i � F
�1
K

, i = 1, . . . , 6. (2.7b)

To ensure continuity of the solution, in Qh we will consider one basis function 'i for

each node i of the triangulation. For every triangle K 2 Th that contains this node, letting

ni be its local enumeration within K, then the basis function restricted to K is given by

'i|K = '
K

ni
, while 'i = 0 for every other triangle K that does not contain the node i.

Similarly for quadratic functions, we will consider one basis function  i for every node

and every edge of the domain. Letting NN and Ne be the number of nodes and edges in

Th respectively, and because Vh is defined in R2, we use basis functions  i = ( i, 0)> and

 i+NN+Ne = (0, i)> for Vh with i = 1, . . . , NN +Ne. Thus, the spaces Vh and Qh can
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be expressed as

Vh =

8
<

:vh 2 [C(⌦)]2 : vh =
2(NN+Ne)X

i=1

↵i i, ↵i 2 R, vh = 0 on @⌦,

9
=

; , (2.8a)

Qh =

(
qh 2 C(⌦) : qh =

NNX

i=1

�i�i, �i 2 R
)
. (2.8b)

Using these spaces, the discrete formulation of problem (2.5) is as follows. Find ↵ 2

R2(NN+Ne), � 2 RNN and � 2 R such that

X

j

↵j(µr j,r i)⌦ �

X

j

�j(�j,r · i)⌦ = (f , i)⌦ i = 1, . . . , 2(NN +Ne),

�

X

j

↵j(�i,r · j)⌦ + �(�i, 1)⌦ = 0 i = 1, . . . , NN,

X

j

�j(�j, 1)⌦ = 0.

It is possible to rewrite this problem as a linear system in A~x = ~f . The components

of A are given by (µr i,r j)⌦, �(r · i,�j), (�i, 1) or zero depending on the position

that the integrals appear, resulting in a symmetric matrix, which also is positive-definite

for the Taylor-Hood elements. Similarly the coordinates of ~f are given by (f , i)⌦ or

zero, while ~x = (↵> �>
�)> is the solution of the linear system. By solving this, the

finite element approximation of the solution would be

uh =
2(NN+Ne)X

j=1

↵j j,

ph =
NNX

j=1

�j j.



23

2.3.3. Computing the integrals

When solving the linear system, each coordinate of A represents an integral over ⌦ of

combinations of basis functions. As we will see, it is not necessary to integrate each one

of them separately. First of all, we can see that

(r i,r j)⌦ =
X

K

(r i,r j)K , (2.9a)

(�i,r · j)⌦ =
X

K

(�,r · j)K , (2.9b)

(�i, 1)⌦ =
X

K

(�, 1)K . (2.9c)

For the first integral from (2.9) we note that the base functions for Vh are either zero

on their first or second component. Therefore, we only need to compute this integral

when both  i and  j are nonzero on the same coordinate. In this case, we can write

(r i,r j)K = (r i,r j)K for scalar functions  i and  j . By making a change of

variables x̂ = F
�1
K

(x) and using identity (2.7) we obtain

(r i,r j)K = |detBK | · (B
�>
K

r̂ ̂i, B
�>
K

r̂ ̂j)K̂ ,

= |detBK | · (r̂ ̂i, B
�1
K
B

�>
K

r̂ ̂j)K̂ .

Now we only need to compute the integrals (@x ̂i, @x ̂j)K̂ , (@x ̂i, @y ̂j)K̂ , (@y ̂i, @x ̂j)K̂

and (@y ̂i, @y ̂j)K̂ , and then multiply their values by the corresponding coordinates of

B
�1
K
B

�>
K

to obtain the integral over K.

For the second integral from (2.9), since only one coordinate of  j is nonzero, namely

 j , this expression can either be (�i, @x j)K or (�i, @y j)K . Following the same proce-

dure as before, we can see that

(�i, @x j)K = |detBK | · (�̂i, B
�>
K(1•)r̂ ̂j)K̂ ,

(�i, @y j)K = |detBK | · (�̂i, B
�>
K(2•)r̂ ̂j)K̂ ,
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where B
�>
K(`•) represents the `-th row of B�>

K
. Similar as before, we only need to compute

(�̂i, @x̂ ̂j)K̂ and (�̂i, @ŷ ̂j)K̂ , and then multiply their values by the corresponding coordi-

nates of B�>
K

to obtain the integral over K. For the last integral from (2.9), by making the

same change of variables we see that

(�i, 1)K = |det(BK)| · (�̂i, 1)K̂ =
|det(BK)|

6
i = 1, 2, 3.

Thus, we only need to compute a few integrals over the reference element K̂ and then

use these values to compute the integrals over an arbitrary element K.

2.4. Two-dimensional Fourier interpolation

Even though for the steady-state interface Stokes problem in Section 3 we assume that

we know the parametric form of the interface, this is not necessarily true for the moving

interface problem that we solve in Section 4, since the position of the interface keeps

changing at every iteration. We will now show how to approximate the parametrization of

the interface by using a two-dimensional Fourier interpolation of the curve.

In order to approximate the interface X at a given time tn, which is denoted by Xn, we

take M points along the interface equally spaced in the parametric space, Xn

0 , . . . ,X
n

M�1,

i.e., we take samples Xn

m
= Xn(sm) such that sm = 2⇡m/M for all m = 0, . . . ,M � 1.

We approximate the interface using the M points with the Fast Fourier Transform. For

a fixed time tn we write each point Xn

m
= (xn

m
, y

n

m
)> as a point in the complex plane,

z
n

m
= x

n

m
+ i · y

n

m
. Any parametrization of the interface Xn(s) = (xn(s), yn(s))> can be

interpreted as a complex function f
n(s) = x

n(s) + i · y
n(s). Since we assume that the

interface is closed and smooth, then we can think of fn as a smooth periodic function with
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period 2⇡. Thus, fn (and its derivatives) can be expanded as a Fourier series:

f
n(s) =

1X

k=�1

Z
n

k
· eiks ,

@
`

@s`
f
n(s) =

1X

k=�1

Z
n

k
(ik)` eiks .

Following the procedure outlined in (Johnson, 2011), we approximate f
n using the

discrete Fourier transform (DFT). Considering that the points Xn

m
are taken in counter-

clockwise direction, consider that we have sample points equally spaced from 0 to 2⇡

independent of time, zn
m
= f

n(sn
m
) = f

n (2⇡m/M) for m = 0, . . . ,M � 1, such that

Z
n

k
=

1

M

M�1X

m=0

z
n

m
e�

2⇡i
M mk

.

Using the inverse DFT (IDFT), we retrieve the points zn
m

:

z
n

m
=

M�1X

k=0

Z
n

k
e+

2⇡i
M mk

.

Our goal is to approximate the function f
n(s). It is easy to see that even with fixed

values for Zn

k
, any function of the form

f
n(s) =

M�1X

k=0

Z
n

k
ei(k+`kM)s

will yield the exact same samples zn
m

for any values of `k 2 Z. If we choose `k = 0 for

k < M/2, `k = �1 for k > M/2 and split the Zn

M/2 term between the frequencies ±iM/2

(giving a cos (sM/2) term), we obtain the unique minimal-oscillation trigonometric in-

terpolation of order M , in the sense that it minimizes k@sf
n
kL2(S1). Thus, the resulting

interpolator is given by:

f
n(s) = Z

n

0 +
X

0<k<M/2

�
Z

n

k
eiks + Z

n

M�k
e�iks

�
+ Z

n

M/2 cos (sM/2) ,
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where the M/2 term (Nyquist) vanishes for odd M . Finally, in order to recover the inter-

face Xn(s) and its derivatives, we simply take the real and imaginary part of the trigono-

metric interpolation function f
n(s) and its corresponding derivatives.

2.5. Numerical methods for ODEs

As we will see in Section 4, the interface � immersed in the domain ⌦ moves according

to the velocity field u by following a no-slip condition. If we represent the points on the

interface at a time t by the parametrization X(s, t), s 2 [0, 2⇡], the no-slip condition

between the interface and the fluid is represented by @tX = u(X, t). This corresponds to

a first order ODE, and we can use different numerical methods to approximate its solution.

Suppose we want to solve a problem of the form y0(t) = f(t,y) with an initial condi-

tion y(t0) = y0. Consider the sequence t0, t1, t2, . . . with tn = t0 + nh (h = �t > 0) and

that we have an approximation of the first values of y, with y(tk) ⇡ yk for all k. Time-

stepping numerical methods for approximating the solution of an ODE can be expressed

as

yn+1 = Yn(f , h,y0,y1, . . . ,yn).

The method is said to be of order p if

y(tn+1)�Yn(f , h,y(t0),y(t1), . . . ,y(tn)) = O(hp+1).

We will now show different methods for approximating the solution of such ODEs,

taken from (Iserles, 2008).



27

2.5.1. Euler method

Euler method is an explicit ODE method where, starting from a point (tn,yn) with

yn ⇡ y(tn) we approximate the new value y(tn+1) from the formula

y(tn+1) ⇡ yn+1 = yn + h · f(tn,yn).

Using the Taylor expansion for y(tn+1) and the fact that y0 = f(t,y) we can easily

verify that this method is of order 1. This method is also convergent, in the sense that for

any fixed t
⇤
> t0 with a time step h we have that

lim
h!0

ky(t0 + nh)� yn,hk = 0, n = 0, 1, . . . , b(t⇤ � t0)/hc,

where yn,h is the approximation of the n-th point obtained by using the time step h.

This method can be slightly modified into an implicit method by taking

yn+1 = yn + h · f(tn+1,yn+1).

This is known as the backward Euler method, and even though it is also convergent and of

order 1, it is generally more stable than the explicit Euler method.

Geometrically, the Euler method approximates the new point yn+1 by considering the

slope of the solution at the left-most point of an interval, y0(tn) ⇡ f(tn,yn), while its

implicit variant considers the slope at the right-most point of the interval, y0(tn+1) ⇡

f(tn+1,yn+1).
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2.5.2. Runge-Kutta schemes

We can obtain an expression for y(tn+1) from y(tn) with tn+1 = tn + h by using the

integral formula,

y(tn+1) = y(tn) +

Z
tn+1

tn

f(t,y(t)) dt = y(tn) + h

Z 1

0

f(tn + h⌧,y(tn + h⌧)) d⌧,

and then obtain an approximation by replacing the second integral by a quadrature. This

results in

yn+1 = yn + h

⌫X

j=1

bjf(tn + cjh,y(tn + cjh)).

However, we do not know the value of y at every node tn+cjh. The Runge-Kutta methods

focus in approximating y(tn + cjh) by new variables ⇠j , and then using these values to

update yn into yn+1. Specifically, we solve the equations

⇠1 = yn + h
P

⌫

j=1 a1,jf(tn + cjh, ⇠j),

⇠2 = yn + h
P

⌫

j=1 a2,jf(tn + cjh, ⇠j),
...

⇠⌫ = yn + h
P

⌫

j=1 a⌫,jf(tn + cjh, ⇠j),

And use the solution to obtain the next point

yn+1 = yn + h

⌫X

i=1

bif(tn + cih, ⇠i).

The matrix A = [ai,j]ni,j=1 is called the RK matrix, while the vectors b = (b1, . . . , b⌫)>

and c = (c1, . . . , c⌫)> are the RK weights and RK nodes respectively. This data is usually

arranged in a Butcher tableau, which has the form

c A

b>
.
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When the RK matrix is lower-triangular and has zero diagonal terms, the method cor-

responds to an explicit RK scheme (ERK). In any other case the method corresponds to an

implicit RK scheme (IRK). An example of an ERK method is given by

0

1
2

1
2

1 �1 2

1
6

2
3

1
6

,

which is an explicit third-order three-stage RK method. This tableau is equivalent to

solving the equations

⇠1 = yn,

⇠2 = yn + h ·
1
2f (tn, ⇠1) ,

⇠3 = yn + h
�
�1 · f (tn, ⇠1) + 2 · f

�
tn +

h

2 , ⇠2
��

,

and then using this values to obtain the next point,

yn+1 = yn + h

✓
1

6
f(tn, ⇠1) +

2

3
f

✓
tn +

h

2
, ⇠2

◆
+

1

6
f(tn + h, ⇠3)

◆
.

Generally, we can obtain ⌫-stages ERK schemes of order ⌫ only for ⌫  4, and to obtain

higher order methods we need to consider even more stages.
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3. STEADY-STATE INTERFACE PROBLEM

The solution to the steady-state Stokes interface problem is proven to be discontinuous.

We show that ignoring this discontinuities can lead to sub-optimal convergence rates when

using a standard finite element method. We show how to precalculate functions, which we

call correction functions, satisfying these discontinuities across �. Such functions can

be included into the problem to obtain a corrected finite element method. We show that

the convergence rate for any stable discretization spaces Vh and Qh in the corrected finite

element method is the same as it would be in standard finite element methods for the

non-interface standard Stokes problem.

3.1. Strong formulation

We now show how to obtain the equations describing a steady, incompressible Stokes

flow in presence of a massless, impermeable, elastic interface �. Since the fluid cannot go

through the interface, we impose that the movement of the interface is given by the fluid

velocity at that point. Thus, we impose continuity of the velocity across �,

JuK = 0. (3.1)

Here, for any quantity � defined in ⌦, we write �± = �|⌦± and define J�K as the jump

of � across the interface, i.e. J�K = (�+
� �

�)|�. As shown in Section 1.3, the presence

of an interface � = {X(s), s 2 [0, 2⇡]} can be considered in the Stokes flow equations

by adding a local force B defined on � (Mori, 2008),

�µ�u+rp = f +B, (3.2a)

B =

Z

�

� · �(x�X) dS, (3.2b)
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where � is a density force acting on �. Alternatively, it is possible to consider the local

force B only as a discontinuity of the solution across the interface. Multiplying (3.2) by a

smooth function � such that � = 0 on @⌦ and integrating, we obtain

�

Z

⌦

r · (µru� pI) · � dx =

Z

⌦

f · � dx+

Z

�

� · � dS. (3.3)

Integrating by parts the left-hand side, we find that

�

Z

⌦

r · (µru� pI) · � dx =

Z

�

J(µru� pI)nK · � dS +

Z

⌦

(µru� pI) : r� dx,

where n denotes the unit normal vector to the interface � pointing outwards ⌦�. By

choosing test functions � defined on � which decay rapidly to 0, the integrals over ⌦

vanish and therefore equation (3.3) becomes
Z

�

J(µru� pI)nK · � dS =

Z

�

� · � dS.

Since this holds for any such functions �, we conclude that the local density force � can

be expressed as a discontinuity condition across �

J(µru� pI)nK = �. (3.4)

By strongly imposing conditions (3.1) and (3.4), considering a Dirichlet boundary

condition u = 0 on @⌦ and including the constraint
R
⌦ p dx = 0 to ensure uniqueness, we
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obtain the strong formulation of the steady-state problem

�µ�u+rp = f in ⌦\�, (3.5a)

r · u = 0 in ⌦\�, (3.5b)

u = 0 on @⌦, (3.5c)

JuK = 0 on �, (3.5d)

J(µru� pI)nK = � on �, (3.5e)
Z

⌦

p dx = 0. (3.5f)

3.2. Weak Formulation

As we did in Section 2.2, to obtain the weak formulation of problem (3.5) we multiply

the first equation by a vector function v 2 [H1
0 (⌦)]

2 = V and the second equation by a

function q 2 L
2
0(⌦) = Q and then integrate in ⌦. The first equation becomes

(f ,v)⌦ = �(r · (µru� pI),v)⌦,

= �(r · (µru� pI),v)⌦+ � (r · (µru� pI),v)⌦� ,

= (µru� pI,rv)⌦+ + (µru� pI,rv)⌦�

+ h(µru� pI)n,vi�+ � h(µru� pI)n,vi�� ,

= (µru� pI,rv)⌦ + hJ(µru� pI)nK,vi�,

= (µru,rv)⌦ � (p,r · v)⌦ + hJ(µru� pI)nK,vi�,

where n is the unit normal vector of � pointing outwards ⌦�. Thus, the first equation can

be written as

(µru,rv)⌦ � (p,r · v)⌦ = (f ,v)⌦ � h�,vi�.
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Following the same procedure we did in Section 2.2, we can consider a Lagrange multi-

plier in the second equation for the
R
⌦ q dx condition, thus resulting in the weak formula-

tion of the steady-state interface problem: find (u, p,�) 2 V ⇥Q⇥ R such that

(µru,rv)⌦ � (p,r · v)⌦ = (f ,v)⌦ � h�,vi� 8v 2 [H1
0 (⌦)]

n
,

�(q,r · u)⌦ + �(q, 1)⌦ = 0 8q 2 L
2(⌦),

(p, 1)⌦ = 0,

JuK = 0,

where the constraint JuK = 0 is strongly imposed on the solution.

Just like in the non-interface problem, we may think that to approximate the solution

we could use the same spaces Vh ⇢ V and Qh ⇢ Q of continuous, piecewise polynomial

functions (Taylor-Hood elements). However, as shown in appendix A, the only function

that should be always continuous across the interface is u, and we must also consider

possible discontinuities for the derivatives of u, as well as discontinuities of p and its

derivatives across �.

3.3. Correction functions

Suppose we look for a function which is discontinuous across �, and that we know the

discontinuity that this function holds across �. In this section we will show how to obtain

a discontinuous function w, which we call correction function, that approximates such

discontinuity. The idea is that any discontinuous function '̃ can be split into an approxi-

mation of its continuous and discontinuous part, '̃ = ' + w
'. For a given triangulation

Th define the set of all triangles which the interface intersects as

T
�
h

= {K 2 T : K \ � 6= �}.
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We now show how to obtain correction functions on each element K 2 T
�
h

. The

method presented here gives us a discontinuous function w defined on each of these trian-

gles, assuming that w has known jump functions Jw,0 = JwK and Jw,1 = J@nwK defined

over �K = � \K. We look for functions w± defined on K
± = K \ ⌦± such that

w(x, y) =

8
><

>:

w
�(x, y) in K

�
,

w
+(x, y) in K

+
.

K
�

K
+

�z
1
0z

1
1

z
0
0

v1 v2

v3

(a) Points considered for linear correc-
tion functions.

K
�

K
+

�

v1 v4 v2

v6

v3

v5

(b) Points considered for quadratic cor-
rection functions.

Figure 3.1. Intersection between the interface � and an arbitrary element
K and points considered for linear and quadratic (first and second order,
respectively) correction functions on the interface.

If we assume that both w
+ and w

� are linear functions, we need 6 equations to obtain

them. As shown in Figure 3.1a, for linear functions w
± we consider the points vi with

i = 1, 2, 3, where v1, v2, v3 are the nodes of K, and the points z
k

`
, ` = 0, . . . , k, defined

as the Lagrange nodes on �K for polynomials of order k = 0, 1. This function w should

satisfy the jump conditions across the interface and avoid causing discontinuities in points
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of the domain other than �. The linear system that gives such discontinuous function w is

given by

8
>>><

>>>:

w(vi) = 0, i = 1, 2, 3,

w
+(z1

`
)� w

�(z1
`
) = Jw,0(z1` ), ` = 0, 1,

@n(w+(z00)� w
�(z00)) = Jw,1(z00).

(3.6)

The first equation states that the piecewise linear Lagrange interpolator of w is zero,

such that if every jump condition is equal to zero (i.e., there is no jump across �), the

resulting correction function w should also be zero. This system must be solved for every

element K 2 T
�
h

, resulting in a piecewise linear correction function w with non-zero

values only in these elements. Since the functions are linear, we will only be able to

represent the jump conditions exactly if the interface parametrization in K and the jump

functions Jw,0 and Jw,1 are linear. However, it is possible to obtain higher order correction

functions using higher order jump conditions, which result in better approximations of the

solution.

Suppose we also know the second order jump condition Jw,2 = J@2
n
wK. It is possible to

find quadratic correction functions solving a 12⇥12 linear system on each element K 2 Th

that � intersects. Similar to the linear case, we consider the points vi, i = 1, . . . , 6, where

v1, v2, v3 are the nodes of K and v4, v5, v6 are the middle points of the edges of K. For

k = 0, 1, 2, points zk
`
, ` = 0, . . . , k, are the Lagrange nodes for polynomials of order k on

�K . The linear system we need to solve in this case is given by

8
>>>>><

>>>>>:

w(vi) = 0, i = 1, . . . , 6,

w
+(z2

`
)� w

�(z2
`
) = Jw,0(z2` ), ` = 0, 1, 2,

@n(w+(z1
`
)� w

�(z1
`
)) = Jw,1(z1` ), ` = 0, 1,

@
2
n
(w+(z00)� w

�(z00)) = Jw,2(z00).

(3.7)
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As in the linear case, the first equation states that the piecewise quadratic Lagrange inter-

polator of w is zero.

Generally, to obtain correction functions of order k0, we need to know the jumps up

to order k0 across �, J@k
n
wK = Jw,k for k = 0, . . . , k0. Taking the the points vi for i =

1, . . . , (k+1)(k+2)
2 as the Lagrange nodes in K of order k0 and points zk

`
for ` = 0, . . . , k as

the Lagrange nodes in �K of order k = 0, . . . , k0, the equations we need to solve to obtain

the corresponding correction function is given by solving the (k+1)(k+2)
2 ⇥

(k+1)(k+2)
2 linear

system
8
<

:
w(vi) = 0, i = 1, . . . , (k+1)(k+2)

2 ,

@
k
0�k

n
(w+(zk

`
)� w

�(zk
`
)) = Jw,k0�k(zk` ), ` = 0, . . . , k, k = 0, . . . , k0

.

To obtain correction functions for the steady-state interface problem (3.5) in Appendix

A.1 we use the fact that the jump condition J(ru� pI)nK = �� can be split into jump

conditions for u and p separately (Guzmán et al., 2016b). Defining the rotation matrix

R = [n ⌧ ], we express the normal and tangential components of � as �̂ = (� ·n, � ·⌧ ) =

R
>�, where ⌧ = @sX/k@sXk is the unit tangential vector to � and n = (⌧2, �⌧1) is the

unit normal vector pointing outwards ⌦�. The jump conditions are given by

JpK = ��̂1, (3.8a)

J@npK = Jf · nK � @s�̂2, (3.8b)

JuK = 0, (3.8c)

Jµ@nuK = � � �̂1n. (3.8d)

Higher order jump conditions can be achieved by obtaining derivatives of the equa-

tions (3.5) and the jump conditions (3.8) across the interface (Guzmán et al., 2016b). For
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example, as shown in appendix A.2, the second normal jump condition for u is given by

Jµ@2
n
uK = R

✓
J@npK

@sJpK/|@sX|

◆
� kJµ@nuK � JfK,

where k is the curvature of the interface �. Replacing the expressions (3.8), we obtain

Jµ@2
n
uK = R

✓Jf · nK � @s�̂2

�@s�̂1/|@sX|

◆
� k(� � �̂1n)� JfK.

Thus obtaining the second order jump condition for u. It is possible to obtain cor-

rection functions of an arbitrary order for both u and p. Taking divergence of equation

�µ�u +rp = f we get �p = r · f = f̃ , with known jumps JpK and J@npK. Since this

is a Poisson problem, we can obtain arbitrary order jump conditions for p (Guzmán et al.,

2016b). Similarly for u, we can consider the problem �µ�u = f � rp, and since we

can obtain all jumps for the right-hand side and it is stated as a Poisson problem, it is also

possible to obtain arbitrary order correction functions for u.

3.4. Corrected Finite Element Methods

Using the explicit expressions for the jump conditions of p and u and their normal

derivatives, we can obtain correction functions w
p

h
and wu

h
defined on all elements K 2

T
�
h

. We define the approximate solution (ũh, p̃h) of the Stokes problem as ũh = uh +

wu
h

and p̃h = ph + w
p

h
, such that uh and ph and their derivatives up to the order of

their respective correction functions used are continuous across the interface, while the

discontinuities are approximated by correction functions wu
h

and w
p

h
.
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We use the same Taylor-Hood spaces Vh and Qh from (2.8) of continuous piecewise

polynomial functions of order 2 and 1 respectively. The corrected problem reads as fol-

lows. Find (uh, ph,�h) 2 Vh ⇥Qh ⇥ R such that

(µruh,rvh)⌦ � (ph,r · vh)⌦ = (f ,vh)⌦ � h�,vhi�

� (µrwu
h
,rvh)⌦ + (wp

h
,r · vh)⌦, (3.9a)

�(qh,r · uh)⌦ + �h(qh, 1)⌦ = (qh,r ·wu
h
)⌦, (3.9b)

(ph, 1)⌦ = �(wp

h
, 1)⌦, (3.9c)

for all vh 2 Vh and qh 2 Qh.

If we wanted to approximate the solution without considering correction functions,

for a given triangulation Th we would be approximating a non-smooth velocity u and a

discontinuous pressure p by continuous piecewise smooth functions uh and ph. When

correction functions are used, we approximate the continuous and discontinuous part of

the solution simultaneously, and as we will see in Sections 3.5 and 3.6 this allows us to

recover optimal convergence rates for the finite element spaces used.

The main advantage of this approach is that the left-hand side of equations (3.9) stays

the same for a fixed domain ⌦, independently of the function � or the position of the

interface �. This allows us to work efficiently with moving-interface problems, because

the only terms we need to recalculate are the ones containing � or correction functions,

which are non-zero only in the elements K 2 T
�
h

and are not involved in the matrix of the

linear system.

3.5. Analysis of the corrected method

The correction functions for finite elements were first introduced in (Guzmán et al.,

2016a) for the Poisson interface problem, using continuous piecewise linear elements
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and introducing corrections based on computation on edges intersecting the interface. In

(Guzmán et al., 2016b) the authors generalized this idea to higher order polynomial spaces

for Poisson problems and Stokes interface problems. More specifically, the authors devel-

oped the correction function under the following assumptions on the space:

A1. Vh and Qh are a pair of inf-sup stables sub-spaces, with Vh ⇢ [H1
0 (⌦)]

2

A2. We let k � 1 as the maximum integer such that

V k

h
:= {v 2 C(⌦) \ [H1

0 (⌦)]
2 : v|K 2 Pk(K), 8K 2 Th} ✓ Vh

and, if Qh contains the discontinuous pressure space of degree k � 1 we let

Q
k�1
h

:= {q 2 L
2
0(⌦) : q|K 2 P

k�1(K), 8K 2 Th} ⇢ Qh

otherwise

Q
k�1
h

:= {q 2 L
2
0(⌦) \ C(⌦) : q|K 2 P

k�1(K), 8K 2 Th} ⇢ Qh

THEOREM 3. Let (u, p) be solution of (3.5) and assume that u±
2 [Ck+1(⌦±)]2 and

p
±

2 C
k(⌦±). Let Vh and Mh be the finite element spaces satisfying assumptions A1

and A2 and consider the definitions above for k, Ih and Jh. Let (uh, ph) 2 Vh ⇥Mh be

solution of (3.9). Then, there exists a constant C > 0, such that

kr(Ih(u)� uh)kL1(⌦) + kJh(p)� phkL1(⌦)  Ch
k
�
ku+

kCk+1(⌦+) + ku�
kCk+1(⌦�)

+kp
+
kCk(⌦+) + kp

�
kCk(⌦�)

�

and

kIh(u)� uhkL1(⌦)  Ch
k+1 log(1/k)

�
ku+

kCk+1(⌦+) + ku�
kCk+1(⌦�)

�

where Ih and Jh are the piecewise polynomial Lagrange interpolant operator onto V k

h

and Q
k�1
h

(or the L
2

projection operator in the discontinuous case), k · kCk(⌦±) is the
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maximum of the L
1(⌦±) norms of all derivatives of order k, and the constant C depends

on the shape-regularity of the triangulation, k, and the regularity of �.

3.6. Numerical experiments

In this section we will show numerical estimates of the convergence rate of the cor-

rected finite element method (3.9). We will work on ⌦ = (�1, 1)2 and we will consider a

circular interface � =
�

1
3(cos s, sin s)

>
, s 2 [0, 2⇡]

 
. As we can see in Figure 3.2, for the

triangulation of the domain we divide ⌦ in N ⇥N squares, and then divide each of them

into two triangles. The top-right and bottom-left squares are divided into four triangles

in order to fulfill the conditions of Lemma 1. We also see that from the parametrization

of � we are able to find all intersections between the interface and the triangulation. This

allows us to obtain correction functions in every element K 2 T
�
h

.

Consider an exact solution of problem (3.5) with µ = 1 given by

u =

✓
u1

u2

◆
, u1 =

8
<

:
3y, r  1/3

4y
3r � y, r > 1/3

, u2 =

8
<

:
�3x, r  1/3

x�
4x
3r , r > 1/3

(3.10)

p =

8
<

:
4r2(4� ⇡

9 ), r  1/3

�
2⇡
81 , r > 1/3

, (3.11)

where r =
p

x2 + y2. We can easily check that r · u = 0 and p integrates 0. The jump

conditions are given by

Ju1K = 0, J@nu1K = �4 sin s, J@2
n
u1K = 0,

Ju2K = 0, J@nu2K = 4 cos s, J@2
n
u2K = 0,

JpK = �
2⇡

81
�

⇣
4�

⇡

9

⌘ 4

9
, J@npK = �

⇣
4�

⇡

9

⌘ 8

3
.
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Figure 3.2. Example of the triangulation of the domain ⌦ = (�1, 1)2 with
N = 8 and the intersections with a circular interface �.

The right-hand side is given by

f =

✓
f1

f2

◆
, f1 =

8
<

:
8(4� ⇡/9)x, r  1/3

4y/3r3, r > 1/3
, f2 =

8
<

:
8(4� ⇡/9)y, r  1/3

�4x/3r3, r > 1/3

The density force � is determined by the jumps of @nu and p:

� = J(ru� pI)nK = J@nuK � JpKn =

✓
�4 sin s

4 cos s

◆
+

✓
2⇡

81
+
⇣
4�

⇡

9

⌘ 4

9

◆✓
cos s

sin s

◆
.
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Table 3.1. L
2 error for u, ru and p and their estimated order of conver-

gence (e.o.c.) without using correcting functions in a circular interface with
h = 2

p
2/N .

uh ruh ph

N error e.o.c. error e.o.c. error e.o.c.

4 3.07e-02 � 4.56e-01 � 1.07e-01 �

8 9.77e-03 1.65 2.10e-01 1.12 1.47e-01 -0.45
16 3.28e-03 1.57 1.12e-01 0.91 9.50e-02 0.63
32 1.27e-03 1.37 8.15e-02 0.46 7.26e-02 0.39
64 4.35e-04 1.55 5.76e-02 0.50 5.19e-02 0.48
128 1.53e-04 1.50 4.30e-02 0.42 3.89e-02 0.42

Table 3.2. L
2 error for u, ru and p and their estimated order of con-

vergence (e.o.c.) using correcting functions in a circular interface with
h = 2

p
2/N .

uh ruh ph

N error e.o.c. error e.o.c. error e.o.c.

4 3.44e-02 � 4.72e-01 � 1.62e-01 �

8 4.97e-03 2.79 1.37e-01 1.78 4.97e-02 1.71
16 6.82e-04 2.86 4.26e-02 1.69 1.17e-02 2.09
32 9.60e-05 2.83 1.18e-02 1.85 3.31e-03 1.82
64 1.25e-05 2.95 3.21e-03 1.88 8.56e-04 1.95
128 1.62e-06 2.94 8.39e-04 1.94 2.19e-04 1.97

We now compute the solution of problem (3.9). We can see from Tables 3.1 and 3.2

that the presence of correction functions wu
h

and w
p

h
not only give a much better approx-

imation of the solution, but it also recovers the optimal convergence rate of the P2
� P

1

elements for a Stokes flow without an interface �, convergence rate of 3 for u and 2 for

ru and p.

In Figure 3.3 we show the approximation of the exact velocity (3.10) by using the

corrected finite elements method. We can see that inside the circle the velocity changes
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Figure 3.3. Magnitude and vector field of uh, an approximation of the ve-
locity (3.10) of the corrected finite element method using N = 128.

linearly and that it decays with r when far from the interface. It is also possible to see that

the solution is continuous across �.

To understand how the correction functions change the behavior of the solution, it is

easier to show how the pressure changes since it is discontinuous across the interface. In

Figure 3.4 we can see that both corrected and non-corrected numerical schemes seem to

give a good approximation of the presssure (3.11), which is quadratic in ⌦� and constant

in ⌦+. We can see that when using correction functions we are able to reproduce the

discontinuities on the solution. However, because the solution given by the non-corrected

scheme is continuous, the only way that this method can adapt to the local force � is by

considering more triangles near �. We also show the absolute error of the pressure for

each scheme, and we can clearly see that the non-corrected scheme has a bigger error near

the interface because it is not able to work with discontinuous solutions.
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(a) Approximation of pressure with correc-
tion functions.

(b) Approximation of pressure without cor-
rection functions.

(c) Absolute error of pressure with correc-
tion functions.

(d) Absolute error of pressure without cor-
rection functions.

Figure 3.4. Approximation and absolute error of the pressure of the prob-
lem with N = 128, for corrected and non-corrected schemes.

Looking at the error of the corrected method in Figure 3.4, we can see that even though

we are using correction functions for p, there still is more error across the interface � than

in other parts of the domain. This is because we are only considering linear correction

functions for p, but the actual jump of the solution is quadratic.
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4. MOVING INTERFACE PROBLEM

Because the corrected finite element method does not need the interface to match the

triangulation of the domain, it is easy to extend our method to moving-interface problems.

We provide energy estimates for the standard and corrected method and numerically test

the stability of our method for different initial settings of �.

4.1. Strong formulation

In this section we consider a moving interface Stokes problem. For a given position

of the interface, from Section 3 we already know how to approximate the fluid’s velocity

field and pressure by considering an external force caused by the interface. Since the fluid

cannot pass through the interface, for the steady-state problem we imposed a continuity

condition of u across the interface, JuK = 0. In the moving interface problem we must

also consider a no-slip condition

@tX(s, t) = u(X(s, t), t), (4.1)

such that the movement of a point in the interface at a time t is given by the velocity field

at that point. For this problem we will not only look for the velocity and pressure, but also

we are interested in how the interface changes in time, i.e., we also look for a function

X(s, t) which describes the interface at any time t. Physically, for any s 2 [0, 2⇡] we can

interpret the point X(s, t) as the position of the original material point X(s, 0) at a given

time t.

Because the interface is moving constantly, the local force caused by the interface is

also changing. As we saw in Section 1.3, by considering a generalized Hooke’s law to

model the boundary tension T = �(k@sXk) and considering the unit tanget vector to the
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interface ⌧ = @sX/k@sXk, then

�(s, t) =
@s(�(k@sXk)⌧ )

k@sXk
.

If we assume � to be proportional to k@sXk, then the density force on the interface would

be given by

�(s, t) = � ·
@
2
s
X

k@sXk
,

where  > 0 and the negative sign appears such that the energy of the system dissipates.

We want to solve for all t � 0 the velocity u(·, t), pressure p(·, t) and the position of

the interface X(·, t) of the moving interface problem

�µ�u+rp = f in ⌦\�, (4.2a)

r · u = 0 in ⌦\�, (4.2b)

u = 0 on @⌦, (4.2c)

JuK = 0 on �, (4.2d)

J(ru� pI)nK = � ·
@
2
s
X

k@sXk
= � on �, (4.2e)

Z

⌦

p dx = 0, (4.2f)

@tX = u(X, t), (4.2g)

X(·, 0) = X0(·). on �, (4.2h)

where the initial position of the interface X0(·) is known. This is a simplified model of

the time-dependant Stokes problem where we omitted the @tu term in the first equation.

We discuss the additional challenges that the time derivative presents in Section 5.

Following the same procedure as in the steady-state problem, we can write the weak

formulation of problem (4.2) as follows. For all t � 0 find (u(·, t), p(·, t),�(t)) 2
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[H1
0 (⌦)]

2
⇥ L

2(⌦)⇥ R such that

(µru,rv)⌦ � (p,r · v)⌦ = (f ,v)⌦ � h�,vi� 8v 2 [H1
0 (⌦)]

2
, (4.3a)

�(q,r · u)⌦ + �(q, 1)⌦ = 0 8q 2 L
2(⌦), (4.3b)

⌧(p, 1)⌦ = 0, 8⌧ 2 R (4.3c)

JuK = 0, (4.3d)

@tX = u(X, t), (4.3e)

X(·, 0) = X0(·). (4.3f)

We introduce the elastic energy of the system

E(t) =


2
k@sXk

2
L2(�).

Taking f = 0 and testing equations (4.3) with v = u and q = p, we can see that

�(µru,ru)⌦ =

Z

�

� · u dS = �

Z 2⇡

0

@
2
s
X · @tX ds

= 

Z 2⇡

0

@sX · @t@sX ds =
d
dt

✓


2

Z 2⇡

0

k@sXk
2 ds

◆
=

d
dt
E ,

and thus we obtain the dissipation of the energy of the system

d
dt
E = �µkruk2⌦. (4.4)
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Using that r ·u = 0 and that the interface is closed, we also note that there is conser-

vation of area:

d
dt
|⌦�

| =
1

2

d
dt

Z 2⇡

0

X · nk@sXk ds =
1

2

d
dt

Z 2⇡

0

✓
x

y

◆
· @s

✓
y

�x

◆
ds

=
1

2

✓Z 2⇡

0

@t

✓
x

y

◆
· @s

✓
y

�x

◆
ds+

Z 2⇡

0

✓
x

y

◆
· @t@s

✓
y

�x

◆
ds
◆

=
1

2

✓Z 2⇡

0

@t

✓
x

y

◆
· @s

✓
y

�x

◆
ds�

Z 2⇡

0

@s

✓
x

y

◆
· @t

✓
y

�x

◆
ds
◆

=

Z 2⇡

0

@t

✓
x

y

◆
· @s

✓
y

�x

◆
ds =

Z

�

u · n dS =

Z

⌦�
r · u dx

= 0

4.2. Semi-discrete scheme

To solve this problem we may consider a semi-discrete scheme, where we have a

triangulation Th of the domain ⌦. Using the same spaces as in the steady-state problem,

we multiply the equations (4.2) by test functions vh 2 Vh and qh 2 Qh. For every t � 0

we look for functions uh(·, t) ⇥ qh(·, t) ⇥ �(t) 2 Vh ⇥ Qh ⇥ R and a parametrization of

the interface X(·, t) such that

(µruh,rvh)⌦ � (ph,r · vh)⌦ = (f ,vh)⌦ � h�,vhi� 8vh 2 Vh, (4.5a)

�(qh,r · uh)⌦ + �(qh, 1)⌦ = 0 8qh 2 Qh, (4.5b)

(ph, 1)⌦ = 0, (4.5c)

@tX(·, t) = uh(X(·, t), t), (4.5d)

X(·, 0) = X0(·). (4.5e)
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If we also consider correction functions for u and p, the corrected semi-discrete scheme

is given by

(µruh,rvh)⌦ � (ph,r · vh)⌦ = (f ,vh)⌦ � h�,vhi�

� (µrwu
h
,rvh)⌦ + (wp

h
,r · vh)⌦, (4.6a)

�(qh,r · uh)⌦ + �h(qh, 1)⌦ = (qh,r ·wu
h
)⌦, (4.6b)

(ph, 1)⌦ = �(wp

h
, 1)⌦, (4.6c)

@tX(·, t) = uh(X(·, t), t) + {{wu
h
(X(·, t), t)}}, (4.6d)

X(·, 0) = X0(·), (4.6e)

for all vh 2 Vh and qh 2 Qh. Here, {{'}} = ('++'
�)|�

2 is the average value of ' across

�. We use the average value of the solution across � to evolve the interface because even

though the constraint JuK = 0 is considered for the correction functions, we can only

guarantee that it holds for a few amount of points depending of the linear system that is

solved for obtaining them, e.g. at points v4 and v5 from equations (3.6) or at points v7, v8

and v9 from equations (3.7).

4.3. Fully-discrete scheme

For the discrete domain and time problem we will use a quasi-static method to approx-

imate the solution of (4.2). We consider evenly separated time intervals tn = n ·�t. At a

given time tn we may assume that we know the parametrization of the interface X(s, tn) =

Xn(s). Using this, at a given time tn we are looking for (un

h
, p

n

h
,�

n

h
) 2 Vh⇥Qh⇥R such

that

(µrun

h
,rvh)⌦ � (pn

h
,r · vh)⌦ = (f ,vh)⌦ � h�n

,vhi� 8vh 2 Vh, (4.7a)

�(qh,r · un

h
)⌦ + �

n

h
(qh, 1)⌦ = 0 8qh 2 Qh, (4.7b)

(pn
h
, 1)⌦ = 0, (4.7c)
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where �n =  · @ssXn
/k@sXn

k. After solving these equations, we evolve the interface

by using explicit ODE methods for the equation (4.1), for example, by using an explicit

forward Euler method
Xn+1

�Xn

�t
= un

h
(Xn),

thus obtaining the new parametrization Xn+1 which we then use to solve the Stokes equa-

tions for the next time step.

Even though the no-slip condition (4.1) has the form of a simple ODE equation where

implicit methods can be used, we decided to use explicit methods for evolving the interface

because we do not have direct access to compute the right-hand side for any values of t.

This is because when solving equations (4.7) we only obtain an approximation of u(x, tn).

If we want to use an implicit method we would need to know how un+1
h

looks, which is

not possible to obtain with precision before knowing the density force �n+1, for which we

would need the parametrization of the interface. However, it is possible to approximate a

solution by carrying out an iterative scheme to represent the interface at a time tn+1 (Tu &

Peskin, 1992).

If we consider correction functions for un

h
and p

n

h
in every time step, the corrected

fully-discrete problem is given by

(µrun

h
,rvh)⌦ � (pn

h
,r · vh)⌦ = (f ,vh)⌦ � h�n

,vhi�

� (µrwu,n
h

,rvh)⌦ + (wp,n

h
,r · vh)⌦ (4.8a)

�(qh,r · un

h
)⌦ + �

n

h
(qh, 1)⌦ = (qh,r ·wu,n

h
)⌦, (4.8b)

(pn
h
, 1)⌦ = �(wp,n

h
, 1)⌦, (4.8c)

for all vh 2 Vh and qh 2 Qh, and as in the semi-discrete scheme, the interface at a time

tn+1 is obtained by using an explicit ODE method like forward Euler,

Xn+1
�Xn

�t
= un

h
(Xn) + {{wu,n

h
(Xn)}},
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thus obtaining the new parametrization Xn+1 which we then use to solve the corrected

problem for the next time step. Similarly as before, we decided to use explicit methods for

evolving the interface since after solving equations (4.8) we only obtain un

h
and we don’t

know how the right-hand side looks like at a time tn+1, i.e. we don’t know how to com-

pute the correction terms or the density force �n+1, without knowing the parametrization

Xn+1.

Note that the left-hand side of equations (4.7) and (4.8) has always the same form,

while the right-hand side only changes depending on the position of the interface � at a

specific time. Because of this, the linear system that results from both problems always

has the same matrix, which allows us to obtain the solution at every time step much faster

than in other methods where the mesh or the finite element spaces Vh and Qh are modified.

It is possible to obtain a factorization of the matrix only once (e.g. LU factorization) and

use it to efficiently solve the linear system for a particular right-hand side at every time

step.

4.4. Energy estimates

Throughout this section we will assume f = 0 to find energy estimates for each

method, corrected and non corrected semi- and fully-discrete schemes, to determine theo-

retically the stability of each method. Recall that for the continuous problem, we have the

dissipation condition (4.4).

4.4.1. Non corrected schemes

For the non-corrected semi-discrete scheme, we can obtain the dissipation of the en-

ergy by following the same procedure as in the continuous case by testing equations (4.5)
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with functions vh = uh and qh = ph, obtaining

�(µruh,ruh)⌦ =

Z

�

� · uh dS = �

Z 2⇡

0

@
2
s
X · @tX ds

= 

Z 2⇡

0

@sX · @t@sX ds = @t

✓


2

Z 2⇡

0

k@sXk
2 ds

◆
= @tE ,

thus obtaining the energy estimate

@tE = �µkruhk
2
⌦.

Similarly for the non-corrected fully-discrete problem, testing equations (4.7) with vh =

un

h
and qh = p

n

h
we obtain

�(µrun

h
,run

h
)⌦ =

Z

�

�n
· un

h
dS = �

Z 2⇡

0

@
2
s
Xn

·

✓
Xn+1

�Xn

�t

◆
ds

=


�t

Z 2⇡

0

@sX
n
·
�
@sX

n+1
� @sX

n
�

ds

=


2�t
(k@sX

n+1
k
2
L2(�) � k@sX

n
k
2
L2(�) � k@sX

n+1
� @sX

n
k
2
L2(�)),

thus obtaining the energy estimate

E
n+1 = E

n
� µ�tkrun

h
k
2
⌦ +



2
k@sX

n+1
� @sX

n
k
2
L2(�).

Because of the last term, the non-corrected fully-discrete scheme is not necessar-

ily stable. If a backward Euler method (implicit) was used to evolve the interface, i.e.
Xn+1�Xn

�t
= un+1

h
(X), then it is easy to prove that in this case

E
n+1 = E

n
� µ�tkrun+1

h
k
2
⌦ �



2
k@sX

n+1
� @sX

n
k
2
L2(�),

which proves to be more stable. However we will only show numerical experiments for

explicit methods.
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4.4.2. Corrected schemes

We now test the corrected semi-discrete equations (4.6) with vh = uh and qh = ph.

From the first equation we obtain

(µr(uh +wu
h
),ruh)⌦ � (ph + w

p

h
,r · uh)⌦ = �h�,uhi�,

= �h�,uh + {{wu
h
}}i�

+ h�, {{wu
h
}}i�. (4.9)

Recalling that the solution must give �h = 0, the second equation becomes (ph,r·uh)⌦ =

�(ph,r ·wu
h
). Also note that

(µr(uh +wu
h
),ruh)⌦ =

µ

2

�
kr(uh +wu

h
)k2⌦ + kruhk

2
⌦ � krwu

h
k
2
⌦

�
.

Using this, we can write (4.9) as

h�,uh + {wu
h
}i� = µ(r(uh +wu

h
),ruh)⌦

+ (ph,r · uh)⌦ + (wp

h
,r · uh) + h�, {wu

h
}i�

=�
µ

2

�
kr(uh +wu

h
)k2⌦ + kruhk

2
⌦

�
+

µ

2
krwu

h
k
2
⌦

� (ph,r ·wu
h
)⌦ + (wp

h
,r · uh) + h�, {{wu

h
}}i�.

The same result can be obtained for the fully-discrete scheme, where the only thing that

changes is that functions have an additional superindex (·)n depending on the time tn that

is being solved.

Following the same procedure as in the non-corrected energy estimates, we have that

for the semi-discrete scheme

@tE =�
µ

2

�
kr(uh +wu

h
)k2⌦ + kruhk

2
⌦

�
+

µ

2
krwu

h
k
2
⌦

� (ph,r ·wu
h
)⌦ + (wp

h
,r · uh) + h�, {{wu

h
}}i�,
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while for the fully discrete scheme

E
n+1 = E

n +�t

⇣
�

µ

2

�
kr(uh +wu

h
)k2⌦ + kruhk

2
⌦

�
+

µ

2
krwu

h
k
2
⌦

� (ph,r ·wu
h
)⌦ + (wp

h
,r · uh) + h�, {{wu

h
}}i�

⌘

+


2
k@sX

n+1
� @sX

n
k
2
L2(�)

4.5. Numerical experiments

In this section we will show how the fully-discrete schemes evolve the interface for

different initial settings X0 = X(·, 0) and a fixed time step �t. To obtain a parametriza-

tion of the interface at a time tn = n�t for each n � 0, we take M sample points across

the initial interface, Xn

0 , . . . ,X
n

M�1, and approximate the interface by its Fourier interpo-

lation as shown in Section 2.4. We then use explicit methods for evolving the interface,

thus obtaining the new position of the sample points Xn+1
0 , . . . ,Xn+1

M�1 which allows us

to obtain a parametrization of the interface in tn+1. Since we want to test numerically

the stability of our method we will assume f = 0. Throughout this section we consider

⌦ = (�1, 1)2 with the same triangulation as in Section 3.6,  = 50 and µ = 1. We take

M = 16 sample points on the interface at any time tn.

4.5.1. Validation in circle

In the particular case where X0(s) = r(cos s, sin s)>, we can easily verify that the

solution of the problem is u = 0 and p = constant in ⌦± with jump JpK = � and
R
⌦ p dx = 0. Since u = 0, the interface does not move and thus the energy of the system

should be constant. In Figure 4.1 we see that in this case the corrected method seems to

be much more stable than the non-corrected one. When considering correction functions,

the corrected method is able to assign all discontinuities to the pressure, thus obtaining

a much better approximation of the solution u and maintaining a steady interface. We
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(a) Evolution of the energy of the system for
a circular interface.

(b) Evolution of the area of ⌦� for a circular
interface.

Figure 4.1. Evolution of area and energy of the homogeneous problem for
an initial circular interface with N = 32 and �t = 0.01.

can see that the energy of the system and area of the interior region for the non-corrected

scheme constantly decreases.

As the circle is the stability point of the Stokes equations, when the initial configuration

of the interface is not a circle then any homogeneous problem should give a solution (u, p)

that moves the interface towards a circle. We will now see how such solution looks like

for two different initial configurations of �.

4.5.2. Ellipse

For this example we consider an initial interface given by the ellipse equation

X0(s) =

✓2
3 cos s
1
3 sin s

◆
, s 2 [0, 2⇡].

In Figure 4.2 we see how the energy and the area of ⌦� change in time in both cor-

rected and non-corrected schemes. We can see that the energy of both systems decay in

the first iterations, which makes sense since the initial interface is not a circle. However,
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the corrected method seems to converge to a solution since the quantities E and |⌦�
| tend

to stabilize, while the non-corrected scheme does not.

(a) Evolution of the energy of the system for
an elliptic interface.

(b) Evolution of the area of ⌦� for an elliptic
interface.

Figure 4.2. Evolution of area and energy of the homogeneous problem for
an initial elliptic interface with N = 32 and �t = 0.01.

We also see that a small area |⌦�
| is lost during the first iterations. This is proba-

bly due to the fact that to integrate the correction functions in a triangle K we use an

isoparametric interpolation of the interface, where we approximate the segment � \ K

by a polynomial of the same order of uh, in this case, by a quadratic polynomial. Thus

we are only maintaining the area of a piecewise-quadratic interpolation of the interface,

which can be improved by considering a higher order representation of the interface in

each triangle.

In Figure 4.3 we see how the elliptic interface moves according to the velocity field

while slowly transforming into a circle. The fact that the interface converges to a circle

matches with the information shown in Figures 4.2 and 4.1 for corrected schemes, since

the the energy of the system and the area of ⌦� converge to a constant value.
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(a) t = 0. (b) t = 0.06.

(c) t = 0.12. (d) t = 0.18.

(e) t = 0.24. (f) t = 0.30.

Figure 4.3. Evolution of the velocity field and the interface for elliptic
shaped initial interface problem, fully-discrete scheme. Approximation
given by a triangulation with N = 32 and �t = 0.01.
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4.5.3. Heart

For this example we consider an initial interface given by the heart equation

X0(s) =
1

20

✓
(7(1� sin s) + 3(1� cos s)) cos s

(3(1� sin s) + 7(1� cos s)) sin s

◆
+

✓
0.12

0.12

◆
, s 2 [0, 2⇡].

In Figure 4.4 we see how the energy and the area of ⌦� change in time in both cor-

rected and non-corrected schemes. We can see that the energy of both systems decay in

the first iterations, which makes sense since the initial interface is not a circle. However,

the corrected method seems to converge to a solution since the quantities E and |⌦�
| tend

to stabilize, while the non-corrected scheme does not.

(a) Evolution of the energy of the system for
a heart-shaped interface.

(b) Evolution of the area of ⌦� for a heart-
shaped interface.

Figure 4.4. Evolution of area and energy of the homogeneous problem for
an initial heart-shaped interface with N = 32 and �t = 0.01.

We can see that a small area |⌦�
| is gained during the first iterations. Similarly as be-

fore, this is probably due to the fact that to integrate the correction functions in a triangle

K we are approximating the parametrization of the segment � \ K by using an isopara-

metric interpolation, where the order of the interpolation curve matches the order of uh, a

piecewise quadratic polynomial. The fact that some area is gained instead of lost like in
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the elliptic interface case is probably caused by the non-convexity of the interior domain

⌦�.

In Figure 4.5 we see how the heart shaped interface moves according to the velocity

field while slowly transforming into a circle. Similar as the elliptic case, the fact that the

interface converges to a circle matches with the information shown in Figures 4.4 and 4.1

for corrected schemes, since the the energy of the system and the area of ⌦� converge to

a constant value. This proves that the corrected method is stable for non-convex interior

domains ⌦�.
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(a) t = 0. (b) t = 0.06.

(c) t = 0.12. (d) t = 0.18.

(e) t = 0.24. (f) t = 0.30.

Figure 4.5. Evolution of the velocity field and the interface for heart shaped
initial interface problem, fully-discrete scheme. Approximation given by a
triangulation with N = 32 and �t = 0.01.
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5. CONCLUSIONS AND FUTURE WORK

In Section 3 we showed a numerical method to solve the steady-state Stokes equations

with an elastic interface immersed in the domain ⌦. The approximate solutions uh 2 Vh

and ph 2 Qh were considered to be piecewise polynomial in P2 and P
1 respectively,

with polynomial correction functions of the same order. We obtained that in this case, the

approximate solution uh converges with order 3, while ruh and ph converge with order

2. This matches the optimal convergence rate of the method for the standard steady-state

Stokes problem (2.5) on the same spaces Vh and Qh.

In Section 4 we presented a fully-discrete scheme to solve a moving interface Stokes

problem. The corrected method proved to be more stable than the non-corrected method

by maintaining some physical quantities like the energy of the system and the conservation

of mass at each side of the interface for the steady-state problem (circular interface), and

giving better estimations of the evolution of those quantities for different initial configura-

tions of the interface (convex and non-convex domains ⌦� enclosed by �).

As we can see from the numerical experiments of moving interface problems in Fig-

ures 4.3 and 4.5, the points across the interface are constantly moving. This movement

is not restricted to a few triangles, and the interface can pass through any triangle K in

every iteration. If we were restricted to use meshes aligned with the interface, it would

be necessary to obtain a new triangulation of the domain and recalculate the matrix of

the linear system at every time step. Since our method considers a fixed triangulation the

matrix of the linear system stays always the same for every time step, so we only need to

obtain its inverse once (or any factorization that allows us to efficiently solve the linear

system) independent of the time step we are trying to solve.

As we can see from Section 3.3, the correction function for uh depends on the known

jump condititons JuK, Jµ@nuK and Jµ@nnuK. Since we only worked with constant values

of µ, dividing by µ at both sides of the jump conditions result in the jump conditions J@nuK
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and J@nnuK, which we can use to obtain the correction function for u. If different fluids

were considered on each side of the interface, then the viscosity µ would not be constant

across the interface, and different methods should be used to obtain precisely the jump

conditions for the derivative of u. To illustrate this, consider the case where all jump con-

ditions JuK, Jµ@nuK and Jµ@nnuK are equal to zero. Using the proposed method to obtain

the correction function for u would result in a homogeneous linear system, which can only

result in a correction function equal to zero. However, since Jµ@nuK = 0 and JµK 6= 0,

then @nµ should be discontinuous across the interface. Thus, additional methods need to

be used in order to obtain the correction functions in this case where µ is discontinuous

across �.

To evolve the interface we only provided energy estimates and showed numerical ex-

periments from using Euler’s method. The stability of the method might be improved by

using higher order ODE methods like explicit Runge-Kutta schemes from Section 2.5.

Three-dimensional problems may be studied using the same approach as we did on

this thesis. All convergence proofs and energy estimates are valid in higher dimensions,

however, the fact that in R3 the interface is represented by a surface suggests that different

interpolation methods must be used to represent it, and finding the intersection between

the interface and the faces of each element becomes a nontrivial task. Using level-set

representations of the curve may be a better approach for this problem.

In the future, we would like to extend this method for a non-stationary Stokes flow

⇢@tu � µ�u + rp = f . This presents an additional challenge, because for any ap-

proximation of the time derivative, for example @tu(·, tn) ⇡
u(·, tn+1)�u(·, tn)

�t
, correction

functions must be considered for the velocity at different time steps simultaneously. The

Stokes problem is still linear in u and p, and thus the correction functions method can still

be used to efficiently solve the resulting linear system.
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Finally, we would like to use our method to approximate the solution of the incom-

pressible Navier-Stokes equations ⇢(@tu + u · ru) � µ�u + rp = f . Because of the

non linearity of the Navier-Stokes problem, the matrix of the linear system will inevitably

change for different configurations of the interface but only a small number of coordinates

would need to be updated.
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A. FIRST AND SECOND ORDER JUMP CONDITIONS

We show how to obtain jump conditions for the solution (p,u) of the Stokes problem

across an elastic interface � = {X(s) = (x(s), y(s))>, s 2 [0, 2⇡]}. We assume that the

parametrization of � and all its derivatives are periodic and continuous on [0, 2⇡].

A.1. First order jumps

To split the jump condition J(µru� pI)nK = � into separate jump conditions Jµ@nuK,

JpK and J@npK, we follow the procedure shown in (Guzmán et al., 2016b).

We define for ✏ > 0 the set ⌦✏ = {x 2 ⌦ : dist(x,�) < ✏}, where dist is the standard

distance function. We also denote �±
✏
= @⌦✏ \ ⌦±.

We consider the integral form of the elastic interface Stokes Flow, ��u+rp = f+B,

where B(x) =
R
� �(s)�(x �X(s)) dS. Taking divergence, multiplying by an arbitrary

� 2 C
2 of compact support in ⌦✏ and integrating we obtain

Z

⌦✏

r ·rp� dx =

Z

⌦✏

r · f� dx+

Z

⌦✏

r ·B� dx,

=

Z

⌦✏

r · f� dx�

Z

�

� ·r� dS.

For the left-hand side we integrate by parts twice obtaining
Z

⌦✏

r ·rp� dx =

Z

�±
✏

rp · n� dS �

Z

�±
✏

r� · np dS +

Z

⌦✏

pr ·r� dx.

By the definitions of �±
✏

we can fix the normal vectors to be the normal vector to � pointing

outwards ⌦�. Taking limit as ✏! 0 we obtain

lim
✏!0

Z

⌦✏

r ·rp� dx = �

Z

�

J@npK� dS +

Z

�

@n�JpK dS.
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Similarly for the right-hand side, integrating the first integral by parts and taking limit we

see that

lim
✏!0

Z

⌦✏

r · f� dx = �

Z

�

Jf · nK� dS.

On the other hand, we need to write the second integral in terms of the normal and tan-

gential derivatives. We do this by using the rotation matrix R = [n ⌧ ], where n and ⌧

are the unit normal and tangent vectors, respectively. Using this matrix we can easily see

that rx,y' = Rrn,⌧' for any differentiable function ' (A.3). Defining �̂ = R
>� as the

normal and tangential components of �, we obtain
Z

�

� ·r� dS =

Z

�

� · (Rrn,⌧�) dS,

=

Z

�

�̂ ·rn,⌧� dS,

=

Z

�

�̂1@n� dS +

Z

�

�̂2@⌧� dS,

=

Z

�

�̂1@n� dS �

Z

�

@s�̂2� dS,

where on the last equality we integrated by parts and used the fact that � is closed and

smooth. Putting all together, we have shown that

�

Z

�

J@npK� dS +

Z

�

JpK@n� dS = �

Z

�

Jf · nK� dS �

Z

�

�̂1@n� dS +

Z

�

@s�̂2� dS.

Testing with adequate functions �, we conclude that

JpK = ��̂1, J@npK = Jf · nK � @s�̂2.

Replacing this in J(ru� pI)nK = �, we obtain the normal jump condition for u,

Jµ@nuK = � + JpKn = � � �̂1n.
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A.2. Second order jumps

Let (p,u) be a solution of �µ�u + rp = f on ⌦± with known first order jump

conditions, JpK = Jp,0, J@npK = Jp,1, JuK = 0 and Jµ@nuK = Ju,1, and let ✓ be the angle

from the positive X axis to the unit normal vector n. First we note that for any function '

defined on ⌦ with continuous second order partial derivatives,

@x' = @n' cos ✓ � @⌧' sin ✓, (A.1a)

@y' = @n' sin ✓ + @⌧' cos ✓, (A.1b)

@
2
x
' = @

2
n
' cos2 ✓ � 2@n@⌧' cos ✓ sin ✓ + @

2
⌧
' sin2

✓, (A.1c)

@
2
y
' = @

2
n
' sin2

✓ + 2@n@⌧' cos ✓ sin ✓ + @
2
⌧
' cos2 ✓, (A.1d)

@x@y' = (@2
n
'� @

2
⌧
') cos ✓ sin ✓ + @n@⌧'(cos

2
✓ � sin2

✓). (A.1e)

A tangent vector to � is given by ⌧ = (x0
, y

0)>, so the normal vector is given by

n = (y0, �x
0). This gives a relation between ✓ and the parametrization of the interface:

cos ✓ =
y
0

k@sXk
, � sin ✓ =

x
0

k@sXk
. (A.2)

Using this, the rotation matrix R can be written as

R = [n ⌧ ] =
1

k@sXk

2

4 y
0

x
0

�x
0

y
0

3

5 =

2

4cos ✓ � sin ✓

sin ✓ cos ✓

3

5 , (A.3)

such that rx,y(·) = Rrn,⌧ (·).
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To obtain second order jump conditions consider first the continuity of the velocity

and obtain its first and second derivative on the interface using the chain rule:

0 = JuK, (A.4a)

@s( ) =) 0 = J@xuKx0 + J@yuKy0, (A.4b)

@s( ) =) 0 = J@2
x
uK(x0)2 + 2J@x@yuKx0

y
0 + J@2

y
uK(y0)2 + J@xuKx00 + J@yuKy00, (A.4c)

where all partial derivatives were taken on each coordinate separately. Replacing all

derivatives on x and y by normal and tangential derivatives using expressions (A.1) and

changing the trigonometric functions for the identities (A.2), we can (A.4b) as

0 = (J@nuK cos ✓ � J@⌧uK sin ✓)(� sin ✓) + (J@nuK sin ✓ + J@⌧uK cos ✓)(cos ✓),

= J@⌧uK.

As for (A.4c), dividing by k@sXk
2 and replacing x

0 and y
0 using (A.2) we obtain that

�
J@xuKx00 + J@yuKy00

k@sXk2
= J@2

x
uK sin2

✓ � 2J@x@yuK cos ✓ sin ✓ + J@2
y
uK cos2 ✓.

Using the equations (A.1), it is easy to show that the right-hand side is equal to J@2
⌧
uK.

For the left-hand side, we can also use the fact that J@nuK = Ju,1 and J@⌧uK = 0, obtaining

�
J@xuKx00 + J@yuKy00

k@sXk2
= �

(Ju,1 cos ✓)x00 + (Ju,1 sin ✓)y00

k@sXk2
,

=
x
0
y
00
� y

0
x
00

k@sXk3/2
Ju,1,

= kJu,1,
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