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Abstract

Astronomical broker systems, such as Automatic Learning for the Rapid Classification of Events (ALeRCE), are
currently analyzing hundreds of thousands of alerts per night, opening up an opportunity to automatically detect
anomalous unknown sources. In this work, we present the ALeRCE anomaly detector, composed of three outlier
detection algorithms that aim to find transient, periodic, and stochastic anomalous sources within the Zwicky
Transient Facility data stream. Our experimental framework consists of cross-validating six anomaly detection
algorithms for each of these three classes using the ALeRCE light-curve features. Following the ALeRCE
taxonomy, we consider four transient subclasses, five stochastic subclasses, and six periodic subclasses. We
evaluate each algorithm by considering each subclass as the anomaly class. For transient and periodic sources the
best performance is obtained by a modified version of the deep support vector data description neural network,
while for stochastic sources the best results are obtained by calculating the reconstruction error of an autoencoder
neural network. Including a visual inspection step for the 10 most promising candidates for each of the 15
ALeRCE subclasses, we detect 31 bogus candidates (i.e., those with photometry or processing issues) and seven
potential astrophysical outliers that require follow-up observations for further analysis.16

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Surveys (1671); Interdisciplinary
astronomy (804)

1. Introduction

Modern survey telescopes are producing unprecedented
volumes of data that make analysis by human inspection
unfeasible. Therefore, automated pipelines are needed to
produce knowledge in a data-driven fashion. One interesting
and challenging task is anomaly detection, which refers to
finding abnormal or unexpected patterns that do not conform to
our knowledge about the data (Chandola et al. 2009).

A broad array of methods have been developed to find
outlier events, focusing on specific scientific objectives and/or
specific data sets. Examples of anomaly detection in the
literature are listed in the following: Xiong et al. (2010) used a
hierarchical probabilistic model, while Baron & Poznanski
(2016) used an unsupervised random forest to find outliers

among the galaxy spectra from the Sloan Digital Sky Survey.
More recently Sánchez-Sáez et al. (2021a) used a variational
recurrent autoencoder (VRAE) architecture on the active
galactic nucleus (AGN) light curves in Zwicky Transient
Facility (ZTF) Data Release 5. Using the light curves in the
Massive Compact Halo Object (MACHO) catalog, Nun et al.
(2014) used a supervised random forest, whereas using the light
curves of periodic variable stars, Twomey et al. (2019) applied
a hierarchical Gaussian process to the Optical Gravitational
Lensing Experiment (OGLE) data set. Tsang & Schultz (2019)
developed a recurrent neural network autoencoder (AE) with a
Gaussian mixture model in the latent space to detect outliers in
the All Sky Automated Survey for Supernovae (ASAS-SN)
variable star database. Pruzhinskaya et al. (2019) used the
photometric data of the Open Supernova Catalog (OSC) with
an isolation forest (IForest) algorithm. Villar et al. (2020) also
applied an IForest algorithm in the latent space of a VRAE to a
simulated data set of supernovae (SNe), and Ishida et al. (2021)
applied an IForest algorithm to features of the OSC data set and
the Photometric LSST Astronomical Time-series Classification
Challenge (PLAsTiCC). Reyes & Estévez (2020) used images
from the High Cadence Transient Survey (HiTS) and ZTF data
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16 The code and the data needed to reproduce our results are publicly available
at https://github.com/mperezcarrasco/AnomalyALeRCE.
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sets and applied the geometrical transformation method named
Geotransform (Golan & El-Yaniv 2018) to find anomalies in
these massive data sets. Ultimately, Muthukrishna et al. (2019)
detected anomalies using a probabilistic neural network
approach built upon Temporal Convolutional Networks.

The detection of anomalous astronomical sources in a
systematic fashion is crucial to discovering new astronomical
phenomena in massive data sets. In particular, the development
of algorithms for fast detection and classification of events is
critical for short-lived phenomena, for the early phases of the
evolution of longer-lived processes, and for the follow-up of
events that require additional observations to uncover their true
nature. Some potential anomalies to be detected include new
families of explosive events, including neutron star–neutron
star mergers (kilonovae; Abbott et al. 2016), neutron star–black
hole mergers, optical counterparts of high-energy neutrino
events, SN events that include significant interaction with a
companion star, and pair instability SNe, among others
(IceCube Collaboration et al. 2018; Abbott et al. 2020; Graham
et al. 2020); new families of stochastic objects, such as so-
called changing-state AGNs (LaMassa et al. 2015; MacLeod
et al. 2019), extremely variable AGNs (Graham et al. 2017),
and the new family of transient events detected in narrow-line
Seyfert 1 galaxies (Frederick et al. 2021); and new families of
periodic objects, such as the recently discovered BLAPs (blue
large-amplitude pulsators; Pietrukowicz et al. 2017; Kupfer
et al. 2019), which have been suggested to be the elusive
surviving companions of Type Ia SNe (Meng et al. 2020).

The challenge of fast detection and classification of events is
being addressed by a new generation of astronomical alert brokers
that read, annotate, classify, and redistribute data from large
survey telescopes in real time. Several brokers were selected
as community brokers for the Vera C. Rubin Observatory’s
Legacy Survey of Space and Time (LSST; Ivezić et al. 2019).
The LSST is expected to revolutionize the time domain in
astronomy. Among these brokers are Automatic Learning for
the Rapid Classification of Events17 (ALeRCE; Förster et al.
2021), Alert Management Photometry and Evaluation of
Lightcurves (AMPEL; Nordin et al. 2019), the Arizona–
NOIRLab Temporal Analysis and Response to Events System
(ANTARES; Narayan et al. 2018), Babamul, Fink (Möller
et al. 2021), Lasair (Smith et al. 2019), and Pitt-Google.18

In this work, we present a systematic study of methods that
led to the online anomaly detector implemented in the
ALeRCE broker. ALeRCE is currently processing alerts from
ZTF (Bellm et al. 2018), in preparation for the LSST (Ivezić
et al. 2019). ALeRCE uses two real-time classifiers, a stamp
classifier (Carrasco-Davis et al. 2021) and a light-curve
classifier (Sánchez-Sáez et al. 2021b), and has implemented
outlier detection methods for AGN light curves (Sánchez-Sáez
et al. 2021a) in an offline manner.

Our proposed methodology for anomaly detection builds on
a hierarchical principle similar to that adopted in ALeRCE’s
light-curve classifier. At the top level, we divide the light
curves into three main classes: transient, stochastic, and
periodic. For each class, we build a different anomaly detection
model that uses only information about the known objects (i.e.,
inliers) for training. At test time, in order to assign the light
curve to one of the anomaly detectors and compute the anomaly

score, we use the probabilities, as given by ALeRCE’s light-
curve classifier (Sánchez-Sáez et al. 2021b), that the light curve
corresponds to an object of transient, stochastic, or periodic
nature. By selecting the top 10 light curves with the highest
anomaly score in each of the ALeRCE subclasses, we are able to
find seven potential outlier events and 31 bogus candidates
explained by errors in the data, such as wrong period estimations
for periodic data or SNe that appear in the template images.
This paper is structured as follows: In Section 2 we describe

the data used in this work and the procedure for building the
light curves, as well as the taxonomy, the labeled training set,
and the features used to perform anomaly detection. In
Section 3 we describe the methodology. In Section 4 we
describe several algorithms to test the anomaly detector. In
Section 5 we describe the metrics used to compare the
performance of the different models, and report some
interesting outlier candidates. Finally, in Section 6 we draw
our conclusions, and discuss challenges for future work.

2. Data

2.1. Input Data

ALeRCE has been processing alerts from the ZTF data
stream since 2019 May. In this data stream, an alert is triggered
by an object in the sky whose current (science) image has a
significant difference with respect to a template (reference)
image (Masci et al. 2018). An alert is a data packet in the form
of an Avro file19 that contains image cutouts, features, and
metadata for an alert event20 (Masci et al. 2018). For alerts to
be streamed by ZTF, they need to pass the cutoff criteria
defined by the real/bogus detection system designed by the
ZTF Collaboration. These criteria include signal-to-noise
ratios, near-edge image positioning, negative and bad pixels,
and morphological and photometric features (Duev et al. 2019;
Mahabal et al. 2019).
ALeRCE uses the information contained in the Avro files to

construct the light curve of every object, as described in
Section 4.4 and Appendix A of Förster et al. (2021). Similar to
the ALeRCE light-curve classifier (Sánchez-Sáez et al. 2021b),
we perform a crossmatch with the AllWISE21 public source
catalog (Wright et al. 2010; Mainzer et al. 2011), using a
matching radius of 2″, obtaining W1, W2, and W3 photometry.
Then, 152 features are calculated for every object with at least
six detections in either the g or r band as defined in Sánchez-
Sáez et al. (2021b).22 We use data up to 2021 July 19.

2.2. Taxonomy and Data Filtering

The main idea behind our anomaly detection algorithm is to
learn the feature distribution of known objects, in order to look
for anomalous sources that deviate from such distribution. To
characterize known objects, we adopt the ALeRCE light-curve
classifier taxonomy (Sánchez-Sáez et al. 2021b). We start by
dividing the sources into three main classes (hereafter, the top-
level classes): transient, stochastic, and periodic. Each of these
categories is then subdivided into the following subclasses:

17 http://alerce.science
18 https://pitt-broker.readthedocs.io/en/latest/

19 The documentation of the ZTF Avro alert files can be found at https://
zwickytransientfacility.github.io/ztf-avro-alert/.
20 A complete schema of the metadata included in the alert packet can be
found at https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html.
21 The AllWISE Data Release can be found at http://wise2.ipac.caltech.edu/
docs/release/allwise/.
22 http://alerce.science/features/
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1. Transient: Type Ia SN (SNIa), Type Ibc SN (SNIbc),
Type II SN (S II), and superluminous SN (SLSN)

2. Stochastic: Type 1 Seyfert galaxy (AGN; i.e., host-
dominated AGN), Type 1 quasar (QSO; i.e., nucleus-
dominated AGN), blazar (Blazar; i.e., beamed jet
dominated AGN), young stellar object (YSO; including
bursters, dippers, and purely rotation-modulated light
curves of pre-main-sequence stars), and cataclysmic
variable/nova (CV/Nova)

3. Periodic: long-period variable (LPV; includes regular,
semi-regular, and irregular variable stars), RR Lyrae
(RRL), Cepheid (CEP), eclipsing binary (E), δ Scuti
(DSCT), and other periodic variable stars (Periodic-
Other; this includes classes of variable stars that are not
well represented in the labeled set, e.g., sources classified
as miscellaneous and RS CVn stars)

Given that the Periodic-Other subclass included in the
taxonomy presented in Sánchez-Sáez et al. (2021b) serves as a
catchall category for underrepresented subclasses, it is not used
for training, but is included for testing purposes in this work.

In Section 4 we explain in detail how the abovementioned
categories are used to evaluate our anomaly detection
algorithms by hiding the light curves from a given subclass
and considering all others as inliers. This allows for a rigorous
comparison of algorithms that helps us to select the most
promising method to apply in a real-world scenario.

In order to avoid spurious data, we define several selection
criteria. First, we remove from our data set all light curves with
fewer than six detections in one of the r and g bands. Also,
depending on the top-level class, we remove from our data set
any transient sources that meet either of the following two
criteria: (1) there are two or more reference images associated
with the source in a specific band or (2) there is an SN in the
reference image (detected as a negative difference between the
science and reference images).23 We also eliminate stochastic
and periodic sources for which the apparent magnitude is not
computed, or computed in only one band due to our not finding
a source in the template within a radius of 1.4″, as discussed in
Förster et al. (2021). It is important to mention that for the
labeled data set, the top-level class used to apply the criterion is
given by the labels, while for the unlabeled data set, the top-
level class is given by the ALeRCE light-curve classifier
predictions.

3. Anomaly Detection Algorithms

Anomaly detection is the task of finding outlier sources that
deviate from the distribution of a specific data set (inliers;
Edgeworth 1887; Chandola et al. 2009). Semi-supervised
anomaly detection considers a training set made up of known
inliers only. In practice, the test set contains both inliers and
outliers and the method is expected to be able to discriminate
between them.

In this work, six anomaly detection algorithms are examined
in order to compare their performance in finding outliers. These
algorithms are explained below:

IForest. An isolation tree is a model in which features are
randomly selected to be divided into distinct nonoverlapping
regions, based on a randomly selected threshold criterion, and
where the output is an anomaly score. Anomaly scores are

proportional to the number of splits required to isolate each
object in the sample. Intuitively, anomalous objects should
require fewer splits to be isolated. As each feature may have
many different randomly selected threshold criteria (even
infinite, in the continuous feature case), this method is prone to
overfitting. IForest (Liu et al. 2012) is a method based on
ensembles of isolation trees for anomaly detection. IForest
models have been demonstrated to avoid overfitting, by
averaging the anomalous scores of samples within the different
isolation trees in an IForest.
We use the IsolationForest implementation provided

by scikit-learn (Pedregosa et al. 2011). The hyperpara-
meters are set as follows: number of trees t = 100; number of
samples to draw from the data to train each base estimator
ψ = 256; and contamination parameter c = 0.1, as
recommended in the original work of Liu et al. (2012). Notice
that as outliers are not used for training, we do not select the
hyperparameters via cross-validation.
One-class support vector machine.
One-class support vector machine (OCSVM; Schölkopf

et al. 1999) is an anomaly detection method based on support
vector machines (Cortes & Vapnik 1995). The OCSVM
method maps the data into a new feature space such that the
inner product between two objects can be represented with a
kernel (e.g., a Gaussian kernel). A hyperplane is then learned in
the new feature space such that it delimits the region where
most of the data lie. At test time, the anomaly score is given by
evaluating the distance of the data points with respect to the
hyperplane. The anomaly score is assigned depending on
which side of the hyperplane each data point falls on.
We use the OneClassSVM implementation provided by

scikit-learn with the radial basis function kernel, the
hyperparameter ν = 0.01, and the contamination parameter
c = 0.1. Note that the hyperparameters are selected as default,
since finding them would require a sample of anomalous
objects, while we assume anomalous samples to be unknown.
AE.
AEs (Rumelhart & McClelland 1987) are unsupervised

neural network–based algorithms aiming at generating a
reconstruction of the input using a lower-dimensional repre-
sentation of the data called latent space. AEs are composed of
an encoder function E( · ), which maps the input data x into the
lower-dimensional version z = E(x; θ) (where θ represents the
parameters of the encoder), and a decoder function D( · ),
which takes the lower-dimensional representation z and
reconstructs the original data ˆ ( )x D z; f= , where f denotes
the parameters of the decoder.
To encourage the reconstruction ˆx x= , the mean squared

error is used as the loss function. AEs have been proven
effective in anomaly detection (Sakurada & Yairi 2014; Chen
et al. 2017; Zhou & Paffenroth 2017). Intuitively, these
methods assume that anomalies are incompressible, and
therefore they cannot be effectively reconstructed from low-
dimensional projections. Thus, it is possible to use the
reconstruction error (computed as the mean squared error) as
the anomaly score.
We implement an AE using PyTorch 1.0.0, and we select

the hyperparameters considering the reconstruction error over a
validation set composed only of inliers.
Variational AE.
Variational AEs (VAEs; Kingma & Welling 2014) are deep

generative models. Similar to an AE, a VAE uses an encoder–
23 This procedure removes most of these errors in the data, but not all of them.
Some are later caught by our anomaly detection algorithm.
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decoder architecture to map the data into a lower-dimensional
representation, but adds an extra regularization term that forces
the data to follow a known distribution in latent space (e.g., a
normal distribution). In this way, it is possible to generate
multiple reconstructions for each sample and obtain an
averaged reconstruction error that defines the anomaly score.

We implement a VAE using PyTorch 1.0.0, and select the
hyperparameters using the unsupervised loss function over a
validation set composed only of inliers.

Deep support vector data description.
Deep support vector data description (SVDD; Ruff et al.

2018) is a neural network–based approach related to OCSVM
(Schölkopf et al. 1999) where a hypersphere (instead of a
hyperplane) is used to separate normal samples from abnormal
ones. The idea is to learn a new feature representation using
neural networks, such that this representation lies in a
hypersphere of minimum volume.

In practice, an AE is trained until the loss function
converges. Then, the decoder is removed and the center c of
the hypersphere is estimated as

( ) ( )
N

Ec x
1

; , 1
i

N

i
1

AEå q=
=

*

where xi for i = 1, K, N represents each of the N data points in
the training set and AEq* denotes the parameters of the trained
AE. Finally, the vector of the parameters θ of the encoder is
reoptimized using AEq* as pretrained parameters, by minimizing
the following objective function:

∣∣ ( ) ∣∣ ( )
N

E x cmin
1

;
2

, 2
i

N

i
1

2å q qq
l

- +
q =

where λ is a hyperparameter that controls the weight decay
regularizer on the network parameters θ.

At test time, we define the anomaly score A( · ) as the
distance between each data point and the center of the
hypersphere as follows:

( ) ∣∣ ( ) ∣∣ ( )A Ex x c; , 3i i
2q= -*

where θ
*

denotes the parameters of the trained neural network.
We implement deep SVDD using PyTorch 1.0.0. The
hyperparameter λ = 0.5 × 10−6 is selected by measuring the
unsupervised loss function over a validation set.

Multiclass deep SVDD.
In this work we extend deep SVDD taking account the

information contained in class labels. Instead of modeling one
hypersphere, we model multiple hyperspheres, each corresp-
onding to a given class (Pérez-Carrasco et al. 2023). Objects
from the same class should be close to each other and far from
objects from different classes. As abnormal samples come from
unseen classes, their distances to each hypersphere should be
larger than those of normal data points. We name this method
multiclass deep SVDD (MCDSVDD). By following this
approach, it is possible to define an anomaly score based on
the distance of the data points to the centers of the
hyperspheres.

As in deep SVDD, an AE is trained until convergence, and
the decoder is removed. Assuming normal data pairs coming
from M different classes y ä {1, K, M}, the center of each

hypersphere is estimated as

 ( ) ( )( )
M

Ec x
1

; , 4j
j i

N

y j i
1

AEiå q=
=

= *

fwhere AEq* denotes the parameters of the trained AE, ( )y ji= is
an indicator function that becomes 1 if yi = j and 0 otherwise,
and Mj is the number of data points that belong to class j.
Using AEq* as pretrained parameters, the parameter vector θ

of the encoder is reoptimized following the objective

 ∣∣ ( ) ∣∣ ( )( )
M

E x cmin
1

;
2

, 5
j

M

j i

N

y j i j
1 1

2
iå å q qq

l
- +

q = =
=

where λ is a hyperparameter that controls the weight decay
regularizer on the network parameters θ.
At test time, the anomalous score A( · ) is determined by

measuring the distance of each data point to the center of its
closest hypersphere as follows:

( ) ∣∣ ( ) ∣∣ ( )A x E x cmin ; , 6i
j

i j
2q= -*

where θ
*

denotes the parameters of the trained neural network.
We implement MCDSVDD using PyTorch 1.0.0, and we set
the hyperparameter λ = 0.5 × 10−6 by cross-validating the
unsupervised loss function over a validation set composed of
inliers.

4. Methodology

The same procedure is used to train and evaluate all the
algorithms described in Section 3.
We randomly split the data into a training set (80%) and a

test set (20%) in a stratified fashion in order to preserve the
proportion of samples per class. The training set is divided into
five stratified subsets in order to perform fivefold cross-
validation for model selection. Figure 1 shows a scheme of our
training and evaluation methodology.

4.1. Training

Our anomaly detection approaches are based on the
hierarchical structure of the ALeRCE light-curve classifier
(Sánchez-Sáez et al. 2021b). Following the ALeRCE taxon-
omy, we split our training data set into three main classes:
transient, stochastic, and periodic. We further divide the data
into the 14 subclasses described in Section 2.2. We use three
anomaly detectors: one for each of the main classes. As in real-
world scenarios anomalies are unknown, so when performing
cross-validation we choose a subclass of each main class as the
anomalous class and we remove it from the training set. The
model is trained on the remaining subclasses and the removed
subclass is used for evaluation purposes. Therefore, the model
does not use data of the chosen anomalous subclass while
training. The process is repeated for each subclass. The overall
performance of the anomaly detectors is obtained by evaluating
how good the models are at finding the removed subclasses, as
is common in machine-learning literature (Ruff et al. 2018).

4.2. Evaluation

Although in practice real outlier events are not available for
evaluation, we construct a realistic scenario to select the most
promising models for anomaly detection. As explained above,
20% of the data set is kept as a test set (TS1) so no model ever
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uses it for training. When training, the models use only the
inlier subclasses of the remaining 80% of the data set. As
described in Section 4.1, the outlier class is iteratively selected
from the ALeRCE taxonomy and removed from the training
set. To construct a realistic evaluation scenario, we define a
second test set (TS2) that includes all the objects from TS1 that
belong to the inlier subclasses, and also objects belonging to
the outlier class from both TS1 and the training set. We make
sure that TS2 is composed of 10% outliers and 90% inliers. In
this way, we evaluate how good the models are at finding the
chosen outlier class from TS2. Figure 1 shows a diagram of the
proposed evaluation methodology.

In order to evaluate the model performance when a subclass
is selected and treated as an outlier, we use the area under the
receiver operating characteristic curve (AUROC; Davis &
Goadrich 2006). The receiver operating characteristic curve is a
graph that shows the true-positive rate tpr24 and the false-
positive rate fpr25 at different discrimination threshold values.
Computing the area under the generated curve we obtain the
AUROC value, which represents the probability that a
randomly selected positive sample (outlier) has an anomaly
score greater than that of a negative sample (inlier; Hanley &
Mcneil 1982). Consequently, a random positive example
detector achieves a 0.5 AUROC value, and a perfect classifier
achieves a 1.0 AUROC value.

5. Results and Discussion

5.1. Defining the Best Outlier Model for Each Class

Table 1 shows the cross-validated AUROC values for each
of the anomaly detection models described in Section 3. This
table shows the performance when each of the 14 subclasses
is considered as an outlier in a different trial (see

Section 2.2). The highest AUROC values for each subclass
are marked in boldface, showing the best evaluated model
for such tasks.
As can be seen, our proposed method MCDSVDD

consistently outperforms all the other methods we consider
for transient and periodic objects. Our method is able to detect
SNII, SNIa, and SNIbc as outliers with higher AUROC values
than the rest. For the subclass SLSN, the AE’s performance
shows no difference from MCDSVDD’s (i.e., the difference is
not statistically significant; p-value = 0.0789). For the periodic
classes, MCDSVDD shows a better performance at detecting
CEP, DSCT, E, and RRL as outliers, while the AE shows a
better performance at detecting LPV. For stochastic sources,
the AE method outperforms the other methods for four of the
five subclasses (AGN, Blazar, CV/Nova, and YSO), while for
QSO, the highest performance is obtained by OCSVM. It is
important to mention that QSO light curves usually show slow
and smooth temporal variations that make them harder to detect
when treated as anomalies. Therefore, the best outlier detection
algorithm for stochastic sources is the AE, and the best one for
transient and periodic sources is MCDSVDD. We use these
models for the evaluation hereafter.
Figure 2 shows the cumulative distribution of the anomaly

score for each of the top-level classes. As can be seen, within
the stochastic objects, the CV/Nova and YSO subclasses
generally result in larger anomaly scores compared to the other
stochastic subclasses (AGN/QSO/Blazar). This means that if
we select any threshold value in the stochastic class, we will
have a large number of CV/Nova sources, and only a few
AGN sources. For that reason, we decide to select a
homogeneous sample including the same number of sources
per subclass (see Section 5.2) to evaluate the outlier candidates.

5.2. Evaluation of the Outlier Detectors in a Real-world
Scenario

Developing and integrating an anomaly detector into a
brokering system such as ALeRCE that processes hundreds of

Figure 1. Methodology for training and evaluation of the anomaly detection algorithms. We split the data into a training set and a test set, composed of 80% and 20%
of the data, respectively. The training set is subdivided into transient, stochastic, and periodic data. For each of these classes, we choose each subclass as the outlier
class. The outlier class is removed from the training set and added to the test set (TS2). Then, an anomaly detection algorithm is trained using the remaining objects of
each of the classes, and is evaluated using TS2.

24 tpr = tp/(tp + fn), where tp is the number of true positives and fn is the
number of false negatives.
25 fpr = fp/( fp + tn), where fp is the number of false positives and tn is the
number of true negatives.
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Table 1
Evaluation of the Performance of Each Model When Applied to Each Class of the ALeRCE Top-level Taxonomy

Transient Stochastic Periodic

Method SLSN SNII SNIa SNIbc AGN Blazar CV/Nova QSO YSO CEP DSCT E RRL LPV
IForest 0.640 0.721 0.428 0.490 0.573 0.710 0.975 0.468 0.913 0.359 0.295 0.469 0.549 0.971
(Liu et al. 2012) ±0.014 ±0.021 ±0.032 ±0.038 ±0.017 ±0.009 ±0.001 ±0.016 ±0.003 ±0.007 ±0.012 ±0.021 ±0.033 ±0.007

OCSVM 0.577 0.587 0.434 0.492 0.532 0.443 0.909 0.517 0.792 0.432 0.557 0.555 0.539 0.943
(Schölkopf et al. 1999) ±0.014 ±0.014 ±0.021 ±0.011 ±0.008 ±0.002 ±0.001 ±0.005 ±0.005 ±0.004 ±0.005 ±0.003 ±0.004 ±0.001

AE 0.736 0.807 0.438 0.537 0.701 0.762 0.980 0.443 0.990 0.564 0.367 0.864 0.907 0.996
(Rumelhart & McClelland 1987) ±0.022 ±0.021 ±0.015 ±0.019 ±0.010 ±0.006 ±0.016 ±0.004 ±0.001 ±0.024 ±0.015 ±0.009 ±0.015 ±0.000

VAE 0.669 0.690 0.404 0.522 0.596 0.597 0.849 0.500 0.795 0.442 0.417 0.561 0.451 0.936
(Kingma & Welling 2014) ±0.015 ±0.023 ±0.018 ±0.025 ±0.007 ±0.010 ±0.028 ±0.009 ±0.009 ±0.010 ±0.007 ±0.007 ±0.006 ±0.007

Deep SVDD 0.644 0.731 0.475 0.507 0.496 0.607 0.932 0.411 0.901 0.707 0.482 0.636 0.774 0.785
(Ruff et al. 2018) ±0.043 ±0.043 ±0.040 ±0.040 ±0.025 ±0.044 ±0.015 ±0.008 ±0.022 ±0.027 ±0.054 ±0.055 ±0.068 ±0.025

MCDSVDD 0.686 0.828 0.624 0.584 0.706 0.512 0.770 0.483 0.854 0.858 0.819 0.945 0.953 0.953
(Ours) ±0.051 ±0.024 ±0.039 ±0.032 ±0.069 ±0.113 ±0.127 ±0.080 ±0.041 ±0.025 ±0.015 ±0.006 ±0.003 ±0.008

Notes. Each row represents a different outlier detection algorithm, and each column represents the subclass considered as an outlier. The performance is evaluated using the cross-validation AUROC scores.
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thousands of alerts per night online is a challenging task. We
cannot assume that the top-level class, namely transient,
periodic, or stochastic, is known. For example, a priori we do
not know which sources are periodic (Tsang & Schultz 2019;
Twomey et al. 2019) or SNe (Villar et al. 2020; Ishida et al.
2021). In this section, we analyze the performance of the
anomaly detection algorithm on a real unlabeled alert data set
received by ALeRCE.

In order to further analyze the results obtained from the
anomaly detector, we feed the outlier models with 506,451 alert
light curves from ZTF.26 Each source is assigned an anomaly
score from the outlier model corresponding to the class given to
it by the top-level ALeRCE light-curve classifier. A list of 150
sources with the highest outlier scores for each subclass is
selected and discussed by a team of 12 astronomers (four
experts in each of the three categories, namely transients,
stochastic sources, and periodic stars). In what follows, this
team is called the “inspection team.” The list of candidates to
be inspected by the experts is selected through the following
procedure: First, we use the ALeRCE light-curve classifier to
estimate the most probable class between transient, periodic,
and stochastic. For each of the predicted 15 subclasses within
the three top-level classes (see Section 2.2), we select the top
10 objects with the highest anomaly scores, using the
corresponding anomaly detection algorithm (see Section 3).
In order to avoid selecting misclassified objects as outliers, we
select only objects whose final probability is consistent with
their top-level probability. For instance, we exclude objects
classified as transient and CV/Nova at the same time. It is
worth noting that in general the outlier candidates are not
homogeneously distributed among the subclasses, whereas if
we selected some threshold value of the anomaly score to select
outliers we would obtain a larger number of events classified
into some of the subclasses.

The list of 150 objects is visually inspected by the inspection
team. They check the light curves derived from the alert stream,
as well as the light curves contained in ZTF Data Release 6, the
image stamps, and any other external catalog information to
group the outlier candidates into four categories:

1. Outlier (OL): An interesting object that could be
considered an outlier. This includes subclasses that are
not part of the ALeRCE taxonomy.

2. Wrong class (WC): The predicted class given by the top-
level light-curve classifier is not correct. An example of
this would be a stochastic source classified as a transient
or periodic source.

3. Nothing special (NS): The light curve is correctly
classified by the top-level light-curve classifier and
should not be considered an outlier. This includes
correctly classified sources and misclassified sources that
are correctly classified by the top-level light-curve
classifier (e.g., an AGN classified as a QSO).

4. Bogus (B): There is some error in the object’s data (e.g.,
there is an SN in the template image) or in the processing
of the light curve (e.g., wrong periods) that produces an
anomalous behavior.

We summarize below the results obtained, and we discuss
the most interesting candidates obtained from this analysis. It is
worth remarking that some of these sources can be considered
to be confirmed outliers, for instance those sources that are not
included in the training set because they are quite peculiar,
while others are outlier candidates that would require additional
research in order for their true nature to be unveiled.

5.2.1. Transient

After removing transient objects with two or more reference
images associated and objects with an SN in the template (see
Section 2.2), 40 transient sources are selected, 10 for each of
the transient subclasses (SNIa, SNIbc, SNII, and SLSN).
Among these sources, the inspection team finds four objects
that are classified as outliers (OL), 12 stochastic sources
wrongly classified as transients (WC), and 24 objects that do
not have any particular anomalous pattern (NS). Notice that in
this case we do not find bogus candidates because most of them
are filtered using the cutoff criteria defined in Section 2.2.
Figure 3 (left) shows the fraction of objects classified as OL,
WC, and NS as a function of the number of candidates ordered
by descending anomaly score. The fraction of sources defined
as NS goes down to lower than 40% and then reaches a value
of 60%.

Figure 2. Cumulative distribution function of the anomaly scores for the transient, stochastic, and periodic objects. It is important to note that the anomaly score range
displayed in each plot corresponds to the score range covered on the respective top-level class.

26 These correspond to all unlabeled light curves by 2021 July 19 that have at
least six detections in either the g or r band and pass the flag criteria defined in
Section 2.2.
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5.2.2. Stochastic

A total of 50 stochastic sources are selected, 10 for each subclass
(AGN, QSO, Blazar, YSO, and CV/Nova). Among these sources,
we find two objects that are classified as outliers (OL), eight
transients wrongly classified as stochastic objects (WC), 33 objects
that do not have any particular anomalous pattern (NS), and seven
with SNe in the template (B). Figure 3 (center) shows the fraction
of objects classified as OL, WC, B, and NS as a function of the
number of outlier candidates ordered by descending anomaly score.
The proportion of NS sources stays below 60% between the 7th
and 45th ordered candidates. In this case, there is a larger number
of sources with errors in the data compared to real outliers.
Although they are not astrophysically interesting outlier candidates,
they are indeed outliers as they do not follow the stochastic sources’
parameter distribution.

5.2.3. Periodic

We obtain 60 periodic outlier candidates in total, 10 for each of
the periodic subclasses (LPV, RRL, CEP, E, DSCT, and Periodic-
Other). These candidates are grouped into the four categories
defined above (OL, WC, NS, and B). Specifically, we find one
outlier source, 34 sources that do not have any particular behavior
(NS), 24 objects with errors in data (B; corresponding to objects
with wrong periods), and one stochastic source incorrectly
classified as periodic (WC). Figure 3 (right) shows the fraction of
objects classified as OL, WC, B, and NS as a function of the
number of outlier candidates for the periodic objects ordered by
descending anomaly score. In this case, most of the 55 sources with
the highest anomaly scores show errors in the data such as
incorrectly calculated periods. This shows the potential of our
model for finding such errors in order to improve preprocessing
algorithms.

5.3. Astrophysical Analysis of Selected Outliers

In what follows, we discuss the potential outliers that are selected
by the inspection team. External information such as from ZTF
Data Release 6, the SIMBAD Astronomical Database,27 the
NASA/IPAC Extragalactic Database,28 the Gaia Archive,29 the

Transient Name Server (TNS30), and the International Variable
Star Index (VSX31) is used to further inspect these sources.

5.3.1. Transient

The light curves of the OL sources are presented in Figure 4.
In what follows, we provide notes on each of the corresponding
sources.

1. ZTF21aajmdui is classified as an SN Ia by the ALeRCE
light-curve classifier (note that the ALeRCE light-curve
classifier uses only the alerts and the alert stream contains
only a few points after the peak of the light curve). This
however is a confirmed tidal disruption event (TDE;
TNS#73970, TNS-Classification#7306; Forster et al.
2020; Hosseinzadeh et al. 2020), a class that is not
included in the ALeRCE taxonomy. Thus, this is a
confirmed outlier.32

2. ZTF21aanfcmk is classified as an SN Ibc by the light-
curve classifier. This is a microlensing event (ATel
#14575; Tagchi et al. 2021), a class that is not included
in the ALeRCE taxonomy. Thus, this is a confirmed
outlier.33

3. ZTF20aamttiw is classified as an SN II by the light-curve
classifier, which is consistent with its spectroscopic
classification (Dahiwale & Fremling 2020). However,
the light-curve evolution is not typical of “normal” Type
II SNe, which is the class on which the classifier is
trained. The strong evolution between the initial peak of
the light curve over the first ∼10 days and the subsequent
bump in both the g and r bands points to a probable
ejecta–circumstellar material interaction. The absolute
magnitudes at maximum brightness (assuming zero
extinction, −18.7 and −18.5 in the g and r bands,
respectively) are consistent with this interaction scenario.
Unfortunately, the classification spectrum is taken with
relatively low spectral resolution and 16 days after
discovery, making it difficult to see any residual signs of

Figure 3. Proportion of objects in terms of the number of selected outlier objects. Notice that as the number of outlier candidates increases, objects with lower anomaly
scores are selected. Therefore, the outlier candidates are plotted in decreasing order. Outliers are represented by blue lines, wrong classes by orange lines, “nothing
special” sources by green lines, and sources showing errors in the data by red lines. Left: Transient sources. Center: Stochastic sources. Right: Periodic sources.

27 http://simbad.u-strasbg.fr/simbad/
28 https://ned.ipac.caltech.edu/
29 https://gea.esac.esa.int/archive/

30 https://www.wis-tns.org/
31 https://www.aavso.org/vsx/index.php?view=search.top
32 https://alerce.online/object/ZTF21aajmdui
33 https://alerce.online/object/ZTF21aanfcmk
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this early interaction. Therefore, it is a confirmed
outlier.34

4. ZTF20abhrmri is classified as an SLSN by the light-curve
classifier. The light curve shows a slow rise to peak about
25 days after initial detection, and then a slower, shallow
decay for ∼200 days (∼1 mag over ∼400 days if we
include the data release photometry), which is unusual,
even for SLSNe. Notably, the host appears to be compact
in Pan-STARRS imaging and infrared-bright in Wide-
field Infrared Survey Explorer imaging. The alert position
is very close to the galaxy center, leaving open the
possibility of this being a TDE or flaring AGN. There are
no available follow-up data in the literature. Therefore,
this is an outlier candidate.35

5.3.2. Stochastic

The light curves of the OL sources are presented in Figure 5
and we describe them in more detail below:

1. ZTF18abgpdfy is classified as a blazar by the light-curve
classifier. This source is classified as an apparent R Coronae
Borealis (RCB) star in VSX36 (Watson et al. 2006). RCB
stars are C-rich, H-deficient red supergiants that undergo
dramatic dimming episodes at irregular intervals, caused
by mass-loss events and subsequent dust condensation
(Nikzat & Catelan 2016, and references therein). DY Per
stars have been suggested as a subclass of RCBs
(Bhowmick et al. 2018), presenting more symmetrical
declines, slower decline rates, and redder colors. The
light curve of ZTF 18abgpdfy bears some resemblance to

Figure 4. Light curves for outliers classified as transients by the ALeRCE light-curve classifier. The light curves include data from the ZTF alert stream in the g (green
data points) and r (red data points) filters, as well as from ZTF Data Release 6 in the g (gray data points) and r (blue data points) filters. The gray vertical dotted line
represents the last time step used to compute the features and assign the anomaly score.

34 https://alerce.online/object/ZTF20aamttiw
35 https://alerce.online/object/ZTF20abhrmri 36 https://www.aavso.org/vsx/index.php?view=detail.top&oid=1260101

9

The Astronomical Journal, 166:151 (13pp), 2023 October Perez-Carrasco et al.

https://alerce.online/object/ZTF20aamttiw
https://alerce.online/object/ZTF20abhrmri
https://www.aavso.org/vsx/index.php?view=detail.top%26oid=1260101


that typically seen in DY Per stars, including the
prototype (see, e.g., Začs et al. 2007; Shields et al.
2019). Further analysis of ZTF 18abgpdfyʼs colors and
spectra is thus required to properly establish its variability
class (Tisserand et al. 2020, and references therein).37

2. ZTF19accuwyp is classified as a YSO by the light-curve
classifier. Brightening in YSOs tends to be related to
accretion processes and it is expected to occur in two
ways (Hillenbrand & Findeisen 2015): as short-duration
bursts (lasting days or weeks and with amplitudes
�3–4 mag in the optical, i.e., EXors) or as much longer
timescale outbursts (months to several years or even
decades and very large optical amplitudes of ∼5 mag,
i.e., FUors). The timescale of the rise observed in the
light curve of ZTF 19accuwyp (∼1 month), its amplitude
(0.2 mag), and the duration of the brightening (∼1 yr) do
not yield a clear correspondence with either of these
classes. On the other hand, the Gaia eDR3 distance agrees
with the distance to the cluster NGC 7419, which is
known to host several Be stars, and this star is very likely
a member (Dias et al. 2014; Sampedro et al. 2017; Dias
et al. 2018; Cantat-Gaudin & Anders 2020). While the
turnoff age of the cluster has previously been estimated at
∼25 Myr (when accreting protoplanetary disks have
already dissipated; Fedele et al. 2010), Subramaniam
et al. (2006) reported a much younger turn-on age of
0.3–3 Myr that would be compatible with its YSOs still
actively accreting. An optical spectrum taken in 2021
October displayed none of the emission lines expected
from accretion (e.g., Hα, [S II], and [O I]), revealing a hot
reddened photosphere, with foreground reddening esti-
mated as E(B − V ) = 2.87 mag, based on the Schlegel
et al. (1998) dust map. Based on this spectrum and the
ZTF light curve, this object is classified as an irregular
eruptive variable of the γ Cassiopeiae (or Be) type in
VSX38 (Watson et al. 2006). On the other hand, the near-

infrared (JHK ) colors of the source (Subramaniam et al.
2006) are inconsistent with the color range for both the
known Be and Herbig Ae/Be stars in the cluster, and the
spectral energy distribution compiled from the optical to
the mid-infrared can be qualitatively better explained
with a highly reddened pure photosphere, based on a
TLUSTY (Lanz & Hubeny 2007) model with a
temperature of ∼3700 K and AV ∼ 5.3 mag (extinction
in the visible), than with a Herbig Ae/Be–like, disk-
bearing system. Further data are needed to confirm the
true nature of this source, and thus this is an outlier
candidate.39

5.3.3. Periodic

One periodic object is classified as an outlier (OL). Its light
curve and periodogram are shown in Figures 6 and 7,
respectively.

1. ZTF19aaxooyz. A first hypothesis for this star is that it is
a type II Cepheid. Indeed, its reported period, light-curve
shape, and amplitudes are consistent with what is
typically observed in type II Cepheids, when they pulsate
in the fundamental radial mode (see, e.g., Soszyński et al.
2008b). However, type II Cepheids with periods in the
range of ∼5–10 days are relatively uncommon, in
comparison with type II Cepheids with both longer and
shorter periods (Matsunaga et al. 2011). In addition, the
light curves of type II Cepheids with periods ∼8 days are
typically more sinusoidal and have significantly smaller
amplitudes, compared to those of both longer- and
shorter-period ones. If such intermediate-period type II
Cepheids are not included in sufficient numbers in the
training set, they could plausibly be considered outliers
by the classifier.40

Another possibility is that ZTF 19aaxooyz is a
classical Cepheid, in which case its period would imply

Figure 5. Light curves for outliers classified as stochastic sources by the ALeRCE light-curve classifier. Color code as in Figure 4.

37 https://alerce.online/object/ZTF18abgpdfy
38 https://www.aavso.org/vsx/index.php?view=detail.top&oid=2225967

39 https://alerce.online/object/ZTF19accuwyp
40 https://alerce.online/object/ZTF19aaxooyz
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that it pulsates in the fundamental mode. This classifica-
tion would seem unlikely at first, in view of the fact that
ZTF 19aaxooyz does not present bumps in its light curve,
contrary to what would be expected for stars (like this
one) within the “bump Cepheid” period regime of the so-
called Hertzsprung progression (e.g., Soszyński et al.
2008a). However, a number of classical Cepheids that
deviate from this trend are also known: at least in the
LMC, they have periods in the range of 6–12 days, small
amplitudes, and bumps that are either inconspicuous or
not present.41 It is thus also possible that the anomaly
detector identifies this as an anomaly in view of the fact
that there may be too few, if any, classical Cepheids with
this kind of behavior in the training set.

Be that as it may, the (type II/classical) Cepheid
hypothesis is untenable, in view of Gaia results, which
imply that the star is much too close, with a parallax of
0.750 ± 0.026 mas according to Gaiaʼs eDR3 (Lindegren
et al. 2021), corresponding to a distance of only ∼1.3
kpc. Thus, the star is most likely not a pulsator, but rather
a different type of variable star, possibly a rotational
variable whose light output is modulated by spots (e.g.,
Iwanek et al. 2019). If so, the fact that the amplitude of
the light curve increases over the timespan of the
available observations could suggest that we are witnes-
sing the evolution of the spot pattern on the starʼs surface
in the course of a longer-term magnetic cycle. Thus,
further analysis is still required in order to properly
establish the variability status of ZTF 19aaxooyz. There-
fore, this is an outlier candidate.

6. Conclusions and Future Work

Broker systems, such as ALeRCE, analyze hundreds of
thousands of alerts per night, and aim at analyzing millions of
alerts when the Vera Rubin Observatory starts operating. This
massive data stream provides an opportunity to discover both
rare and unknown astrophysical sources. Doing this in a real
alert stream is a challenging task given all the different types of
objects appearing in the sky. In this paper, we present the
ALeRCE anomaly detection framework, which aims at
automatically discovering transient, stochastic, and periodic
sources that do not belong to the ALeRCE taxonomy, as well
as at identifying anomalous/peculiar sources within the known
classes. This is a general-purpose anomaly detection algorithm,
as opposed to those of previous work found in the literature,
which aim at detecting outliers within specific classes of
objects (e.g., transients).
Our methods are trained using the ZTF alert stream and

benefit from the ALeRCE light-curve classifier. Specifically,
we divide sources into transient, periodic, and stochastic
classes, and train six anomaly detection algorithms for each
class. Then, these three top-level classes are expanded into 15
subclasses. Each is treated as the anomaly class, which is
removed from the training set.
We report the performance of every anomaly detection

algorithm in finding each of the chosen subclasses. For
stochastic sources, the best results are obtained by calculating
the reconstruction error of an AE neural network, while for
transient and periodic sources the best results are obtained by a
proposed modification of the deep SVDD neural network.
We validate our framework in a real-world scenario by

selecting the 10 sources with the highest outlier scores for each
of the 15 classes predicted by the ALeRCE light-curve
classifier. The light curves of these outlier candidates are then
inspected, along with information from the literature when
available, by a team of 12 astronomers. We impose consistency
between the subclass classification of the source and its top-

Figure 6. Light curve for the outlier source classified as periodic by the ALeRCE light-curve classifier, namely ZTF 19aaxooyz. The left panel shows the original light
curve, whereas the right panel shows the folded light curve using a period of 8.071 days. Color code as in Figure 4.

41 A sample of light curves for objects of this type can be found in the OGLE
Atlas of Variable Star Light Curves (http://ogle.astrouw.edu.pl/atlas/
classical_Cepheids.html).
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level classification (transient, stochastic, periodic). A total of
(40, 50, 60) candidates are inspected, (12, 8, 1) of them being
wrongly classified, (24, 33, 34) being nothing special, (0, 7, 24)
showing errors in the data, and (4, 2, 1) being potential outliers.
Thus, based on these selection criteria, we find seven outliers
that are further analyzed, among them a confirmed TDE and a
microlensing event, both of which are not included in the
ALeRCE taxonomy.

We recall and emphasize the importance of human expertize
in confirming potential outliers, as these sources are indeed
rare. In particular, in this work we define very simple and
homogeneous selection criteria for a large diversity of objects,
but in the future, additional feature cuts can be implemented in
order to specifically select outlier candidates that may be of
particular interest for a given research field. For instance, in
addition to the outlier score, one could select a minimum
number of detections, a minimum length of the light curve, a
period range criterion, and other variability features (or any
other metric related to the physical processes to be analyzed) to
select sources whose measured parameters fall outside the
typical values for a given class.

Our methodological framework will be beneficial for the
detection of unusual astrophysical phenomenon sources in
surveys employing the next generation of telescopes such as
the Vera C. Rubin Observatory’s LSST. Our anomaly detection
algorithms are currently being implemented within the
ALeRCE brokering system.42
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