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a  b  s  t  r  a  c  t

Models  to  predict  species’  ranges  have  chiefly  been  limited  to  abiotic  variables.  However,  the  full eco-
logical niche  depends  on  a myriad  of  factors,  both  biotic  and  abiotic,  that often  correspond  to  completely
different  data  types.  We  applied  a  methodology  based  on  data  mining  techniques  to construct  ecological
niche  models  composed  of  biotic  as  well  as  abiotic  variables  using  three  quite  different  sets  of variables:
climatic  layers,  maps  of  land  cover  and  point  collections  of Mexican  mammals.  We  show  how  potential
ecological  interactions  can  be inferred  from  geographic  data  using  co-occurrences  as proxies,  and  gen-
erate corresponding  distribution  models.  We  consider  two  case  studies:  an  insect  genus  (Lutzomyia  sp.)
and a mammal  species  (Lynx  rufus).  We  show  that  for both  examples  model  predictability  is  higher  using
nvironmental data
cological niche
cological modeling
pecies distribution

biotic  versus  abiotic  variables,  but  even  higher  when  both  variable  types  are integrated  together.  Also,
by  identifying  those  variables  that  are  most  relevant  in  describing  the  suitable  (niche)  and  unsuitable
(anti-niche)  areas  we  can  establish  an  ecological  profile  for any  geographic  location  and  quantify  the
relative  influence  of  each  location  and  its  impact  on  species.  In conclusion,  we show  that  including  both
abiotic  and  biotic  factors  not  only  leads  to a fuller  more  comprehensive  understanding  of  the  niche,  but

te  pre
also leads  to  more  accura

. Introduction

One of the most important goals in ecology and biogeography
tudies is to identify the principal factors that constrain the range
f species. An understanding of these factors and their relative
mpact will permit us to better understand and model both cur-
ent and future distributions (Lomolino et al., 2005; Araujo and
uisan, 2006; Araujo and Luoto, 2007). Unfortunately, the number
f potential factors that can affect species’ distributions is enor-
ous. However, a great deal of information associated with many

f these factors is now available in online databases. Thus, the

ost advanced techniques for describing and predicting species’

istributions are nowadays based on data mining, where large
olumes of observational data are systematically explored using
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different mathematical models, from standard regression type
models to sophisticated artificial intelligence techniques. Such
methods have recently been used in various ecological applica-
tions, such as biodiversity studies, modeling biological invasions
and species distributions (Stockwell and Peters, 1999; Guralnick
and Pearman, 2009).

Current niche modeling has chiefly been limited to abiotic
variables, due to the difficulties of incorporating information asso-
ciated with biotic interactions (Guisan and Thuiller, 2005; Araujo
and Guisan, 2006). Recently, however, a methodology based on
data mining techniques has been developed and applied in eco-
geographic studies (Sánchez-Cordero et al., 2008; Stephens et al.,
2009) that naturally facilitate the incorporation of biotic factors
associated with point collection data. Although the methodology is
general, what was not explicitly considered in those papers was  the
question of how to integrate together different data types, includ-
ing both abiotic and biotic factors, thus permitting a deeper insight
into the relative importance of the different types of factor in deter-

mining species’ distributions.

Although modeling the range of a species without further
insight into what factors potentially affect the range can be a use-
ful goal, much greater insight can be gained by determining and

dx.doi.org/10.1016/j.ecolmodel.2012.10.007
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:cgs@ibiologia.unam.mx
mailto:stephens@nucleares.unam.mx
mailto:pmarquet@bio.puc.cl
dx.doi.org/10.1016/j.ecolmodel.2012.10.007
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nderstanding which factors, barriers or biotic interactions are
mportant for a particular species in a particular geographical loca-
ion (Brown, 1995; Brown et al., 1996; Arntzen and Themudo,
008). In other words, to better understand the relation between
he geographical distribution of the species and its niche. Such
onsiderations, for instance, could help to cover the current gap
etween local ecological observations and other regional processes
Guisan and Zimmermann, 2000; Pearson and Dawson, 2003;
uisan et al., 2006).

The main contribution of this article is to present a model-
ng framework in which both abiotic and biotic factors associated

ith different data types can be integrated together into mod-
ls that lead to more accurate predicted distributions and to

 fuller understanding of the corresponding niches of a given
axon. The methodology is an extension of that proposed in
tephens et al. (2009),  where only biotic variables were included.
e will show how to use such models to achieve the above

tated goals of predicting taxa’ distributions using a more com-
lete set of potential niche variables, as well as quantifying the
elative importance not only of biotic versus abiotic factors in
xplaining the presence of a taxon in a particular geographic loca-
ion, but also of specifying exactly which factors are the most
mportant.

Although our approach is quite general, specific results, such
s the distribution of particular taxon and the associated niche
ariables, depend on the taxon being studied. We  will therefore
llustrate the method by determining the predictive power of
egional variables in predicting the distribution and quantifying
nd characterizing the ecological niches of two very different taxa,
he genus Lutzomyia (sandfly) and the species Lynx rufus (bobcat),
escribing their ecological profiles and the role played by different
iotic and abiotic factors as constraints on their distributions. Note
hat, instead of choosing two distinct species here as our examples,
e consider a species and a genus, thereby showing that the mod-

ling framework we present is applicable to different taxonomic
evels. One might, of course, ask whether or not it is appropriate
o talk of predicting the distribution and the associated niche of a
axon other than a species. For instance, if the niches of different
pecies within a genus are quite distinct, it may  well be that the
enus niche is so smeared out it has no characterizing features and
ubsequently the corresponding distribution model is only weakly
redictive. The very fact that our results are positive – leading to an
ccurate predictive model and a characteristic niche for the genus
utzomyia – show that, in this case at least, it makes perfect eco-
ogical sense to model at the genus level. This does not, of course,
uarantee that this will always be the case.

So, in the first case study we consider data associated with actual
nd potential reservoirs of an important emerging disease, Leish-
aniasis, a disease widely distributed in tropical regions that is

ransmitted by sandflies. As Leishmaniasis is a zoonotic tropical dis-
ase, sylvan reservoirs are crucial to the maintenance of the parasite
n ecological communities and, further, are intimately associated

ith human transmission (Wolfe et al., 2007). For our second case
tudy, we consider the effect of abiotic and biotic factors on the
istribution of the carnivore Lynx rufus, given that it has not been
ollected south of the Isthmus of Tehuantepec in Mexico, in spite
f the fact that there are geographic regions below the Isthmus
hat coincide with the ecological requirements associated with its
undamental niche (Sánchez-Cordero et al., 2008).

By using two such contrasting taxa (an insect and a mammal) we
an illustrate the scope of this methodology in inferring different
ypes of inter-specific interactions (e.g., competition, mutualism,

ommensalism), and their relative importance for taxa distribu-
ions. Additionally, we can directly compare and contrast the role
f climatic factors to that of biotic interactions to determine which
ariables most affect the presence or absence of a species and
l Modelling 248 (2013) 57– 70

in what way the prediction of species’ ranges could be improved
(Guisan et al., 2006; Heikkinen et al., 2007).

2. Materials and methods

In applying our methodology we used a class of biotic variables
– collection data for Mexican mammals – as well as abiotic (cli-
matic) variables (e.g. temperature, precipitation) and land cover.
Thus, models were built using four sets of explanatory variables:
(1) abiotic variables only; (2) mammals species only; (3) land cover
only; and (4) abiotic variables, mammals and land cover together.

2.1. Data types

2.1.1. Abiotic variables
2.1.1.1. Climatic data. Nineteen bioclimatic variables were used as
environmental layers (Table 1) obtained from WorldClim with a
spatial resolution of 30′′ (http://www.worldclim.org/current.htm;
Hijmans et al., 2005). They represent annual trends (e.g., annual
mean temperature and precipitation), seasonality (e.g. annual tem-
perature and precipitation ranges), environmental extremes (e.g.,
highest and lowest values of temperature for the warmest and
coolest months) of temperature and precipitation, and character-
ize the dimensions of climate considered particularly relevant in
determining species distributions (Waltari and Guralnick, 2009).

2.1.2. Biotic variables
2.1.2.1. Land cover. We  used the Inventario Nacional Forestal (INF)
2000 (Palacio et al., 2000) as a base for current land use and vege-
tation types in México. INF 2000 is based on both LandSat satellite
imagery interpretation and ground field validation of the main veg-
etation types and land use in Mexico and scaled at 1:250,000. It is
jointly produced by the Instituto de Geografía of the Universidad
Nacional Autónoma de México (www.igeograf.unam.mx), and the
Instituto Nacional de Estadística y Geografía (www.inegi.gob.mx).
This layer included 77 types of vegetation in México.

2.1.2.2. Species occurrence data. The data set consisted of point
collection data associated with one Class, Mammalia, includ-
ing the species – Lynx rufus – and one genus – Lutzomyia
– of the class Insecta. The mammal  data set contains 37,297
unique point collections from georeferenced localities for 427
terrestrial mammals occurring in Mexico. Data are based on
museum voucher specimens from national and international col-
lections, public electronic databases (GBIF; www.gbif.org, and
CONABIO; www.conabio.gob.mx), and published records (Hall,
1981; Guevara-Chumacero et al., 2001). For L. rufus there were
220 collections points. For Lutzomyia,  there were 270 collections
points belonging to 11 species (see supplementary material) taken
from published literature and from national collections: Instituto
de Diagnóstico y Referencia Epidemiológica (InDRE, Mexico City),
the Colección Entomológica Regional Universidad Autónoma de
Yucatán (UADY, Mérida) and the Laboratorio de Medicina Trop-
ical at the Universidad Nacional Autónoma de México (UNAM,
Mexico City). For all data sets, each locality was georeferenced
to the nearest 0.01 degrees of latitude and longitude using
1:250,000 topographic maps (INEGI; www.inegi.gob.mx; Insti-
tuto de Geografía, Universidad Nacional Autónoma de México;
www.igeograf.unam.mx). Point collection data was, of course, not
collected in order to provide and unbiased sampling of underlying
species abundance and therefore must be considered carefully to
understand potential statistical biases that might be present. The

utility and limitations of point collection data have been amply
discussed in (Ponder et al., 2001; Graham et al., 2004).

With respect to the data set for Mexican mammals, this data
has been collected over a period of more than 100 years with a

http://www.worldclim.org/current.htm
http://www.igeograf.unam.mx/
http://www.inegi.gob.mx/
http://www.gbif.org/
http://www.conabio.gob.mx/
http://www.inegi.gob.mx/
http://www.igeograf.unam.mx/
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Table  1
Bioclimatic variables from WorldClim: BIO1 = annual mean temperature; BIO2 = mean diurnal range (mean of monthly (max temp–min temp)); BIO3 = isothermality
[((BIO2/BIO7) × 100)]; BIO4 = temperature seasonality (standard deviation × 100); BIO5 = max  temperature of warmest month; BIO6 = min  temperature of coldest month;
BIO7  = temperature annual range (BIO5–BIO6); BIO8 = mean temperature of wettest quarter; BIO9 = mean temperature of driest quarter; BIO10 = mean temperature of
warmest quarter; BIO11 = mean temperature of coldest quarter; BIO12 = annual precipitation; BIO13 = precipitation of wettest month; BIO14 = precipitation of driest month;
BIO15  = precipitation seasonality (coefficient of variation); BIO16 = precipitation of wettest quarter; BIO17 = precipitation of driest quarter; BIO18 = precipitation of warmest
quarter; BIO19 = precipitation of coldest quarter. These bioclimatic variables were derived from the average monthly mean temperature (◦C × 10), average monthly minimum
temperature (◦C × 10), average monthly maximum temperature (◦C × 10) and average monthly precipitation (mm) (Hijmans et al., 2005).

Range BIO1 BIO2 BIO3 BIO4 BIO5 BIO6 BIO7

R1 −27–5 73–97 37–44 210–984 38–76 −98–65 115–166
R2 6–37 98–108 45–48 985–1759 77–114 −64–32 167–189
R3 38–70 109–119 49–51 1760–2534 115–152 −31–1 190–214
R4  71–102 120–130 52–55 2535–3309 153–190 2–34 215–238
R5  103–135 131–141 56–60 3310–4084 191–229 35–67 239–262
R6  136–167 142–153 61–64 4085–4859 230–267 68–100 263–284
R7 168–199 154–164 65–67 4860–5634 268–305 101–133 285–306
R8 200–232 165–174 68–71 5635–6409 306–343 134–166 307–329
R9  233–264 175–184 72–76 6410–7184 344–381 167–199 330–355
R10 265–297 185–207 77–84 7185–7959 382–420 200–232 356–392

BIO8  BIO9 BIO10 BIO11 BIO12 BIO13 BIO14

R1 −22–11 −35–2 −20–14 −36–4 42–507 8–84 0–12
R2  12–45 −1–31 15–48 −3–28 508–973 85–161 13–25
R3 46–79 32–64 49–82 29–60 974–1439 162–237 26–37
R4  80–113 65–97 83–117 61–92 1440–1905 238–314 38–50
R5  114–147 98–131 118–151 93–125 1906–2371 315–391 51–63
R6  148–181 132–164 152–185 126–157 2372–2836 392–467 64–75
R7  182–215 165–197 186–220 158–189 2837–3302 468–544 76–88
R8 216–249 198–230 221–254 190–221 3303–3768 545–620 89–100
R9  250–283 231–263 255–288 222–253 3769–4234 621–697 101–113
R10  284–317 264–297 289–323 254–286 4235–4700 698–774 114–126

BIO15 BIO16 BIO17 BIO18 BIO19

R1 37–45 18–218 0–43 1–125 0–95
R2  46–54 219–418 44–87 126–249 96–191
R3  55–63 419–618 88–131 250–373 192–287
R4 64–72 619–818 132–175 374–497 288–383
R5  73–81 819–1018 176–219 498–622 384–479
R6 82–89  1019–1218 220–262 623–746 480–575
R7  90–98 1219–1418 263–306 747–870 576–671
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co-occurrences against some null hypothesis. The question is:
What is an appropriate resolution, an appropriate cell size? This is
known in geography as the “modifiable areal unit problem” (MAUP)
R8  99–107 1419–1618 307–350
R9  108–116 1619–1818 351–394
R10  117–125 1819–2019 395–438

onsequently large number of collectors. Hence, although the data
as not been collected systematically, it has probably led to an ade-
uate sampling. Additionally, mammals are the best known and
ollected group in Mexico. In the case of Lutzomyia the coverage is
ess but still represents the best available.

.2. Data integration

In Stephens et al. (2009) attention was restricted to only biotic
actors. When considering the effects of both biotic and abiotic fac-
ors together subtleties arise when trying to integrate the different
ata types into a predictive model. One of the principal problems
o face is associated with the question of to what extent they can be
ompared statistically. An important data class representing biotic
actors is that of point collection data, which generally translates
nto discrete Boolean presence/no presence type variables. On the
ther hand, abiotic factors, such as temperature, are generally con-
inuous in nature. How does one compare the relative effects of such
ifferent variable types in a predictive model, given that they have
uch different natural scales of variation and spatial resolution?

There are two fundamental characteristics of the data – the data
ype and its spatial–temporal resolution – that need to be made
ompatible within a given modeling framework. As far as vari-

ble type is concerned, abiotic factors are typically real numbers,
hereas point collection data are naturally modeled as Boolean

ariables. There are at least two possible ways to make a fairer
omparison and integrate them together: One is to extrapolate the
871–994 672–767
995–1118 768–1016

1119–1243 1017–1927

biotic factors to become continuous variables, while, the other,
is to convert the abiotic variables to Boolean type. The first of
these alternatives would be basically equivalent to what is done
in the case of the climatic variables themselves: a discrete set of
point measurements are converted into a continuous distribution
by assuming a model that interpolates from one to the other. The
question there would be: How is the interpolation done? A better
way, that requires less model bias, is to convert the abiotic variables
to a discrete set of values. There are several ways to do this.3 One
way is to coarse grain the value of the continuous variable into a
finite set of bins. We  can then consider the variable to take Boolean
values, as in a given region the question as to whether the variable
takes a particular value in a bin has a yes/no answer, e.g., mean
annual temperature is in the range 13–18◦.

The next question concerns the relevant spatial scale for the
variables. First, we  divide up a geographic region of interest into
spatial cells, x˛, such as a grid of uniform square cells. For a pair
of Boolean variables we  can then count the co-occurrences of
those variables in a given cell and test the frequency of those
3 We have repeated our analysis using different coarse graining and found no qual-
itative change in our results. There is more discussion of this point in supplementary
material.
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Openshaw, 1983). In terms of forming a spatial grid, there are at
east two important considerations (Alcocer and Stephens, 2012):
he sizes of the statistical samples of the variables and their degree
f correlation. Too fine a grid and there will be no co-occurrences,
oo rough and there will be little to no discrimination.

For a given grid size, chosen by consideration of the relative sam-
le sizes of the biotic variables, one can look for a coarse grained
alue of each abiotic variable within a given cell. As mentioned,
here are different ways to do this. Here, we will consider the pres-
nce of a given value of a given abiotic variable to be equivalent to
he “presence” of that variable in the corresponding cell. Thus, if in a
iven cell, values 1 and 2 of Annual Mean Temperature appear, then
or the purposes of calculating co-occurrences, it is as if there were
collections” of these variables. Thus, the 19 Worlclim variables,
ach with 10 possible values, can be thought of as 190 different
species” and compared directly with the collection data.

We used 3337 square cells of linear size 25 km,  which corre-
ponds to an average of 20-point collections per cell (once again,
or details and a discussion of the dependence on the grid size, see
tephens et al., 2009; Alcocer and Stephens, 2012). We  consider Bi
x˛) as a measure of the presence of the taxa i in the spatial cell
˛. The particular measures, Bi, we can use depend on the avail-
bility of data – presence only, presence/absence, abundance, etc.
ur main object of interest is P(Bi(x˛)|I(x˛)), the probability that

he distribution measure Bi(x˛) takes a certain value in the spatial
ell x˛ conditioned on, I(x˛), which is composed of all biotic and
biotic factors that affect species distributions corresponding with
heir niche (Soberón and Peterson, 2004).

.2.1. Co-occurrences as proxies for ecological interactions
We adopt a non-parametric “data mining” approach, modeling

 species’ distribution directly using available biotic and abiotic
ata, the former being a direct result of the past and present inter-
ctions of all relevant causative factors - climatic, phylogenetic,
o-evolutionary and ecological.

We  will take the taxon distribution, Bi (Lutzomyia or L. rufus), and
 subset of potential niche variables I′ ⊆ I. We  are interested in the
robability P(Bi|I′) = NBi AND I′ /NI′ , where NBi AND I′ is the number of
patial cells where there is a co-occurrence of the taxon Bi and the
iche variables I′, and NI′ is the number of cells where the niche
ariables take their stated values. The niche profile I

′
(x˛) associ-

ted with a spatial cell x˛ then determines the probability of the
istribution variable, Bi(x˛), in that cell, and one now has a predic-
ive model. The problem of calculating P(Bi|I′) directly is that both
Bi AND I′ and NI′ are likely to be zero when the number of taxa or
iche variables considered simultaneously is large, as there will
end to be no co-occurrences of so many variables. This can be
meliorated by considering a reduced number of both class and
eature variables (Ik). For instance, P(Bi|Ik) is determined by the
umber of co-occurrences of the taxon Bi and the niche variable

k and, in principle, allows us to find the most important statistical
ssociations between the niche variables and the taxa distributions.
owever, P(Bi|Ik) being a probability does not account for sample

ize. For example, if P(Bi|Ik) = 1, this may  be as a result of there being
 coincidence of Bi and Ik in one spatial cell or 1000. Obviously, the
atter is more statistically significant. To remedy this we consider
he following test statistic

(Bi|Ik) =
NIj (P(Bi|Ik) − P(Bi))

(NIj P(Bi)(1 − P(Bi)))
1/2

(1)

hich measures the statistical dependence of Bi on Ik relative to the

ull hypothesis that the distribution of Bi is independent of Ik and
andomly distributed over the grid, i.e., P(Bi) = NBi

/N, where NBij
is

he number of grid cells with point collections of species Bi and N is
he total number of cells in the grid. The sampling distribution of the
l Modelling 248 (2013) 57– 70

null hypothesis is a binomial distribution where, in this case, every
cell is given a probability P(Bi) of having a point collection of Bi. The
numerator of Eq. (1) then, is the difference between the actual num-
ber of co-occurrences of Bi and Ik relative to the expected number if
the distribution of point collections were obtained from a binomial
with sampling probability P(Bi). As we are talking about a stochastic
sampling the numerator must be measured in appropriate “units”.
As the underlying null hypothesis is that of a binomial distribution,
it is natural to measure the numerator in standard deviations of this
distribution and that forms the denominator of Eq. (1).  In general,
the null hypothesis will always be associated with a binomial dis-
tribution as in each cell we  are carrying out a Bernoulli trial (“coin
flip”). However, the sampling probability can certainly change.

The quantitative values of ε(Bi|Ik) can be interpreted in the
standard sense of hypothesis testing by considering the associated
p-value as the probability that |ε(Bi|Ik)| is at least as large as the
observed one and then comparing this p-value with a required
significance level. In the case where NBj

≥ 5 − 10 then a normal
approximation for the binomial distribution should be adequate,
in which case ε(Bi|Ik) = 2 would represent the standard 95% confi-
dence interval. When a normal approximation is not accurate then
other approximations to the cumulative probability distribution of
the binomial must be used.

In the case where Ik = Bk, that is when we consider the effect
of another taxon on the target species, then P(Bi|Bk) and ε(Bi|Bk)
are measures of the statistical association between the two  taxa,
ε(Bi|Bk) having the added advantage of having built into it the
degree of statistical confidence that one may  have about the asso-
ciation. Note that such a statistical association does not necessarily
prove that there is a direct “causal” interaction between the two
taxa. Rather, it allows for a statistical inference that may be val-
idated subsequently. However, similarly, for abiotic variables it
is just a statistical association and does not prove a causal link
between the taxa distribution and the corresponding abiotic vari-
able.

2.2.2. Constructing predictive models
Probabilities P(Bi|I′), or proxies thereof, where I′ is of high

dimension, can be constructed using different classification mod-
els, such as neural networks, discriminant analysis, Maxent, etc. A
particularly transparent, simple and effective approximation is the
Naive Bayes approximation (Hand et al., 2001)

P(Bi|I) = P(I|Bi)P(Bi)
P(I)

=

N∏
k=1

P(Ik|Bi)P(Bi)

P(I)

where in the first equality, Bayes rule has been used, and in the sec-
ond it has been assumed that the niche variables Ik are independent.
The product here is over the N niche variables under consideration
as conditioning factors for Bi. In the case of the relationship between
Lutzomyias and mammals, N represents the number of mammal
species. Although the Naive Bayes approximation assumes inde-
pendence of the variables I, it is well known to be very often a
robust approximation even when it is known that this assumption
is not valid (Zhang, 2004).

A score function that can be used as a proxy for P(Bi|I′) is

S(Bi|I′) =
N∑

k=1

S(Bi|Ik) =
N∑

k=1

In

(
P(Ik|Bi)

P(Ik|B̄i)

)

where B̄i is the complement of the set Bi. For example, if Bi is the set
of cells with presence of taxon Bi then B̄i represents the set of cells
without presence. S(Bi|I′) is a measure of the probability to find the
distribution variable Bi when the niche profile is I′. It can be applied
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o a spatial cell x˛ by determining the niche profile of the cell, I′(x˛).
s an example, for two biotic niche variables, B2 and B3, that take
alues 1 (corresponding to the fact that there is a point collection
ssociated with that cell) and 0 (there is no point collection asso-
iated with the cell), the four possible biotic niche profiles of any
ell are (B2, B3) = (0,0), (0,1), (1,0) and (1,1). The score contributions
f each biotic variable are S(Bi|B2) and S(Bi|B3), calculated using
he above formula. Hence, S(Bi|I′) = S(Bi|B2, B3) = S(Bi|B2) + S(Bi|B3).
hus, for any given spatial cell x˛ one can assign a niche profile, i.e.
alues of B2 and B3, from whence it is possible to assign a corre-
ponding score. If there is no statistical association between Bi and
2 or B3 then the corresponding score contributions are zero. An
verall zero score then signifies that the probability to find Bi is the
ame as would be found if Bi were distributed randomly. If the score
s positive then there is a higher than random probability to find Bi
resent and on the contrary if the score is negative. As each niche
actor is treated separately in ε(Bi|Ik) or S(Bi,Ik) we  can thus evalu-
te the relative contribution of any given niche factor and compare
t to the contribution of any other.

.3. Model analysis

The relation between the score function S(Bi|I) and the niche
ariables I is determined as outlined above using a subset of ran-
omly chosen grid cells – the training set, consisting of 70% of
he data. S(Bi|I) is a monotonic measure of the probability to find
he taxa present and exhibits different characteristics as a func-
ion of geographic location, x˛ as the niche profile I(x˛) is different
or different locations. For instance, there may  exist large/small
ub-regions with very high/low scores. Model performance was
ested on the remaining 30% of data, retained as an independent
est set.

To examine model performance as a function of score and
hereby, implicitly, as a function of location, we  divided the grid
ells into deciles. The 10th decile, as shown in tables below, corre-
ponds to the 10% of grid cells with the highest score values, the 9th
ecile to the next 10% of grid cells with highest score values, etc.
his allows us to establish predictability profiles across the different
core deciles for the different niche models. A performance measure
e will use here is to calculate for each score decile the percent-

ge of associated target species collections. Summing over all the
core deciles would yield 100% of the collections. The larger the per-
entage in the higher decile is, the better, more discriminating, the
odel. A random model would yield 10% of true positives in each

ecile whereas a perfect model would locate all point collections in
he highest ranked cells. Thus, large changes in score passing from
ne decile to another correspond to the fact that the associated
odel discriminates well between one decile and another.
As the top/bottom score deciles correspond to best/worst niche

onditions, by using ε we can determine for these deciles what are
he most correlated niche factors, considering separate analyses
or climatic, land cover and biotic factors. We  can also examine to
hat extent these niche factors concur with previous knowledge

bout the ecological interactions of Lutzomyia and L. rufus or con-
entrate on those niche factors that have particular importance.
or instance, for Lutzomyia there are several mammal  species that
re known reservoirs of the Leishmania parasite. We  can deter-
ine to what extent these particular species are associated with

he top/bottom deciles. Similarly, for L. rufus potentially interest-
ng biotic factors are those that correspond to known preys or to
otential competitors.

Having identified the most relevant factors associated with the

ost/least suitable niche variables for Lutzomyia and L. rufus, we

an investigate how the contribution of these factors changes as we
ass from one score decile to another. In order to do this a linear
egression was performed, where the two variables involved are
l Modelling 248 (2013) 57– 70 61

the log of the number of cells associated with a given score decile
that are occupied by the taxa of interest and the log of the number
of cells in the same decile that are occupied by the niche variables
of interest.

3. Results

Before presenting the results it is important to state that their
chief purpose is as case studies, to show what our modeling
methodology is capable of. Thus, for instance, we may  learn about
the relative importance of abiotic versus biotic factors for two
representatives of a pair of very different taxa – an insect and a
mammal. The fact that we  chose these particular species is, as far
as the methodology is concerned, purely coincidental. Any taxa
whatsoever could have been chosen with similar results – viz. –
we may  see how the methodology allows one to construct a more
complete model for the realized niche of an organism, create more
accurate distribution models, compare with what is already known
about an organism and formulate new hypotheses and make new
predictions.

3.1. Relative influence of biotic versus abiotic factors

We will first consider what can be gleaned about the relative
effects of biotic versus abiotic factors in the niches of our represen-
tative taxa – an insect and a mammal. There are two different but
related ways in which one can pose the analysis. One  is to imagine
that we  know nothing about the biology of the different taxa being
studied. We  then use the model results to try and infer what their
differences are by contrasting their relative niches. A goal of this
might be to identify the taxon by studying its interaction with its
niche. The other way  is to make hypotheses about their compar-
ative biology and ecology from existing knowledge and to see to
what extent those hypotheses are validated. In this article, we will
concentrate more on this second type of analysis. As a metric for the
relative influence of biotic versus abiotic factors we  consider three
different score models – one using only abiotic variables (World-
clim) and two  others, one using only mammals collections and the
other land cover, as biotic factors. We  rank our grid cells in terms
of the three different scores and then divide the ranked cells into
deciles. So, for example, decile 10 would be the 10% of cells with
the highest scores for a given model while decile 1 would be the
10% of cells with the lowest scores.

Lutzomyia are a genus of small sandflies, various species of which
are known vectors of the disease Leishmaniasis. The females need
blood meals from mammals for the reproductive cycle, laying eggs
in damp surroundings shortly after having fed. These mammals
are then potential reservoirs for the Leishmania parasite. On the
other hand, Lynx rufus is a vagile mammal  that is a strict carni-
vore. What might one generally expect? First of all, Lutzomyia,  as
an insect, would be expected to be less robust to climatic factors
than a mammal, such as Lynx rufus. Secondly, one might at first
thought expect an insect to be less influenced by the presence of
mammals than a carnivore that feeds principally on other mam-
mals. However, in the present case the insect is a haematophage
that depends on mammals for blood meals. We  might therefore
expect the relative contributions of the mammal variables to be
somewhat similar.

We consider the average score as a function of score decile,
the interpretation being that positive scores correspond to vari-
able combinations associated with the niche, while negative scores
correspond to an “anti-niche.” We  will use two  representations of

average score: one where the score is simply the sum of the scores
of the corresponding variables in each cell, and a second, where we
divide the score by the number of variables in the corresponding
class – 190 for abiotic, 427 for mammal  and 77 for land cover.
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ig. 1. Relative importance of different niche factor types for Lutzomyia and Lynx
ufus.

In Fig. 1 we see the average score for each model as a function
f each decile of grid cells. The relative variation in score across
he deciles, comparing both abiotic and biotic variables for our two
axa, is very revealing. First of all, note the great deal of similarity
or both Lutzomyia and L. rufus in the score distributions for the

ammal  variables. This might seem somewhat counterintuitive
ut is perfectly consistent with the hypothesis that biotic inter-
ctions with mammals should be similar for the two taxa given
he nature of their feeding habits, i.e., both require mammals on
hich to feed; Lutzomyia are haematophages that are not known

o be selective in which mammals they feed on. In this sense, the
resence of mammal  species is a necessary condition for the pres-
nce of Lutzomyia.  Of course, one can argue that this is only an
nference about potential biotic interactions. We  will see that this
nference can be made quite compelling shortly. Turning now to
biotic factors: We  see that climatic factors, such as temperature
nd precipitation, are much more important for Lutzomyia than
or Lynx rufus, as one might expect for an insect versus a mam-

al. The distribution of abiotic (climatic) scores shows that the
ole of climate is predominantly negative, indicating more where
utzomyia cannot be, when compared to biotic variables, while the
ffect of land cover is quite similar to that of the climatic factors
Fig. 2).

In Fig. 2, we see the relative contributions per variable of the
hree variable types, where we have normalized the total score con-
ribution by the number of corresponding variables. Once again we
an see that climatic variables are much more discriminating for the
nsect than the mammal. In the case of mammals as biotic factors,

e can see that their presence can be a good indicator of where to

nd either of our two taxa but do not influence very much where
ot to find them. Thus, in terms of anti-niche, abiotic factors are
uch more important than biotic ones.

ig. 2. Relative average score contribution of niche factors of different types for
utzomyia and Lynx rufus.
l Modelling 248 (2013) 57– 70

3.2. Predictive power

We  now move to a discussion of the predictive power of the dif-
ferent model types using Fig. 3, which shows the percentage of true
positives in the different score deciles for the three different models
– abiotic, biotic and land cover – and also for a model which con-
tains all three classes of variables. From comparing the performance
of the abiotic and biotic models in the top decile we see that the
biotic model is more predictive than the abiotic or land cover mod-
els for both taxa. For Lutzomyia about 45% of point collections are
found in the top decile for the biotic model compared to around 35%
for the others. This means that biotic variables are more important
than abiotic ones in determining the optimal niche regions asso-
ciated with the highest probability to find Lutzomyia.  This is even
more the case for Lynx rufus where the biotic model leads to twice
as high a percentage of true positives in the top score decile when
compared to the abiotic one, Note that the abiotic model in this case
leads to a substantial number of false negatives in the lower deciles.
This is further evidence that climatic variables do not discriminate
between niche and anti-niche as well as the biotic variables.

The most significant feature of Fig. 3 is the enhanced perfor-
mance of a model that incorporates all three variable types as
opposed to just one, leading not only to more true positives in
the top decile but also to less false negatives in the lower deciles.
The reason for this enhanced performance is that the different
niche dimensions are complementary, biotic variables capturing
predictability that is not present in the abiotic ones and vice versa.
For Lutzomyia the model with all variables predicts more than 50%
of the Lutzomyia point collections in the top decile, i.e., a 500%
increase over random chance, while for Lynx rufus it is over 60%.
To check the statistical significance of these results we randomly
repeated the division of data into training and test sets 30 times
(Fig. 4). We  then considered the average performance of each model
– abiotic, biotic, vegetation, all – in the top decile over the 30 tri-
als and then considered the following statistical diagnostic for any
model type

ε′ = X̄b − X̄a√
(�2

b
/nb) + (�2

a /na)

For Lutzomyia the niche model with mammals is more predictive
than abiotic and vegetation only. Once again, however, combining
all variable types leads to a more predictive model, showing how a
niche model built with abiotic and biotic variables together is more
accurate and robust. In this case ε′ = 3.86 with an associated p value
of 0.007, thus showing that including in the full set of niche dimen-
sions at our disposal leads to better prediction models. For Lynx
rufus we find a value of 23.96 for the average performance of the
biotic model over the abiotic model and 26.64 for the model with
all niche variables relative to the abiotic model. Finally, ε′ for the
all variables model versus the biotic model is 4.78, corresponding
to p value of 0.0019.

3.3. Constructing niches

An important advantage of our modeling framework is that it
allows us to establish a transparent and unique ecological profile
for each individual cell of our grid, thereby allowing us to quan-
tify the relative influence of each niche variable at each geographic
location and its impact on the presence of a species there. As the
top decile of scores best characterizes the ideal niche, while the
bottom decile is associated with anti-niche, we  constructed lists

of the most relevant abiotic and biotic variables for these deciles
and ranked them from highest to lowest in terms of ε value. From
these lists we  selected the highest quartile of ε values for the top
decile of scores and the lowest quartile (most negative) of epsilon
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Fig. 3. Relative performances of differen

alues for the bottom decile (Tables 2 and 3). In this way, we  can
etermine what the most important variables are in determining
oth the presence and absence of the target species. With these

iche/anti-niche characterizing factors in hand we can then quan-
ify how their presence changes as we pass from one score decile
o another (Table 4). The results can be seen in Figs. 5 and 6. For
nstance, in the top left hand graph the horizontal axis is the log of

ig. 4. Average number of collection points found for each model type in each score dec
ufus.
e models for Lutzomyia and Lynx rufus.

the percentage of cells that are associated with the abiotic niche-
defining factors given in Table 2 that are associated with the optimal
Lutzomyia niche (top score decile), while the vertical axis corre-

sponds to the log of the percentage of cells that are occupied by
Lutzomyia.

For Lutzomyia in the top score decile, the optimum conditions
are related to climate, emphasizing the role of precipitation as a key

ile using 30 random samples of each set of variables for (a) Lutzomyia and (b) Lynx
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Table 2
Abiotic and biotic variables in the top and bottom deciles for Lutzomyia with epsilon and score values.

Top decile Bottom decile

Optimal niche conditions for Lutzomyia Suboptimal niche conditions for Lutzomyia

Abiotic variables Range Epsilon Score contribution Abiotic variables Range Epsilon Score contribution

BIO17 88–219 8.960 5.013 BIO12 42–507 −5.604 −2.279
BIO1  23.3–26.4 8.938 1.006 BIO16 18–218 −5.001 −2.328
BIO11 22.2–25.3 8.873 2.322 BIO18 1–249 −3.839 −3.799
BIO14 26–63 8.782 4.916 BIO6 3.1–3.4 −3.761 −2.931
BIO4 25.35–33.09 7.543 2.152 BIO7 26.3–28.4 −3.544 −8.853
BIO6  13.4–16.6 7.524 3.293 BIO2 16.5–18.4 −3.535 −2.997
BIO13 392–774 7.107 12.913 BIO11 2.9–12.5 −3.271 −4.482
BIO7  28.5–30.6 7.012 3.803 BIO4 3310–7184 −2.971 −9.551
BIO16 1019–2019 6.925 12.175 BIO19 192–383 −2.940 −0.448
BIO19 192–383 6.618 4.157 BIO10 28.9–32.3 −2.669 −0.916
BIO12 1906–3302 6.314 8.701 BIO1 10.3–19.9 −2.189 −1.033
BIO2  9.8–10.8 6.130 4.458 BIO3 3.7–5.5 −2.130 −3.576
BIO18 623–746 5.748 1.260 BIO8 28.4–31.7 −1.964 −0.731

Reservoirs Reservoirs

Reithrodontomys gracilis 8.892 2.640 Sigmodon hispidus 6.946 1.244
Heteromys gaumeri 8.800 2.234
Heteromys desmarestianus 8.716 2.381
Ototylomys phyllotis 7.559 2.028
Peromyscus yucatanicus 7.249 2.116
Sigmodon hispidus 6.946 1.244
Didelphis marsupialis 5.774 1.662
Oryzomys melanotis 3.494 1.387
Marmosa mexicana 2.773 1.541

Land cover Land cover

Cloud forest 6.642 1.408 Subtropical scrub −1.675 −1.527
Tropical evergreen
forest

6.603 4.476 Subtropical scrub with secondary vegetation −1.849 −1.658

Cloud forest with
secondary vegetation

6.028 1.459 Xeric scrub with secondary vegetation −2.092 −3.640

Tropical evergreen
forest with secondary
vegetation

6.007 4.344 Xeric scrub −2.924 −4.044

Agriculture areas 5.966 1.736 Mesquite −3.337 −1.714
Human settlement 4.947 0.577 Grassland −3.734 −1.874
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Deciduous tropical
forest with secondary
vegetation

4.081 1.013 Mangrove

ariable for its distribution. These results show annual and seasonal
recipitation are between 900 and 3000 mm,  and with temperature
rom 20 to 30 ◦C, indicating that the probability to find this species
s higher from humid tropical to sub-humid climates (R2 = 0.554,

 = 0.014). Additionally, the most favorable vegetation types for Lut-
omyia are deciduous forests and tropical evergreen, followed by
gricultural areas (R2 = 0.809, p < 0.001).

Nine mammal  species have been confirmed as reservoirs of
his blood-sucking insect vector (Canto-Lara et al., 1999; Van

ynsberghe et al., 2000; Sosa, 2004), there being a commensal-
sm interaction between Lutzomyia and the mammals described.
ll these nine reservoir species are found in the top decile (Table 2),

ndicating the potential importance of their presence as a food
esource for the vectors (R2 = 0.736, p = 0.002). On the contrary, the
ariables that would indicate suboptimal conditions in the bot-
om decile for the presence of Lutzomyia,  where the probability
f finding Lutzomyia is smaller, are: low rainfall, hot and dry cli-
ates (R2 = 0.763, p < 0.001), temperate forests and semi-desert

crub (R2 = 0.902, p < 0.001). Only one known reservoir (Sigmodon
ispidus) appears in the bottom decile and this is a mammal with a
articularly wide distribution in Mexico.
For L. rufus we determined its niche landscape and projected
t into our geographic region of interest. In the range of probabil-
ties we can observe suitable areas in southern México where, in
act, this species has not been registered (Fig. 8). To identify the
−4.063 −2.000

most relevant variables for L. rufus, we  characterized its ecological
profile and analyzed it with a simple log-linear regression (Fig. 6)
as was  the case with Lutzomyia.  For the top score decile the most
relevant niche variables were taken to be those associated with
the highest quartile of ε values (Table 3). Temperature is the most
important variable in places with annual and seasonal averages
between −2 ◦C and 20 ◦C and its rainfall threshold is from 80 to
160 mm average. These results indicate a high probability to find
this species in temperate to warm–dry zones (R2 = 0.505, p = 0.021).
Moreover, the most optimal vegetation types are temperate forests
of pine, oak and fir, as well as semi-desert scrub, grasslands and crop
fields (R2 = 0.417, p = 0.044). The presence of L. rufus in agricultural
areas could be associated with the presence of domestic animals
(Lariviere and Walton, 1997).

Considering the potential importance of predator-prey inter-
actions between L. rufus and other mammals we listed the 27
previously reported species that have been confirmed as prey to
L. rufus, lagomorphs being the most important component in its
diet (Lariviere and Walton, 1997; Aranda et al., 2002). Of these 27,
25 are in the top decile (Table 3), thus indicating that the wide
availability of food resources and the change in their availability is

an important factor in determining the range of L. rufus (R2 = 0.735,
p = 0.002). Projecting these ecological requirements onto a map we
identified the most important areas in central and north Mexico for
presence of L. rufus (Fig. 8).
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Table  3
Abiotic and biotic variables in the top and bottom deciles for L. rufus with epsilon and score values.

Top decile Bottom decile

Optimal niche conditions for L. rufus Suboptimal niche conditions for L. rufus

Abiotic variables Range Epsilon Score contribution Abiotic variables Range Epsilon Score contribution

BIO1 −2.7–16.7 5.488 6.109 BIO9 19.8–29.7 −4.177 −0.821
BIO6 −9.4–3.4 5.327 3.005 BIO11 19–28.6 −3.930 −5.379
BIO8 2.2–14.7 4.797 1.096 BIO6 6.8–19.9 −3.578 −1.902
BIO4 25.35–48.95 4.704 1.393 BIO1 23.3–29.7 −3.452 −3.128
BIO9 −3.5–16.4 4.687 5.758 BIO16 619–1618 −3.060 −3.268
BIO11 −3.6–16.5 4.632 7.050 BIO7 11.5–21.4 −2.853 −1.656
BIO16 219–418 4.602 0.524 BIO17 88–219 −2.782 −1.091
BIO5 7.7–30.5 4.330 1.777 BIO2 7.3–11.9 −2.594 −0.954
BIO10 −2.7–22 4.266 2.33 BIO13 238–620 −2.59 −3.996

BIO12 974–3302 −2.512 −1.413
BIO14 26–63 −2.253 −4.666
BIO18 374–870 −2.219 −1.068

Preys Preys

Spermophilus variegatus 13.824 1.883 Sylvilagus floridanus 11.004 1.439
Sylvilagus floridanus 11.004 1.439 Neotoma mexicana 8.034 1.378
Neotoma albigula 9.143 1.604 Didelphis virginiana 5.553 1.054
Microtus mexicanus 8.846 1.776 Nasua narica 5.270 1.147
Dipodomys ordii 8.636 1.565 Odocoileus virginianus 4.457 1.589
Dipodomys merriami 8.618 1.306
Neotoma mexicana 8.034 1.378
Sigmodon leucotis 6.275 1.982
Sylvilagus audubonii 5.972 1.556
Didelphis virginiana 5.553 1.054
Cratogeomys merriami 5.385 2.031
Nasua narica 5.270 1.147
Dipodomys deserti 5.057 2.059
Dipodomys nelsoni 4.972 1.453
Odocoileus virginianus 4.457 1.589
Romerolagus diazi 4.427 4.362
Dipodomys gravipes 4.296 2.465
Dipodomys spectabilis 4.039 1.366
Neotomodon alstoni 3.860 1.589
Ammospermophilus harrisii 3.700 2.128
Dipodomys agilis 3.469 1.248
Spermophilus tereticaudus 2.332 1.366
Dipodomys simulans 1.875 1.877
Mustela frenata 1.810 0.928
Sylvilagus cunicularius 1.743 1.030

Potential competitors Potential competitors

Leopardus pardalis 3.373 1.147 Leopardus pardalis 3.373 1.147
Panthera onca 2.559 0.928 Panthera onca 2.559 0.928
Leopardus wiedii 1.597 0.735 Leopardus wiedii 1.597 0.735
Herpailurus yagouaroundi 1.138 0.524 Herpailurus yagouaroundi 1.138 0.524

Land  cover Land cover

Grassland 4.883 0.629 Low forest evergreen with secondary vegetation −2.088 −0.430
Plantation forest 4.738 1.934 Savannah −2.202 −1.907
Xeric  scrub with secondary vegetation 4.283 1.094 Cloud forest with secondary vegetation −2.439 −2.061
Oyamel forest 4.274 1.256 Mangrove −2.506 −1.191
High  mountain meadow 4.042 1.812 Tropical evergreen forest with secondary vegetation −2.540 −3.532
Agriculture areas 3.903 0.745 Tropical evergreen forest −2.566 −3.575
Xeric  scrub 3.955 0.678 Deciduous tropical forest −2.924 −1.816
Coniferous forest 3.878 0.565 Deciduous tropical forest with secondary vegetation −3.143 −2.471
Quercus forest 3.858 0.475
Human settlement 3.661 0.356
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Coniferous forest with secondary vegetation 3.631 0.591
Quercus forest with secondary vegetation 3.457 0.468

Turning now to the bottom decile, we once again ranked the list
f variables and took the lowest quartile of epsilon values corre-
ponding to the most suboptimal conditions for L. rufus (Table 3).

rominent among these variables are annual and seasonal precipi-
ation ranges between 900 and 3000 mm and temperature average
rom 23 ◦C to 30 ◦C. Thus, hot and humid climates are unfavorable
or it (R2 = 0.508, P = 0.021). Regarding vegetation, the probability
of occurrence of this species in tropical forests is small (R2 = 0.711,
P = 0.002).

An important change in the optimal conditions for this species

in the lower scoring deciles is the absence of a large number of
typical prey species. In the bottom decile for example, only five
confirmed prey species are present, only one of which is a lago-
morph. It is important to highlight that we also found the presence
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Table 4
Percentage of occupied cells across one score decile to another for Lutzomyia and Lynx rufus, and their optimal and suboptimal niche conditions described in Tables 2 and 3.

Decile Lutzomyia Optimal niche conditions L. rufus Optimal niche conditions

Reservoirs Abiotic Land Cover Preys Abiotic Land Cover

10 14.2 66.0 100.0 98.4 31.4 93.9 99.4 98.4
9  8.1 29.8 100.0 97.4 8.7 67.6 99.4 99.0
8  3.2 11.4 99.7 90.6 3.5 45.1 99.0 98.1
7 1.0 8.4 94.2 71.8 3.9 31.3 97.7 95.1
6 0.6  6.2 71.8 68.5 1.3 21.2 97.7 91.9
5  0.0 3.6 39.9 55.8 0.7 14.7 96.7 83.4
4  0.0 5.2 32.0 58.9 1.0 11.4 84.1 65.3
3  0.3 5.2 19.4 51.8 1.3 30.5 77.9 83.4
2  0.3 6.5 9.4 37.9 0.3 22.1 49.7 80.5
1 0.3 7.7 3.5 38.9 0.3 20.6 54.8 84.8

Decile Suboptimal niche conditions Suboptimal niche conditions

Abiotic Land Cover Felines Abiotic Land Cover

10 76.1 6.8 5.8 30.1 18.4
9  61.8 7.4 4.9 26.9 23.6
8  80.8 16.6 1.0 25.1 25.1
7 95.1  35.1 2.0 29.6 25.1
6  99.4 65.9 0.7 29.0 28.3
5  100.0 77.3 2.0 36.8 41.4
4  100.0 80.3 3.2 73.7 52.3
3  100.0 76.7 14.9 94.2 89.0
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2 100.0  85.8 

1  100.0 89.7 

f other species of felines (Leopardus pardalis, L. wiedii,  Herpailurus
agouaroundi and Panthera onca) as potential competitors. How-
ver, when we analyzed the presence of other felines alone we
oted these are not a variable that particularly restricts the pres-
nce of L. rufus (R2 = 0.0343, P = 0.608) as they are present in all
eciles. From this analysis, we consider that it is a combination of

ow availability of prey combined with presence of other felines as
otential competitors that is limiting the distribution of L. rufus in
ome regions.

. Discussion

Two of the most important objectives in ecology are to under-
tand why a species can be in one place and not in another and
hich types of variable, either biotic or abiotic, are the most

mportant in determining its presence or absence. However, a fun-
amental barrier that must be overcome in order that we  can
valuate the relative importance of different niche variables is to
stablish a framework within which a fair statistical comparison
an be made between them. The subtleties of doing this have meant
hat conventional ecological niche models have been based only
n species–climate relationships (Guisan and Zimmermann, 2000;
uisan and Thuiller, 2005; Guisan et al., 2006). These can show

he potential distribution for species, but they cannot say why  this
pecies is absent when the model says otherwise. This limitation
s principally due to the difficulty of integrating different variable
ypes (e.g., point collections and continuous environmental layers).
owever, it is generally accepted that integrating biotic variables

nto niche models would generate more robust and precise mod-
ls for explaining species’ distributions (Martin, 2001; Araujo and
uoto, 2007; Heikkinen et al., 2007; Wiens et al., 2009; Araújo et al.,
n press).

In this paper we proposed a novel methodology, based on data
ining techniques, that integrates and analyzes both biotic and
biotic variables to thereby more fully characterize the ecological
iche of a species and its associated geographical range. Our results
epresent an important next step in building distribution models.
ntegrating different types of variables in the construction of the
10.4 100.0 99.7
11.9 100.0 100.0

niche allowed us not only to determine the probability of presence
of the species but also to precisely determine the relative contrib-
utions of the different types of niche variables that contribute to
these probabilities.

Comparing the predictability of the different niche models gen-
erated in our study, we  noted that for both case studies, the
predictability in the top decile is higher using mammals only than
models with abiotic variables or vegetation only, but when we
generate a model that integrates all variables the predictability
increases even further. Therefore, a model that includes differ-
ent variable classes is more predictive than one that does not
and further, we can identify those variables that are most rele-
vant in describing the suitable (niche) and unsuitable (anti-niche)
areas. Hence, optimum conditions are given by those variables
whose spatial expression is associated better with the presence
of species, whereas suboptimal conditions are due to a loss
of a relevant niche variable or the presence of an anti-niche
variable.

Using two such contrasting examples as target species per-
mitted us to identify the large differences in relative importance
between biotic and abiotic factors that can occur from one species
to another. For an insect like Lutzomyia,  we saw clearly that abiotic
variables are more negatively correlated, indicating that macro-
climate plays an important role in determining the limits of its
distribution. We  found that precipitation is the most important
variable and that when this variable changes it leads to a reduction
in the probability to find this species. However, when we  projected
these ecological requirements on the geographic region of interest,
we observed that there are point collections beyond these limits,
principally in the north of México (Fig. 7).

If we  did not use other variables types in order to build a more
complete niche model, these points could be taken as being errors in
the point collection data. However, including biotic factors allowed
us to determine why  Lutzomyia is predicted to be present beyond
these climatic limits. Considering that Lutzomyia is a blood-sucking

insect which has an interaction with mammals, we  might surmise
that presence of Sigmodon hispidus in that region could explain
its occurrence. An important question to address is: How could
it arrive at those sites? To answer this question it is necessary to
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nalyze the inclusion of vegetation in the niche model. For this
ariable we found that tropical forests are an important factor for
he presence of Lutzomyia.  However, agricultural areas also play
n important role in its distribution. If we consider the changes in
rimary vegetation to agricultural areas, these could be function-

ng as corridors for species associated with crops (González-Salazar
nd Stephens, 2012). This hypothesis may  be sustained if we  take
nto account the results of the log-linear regressions, where we  saw
hat vegetation showed the highest correlation with the presence
f Lutzomyia.  If we consider the outcome of the model with all vari-
bles, we can establish a predictive scenario for the presence of this
enus and identify areas of risk for leishmaniasis.
For L. rufus the relationship with abiotic variables was  less
egative than Lutzomyia.  When we characterize its climatic
equirements we saw that its distribution occurs in a heteroge-
eous climatic gradient from temperate to arid areas. We  can then
timal and suboptimal conditions versus log of the percentages of cells occupied for
ciles corresponding to Fig. 1.

hypothesize that weather alone could not establish a limit to its
distribution. An important question is then, why  does it not occupy
all the areas suitable for it? As climate is only one axis of its eco-
logical niche, we  need to analyze the other axes corresponding to
biotic variables to explain this situation.

This case is, in fact, a good example to show the scope of our
method because, as this species is a strict carnivore, there are really
only two potential biotic interactions that could influence its dis-
tribution: predator–prey relationships and potential competition
with other species of felines. Previously, Sánchez-Cordero et al.
(2008) mentioned that in the south of the Isthmus of Tehuantepec,
although exists areas with suitable fundamental niche conditions

for this species, the presence of other felines may  limit the dis-
tribution of L. rufus due to potential competition. However, when
we characterize in our model the deciles in terms of mammals, we
found that potential feline competitors are present in all deciles,
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oexisting principally in the Pacific and the slopes of the Gulf of
exico. Why  then is there competition in the south and not in the

orth?
The answer to this question is probably availability of food

esources for L. rufus so as to allow it to avoid inter-specific
ompetition in the north. When we analyzed the bottom deciles
orresponding to suboptimal conditions we noted an absence of
rey species, principally lagomorphs. This would highlight the

mportance of preys as a determining factor for the distribution
f a strict carnivore such as L. rufus. Thus, we attribute absence of
. rufus below the Isthmus of Tehuantepec primarily to the absence

f prey species and secondarily to the presence of others felines,
nd changes in land cover.

Our results in both examples show the relative importance of
iotic and abiotic components of the ecological niche to explain the
and suboptimal conditions versus log of percentages of cells occupied for L. rufus as
onding to Fig. 1.

distribution of species. Thus, although climatic factors might shape
the boundaries of the species distribution, vegetation and biotic
interactions allow us to identify the areas within these boundaries
that are more suitable to occupy (Soberón, 2007). Nevertheless,
constraints and the internal structure of the geographic ranges may
vary through different parts of the distribution areas. An important
step was  characterizing the ecological profiles for our taxa. This per-
mitted us to identify the most relevant niche variables, and which
individual factors are the most important in characterizing both
presence and absence areas in a gradient of probabilities. With this
gradient we determine not just a limit to the range of a species but

a continuous gradient of suitability/unsuitability. To visualize this
in three dimensions we  can think of niche (high presence proba-
bility regions) being associated with highlands and anti-niche (low
presence probability regions) as lowlands. We  call this view the
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ammals and land cover combined.

niche landscape” which allows us to infer what ecological pro-
esses occurred both inside and outside distribution areas.
Of course, one may  argue that with respect to biotic interactions
ne can only infer their potential existence. This is true. All such
odeling has this property. It is equally true of abiotic factors. One

annot more state with certainty that average annual temperature

ig. 8. Geographic projection of different niche models for Lynx rufus: (a) abiotic variab
ammals and land cover combined.
les only; (b) mammals species only, (c) land cover only, and (d) abiotic variables,

affects the distribution of, say, Lynx rufus than one can state that its
distribution is affected by the presence of Spermophilus variegates.

Both are inferences independent of which modeling algorithm or
paradigm one chooses. In fact, we  would argue that in many cases
biotic interactions are much more directly responsible for the dis-
tribution of a species than abiotic factors. Is not it more sensible

les only; (b) mammals species only, (c) land cover only, and (d) abiotic variables,
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iologically to infer that the presence or absence of a particular prey
pecies of Lynx rufus is closer in the causal chain of factors affecting
ts distribution than a small change in average annual temperature?
t any rate, it is preferable to establish a methodology within which
uch hypotheses may  be formulated and later tested

. Perspectives

A niche modeling methodology that allows us to include dif-
erent types of variables, such as climate, vegetation, or biotic
nteractions, offers a fruitful framework within which to explain
he ecological processes that occur from local to regional scales
Guisan et al., 2006; Heikkinen et al., 2007). Under the niche land-
cape viewpoint, we proposed a novel method with which to model
he ecological niche. This representation can be usefully applied to
iverse areas, such as patterns of biodiversity, emerging diseases,
onservation, and global change as well as climatic change projec-
ions, as it allows us to determine how a particular variable can
hange and its relevance for species’ distributions be understood.
dditionally, this method could in principle be used to predict
bundances (e.g. VanDerWal et al., 2009). We  believe that optimal
onditions in the top decile display where populations would be
resent in higher densities. This has potentially important implica-
ion in determining species priorities.
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