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Abstract

We present an updated catalog of 4680 northern eclipsing binaries (EBs) with Algol-type light-curve (LC)
morphology (i.e., with well-defined beginnings and ends of primary and secondary eclipses), using data from the
Catalina Sky Surveys. Our work includes revised period determinations, phenomenological parameters of the LCs,
and system morphology classifications based on machine-learning techniques. While most of the new periods are
in excellent agreement with those provided in the original Catalina catalogs, improved values are now available for
∼10% of the stars. A total of 3456 EBs were classified as detached and 449 were classified as semi-detached, while
145 could not be classified unambiguously into either subtype. The majority of the SD systems seem to be
comprised of short-period Algols. By applying color criteria, we searched for K- and M-type dwarfs in these data,
and present a subsample of 609 EB candidates for further investigation. We report 119 EBs (2.5% of the total
sample) that show maximum quadrature light variations over long timescales, with periods bracketing the range
4.5–18 years and a fractional luminosity variance range of 0.04–0.13. We discuss possible causes for this, making
use of models of variable starspot activity in our interpretation of the results.
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1. Introduction

Our thinking about eclipsing binary stars (EBs) has
undergone a tremendous change in the last decade. EBs are
one of nature’s best laboratories for determining the
fundamental physical properties of stars, and thus for testing
the predictions of theoretical models (e.g., Torres et al. 2010;
Catelan & Smith 2015, and references therein). A large
number of eclipsing Algol-type (EA) binaries, for which the
beginnings and ends of eclipses are well defined, have been
discovered recently as a by-product of several wide-field,
ground-based photometric surveys, some of which are
dedicated to the detection of variable stars. Among these
surveys, one finds the Catalina Sky Survey (CSS, Larson
et al. 2003), the Visible and Infrared Survey Telescope for
Astronomy (VISTA) Variables in the Via Lactea (VVV,
Minniti et al. 2010; Catelan et al. 2013), the asteroid survey
LINEAR (Stokes et al. 2000; Palaversa et al. 2013), the All
Sky Automated Survey (ASAS, Pojmanski 1997; Pojmanski
et al. 2005), the Northern Sky Variability Survey (NSVS,
Woźniak et al. 2004), the Transatlantic Exoplanet Survey
(TrES, Alonso et al. 2004, 2007), the Optical Gravitational
Lensing Experiment (OGLE, Udalski et al. 1992) survey, the
Hungarian-made Automated Telescope Network exoplanet
survey (HATNet, Bakos et al. 2004), and the Wide Angle
Search for Planets (SuperWASP, Christian et al. 2006;
Pollacco et al. 2006), among others (see Kovacs 2017;
Soszyński 2017, for recent reviews and references).

On the basis of light-curve (LC) morphology, EA-type
eclipsing systems, with clearly defined eclipses on their LCs,
include both (D) detached and semi-detached (SD) systems. As
a rule, in order to establish the actual system configuration of
any individual EB with such an Algol-type LC morphology, a
detailed physical modeling is required.
The aforementioned projects are very useful for under-

standing the photometric properties of the different types of
binaries, affording, for instance, statistical studies of the
properties of EA systems. In addition, large samples provide
the opportunity for special cases of binaries that need dedicated
follow-up observations to emerge, or even to reveal new
classes (e.g., the Heartbeat stars, Welsh et al. 2011).
In this work, we use the northern data from CSS (which

continues collecting data to this day) in order to complete our
search for detached EBs and to present an updated and more
detailed catalog of their properties, in comparison with Drake
et al. (2009, 2014a, 2014b, 2017). The additional data allow us
not only to revise their periods and class but also to derive the
phenomenological and physical parameters of selected
detached systems. Furthermore, we were able to search for
systems exhibiting long-term variation, which also might
potentially harbor low-mass components.
This paper, the first in a series on the subject, is organized as

follows. In Section 2, we briefly describe the CSS data that we
use in our analysis. The construction of the sample and an
outline of the analysis methods are explained in Section 3.
Estimates of the periods and morphological features, and a
physical classification of the EA type, are given in Section 4. In
Sections 5 and 6, we discuss all the results, followed by a brief
summary of our work in Section 7.
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2. Observations

Observations were carried out during 2004–2016 using the
three telescopes of the CSSs of Drake et al. (2009),6 covering
the sky declination range δ= [−75, +65] deg, but avoiding
crowded stellar regions within 10°–15° of the Galactic plane.
The main goal of the survey is to discover near-Earth objects
and potential hazardous asteroids. Nevertheless, time-series
photometry for ∼200 million variable sources has been
accumulated through CSS. In order to maximize the through-
put, the observations are taken unfiltered, and the magnitudes
are transformed to an approximate V magnitude (VCSS; Drake
et al. 2013). The photometry was performed using the aperture
photometry program SExtractor (Bertin & Arnouts 1996).

In this study, we use Catalina Surveys Data Release 27

(CSDR2) with additional, not publicly accessible data,
spanning 12 years (2004–2016). We focus on the sample of
Drake et al. (2014b) of 4683 eclipsing binaries originally
classified as EA type on the basis of 8 years of data. These
cover a region of right ascension (R.A.) between 0 and 24 hr
and declination (decl.) between −22° and +65°, as shown in
Figure 1 (top). The bottom panel of Figure 1 shows the
distribution of the new available data used in the present paper
against the CSDR2 data. The total number of photometric
points for the candidate systems that we studied significantly
exceeds that available in the previous release.

3. Identification of Algol-type Eclipsing Binaries in Catalina
Sky Survey

As we wanted to take all good data points of an LC into
account to search for periodic signals, we first cleaned the 4683
LCs of the initial sample. For every LC a sigma-clipping cutoff
algorithm was used to discard erroneous data points with
values outside the interval of ±5σ of the median relative flux,
where σ denotes the standard deviation computed from the
whole LC. Furthermore, by adopting a pre-defined period from
Drake et al. (2014b), we performed 5σ clipping from the
median value of each phase bin. Therefore, we avoid rejecting
data points corresponding to an eclipse and we ensure that the
data points with errors larger than 5σ are discarded as outliers,
presumably due to unreliable measurements.

3.1. Period Search

After cleaning and checking a certain number of the resultant
LCs, we applied a series of period-finding methods:

1. Analysis of Variance (AoV, Schwarzenberg-Czerny 1989,
and Devor 2005);

2. Box-Least Squares (BLS, Kovács et al. 2002);
3. Generalized Lomb–Scargle (GLS, Press et al. 1992;

Zechmeister & Kürster 2009);
4. Phase Dispersion Minimization (PDM, Stellingwerf

1978); and
5. Correntropy Kernelized Periodogram (CKP, Protopapas

et al. 2015).

The AoV, BLS, and GLS algorithms were applied through the
command line utility VARTOOLS (Hartman & Bakos 2016).

At first, the AoV method was applied, using a period range
of [0.1–700] days and frequency resolution 0.1/T (where T is

the time span of the LC), returning the top 5 peaks of the
spectrum. The phase-folded LCs were visual inspected using
these periods, and the best values were adopted. When the
period values from AoV failed to phase-fold the LCs
adequately, the other methods were applied, and the phased
LCs were again visually inspected. A common issue encoun-
tered using periodograms, in the case of EBs, is the double/half
period detection. For this reason, the majority of the phase-
folded LCs were also examined using twice/half the detected
period.
Using the methodology described, we improved the period

determination of the detached EB sample. While most of the
new periods are in excellent agreement with those provided in
Drake et al. (2014b), improved values are now available for
∼10% of the 4680 stars (Figure 2). Table 1 summarizes the
results obtained for the latter, also including also the mean
photometric error (Verr)

8 and source coordinates (R.A.J2000,
decl.J2000).

3.2. LC Phenomenological Parameters

After phase-folding the LCs as explained in the previous
subsection, long-term variations were also removed, when
present (see Section 5). The LC was then fitted using the
LMFIT9 (Newville et al. 2016) module in Python10 in order to
derive its morphological features. Three different models were
used, namely a chain of second-order polynomials (Prša
et al. 2008; Papageorgiou et al. 2014), Fourier series fitting and
a two-Gaussian model (TGM, Mowlavi et al. 2017). The actual
fitting process was overseen by the Levenberg–Marquardt (LM,
Levenberg 1944; Marquardt 1963) nonlinear minimization
algorithm. We found that the TGM technique was much more
robust and efficient, when applied to the stars in our sample. The
procedure is based on modeling the geometry of LCs using
Gaussian functions (to model the eclipses) and a cosine function
(to model ellipsoidal variability, if present). Fitting a TGM to a
time-series is very sensitive to the adopted initial values of the
parameters. We therefore used the LM parameter values as
starting points on each TGM. These included the phases (μi), the
half widths (si), and the depths (di) of the primary and secondary
eclipses (i= 1, 2), the peak-to-peak amplitude of the ellipsoidal-
like variation (Aell), and a constant (C) that equals the maximum
light of the LC in the case of detached systems (Mowlavi
et al. 2017, see their Figure 1).
Since the success of modeling the folded LCs depends on the

time sampling, measurement uncertainties, initial guessing of
eclipse locations, and additional intrinsic variability in one or
both stars of the binary system, a Markov Chain Monte Carlo
(MCMC) analysis was performed on each TGM of our LC

6 http://catalinadata.org
7 http://nesssi.cacr.caltech.edu/DataRelease/

8 The original CSS photometric errors are significantly overestimated, as
discussed in Graham et al. (2017). Graham et al. provide a corrective factor fcorr
to compensate for this problem. The following analytical fit provides an
excellent description of the data shown in Figure1 of their paper:
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with a=1.350, b=19.491, c=3.006, and d=0.275. The fit is valid
between V=14.0 and 19.5mag. For V<14.0 mag, a value fcorr=0.26 is
assumed; for V>19.50 mag, we adopt instead fcorr=1.35. All error values
reported in this paper, including tables and plots, have been corrected according
to this recipe.
9 https://doi.org/10.5281/zenodo.11813
10 http://www.python.org
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sample, using the pyMC (Fonnesbeck et al. 2015) module11 in
Python. The MCMC process begins by generating initial
guesses for all the parameters randomly selected from a normal
distribution based on the final LM fitting parameter values and
errors. The new fit is accepted or rejected using the Metropolis–
Hastings algorithm (Hastings 1970), compared to the fitting
carried out in the previous step. In order to avoid the biases that

might be present in the initial solutions, the first 15,000 steps
(of 200,000 steps in total) were discarded in the process. We
then sampled this new synthetic model and discovered that the
initial TGM model was noticeably different in some cases
(Figure 3). Examples of the folded LCs, classified as D and SD
as discussed below, are presented in Figure 4. The derived
phenomenological parameters for 4680 EBs are presented in
Table 2. Such parameters include: the magnitude at primary
(MinI) and secondary eclipse (MinII), the magnitude at

Figure 1. Top: sky distribution of 4683 EBs in the CSS catalog. Bottom: distribution of the total number of photometric points per LC. The binary systems from the
previous (Drake et al. 2014b) and new data releases (with the additional available data) are marked in the blue and red histograms, respectively.

11 https://pymc-devs.github.io/pymc/
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maximum light out of the eclipses (MaxI), the difference
between the eclipse depths (MinI–MinII), the amplitude
(Amp), and the mean magnitude ( Vmagá ñ). The histograms of
the distribution of errors for the phenomenological parameters
are shown in Figure 5.

4. Classification

The EBs in previous CSS data releases were classified into D
or SD systems based on visual inspection of the LCs. Lee

(2015), using the Method for Eclipsing Component Identifica-
tion (Devor & Charbonneau 2006), found 272 SD EBs among
2170 fitted LCs (of the total 4683), based on Roche lobe filling
criteria.
Based on the system morphology classification, we performed,

for the first time, an automated classification of the majority of
EA-type CSS EBs with machine-learning algorithms. In our
search, unsupervised machine-learning followed, by supervised
learning, was performed using 8000 synthetic LCs of D, SD,

Figure 2. Refined periods of 4680 EB stars. While most of the new periods (Pernew) are in excellent agreement with those provided in Drake et al. (2014a, Perold),
improved values are now available for ∼10% of the stars. The differences are mostly due to aliases.

Table 1
CRTS EA Systems

Name ID R.A. Decl. MJDa Per Verrá ñb Npoints Class LMCand LongTerm
(h:m:s) (° : ′ : ″) (days) (days) (mag)

CSS_J235945.5+303731 11291130655 23:59:45.5 +30:37:31.8 54265.53875 2.68651 0.0138 391 D L L
CSS_J235856.7+371823 11381030196 23:58:56.7 +37:18:23.5 55062.35518 1.35464 0.0136 312 D L L
CSS_J235816.7+293325 11291130352 23:58:16.7 +29:33:25.3 53537.41966 0.72949 0.0457 390 SD L L
CSS_J235756.9–023247 10011280051 23:57:56.9 −02:32:47.2 54747.25303 1.74457 0.0133 325 N/A L L
CSS_J235715.5+305455 11291130739 23:57:15.5 +30:54:55.4 53563.82135 2.84991 0.0157 381 D L L
CSS_J235538.3+384723 11381030654 23:55:38.3 +38:47:23.1 55508.59468 0.46792 0.0356 312 N/A L L
CSS_J235444.8+305751 11291130763 23:54:44.8 +30:57:51.9 54394.71148 0.82131 0.0279 349 D L L
CSS_J235401.4+374029 11381030304 23:54:01.4 +37:40:29.7 56558.31886 0.50473 0.0232 312 D L L
CSS_J235313.6–021850 10011280091 23:53:13.6 −02:18:50.2 53655.26418 0.50952 0.0152 325 D L L
CSS_J235227.0+395515 11400990133 23:52:27.0 +39:55:15.3 53694.94006 1.5311 0.0287 218 D L L
CSS_J235151.3+035409 11041280214 23:51:51.3 +03:54:09.0 55850.15160 2.98858 0.0136 375 D L L
CSS_J235104.0+115651 11121260136 23:51:04.0 +11:56:51.3 54095.14156 0.81240 0.0138 442 D L L
CSS_J234952.4–012059 10011280269 23:49:52.4 −01:20:59.4 53637.21180 1.76549 0.0390 325 D L L
CSS_J234939.6–004257 10011280381 23:49:39.6 −00:42:57.1 55113.21426 0.49138 0.0345 324 D L L
CSS_J234850.3+133300 11121260465 23:48:50.3 +13:33:00.1 55858.22093 1.46550 0.0288 442 D L L
CSS_J234828.2+403240 11400990337 23:48:28.2 +40:32:40.1 55119.12598 0.93421 0.0182 219 N/A L L
CSS_J234827.2+392032 11381030834 23:48:27.2 +39:20:32.8 55348.41153 1.70451 0.0172 308 N/A L L
CSS_J234826.5+271203 11261160472 23:48:26.5 +27:12:03.6 54732.19943 0.86780 0.0237 371 D L L
CSS_J234819.9+344833 11351060279 23:48:19.9 +34:48:33.9 55943.75582 2.52099 0.0130 326 N/A L L
CSS_J234734.4+203331 11211200175 23:47:34.4 +20:33:31.9 55088.41305 0.86457 0.0144 429 D L L
CSS_J234700.0+180015 11181220236 23:47:00.0 +18:00:15.6 54480.10645 3.07628 0.0169 431 D L L
CSS_J234554.3–003131 10011270462 23:45:54.3 −00:31:31.1 54477.07608 0.69255 0.0234 398 D L L
CSS_J234502.5+415419 11400980842 23:45:02.5 +41:54:19.9 54632.41237 0.85779 0.0763 245 D L L
CSS_J234439.7+055255 11071260052 23:44:39.7 +05:52:55.8 56301.08055 0.50740 0.0136 407 SD L L
CSS_J234348.2+270630 11261150467 23:43:48.2 +27:06:30.4 55024.49074 2.15783 0.0135 438 D L L
CSS_J234339.1+362901 11351050807 23:43:39.1 +36:29:01.2 55366.42500 0.31764 0.1027 386 D L L
CSS_J234331.2–010354 10011270364 23:43:31.2 −01:03:54.4 54009.17422 1.13869 0.0147 398 D L L
CSS_J234306.1+060347 11071260081 23:43:06.1 +06:03:47.7 54730.34298 3.6267 0.0335 407 D L L
CSS_J234230.6+410139 11400980526 23:42:30.6 +41:01:39.8 54394.14236 0.52837 0.0256 248 D L L
CSS_J234137.0+264453 11261150363 23:41:37.0 +26:44:53.2 55009.56074 0.33624 0.1115 436 D L L
CSS_J234116.3+392234 11381020853 23:41:16.3 +39:22:34.6 53655.20953 0.70380 0.0213 325 D L L

Notes.
a Epoch at primary minimum.
b Mean photometric error (VCSS).

(This table is available in its entirety in machine-readable form.)
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Figure 3. Top: one-dimensional and two-dimensional projections of the posterior probability distributions (Foreman-Mackey et al. 2014) of a few parameters inferred
from the TGM on each light curve. Bottom: example light curve with the initial (left) and the final (right) TGM fitting coupled by MCMC. The blue dots and solid
lines refer to the resulting TGM, while the red dots refer to the CSS data. CSS IDs and periods are given at top of each light curve.
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overcontact (OC), and ellipsoidal (ELL) EBs. As a training set,
2000 LCs were randomly selected for each class, out of a total of
∼32,000 synthetic LCs. The synthetic LCs were created by a
Monte Carlo-based script (Prša et al. 2008) in PHOEBE-scripter
(Prša & Zwitter 2005), using randomly selected parameters for

each physical model. For each LC, 201 equally phased bins in the
range [0, 1] were utilized.
An unsupervised learning was then performed for each of

4050 phenomenological models obtained from Section 3.2,
selected according to fitting performance. This was done by

Figure 4. Representative examples of a D system (left) and an SD system (right), obtained using TGM fitting. The symbols and colors are the same as those in
Figure 3. CSS IDs and periods are given on top of each light curve.

Table 2
Phenomenological Parameters of 4680 EBs

Name Amp Amperr
a MinI MinIerr

a MinII MinIIerr
a MaxI MaxIerr

a
MinI MinII∣ – ∣ MinI MinII err∣ – ∣ a

(mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

CSS_J235945.5+303731 1.9357 0.0225 15.6800 0.0205 13.8708 0.0130 13.7176 0.0145 1.8092 0.0216
CSS_J235856.7+371823 0.2647 0.0083 13.5267 0.0061 13.3597 0.0069 13.2358 0.0062 0.1669 0.0088
CSS_J235816.7+293325 1.4841 0.0276 18.2052 0.0231 16.9536 0.0242 16.6789 0.0180 1.2516 0.0321
CSS_J235756.9–023247 0.6316 0.0344 13.3882 0.0269 13.2883 0.0288 12.7309 0.0239 0.0999 0.0379
CSS_J235715.5+305455 0.3071 0.0087 14.6847 0.0082 14.6709 0.0076 14.3497 0.0031 0.0137 0.0111
CSS_J235538.3+384723 0.2798 0.0150 16.6196 0.0117 16.4139 0.0152 16.3397 0.0104 0.2057 0.0192
CSS_J235444.8+305751 0.8093 0.0271 16.7195 0.0188 16.5878 0.0268 15.8768 0.0214 0.1317 0.0316
CSS_J235401.4+374029 0.3562 0.0283 15.7998 0.0205 15.7252 0.0240 15.4119 0.0217 0.0745 0.0301
CSS_J235313.6–021850 0.7300 0.0209 15.0009 0.0173 14.8783 0.0214 14.2432 0.0132 0.1225 0.0268
CSS_J235227.0+395515 0.7084 0.0145 16.6152 0.0112 16.0845 0.0100 15.8725 0.0103 0.5306 0.0143
CSS_J235151.3+035409 1.0865 0.0186 14.3761 0.0159 13.3307 0.0121 13.2895 0.0107 1.0454 0.0200
CSS_J235104.0+115651 0.3206 0.0128 14.0039 0.0105 13.9033 0.0130 13.6566 0.0079 0.1006 0.0164
CSS_J234952.4–012059 1.0510 0.0264 17.5661 0.0219 16.7182 0.0194 16.4766 0.0165 0.8479 0.0283
CSS_J234939.6–004257 0.4143 0.0217 16.7682 0.0166 16.4422 0.0153 16.3179 0.0161 0.3259 0.0211
CSS_J234850.3+133300 0.5252 0.0190 16.4847 0.0175 16.2129 0.0172 15.9255 0.0081 0.2718 0.0243
CSS_J234828.2+403240 0.2586 0.0110 15.1143 0.0091 15.1082 0.0153 14.8268 0.0069 0.0061 0.0175
CSS_J234827.2+392032 0.3341 0.0140 14.9943 0.0120 14.7398 0.0562 14.6316 0.0079 0.2544 0.0574
CSS_J234826.5+271203 0.4481 0.0109 15.9527 0.0088 15.8867 0.0097 15.4728 0.0072 0.0659 0.0128
CSS_J234819.9+344833 1.3043 0.0420 12.7552 0.0366 11.8263 0.0086 11.4509 0.0230 0.9289 0.0376
CSS_J234734.4+203331 0.7597 0.0145 14.8161 0.0123 14.3558 0.0187 14.0290 0.0083 0.4602 0.0222
CSS_J234700.0+180015 0.3179 0.0088 14.9473 0.0072 14.9158 0.0085 14.6010 0.0056 0.0315 0.0109
CSS_J234554.3–003131 0.8222 0.0161 16.3255 0.0132 15.8831 0.0151 15.4719 0.0103 0.4424 0.0195
CSS_J234502.5+415419 0.6371 0.0464 18.1580 0.0394 18.0035 0.0285 17.4683 0.0268 0.1544 0.0473
CSS_J234439.7+055255 0.4433 0.0165 13.5755 0.0130 13.3442 0.0142 13.1060 0.0112 0.2313 0.0187
CSS_J234348.2+270630 0.5531 0.0119 13.7762 0.0108 13.7734 0.0200 13.1970 0.0054 0.0028 0.0226
CSS_J234339.1+362901 0.7290 0.0426 18.6783 0.0311 18.3661 0.0364 17.8895 0.0323 0.3121 0.0458
CSS_J234331.2–010354 0.1887 0.0051 14.3634 0.0045 14.2967 0.0074 14.1473 0.0025 0.0667 0.0086
CSS_J234306.1+060347 0.8140 0.0196 17.0581 0.0188 16.6652 0.0158 16.2079 0.0060 0.3928 0.0244
CSS_J234230.6+410139 0.3710 0.0140 16.0309 0.0107 15.7939 0.0117 15.6270 0.0100 0.2369 0.0153
CSS_J234137.0+264453 0.7832 0.0390 18.7695 0.0323 18.4569 0.0328 17.9221 0.0261 0.3125 0.0438
CSS_J234116.3+392234 0.6616 0.0150 15.8778 0.0119 15.3690 0.0106 15.1853 0.0101 0.5088 0.0154

Note.
a Estimated from the fitting.

(This table is available in its entirety in machine-readable form.)
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applying a variety of methods through the scikit-learn12 module
(Pedregosa et al. 2012) in Python. Lower-dimensional space
projections (2D and 3D) were found by applying the method of
complete isometric feature mapping with 160 nearest neighbors
(Isomap, Tenenbaum et al. 2000) that separated the classes
(Figure 6). Considering the separation of the classes, we
applied a supervised machine-learning using the values of the
3D projection as input for the training set and the CSS data.

Furthermore, random Gaussian noise with a σ=0.08 mag
was added to the sample of the training set and the
phenomenological models. A variety of classifiers were
applied, and we found that the best performance (validation
score 92%) was achieved by Support Vector Machine (SVM).
However, similar validation scores (∼89%–91%) were
achieved using Random Forest, Artificial Neural Network
(ANN), and K-nearest neighbor (KN) classifiers.

The confusion matrix of 2000 test synthetic EBs from the
SVM classifier is presented in Table 3. We found a discrepancy
among the classifiers for 263 EBs. Finally, after visual
inspection, 54 systems were classified into D, 64 into SD,
and 145 into D/SD. Therefore, the final catalog, presented in
Table 1, contains 3456 D (85%), 449 SD (11%), and 145 EBs
(4%) with uncertain classification (D/SD).

Figure 5. Distribution of the obtained uncertainties in the parameters Amp, MaxI, MinI, MinII, and the difference MinI MinII∣ – ∣.

Figure 6. Lower-dimensional input data space projection (2D projection) applying the method of Isomap. The axes of the 2D projection represent the top two
eigenvectors of the geodesic distance matrix. The colored symbols indicate the distribution of synthetic LCs, whereas the black dots indicate the positions of CSS
sources.

Table 3
Confusion Matrix of the SVM Classifier on 2000 Synthetic Test EBs

D SD OC ELL

D 525 1 0 1
SD 3 411 8 77
OC 0 4 470 2
ELL 1 22 4 471
contam. 0.01 0.06 0.02 0.14

12 http://scikit-learn.org/stable/index.html
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5. Long-term Variations

Many phased LCs revealed scattering around maximum
light, i.e., different maxima in brightness, as shown in Figures 7
and 8. This made us search for possible long-term changes over
the 12-year time span of observations.

To detect such variations, we applied three methods. In the
first one (Method 1) we subtracted the TGM phenomenological
model from the time-series observations (Figure 7, top) and
performed a GLS analysis of the residuals (Figure 7, middle),
in order to evaluate the possible presence of periodicity in this
variation (Figure 7, bottom). For the second and third methods,
prior to the fitting, the LCs were binned in time, with bin sizes
that depended on the dynamical range of observations, and the
median value and standard deviation were calculated for each
such bin. Then, the eclipses were removed by selecting the data
points in the neighborhood of the median values, applying 1σ
tolerance (Figure 8, top right). The amplitude and the period of
binned LCs were calculated through a GLS periodogram using
the FATS library (Nun et al. 2015) in Python (Method 2) or by
applying a harmonic fit to the binned data (Method 3). In order
to detect significant variations over long (∼5–10 years)

timescales, the following set of constrains was applied to the
results of the above methods:

1. LCs with amplitudes of the maxima variation lower than
the LC mean error were rejected.

2. LCs with periods of maxima variation 800 days or
7000 days were rejected, due to the available time
span of the observations. The upper limit is set by the
fact that the total time baseline of the current sample of
data of CSS survey is about 12years. Thus, the period
of any parabolic variation must be less than roughly
1.5×12 years.

3. Only signals with a Bayesian Information Criterion (BIC,
Schwarz 1978) greater than 15 were accepted.

4. Peak GLS power must be five times the 3σ power as
predicted by 1000 Monte Carlo re-samplings (VanderPlas
et al. 2012, 2014; Marsh et al. 2017).

Combining the results from the previous methods and
applying the aforementioned criteria, we found 152 systems in
the sample of 4680 EBs that appear to exhibit variability in
their maxima. For all these systems, the variability seems to be
either periodic or quasi-periodic, over long (∼5–10 years)

Figure 7. Representative example of an EB (CSS J083938.7–050614) showing long-term variation in maximum light. Shown here is the result from applying a GLS
periodogram to the residuals after subtracting the phenomenological model. Top: the residuals of the time-series data after subtraction of the TGM phenomenological
model. Middle: GLS periodogram analysis of the residuals as a function of time. The dashed lines represent the 1σ and 3σ significance levels derived from 1000
Monte Carlo re-samplings. Bottom: residuals of the time-series data phased with the period derived from the periodogram.
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timescales. Figure 8 (bottom) shows a representative example
with the derived sinusoid model (Method 3) fitted on time-
binned data.

The resulting sample was examined for the possibility of
the presence of SDSS (Ahn et al. 2012; Alam et al. 2015)
sources within 5″ of our systems, as any such nearby sources
could contaminate the CSS photometry and thus produce
spurious variations in the LCs. As a result, 33 EBs were
removed from the sample, resulting in 119 EBs with
maximum light variation. This final sample of 119 EBs
showing long-term variations in the maximum light is labeled
in Table 1 as “LongTerm +.”

5.1. Applegate Mechanism versus Spot Activity

Maximum light variations in EBs can be explained by the
Applegate mechanism (Applegate 1992) that relates the orbital
period modulation to the operation of a hydromagnetic dynamo
in the convection zone of the active star in a close binary
system. As the active star progresses through its magnetic
activity cycle, a changing differential rotation modifies its
shape, changing the gravitational quadrupole moment that
manifests itself through a cyclically varying orbital period and
luminosity of the star, with the same period as the magnetic
cycle. Fractional luminosity variations of ΔL/L∼0.1 of the

Figure 8. Top: for the same star shown in Figure 7, we show here the light curves before (left) and after (right) removal of the long-term trend. Bottom: a harmonic
fitting (solid line) was performed on the maximum light after the removal of the eclipses using the method described in Section 5.
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active(s) star(s) can produce period variations of
ΔP/P∼10−5. The majority of our 119 candidates matching
Two Micron All-Sky Survey (2MASS; Skrutskie et al. 2006)
sources have colors J−H>0.237 mag and H−K>0.063
mag, which implies effective temperatures likely lower than
∼6200K (Pecaut & Mamajek 2013). Since our results are in
agreement with the changes expected under the Applegate
mechanism, the latter cannot be excluded as an explanation of
the detected maximum light variations. However, if the
convective zone cannot respond fast enough (i.e., the thermal
timescale of the envelope is much longer than the timescale of
the activity cycles), the heat flow variations will be dumped,
and thus become unobservable (Watson & Marsh 2010;
Khaliullin & Khaliullina 2012).

On the other hand, maximum light variations could be
explained by cool starspot coverage due to the magnetic
activity. Our Sun shows such variations in a cycle of 11 years,
and in case of low-mass EBs where the components are
rotating nearly 100 times faster than the Sun, the deep
convective envelope, along with rapid rotation, can produce a
strong magnetic dynamo and solar-like magnetic activity. Long
LCs shed light on the nature of the stellar activity of solar or
late-type stars, either as single or as members of binary systems
(such as BY Dra and RS CVn stars; Lehtinen et al. 2016).
Marsh et al. (2017) suggested that the variation of the overall
brightness in WUMa-type stars is probably caused by groups
of starspots, rather than individual starspots.

In order to simulate the effect of maximum light variations
due to starspots, a synthetic eclipsing binary was constructed
using the PHOEBE-2.0 engine (Prša et al. 2016) with two
main-sequence stars with effective temperatures 5880 and
5490K. The inclination of the system was set to 80°. We
assumed four starspot regions in order to simulate a uniform
starspot coverage. The positions (longitude and colatitude) of
the starspot regions were randomly drawn from a uniform
distribution, and the temperature ratio of the spot over the star
was set to 0.9 for the primary (active) star. In order to simulate
the magnetic cycle, we assumed cyclic variations of the starspot
radius (large enough to mimic starspot regions close to
maximum activity, and small for lower magnetic activity) in
the range of [0, 35] deg. A period of 6.3years was assumed for
the magnetic cycle. For the virtual observations, a cadence of
300days and a total time-span of 9000days were assumed
(i.e., we assumed that the virtual observations were carried out
in one night every 300 days). Furthermore, variable random

noise was added to the time-series data, and finally 300 random
points were selected for the final simulated LC. The results of
the simulation, under our assumptions (variable size of cool
starspot regions), support the explanation of starspot activity
(Figure 9). However, in order to achieve amplitudes of
variation comparable to our observations and to cover regions
that could produce variations also in out-of-eclipse phases, the
starspot regions must be large; otherwise, we have to assume
that both components show magnetic activity.
Both the Applegate mechanism and starspot activity share

the same period of the magnetic cycle of the magnetically
active star. Accurate times of minimum light observations and
period variation analysis are needed to investigate which
mechanism(s) may be the underlying cause of these variations.

6. Low-mass Eclipsing Binaries in the Catalina Sky Survey

Low-mass EB systems are interesting for determining the
fundamental parameters of low-mass stars, which are the most
common type of star in the universe. However, recent studies have
shown that they represent significant challenges to the theoretical
stellar models, due to their inflated sizes, magnetic activity, and
also the poorly understood way they evolve in close binary
systems (Chabrier et al. 2007; Feiden 2015; Zhou et al. 2015). Our
list of 4050 classified EBs enables us to search for low-mass EB
candidates by imposing color criteria. Accordingly, here we apply
the following cuts: V−Ks>3.0, as suggested by Hartman et al.
(2011) 0.35<J−H<0.8 mag, and H−Ks�0.45 mag, based
on Lépine & Gaidos (2011) and Zhong et al. (2015).
For the color selection, we again use the 2MASS JHKs

photometry, performing a cross-match to the 2MASS catalog
(Cutri et al. 2003) within 3″ of the positions of our stars. Where
available, photometry from the APASS survey (Henden
et al. 2016) was also used, to obtain the (B− V ) color index
in order to transform the VCSS magnitudes to Jonhson V. This
was accomplished using the same transformation formula as
presented in Drake et al. (2013):

V V B V0.31 0.04. 2CSS
2= + ´ - +( ) ( )

This selects 2377 EBs. For the rest of the cataloged EBs for
which we have no visual color information, we apply the
transformation from 2MASS indices to the Johnson-Cousins
system provided by Bilir et al. (2008, their Equation (16)).
Interstellar extinction corrections were applied to the (B− V )
color index of each EB using the E(B− V ) values from Green
et al. (2015). The VJHKs magnitudes were also corrected

Figure 9. Time-series (left) and phase-folded data (right) of a simulated spotted EB with a magnetic cycle of 6.3years.
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accordingly, using extinction models obtained from a combina-
tion of Marshall et al. (2006), Green et al. (2015), and Drimmel
et al. (2003), as included in the Python package mwdust13

(Bovy et al. 2016). Combining the results with the classifica-
tion from Section 4, only the systems classified as D were
finally accepted, resulting in 609 candidates. For distances
between 1 and 4.5 kpc, the results are independent of the
reddening corrections applied.

To verify whether these are all bona fide low-mass EB
candidates, we performed two tests:

1. We compare their infrared colors with the theoretically
expected colors of main-sequence F5-M3 dwarfs, as
reported by Pecaut & Mamajek (2013). The results are
shown in the upper panel of Figure 11. The reddening
vector in this plot was calculated from the mean value of
the extinction of the entire sample;

2. We compare their infrared colors with the colors of stars
in the largest K and M dwarf spectroscopic sample (2612
binaries) from the Large Sky Area Multi-object Fiber
Spectroscopic Telescope (LAMOST, Zhong et al. 2015).
The results are shown in the lower panel of Figure 11.

The periods of the final sample are in the range of [0.2–3.5] days
(Figure 12).

As we can see, the large majority of our sample does indeed fall
within the K5 and M3 subtypes. These 609 binaries selected as
low-mass candidates are marked in Table 1 as “LMcand +.”
Examination of Table 1 in Lee (2015) reveals a total of 572 EB
systems with nominal component masses <0.6 Me. However, as
explained in that table’s header, this includes a large number of
systems with uncertain solutions, and also systems with large
errors (>0.2 Me) in the mass values. For this reason, to carry out
a meaningful comparison between our results and those reported
by Lee (2015), we restrict ourselves to systems with masses in the
range covered by our sample (i.e., with spectral types later than
K5, or masses <0.71Me) and with errors <0.1Me. This leads to
a total of 107 systems, including 7 EBs classified as either non-
detached or uncertain by our analysis, but which Lee classifies as
detached. Out of the remaining 100, 72 were matched with our
low-mass sample. The remaining 28 systems fall outside the limits
of our color selection criteria, thus suggesting that they may not be
bona-fide low-mass EB systems. Note that four systems have been
verified as double-lined M-dwarf EBs (Lee & Lin 2017; Lee
2017); all of them are included in our sample of 609 candidates,
but only two appear in Lee’s (2015) catalog.

In addition, in our low-mass sample of detached EBs we
found candidates near the short-period cutoff at P∼0.22 day
(Rucinski 1992, 1997), as can be seen from Figure 10. Only a
few such systems are currently known (Drake et al. 2014a). To
our knowledge, the detached system with main-sequence
components with the shortest period known (0.1926 day) is
GSC 2314-0530 (=1SWASP J022050.85+332047.6), identi-
fied by Norton et al. (2007) and modeled by Dimitrov &
Kjurkchieva (2010). Nefs et al. (2012) spectroscopically
confirmed a detached system with a 0.18day period containing
an M dwarf, but without measuring radial velocities.

7. Conclusions

Using CSS data covering a 12-year time span, we obtained an
updated catalog of 4680 EA-type EBs, with revised period

determinations, phenomenological parameters of their LCs, and
system morphology classifications based on machine-learning
techniques. Our study includes many low-mass EB candidates, as
well as systems that show additional variation in their maxima over
long (∼5–10 years) timescales. Most of the new periods are in
excellent agreement with those provided in the original Catalina
catalogs, but significantly revised values have been obtained for
∼10% of the stars. A total of 3456 EBs were classified as D, 449
as SD, and 145 EBs had an uncertain classification. Our
classification agrees with the findings of Lee (2015) for 83% of
the sources. The sample classified as SD contains ∼9% systems
with spectral types earlier than F0V, thus it seems that the majority
of the systems in the sample are F-G spectral type EA systems
with periods of less than a day. These systems have been
characterized as short-period Algols (W CrV, Rucinski &
Lu 2000) in the scenario of Stepien (2006). At the same time,
they have also been described as being in near (CN And, Van
Hamme et al. 2001; AX Dra, Kim et al. 2004) or broken (CN And,
Van Hamme et al. 2001; Avvakumova et al. 2013) contact. We
again caution, as we did in the introduction, that a detailed physical
modeling of individual EBs is needed to reveal the true system
configuration.
Following our methodology of searching for K- and M-type

dwarfs, we ended up with a sample of 609 low-mass EB
candidates, increasing the total sample of stars at the low-mass
end. Spectroscopic follow-up of these sources would be useful
to help place constraints on models of low-mass stars. The
majority of Lee’s (2015) low-mass candidates are included in
our sample, including four that have been verified as double-
lined M dwarf EBs (Lee & Lin 2017; Lee 2017). Moreover, we
identified rare EA systems with periods close to the period
cutoff at P∼0.22 day (Rucinski 1992, 1997).
In addition to these results, our analysis of the long-term

trends in the CSS data revealed cyclic or quasi-cyclic
modulation of the maximum brightness on long (∼5–10 years)
timescales for as many as 119 EA systems (2.5% of the entire
sample). The ΔL/L range is within [0.04–0.13], with a mean
value L L 0.075 0.017áD ñ =  , while the periods are in the
range of [4.5–18] years, with a mean P=12.1±3.3 years.
Recently, Marsh et al. (2017) reported similar behavior in

205 eclipsing WUMa-type systems from CSS (2.2% of the
target sample), finding periods in the range 4–11 years and
fractional luminosity variance ΔL/L≈0.04–0.16. Close
binaries are known to be significantly more active than wide
binaries and single stars (e.g., Shkolnik et al. 2010), most likely
due to their being tidally locked and high rotational velocities,
resulting in high levels of magnetic activity. In late types this is
predicted to inflate their radii by inhibiting convective flow and
increasing starspot coverage. The observed long-term varia-
bility can be explained by either the Applegate mechanism or
by variable spot regions. Oláh (2006) suggested that the
magnetic field interaction has more effects on the starspot
activities of the main-sequence stars than does the tidal force,
because these stars have much higher surface gravities. As a
consequence, the main-sequence stars often show active
regions at quadrature phases. It should be noted that even
though the vast majority of spotted stars cannot be easily
imaged with special techniques (Doppler imaging or inter-
ferometry), our sample is useful to the future study of stellar
activity cycles or other associated phenomena (e.g., flares).13 https://github.com/jobovy/mwdust

11

The Astrophysical Journal Supplement Series, 238:4 (14pp), 2018 September Papageorgiou et al.

https://github.com/jobovy/mwdust


A.P. and M.C. gratefully acknowledge the support provided
by Fondecyt through grants #3160782 and #1171273.
Additional support for this project is provided by the Ministry
for the Economy, Development, and Tourism’s Millennium
Science Initiative through grant IC 120009, awarded to the
Millennium Institute of Astrophysics (MAS); by Proyecto
Basal PFB-06/2007; and by CONICYT’s PCI program
through grant DPI20140066. M.C. gratefully acknowledges
the additional support provided by the Carnegie Observatories
through its Distinguished Scientific Visitor program. The
Monte Carlo script in PHOEBE-scripter is based on the script
that was kindly provided by Dr. Andrej Prša.

This work made use of data products from the CSS survey.
The CSS survey is funded by the National Aeronautics and
Space Administration under grant No. NNG05GF22G issued
through the Science Mission Directorate Near-Earth Objects
Observations Program. The CRTS survey is supported by the
US National Science Foundation under grants AST-0909182,
AST-1313422, AST-1413600, and AST-1518308.

This publication makes use of data products from the Two
Micron All Sky Survey, which is a joint project of the
University of Massachusetts and the Infrared Processing and
Analysis Center/California Institute of Technology, funded by
the National Aeronautics and Space Administration and the
National Science Foundation. Funding for SDSS-III has been
provided by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Science Foundation, and the U.S.
Department of Energy Office of Science. The SDSS-III website
ishttp://www.sdss3.org/.

This publication makes use of data products from SDSS-III.
SDSS-III is managed by the Astrophysical Research Con-
sortium for the Participating Institutions of the SDSS-III
Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Labora-
tory, Carnegie Mellon University, University of Florida, the
French Participation Group, the German Participation Group,
Harvard University, the Instituto de Astrofisica de Canarias, the
Michigan State/Notre Dame/JINA Participation Group, Johns
Hopkins University, Lawrence Berkeley National Laboratory,
Max Planck Institute for Astrophysics, Max Planck Institute for
Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State
University, University of Portsmouth, Princeton University, the

Spanish Participation Group, University of Tokyo, University
of Utah, Vanderbilt University, University of Virginia,
University of Washington, and Yale University. This work
has made use of the SIMBAD database, operated at CDS,
Strasbourg, France.
This research was made possible through the use of the

AAVSO Photometric All-Sky Survey (APASS), funded by the
Robert Martin Ayers Sciences Fund.
Software: AstroML (VanderPlas et al. 2012), CKP (Protopapas

et al. 2015), FATS (Nun et al. 2015), LMFIT (Newville
et al. 2016), mwdust (Bovy et al. 2016), PDM (Stellingwerf
1978), PHOEBE-scripter (Prša & Zwitter 2005), PHOEBE-2.0
(Prša et al. 2016), pyMC (Fonnesbeck et al. 2015), scikit-learn
(Pedregosa et al. 2012), triangle.py-v0.1.1 (Foreman-Mackey et al.
2014), VARTOOLS (Hartman & Bakos 2016).

Figure 10. Folded LC of CSS J041918.8–071807, the low-mass EB candidate
with the shortest period (P=0.22 days) in our sample.

Figure 11. Top: V K J Hs- - -( ) ( ) color–color diagram of the 3456 CSS
EBs classified as D and the theoretically expected colors of main-sequence F5-
M3 stars (Pecaut & Mamajek 2013). The large dots refer to the low-mass EB
candidates. The reddening vector was calculated from the mean value of the
extinction of the entire sample, while the range is within [0.01–0.59]mag.
Bottom: H K J Hs- - -( ) ( ) color–color diagram of 609 low-mass EB
candidates (large dots) overplotted on the sample of low-mass stars from the
LAMOST survey (smaller dots). In both panels, the different colors indicate the
color index value according to the adjacent color bar.
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Appendix
Acronyms and Abbreviations

Description

CSS Catalina Sky Survey
VISTA Visible and Infrared Survey Telescope for Astronomy
ASAS All Sky Automated Survey
NSVS Northern Sky Variability Survey
VVV Variables in the Via Lactea
TrES Transatlantic Exoplanet Survey TrES
OGLE Optical Gravitational Lensing Experiment
HATNet Hungarian-made Automated Telescope Network exoplanet

survey
SuperWASP Wide Angle Search for Planets
2MASS Two Micron All-Sky Survey
APASS AAVSO Photometric All-Sky Survey
LAMOST Large Sky Area Multi-object Fiber Spectroscopic Telescope
CSDR2 Catalina Surveys Data Release 2
AoV Analysis of Variance
BLS Box-Least Squares
GLS Generalized Lomb–Scargle
PDM Phase Dispersion Minimization
CKP Correntropy Kernelized Periodogram
MCMC Markov Chain Monte Carlo
SVM Support Vector Machine
ANN Artificial Neural Network
KN K-nearest neighbor
BIC Bayesian Information Criterion
LM Levenberg–Marquardt nonlinear minimization algorithm
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