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Preparation of a pure atomic state
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We study the resonant interaction of a two-level atom with one mode of the electromagnetic field. We
calculate the entropy associated with the atomic state evolving from arbitrary initial conditions. We
show that pure atomic states can be generated from an arbitrary initial mixed atomic state. Also, we ob-
serve and discuss a significant difference in the long-time behavior of the entropy for an initial number
state and a coherent state.

PACS number(s): 42.50.—p, 42.52.+x

where a and at are the usual field operators and ~i )(i
~

and ~i ) (j ~
are the populations and polarization atomic

operators. Let us assume, to keep our model simple, that
the cavity is tuned to the atomic transition, that is,
co=co, —cob, where a and b are the upper and lower lev-

els, respectively. The total density matrix for the coupled
system at time t is defined as

P o «sym(tt) id= U(t)P„g y,td(0) U ( t) (2)

In a recent Letter [1], the possibility of generating
atomic pure states from an atom interacting with one
mode of the field in a lossless cavity was reported. An in-
itial pure atomic state, after the "collapse" time, evolved
into another pure state, independent of the initial one,
with the field being initially in a coherent state.

The "purity" of the state was determined by observing
the time evolution of tr(p„, ). Another way of looking
at this problem [2] is via the entropy —tr(p«, lnp«, ).
In the present Brief Report, we ask ourselves two ques-
tions.

(a} Is it possible to generate pure atomic states, starting
from a mixed atom state?

Before going into our second question, we must point
out that we assume in the present Brief Report (as well as
in Ref. [I]}that the field is initially in a pure state. At the
present time we know that pure states of the electromag-
netic field can be generated in lossless cavities, in theory.
As examples, we can mention number states and co-
tangent states, known to be stationary states of a lossless
one-photon micromaser, with the atoms initially in the
upper state [3] or in a coherent superposition [4] of the
two atomic levels, respectively. Also one can get the even
states as stationary states of a two-photon lossless micro-
maser [5]. Now we may ask the next question.

(b) Is the long-time behavior of the entropy very
different if our initial state of the field is a coherent or a
number state?

In order to answer these questions, we start with the
Hamiltonian of a two-level atom interacting with a one
field mode, that is,

H =firoa a + g fico;
~
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The operator U(t} is the well-known temporal evolution
operator for the Jaynes-Cummings model, given by

U(t)= (3)

with

C =cos(gt+aat), C =cos(gt+ara ),
sin(gt+aa t)

&aa'

(4)

If initially the atom and field are decoupled, we can write

P«,m~yeid(0)=P«om(0)epfieid(0). The initial atomic state
is represented by the initial atomic density matrix:

paa pab
„, (0)=

Pba Pbb

a(t) y(t)
Patom yt (t) p(t)

(t)=
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FIG. 1. Entropy vs gt for the atom initially in (a) a pure state

p, , =p, b =0 and (b) a mixed state p, ,=0.6 and p, b =0.2 and
the field initially in a coherent state with ~z~z=49.

If we trace Eq. (2) with respect to the field variables, we
get

P,„,m(t)=tryeld[U(t)P„, (0)tgIfield(0)U (t)),
which we can write as
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where the following conditions are satisfied:

a(t)+P(t) =1, ly(&) ~' tx(&)P(&)-

The entropy of a quantum state is defined as

We can write, on the other hand, the expressions for the
field density matrix. A straightforward calculation shows
that

S= —tr( p lnp } .

(10)

Since the trace is invariant under a similarity transforma-
tion, we can go to a basis in which the atomic density ma-
trix is diagonal, and write Eq. (9}as

S= — g A, ink,j=+-
In the case of p,«(t) defined in (7), the A, 's are given by

Ps Id(t) P [CP(0)C +S P(0)S]

+pbb[C p(0)C +Sp(0)tt]

+ip, b [Cp(0)$ 4' p(—0)C ]

+ipb, [CP(0)eV—etp(0)C] .

If the initial field condition is characterized by

p(0)= g p„(0)lrt ) (m ~,
n, m

(12)

(13)

then

p„~(t)=p«[a~+1~+Ip~~(0)+b~~p~ —I~ —I( 0)] +p bb[a~~ p~~( ) ~+l~+Ip~+l~+I( )]

+tp~b[c„+ 1~ + Ip„~ +1(0) cmnpn —Im (0)]+Ipba [c„~p„~ I( ) cm +In+I pn +1m ( )] & (14)

where

a„=cos(P&n )cos(PV'm },
b„=sin(P&n )sin(P&m ),
c„=cos(PMn )sin(P&m ),

with P=gt.
In a similar way, we can evaluate the general expressions for the coefficients of the atomic density matrix:

a(t) =g [p„cos (p&n +1)+pbbsin (({}&n)]p„„(0)

+ i p,bgcos(p+n +1}sin({{}Vn +1)p„„+1(0)+c.c. (16)

y(t) =g [ip„cos(((}/n + 1)sin(p&n )p„„,(0)—ipbb sin(p&n +1)cos(p&n ) ]p„+,„(0)
n

+p,bg cos(p&n +1)cos(p+n )p„„(0)+pb,g sin(p&n +1)sin({(}~n )p„+1„,(0) .

With the above results, we can now proceed to calculate
the behavior of the entropy for various initial pure states
of the field.

In Fig. 1, we have plotted the entropy versus gt for an
initial pure atomic state (a) p, ,=p, b

=0 and a mixed
state (b) p, , =0.6,p, b =0.2 when the field is initially in a
coherent state with Iz~ =49. By comparing the minima
and maxiina of these curves, we see that their behavior is
the same, independent of the initial preparation of the
atom. Also, the first minimum is the deeper one, thus
generating an approximately pure atomic state, which
agrees with Ref. [1] [curve l(a)], but also shows that one
can generate an approximately pure atomic state, starting
from a mixed atomic state [curve 1(b)], thus answering
the first question mentioned previously.

However, we can generate "better" pure atomic states
(with lower entropy) by using pure ~N) or Fock states.
This is shown in Fig. 2, where we have plotted the en-
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FIG. 2. Entropy vs gt for initial mixed atomic state p, =0.5
and p, b=0. 1 when the field is initially in a number state
~X =49 } (dashed line} and a coherent state ~z~' =49 (solid line).
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velope curve for the entropy versus gt, for the case of an
initial coherent state (a) and an initial ~N ) state (b), both
with (N ) =49. We immediately notice that we can gen-
erate atomic states with the entropy much closer to zero

FIG. 3. Entropy vs gt for initial mixed atomic state p, , =0.6
and p, b=0.2 when the field is initially in a number state
IN=49).

when we start from an ~N ) state for the field. Also, there
is a fundamental difference in the long-time behavior.
Curve (a) goes to log, o2, which corresponds to the situa-
tion of the maximum entropy pa, a pb b

er hand, curve (b) (initial ~N) state) is periodic in time,
the period being proportional to VN+1. Since, at the
beginning, we made the rotating-wave approximation in
our model, we can understand this dramatic difference in
behavior if we think that for an initial ~N ) state, for later
times, the only allowed states are ~N+1) and ~N —1)
depending on the initial preparation of the atom. On the
other hand, when the Aeld is initially in a coherent state,
during its time evolution, the system is allowed to go
through any ~N) state, thus the number of available
states in this last case is much larger, and the system is
more "thermodynamic, " tending to maximize its entropy.
Finally, in Fig. 3 we show the same as in Fig. 2, but for a
different atomic mixture, showing that the initial atomic
preparation has no effect on the time dependence of the
entropy.
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