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We consider the vacuum energy for a scalar field subject
to a frequency dependent boundary condition. The effect of
a frequency cut-off is described in terms of an incomplete ζ-
function. The use of the Debye asymptotic expansion for
Bessel functions allows to determine the dominant (volume,
area, . . . ) terms in the Casimir energy. The possible interest
of this kind of models for dielectric media (and its application
to sonoluminescence) is also discussed.
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I. INTRODUCTION

The Casimir effect [1,2] arises as a distortion of the
vacuum energy of quantized fields due to the presence of
boundaries (or nontrivial topologies) in the quantization
domain. This effect, which has a quantum nature associ-
ated with the zero-point oscillations in the vacuum state,
is significant in diverse areas of physics, from statistical
physics to elementary particle physics and cosmology.

In particular, in the last years there has been a great
interest in the Casimir energy of electromagnetic fields
in the presence of dielectric media, due to Schwinger’s
suggestion [3] that it could play a role in the explanation
of the phenomenon of sonoluminescence [4].

The results obtained on this subject by different groups
through several calculation techniques (as Green’s func-
tions methods, van der Waals forces, ζ-function methods
and asymptotic developments for the density of states -
see references [5–14] among others) are rather controver-
sial, and some basic issues remain to be clarified. In this
respect, it is our aim to contribute to the understand-
ing of the problem by studying a simplified model, which
incorporates a frequency cut-off in the boundary condi-
tions at the separation between media, to emulate the
behavior of real dielectrics.

In what follows we consider a simple model of a scalar
field subject to frequency dependent local boundary con-
ditions on the surface of a sphere. Thus our main goal
is to establish a method for calculating the change of the
Casimir energy of the field when the radius of the sphere
is varied, in a situation where the boundary conditions
impose a physical frequency cut-off Ω.

To this end we consider the very simple case of a scalar
field whose modes corresponding to eigenfrequencies ω ≤
Ω are confined to the interior of a sphere of radius R,
satisfying local homogeneous boundary conditions.

On the other hand, we will assume that the boundary
is completely transparent for those modes with ω > Ω.
Therefore, their contribution to the difference of Casimir
energies for two different values of R will cancel out,
no matter the regularization employed for its definition.
Consequently, we will subtract these contributions, which
amounts to a redefinition of the reference energy level in
an R-independent way.

For the evaluation of the vacuum energy of the low fre-
quency modes we will employ asymptotic expansions in
an incomplete-ζ summation technique, to be discussed in
the following. This approach will allow for the identifi-
cation of the volume, surface, . . . , terms in the Casimir
energy.

This method will be applied in a forthcoming paper
[15] to a similar model for the case of the electromag-
netic field in the presence of dielectric media. This could
be of interest to investigate the role the Casimir energy
can play in explaining the phenomenon of the sonolumi-
nescence [4].

II. THE MODEL AND ITS INCOMPLETE
ζ-FUNCTION

Let us consider a free scalar field in R3 satisfying at the
surface of a sphere of radius R, local boundary conditions
which depend on the frequency ω of the field modes.

We will make the assumption that the boundary is
completely transparent for the modes of frequencies
grater than a cut-off Ω, while for ω ≤ Ω the modes satisfy
Dirichlet boundary conditions,(

4+ ω2

c2

)
ψω(~r) = 0, for r < R,

ψω(~r)|r=R = 0,
(1)

being confined to the interior of the sphere.
Writing ψω(~r) = fl(r)Y m

l (θ, ϕ), we get for the radial
function(
d2

dr2
+

2
r

d

dr
− l(l + 1)

r2
+
ω2

c2

)
fl(r) = 0, for r < R, (2)
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where the eigenfrequencies are determined by imposing
the condition

fl(r)|r=R = 0. (3)

The solutions regular at the origin are given by fl(r) =√
π

2z
Jν(z), with ν = l+ 1/2 and z = ων,nr/c, where the

eigenfrequencies are

ων,n =
c

R
jν,n, (4)

being jν,n the n-th zero of the Bessel function Jν(z).

We will be interested in the difference between the vac-
uum energies of two situations differing in the value of R.
Then, we can disregard the contributions of those modes
with frequencies ω > Ω because, being independent of
the position of the boundary, their contributions cancel
out (whatever the regularization employed in defining the
vacuum energy would be). This simply amounts to an
R-independent subtraction, which is nothing but a re-
definition of the zero energy level.

Therefore, we should evaluate the (finite) sum

E(R) =
ν0∑

ν=1/2

2 ν
Nν∑
n=1

1
2
h̄ ων,n, (5)

where Nν is the number of positive zeroes of Jν(z) less
than or equal to x = ΩR/c, the factor 2 ν = 2 l+ 1 is the
eigenvalue degeneracy, and ν0 is the maximum value of
ν for which Nν ≥ 1.

We are interested in an analytic, rather than numeric,
evaluation of eq. (5). Although this is a finite sum, we
will employ a summation method based on the evaluation
of an incomplete ζ-function, an approach which could be
applied in more complex situations. We can employ the
following representation:

Nν∑
n=1

jν,n =
Nν∑
n=1

j−s
ν,n

∣∣∣∣∣
s=−1

, (6)

where the sum in the right hand side obviously exists for
any s ∈ C 1.

Since Jν(z), for ν > −1, has only real zeros, and its
non-vanishing zeros are all simple [16], we can employ
the Cauchy theorem to represent the sum in the r.h.s. of
(6) as an integral on the complex plane,

1Notice that the sum in the r.h.s. of eq. (6) evaluated at
s = 0 gives Nν , the number of eigenfrequencies contributing
to the Casimir energy of the field (after the subtraction made
to define it) for a given value of the angular momentum l =
ν − 1/2.

Nν∑
n=1

j−s
ν,n =

1
2πı

∮
C

z−sJ
′
ν(z)
Jν(z)

dz, (7)

where the curve C encircles counterclockwise the Nν first
positive zeros of Jν(z).

For <(s) large enough, the contour C can be deformed
into two straight vertical lines, one crossing the horizontal
axis at <(z) = x and the other at <(z) = 0+. Indeed,
expressing the integrand in terms of the modified Bessel
function [17]

Iν (w) = e−ı π
2 ν Jν

(
ei π

2w
)

(8)

(valid for −π < arg(w) ≤ π/2), and taking into account
its asymptotic behavior for large arguments [17], it is
easily seen that, for 0 < x 6= jν,n, ∀n, the integral

ζν(s, x) ≡ −1
2πı

∫ x+ı∞

x−ı∞
z−sJ

′
ν(z)
Jν(z)

dz, (9)

converges absolutely and uniformly in the open half-line
s > 1, from which it can be meromorphically extended
to the whole complex s-plane.

Therefore, for s > 1,

Nν∑
n=1

j−s
ν,n = ζν(s, 0+)− ζν(s, x). (10)

And, since the left hand side of (10) is holomorphic in s,
the singularities of ζν(s, x) must be independent of x.

On the other hand, for y > 0 [17],

Iν (−y − ix) = e−ıπνIν (y + ix)

Iν (y + ix) = (Iν (y − ix))∗ .
(11)

So, for real s > 1 we can write

ζν(s, x) =

<
{
−x1−s

π
e
−iπ

2
(s+ 1) ∫ ∞

0

(y − ı)−s I
′
ν (x(y − ı))
Iν (x(y − ı))

dy

}
.

(12)

In order to construct the analytic extension of ζν(s, x)
to s ' −1, we subtract and add to the integrand in (12)
the first few terms obtained from the uniform asymptotic
(Debye) expansion [17] of the Bessel functions,

I ′ν (ν t)
Iν (ν t)

=
1
ν
Dν(t) +O(ν−3), (13)

where

Dν(t) = νD(1)(t) +D(0)(t) + ν−1D(−1)(t) =

ν
√

1 + t2

t
− t

2 (1 + t2)
+

4 t− t3

8 ν (1 + t2)
5
2
.

(14)
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valid for large ν with fixed t. We will see that this ap-
proximation allows for the identification of the volume,
surface, . . . contributions to the vacuum energy.

Changing the integration variable in eq. (12) to t ≡
z(y − ı), with z = x/ν > 0, we get

ζν(s, x) =

<
{
−ν−s

π
e
−iπ

2
(s+ 1) ∫ ∞−iz

−iz

t−s d (ln Iν (ν t))
d t

dt

}
.

(15)

So, we must consider the integral
∫ ∞−iz

−iz

t−s d (ln Iν (ν t))
d t

dt =
∫ ∞−iz

−iz

t−sDν(t) dt +

+
∫ ∞−iz

−iz

t−s

{
d (ln Iν (ν t))

d t
−Dν(t)

}
dt.

(16)

The second integral in the right hand side of this equa-
tion converges for s > −2, since the integrand can be
estimated by means of the next (O(ν−3)) term in the
Debye expansion (eq. (13)), which behaves as O(t−3) for
large |t|. It can be numerically evaluated at s = −1. This
will not be done in this paper.

In the following, we will consider only the first inte-
gral in the right hand side of (16), retaining the first few
terms of its expansion in powers of ν−1 consistent with
the approximation made in eq. (13).

Notice that the integrand is an algebraic function, hav-
ing singularities at t = 0,±ı, and behaving as O(t0) for
large |t|. This integral converges absolutely and uni-
formly for s > 1, where it defines an analytic function
to be meromophically extended to the region of interest
of the parameter s. As we will see, this extension re-
veals the singularities of ζ(s, x) as simple poles, whose
residues are independent of x (a necessary condition to
give a finite result in (10) for any s).

In fact, by virtue of the analyticity of the integrand,
we can change the path of integration to write

∫ ∞−iz

−iz

t−s Dν(t) dt =

∫ 1

−iz

t−s

(
ν
√

1 + t2

t
− t

2 (1 + t2)
+

4 t− t3

8 ν (1 + t2)
5
2

)
dt

+
∫ ∞

1

t−s

{
ν
√

1 + t2

t
− t

2 (1 + t2)
+

4 t− t3

8 ν (1 + t2)
5
2
−

−
[
ν

(
1 +

1
2 t2

)
− 1

2 t
− 1

8 ν t2

]}
dt+

+
∫ ∞

1

t−s

[
ν

(
1 +

1
2 t2

)
− 1

2 t
− 1

8 ν t2

]
dt.

(17)

The first integral in the r.h.s. of eq. (17), containing the
whole dependence on x = ν z, is holomorphic in s and
can be directly evaluated at the required value of this
parameter. On the half-line (1,∞) we have subtracted
and added the first terms in the series expansion of Dν(t)
for large t, thus making the second integral to converge
for s > −2. The third one must be evaluated for s > 1
and then analytically continued to the relevant values of
s. This can be exactly done, its contribution to ζν(s, x)
in eq. (15) being the real part of

e
− i

2
π (1 + s)

ν1+s 8 π

(
8 ν2

1− s
+

4 ν
s

+
1− 4 ν2

1 + s

)
(18)

This expression has simple poles at s = 0,±1, which are
the only singularities of ζν(s, x) for <(s) > −2. Notice
that the residues of ζν(s, x) are independent of x,

Res ζν(s, x)|s=1 =
1
π
,

Res ζν(s, x)|s=0 = 0 ,

Res ζν(s, x)|s=−1 =
1− 4 ν2

8 π
,

(19)

and in agreement with the results in [18] (where ζν(s, 0+)
is studied).

For example, for ζν(s, x) around s = −1 and for ν < x
(which will be needed in Section IV to evaluate the vac-
uum energy), one straightforwardly obtains the Laurent
expansion
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ζν(s, x > ν) =
1− 4 ν2

8 π (1 + s)
+

+

[(
4 ν2 − 1

)
8 π

[
log
(ν

2

)
+ log

(
z +

√
z2 − 1

)]
− ν2

4 π
+

− ν2

2 π
z
√
z2 − 1− 3z − 8z3

24 π (z2 − 1)3/2
− 1

3π
+O(ν−1)

]
+

+O(s+ 1),

(20)

with fixed z = x/ν >∼ 1.
On the other hand, for x → 0+ a similar calculation

leads to

ζν(s, x = 0+) =
1− 4 ν2

8 π (1 + s)
+

[(
4 ν2 − 1

)
8 π

log
(ν

2

)
−

− ν2

4 π
− ν

4
− 1

3 π
+O(ν−1)

]
+O(s+ 1).

(21)

In the following Section we will evaluate, as a function
of ν, the number of modes contributing in eq. (10), and
in Section IV, their contributions to the vacuum energy.

III. THE NUMBER OF CONTRIBUTING MODES

In this Section we address ourselves to the determi-
nation of ν0 in (5), the maximum value of ν for which
Nν ≥ 1. Although in the simple case under study the
zeros of Jν(w) are well known [17], we prefer to estab-
lish a criterium which can be applied in more general
situations.

First, notice that

Nν(x) ≡
Nν∑
n=1

j−s
ν,n

∣∣∣∣∣
s=0

=
[
ζν(s, 0+)− ζν(s, x)

]∣∣
s=0

(22)

is a discontinuous function of x, having a step of height
1 at each positive zero jν,n of the Bessel function Jν(w).

Then, ν0 can be determined from the condition

Nν0(x) = Nν0(jν0,1 + 0) = 1, (23)

with Nν0(jν0,1 − 0) = 0.
Taking into account eq. (19) and the fact that the sec-

ond and third integrals in the r.h.s. of eq. (17) are real,
it is straightforward to obtain from eqs. (15-17) that

ζν(s = 0, x) = −ν
2
− 1

4
+

+<
{
− ı ν
π

(√
1 + e−ı π z2 − log(1 +

√
1 + e−ı π z2)

)

+
ı

4 π
log(1 + e−ı π z2)+

+
ı(2 + 3z2)

24 ν π (1 + e−ı πz2)3/2

}
+O(ν−2),

(24)

where we have taken z = x/ν ≈ 1. In particular, for
x→ 0+,

ζν(s = 0, x = 0+) = −ν
2
− 1

4
+O(ν−2), (25)

in coincidence with [18].
Now, taking the difference between (25) and (24) we

get a smooth approximation, Ñν(x)+O(ν−1), to the step
function Nν(x) in (22). It is easily seen that, for ν > x,
Ñν(x) = 0 while, for ν < x, we have

Ñν(x) =
ν

π

(√
z2 − 1− arctan(

√
z2 − 1)

)
−

−1
4
− 2 + 3z2

24 ν π (z2 − 1)3/2
,

(26)

with z = x/ν.
Let us now determine the value ν0 for which

Ñν0(x) = 1/2. (27)

To this end, we propose an expansion of the form√
z2
0 − 1 = ε1 ν

−1/3
0 + ε3 ν

−3/3
0 +O(ν−5/3

0 ), (28)

which makes sense for ν0 � 1 and z0 = x/ν0 ≈ 1. Re-
placing in (26) and imposing (27), the coefficients εk can
be determined order by order in ν−1/3

0 , to get

x = ν0 + 1.857 ν1/3
0 + 1.034 ν−1/3

0 +O(ν−1
0 ) (29)

or, inverting this development,

ν0 = x− 1.857 x1/3 + 0.1155 x−1/3 +O(x−1). (30)

(Notice that ν0 < x.)
Equation (29) is in excellent agreement with the ex-

pression of the first non-vanishing zero of Jν0(w), for
a large order ν0 [17]: jν0,1 = ν0 + 1.8557 ν1/3

0 +
1.03315 ν−1/3

0 +O(ν−1
0 ).
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IV. THE DOMINANT CONTRIBUTIONS TO
THE VACUUM ENERGY

In this Section we evaluate the first contributions to
the vacuum energy obtained from the Debye expansion
employed in Section II. As we will see, this allows to
determine the volume, surface, . . . , terms in the Casimir
energy of the scalar field.

According to the results in the previous Section, we
are interested in the Laurent expansion of ζν(s, x > ν)
and ζν(s, x = 0+) around s = −1, given in eqs. (20) and
(21). As already remarked, the singular parts cancel out
in the difference on the r.h.s. of eq. (10) (see eq. (19)).
For the difference of the finite parts we get

z F (x, ν) ≡ [ζν(s, 0+)− ζν(s, x)
]
s=−1

=

=
ν2

2 π

(
z
√
−1 + z2 − log(z +

√
−1 + z2)

)
−

−ν
4

+
3 z − 8 z3

24 π (−1 + z2)
3
2

+
1

8 π
log(z +

√
−1 + z2)

+O (ν−1
)
.

(31)

This is a good approximation as long as ν � 1 and z =
x/ν >∼ 1.

Our aim is now to evaluate the sum in eq. (5),

E(R = x c/Ω) =

=
h̄Ω
x

ν0∑
ν=1/2

ν
[
ζν(−1, x)− ζν(−1, 0+)

]
=

= h̄Ω
ν0∑

ν=1/2

F (x, ν),

(32)

with ν0 given in (30).
The function F (x, ν) is non-negative and has a pro-

nounced maximum at ν ≈ x/2 (i.e. z ≈ 2). Thus, the
use of the approximation in eq. (31) is consistent if x� 1.

From eq. (31), it is not difficult to see that the succes-
sive terms in the Euler - Maclaurin summation formula
[17],

νk∑
ν=1/2

F (x, ν) =
∫ ν0

1/2

F (x, ν) dν+

+
1
2
{F (x, ν0) + F (x, 1/2)}+

+
1
12
∂ν [F (x, ν)]

∣∣∣∣
ν=ν0

ν=1/2

+ . . . ,

(33)

are of increasing order in x−1. So, retaining the first few
terms consistent with the approximation made, we get
for the vacuum energy

E(R)
h̄Ω

=

x3

(
−
(√

−1+z2
0 (−5+2 z2

0)
)

24 π z3
0

+
2 z4

0−3 log(z0+
√
−1+z2

0)

24 π z4
0

)
−

−x2

(
−
√
−1+z2

0
4 π z2

0
+ π+3 log(z0+

√
−1+z2

0)

12 π z3
0

)
−

−x
(

−(−27+17 z2
0)

48 π z0
√
−1+z2

0

+ 6 π−10 z2
0+69 log(z0+

√
−1+z2

0)

48 π z2
0

)

+O(x0),

(34)

where z0 = x/ν0, x = RΩ/c and ν0 is given in eq. (30).
In this equation one can recognize volume, surface and
curvature contributions to E(R). Notice that we could
have retained any number of terms of the asymptotic
expansion in eq. (13), and performed the same steps as
in the present calculation, to get the Casimir energy to
any order in x−1.

Finally replacing in eq. (34) z0 → x/ν0 and ν0 by its
expression we get

E(R) =h̄Ω
[
x3

12 π
− x2

12
− 0.1343 x

4
3 +O(x)

]
, (35)

where one can see that the volume and surface terms
are dominant for x >> 1. Notice that also non-integer
powers of the radius R appear as a consequence of the
relation between ν0 and x, eq. (30).

V. CONCLUSIONS

In equations (34-35) we have derived the dominant con-
tributions to the vacuum energy of a scalar field in a
model with a frequency dependent boundary condition,
consisting in the confinement of the modes with low fre-
quency (up to a physical cut-off Ω) to the interior of a
sphere of radius R.

These modes are subject to Dirichlet boundary condi-
tions at the surface of the sphere, while those with fre-
quency higher than Ω are free, being the boundary com-
pletely transparent to them. This characteristic of the
model allows for the subtraction of the contribution of
the high frequency modes to the vacuum energy, which
amounts (independently of the regularization employed
to define it) to an R-independent redefinition of the zero
energy level, having no consequences on the evaluation
of energy differences.
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In so doing, we have represented the sum over the
eigenfrequencies up to the cut-off Ω in terms of an in-
complete ζ-function associated with the Laplacian oper-
ator in the sphere with Dirichlet boundary conditions
(see eq. (10)). The function ζ(s, x) as in eq. (12) is well
defined only for <(s) > 1. So, it was analytically contin-
ued from s > 1 to the relevant values of this parameter
(s = 0, needed to evaluate the maximum angular mo-
mentum l0 = ν0− 1/2 giving rise to eigenfrequencies less
than or equal to Ω, and s = −1, necessary to evalu-
ate the contribution to the Casimir energy of the modes
with angular momentum l = ν − 1/2) by approximat-
ing the behavior of the integrand in eq. (12) employing
the Debye asymptotic expansion of the modified Bessel
functions appearing in its expression.

This procedure has lead to a meromorphic function
having simple poles with (exactly evaluated) cut-off in-
dependent residues (see eq. (19)), a necessary condition
to have a finite result for the sum in eq. (10).

The finite part of ζ(s, x) has been evaluated up to
terms of a given order in ν−1. Although we have re-
tained only the first terms in this asymptotic expansion,
one can follow the same steps to determine the finite part
of ζ(s, x) at s = −1 or 0 up to any required precision in
ν−1.

Finally, the application of the Euler - Maclaurin sum-
mation formula has lead to an expression for the Casimir
energy of the model in which one can recognize volume,
surface and curvature contributions (see eq. (34)).

For a cut-off corresponding to x = RΩ/c >> 1, the
dominant terms in the vacuum energy, eq. (35), are
proportional to the volume (V = 4πR3/3) and area
(S = 4πR2) of the sphere,

E(R)
h̄Ω

= V
Ω3

16 π2 c3
+ ξ S

Ω2

12 π2 c2
+ . . . , (36)

with ξ = −π/4.
It is worthwile to remark that, for a similar model

where the low frequency modes of the scalar field are
subject to Neumann (rather than Dirichlet) boundary
condition, we get the same expression for the dominant
terms with ξ = +π/4.

These two dominant terms are in complete agreement
with those obtained from the expansion of the density of
states in powers of the inverse wavelength2 [19,11]. The

2Indeed, for scalar fields subject to local homogeneous
boundary conditions the density of states is modified by fi-
nite volume effects [19]. The first correction in the asymptotic
expansion for large wavelength k is given by∑

n

∼ V

∫
d3k

(2π)3
+ S

∫
ξ

d3k

(2 π)3 k
+ . . . , (37)

where the coefficient ξ takes the value ξ = −π/4, ξ = +π/4
and ξ = +π/4 for Dirichlet, Neumann and Robin boundary

relation between ν0 and x, eq. (30) (or, equivalently, the
expression of the first zero of the Bessel function Jν0(w)
in terms of the order ν0 [17]) introduces also non-integer
powers of the radius R (see eq. (35)).

As a final exercise, we can use eq. (35) in a very
schematic model pretending to mimic the phenomenon of
sonoluminescence. We will adopt the values of the radius
and emitted energy corresponding to a typical sonolumi-
nescent bubble [4], and estimate the cut-off Ω needed to
produce this amount of energy. To this end, we will sim-
ply take the difference of the low frequency contribution
to the Casimir energy of the scalar field for two different
values of the bubble radius.

If the bubble collapses from an initial radius R = 4 ×
10−5m to a final radius of one tenth this value, and the
emitted energy is E = 1.2×10−12 Joule, by imposing the
equality

R

h̄ c
(E(R)− E(R/10)) = 1.516× 109, (38)

and taking into account eq. (35), it follows that x = 490,
justifying the use of the approximation obtained.

This implies that Ω = 3.675 × 1015 1/sec, which cor-
responds to a cut-off in wavelengths in the ultraviolet of
Λ = 5.129 × 10−7 m = 5129 Å, not far from the region
where the refraction index of water becomes essentially 1
[20]. This strongly suggests to consider a similar model
for the case of the electromagnetic field in the presence
of dielectric media, calculation which will be presented
elsewhere [15].
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