
564

                             Modularity along organism dispersal gradients challenges a 
prevailing view of abrupt transitions in animal landscape perception      
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 A common property of landscapes and metacommunities is the occurrence of abrupt shifts in connectivity along gradients 
of individual dispersal abilities. Animals with short-range dispersal capability perceive fragmented landscapes, but 
organisms moving across critical thresholds perceive continuous landscapes. Th is qualitative shift in landscape perception 
may determine several attributes of local communities and the dynamics of whole metacommunities. Modularity 
describes the existence in some communities of relatively high numbers of mutual connections favoring the movement 
of neighboring individuals (even when each individual is able to reach any patch in the landscape). Local patch linkages 
and metacommunity connectivity along gradients of dispersal ability have been reported frequently. However, the 
intermediate level of structure captured by modularity has not been considered. We evaluated landscape connectivity and 
modularity along gradients of individual dispersal abilities. Random landscapes with diff erent degrees of cell aggregation 
and occupancy were simulated; we also analyzed ten real ecosystems. An expected, a shift in landscape connectivity 
was always detected; modularity consistently decreased gradually along dispersal gradients in both simulated networks 
and empirical landscapes. Neutral metacommunities within simulated landscapes demonstrated that modularity and 
connectivity may refl ect landscape traits in the shaping of metacommunity diversity. Average beta-diversity was strongly 
associated with modularity, particularly with low migration rates, while connectivity trends tracked changes in beta-
diversity at intermediate to high migrations rates. Consequently, while some species are able to perceive abrupt transitions 
in the landscape, many others probably experience a gradual continuum in landscape perception, contrary to predictions 
from previous analyses. Furthermore, the gradual behavior of modularity indicates that it may represent an exceptional 
early-warning tool that measures system distance to tipping points. Our study highlights the multiple perceptions that 
diff erent species may have of a single landscape and shows, for the fi rst time, a theoretical and empirical relationship 
between landscape modularity, and metacommunity diversity.   

 Understanding the eff ect of landscape structure on the 
persistence of biodiversity has become a pressing theoreti-
cal issue because of increasing structural modifi cations of 
ecosystems through fragmentation and habitat loss (Ritchie 
2010, Economo 2011). A fi rst advance toward progress on 
this topic has been the recognition that the structure of com-
munities is strongly aff ected by processes occurring at scales 
larger than the communities themselves (Ricklefs 1987, 
Weiher and Keddy 1999, Logue et   al. 2011, Winegardner 
et   al. 2012). Individual dispersal through landscapes is a 
main determinant of the connection between local commu-
nities and processes operating at metacommunity and higher 
levels of organization (Hubbell 2001, Holyoak et   al. 2005). 
Th ere has been a recent focus on landscape connectivity as 
a key topological attribute for better understanding of the 
ways in which regional processes determine spatial patterns 

of biodiversity (Economo and Keitt 2010, Economo 2011, 
Logue et   al. 2011, Carrara et   al. 2012). However, there 
has been less stress on the fact that individuals in a com-
munity vary in the spatial scales at which they experience 
the same landscape (With and Crist 1995, Keitt et   al. 1997, 
Borthagaray et   al. 2012). 

 In gradients of individual attributes or landscape struc-
ture, the potential for organisms to move among patches 
typically fi ts a pattern of abrupt transitions from movements 
on local scales to movement that allows access to nearly all 
patches in the community mosaic. Such transitions have 
been reported in gradients of organism dispersal (Keitt 
et   al. 1997, Urban and Keitt 2001), space occupancy and 
fragmentation (O’Neill et   al. 1988, With and Crist 1995, 
Sol é  2011); they are considered to be a pervasive property 
of ecosystems (Scheff er 2009, Sol é  2011). At the same time, 
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most metrics widely used to represent landscape cohesion, 
e.g. connectedness, diameter, correlation length, number of 
components and order of the largest components, all have 
tipping points in the landscape structure (With and Crist 
1995, Keitt et   al. 1997, Borthagaray et   al. 2012). Such tran-
sitions occur at critical thresholds where small changes in 
gradients produce qualitative shifts in ecosystems (Scheff er 
2009, Sol é  2011). Two classes of mobility traits have been 
proposed for animals living in such landscapes. In the fi rst, 
animals are able to move across critical thresholds and thus 
perceive a continuous landscape, which is not the case for 
a second class of organisms with more restricted move-
ment abilities (Keitt et   al. 1997, Urban and Keitt 2001, 
Borthagaray et   al. 2012). 

 Th e network approach provides a powerful set of tools 
for representing complex landscapes and quantifying emer-
gent properties at the whole network scale (Keitt et   al. 1997, 
Urban and Keitt 2001, Estrada and Bodin 2008, Dale and 
Fortin 2010, Economo and Keitt 2010). In this context, 
modularity refers to the degree to which some groups of 
habitat patches have a higher probability of mutual fl ow 
of individual organisms than other patches (Newman and 
Girvan 2004). Modularity was proposed as a chief metric 
of networks more than 40 yr ago (May 1972). Since then, 
several metrics have been developed to identify modules and 
compartments (see Bodin and Norberg 2007 and Olesen 
et   al. 2007 for a very brief treatment of this topic), but 
only after recent development of robust modularity-detecting 
algorithms (Newman and Girvan 2004, Guimer à  and 
Amaral 2005) have modules and compartments been widely 
detected in ecological networks (Stouff er and Bascompte 
2011, Dupont and Olesen 2012). Modularity has been 
identifi ed as a major structural property of ecological 
networks; it has been used to explore spatial structure 
in populations identifi ed by degree of genetic isolation 
(Fortuna et   al. 2009), colonization in metacommunities 
(Bellisario et   al. 2010), interaction networks (Olesen et   al. 
2007, Rezende et   al. 2009), and biogeographical boundaries 
(Carstensen et   al. 2012). However, few studies have explored 
changes in modular structure in relation to spatio-temporal 
variability (Ramos-Jiliberto et   al. 2011, Dupont and Olesen 
2012). 

 In comparison with alternative metrics, modularity 
probably has better potential in discerning the environment 
that is eff ectively perceived by organisms (Newman and 
Girvan 2004). In this sense, modularity may function as a 
measure of the extent to which structural (landscape) net-
works approach the functional networks in which biological 
processes operate (Tischendorf and Fahrig 2000). Th e land-
scape network represents the routes through which organ-
isms move among patches (Urban and Keitt 2001). Th is 
movement represents a fl ow of genes, and hence the course 
of evolution (Fortuna et   al. 2009), a fl ow of individuals, 
which determines metapopulation dynamics and synchrony 
(Liebhold et   al. 2004), and a fl ow of species, with conse-
quent impacts on local diversity (Holyoak et   al. 2005). Th ese 
fl ows may determine the mechanisms of patch dynamics, 
mass eff ects, species sorting, and/or neutral dynamics within 
metacommunities (Holyoak et   al. 2005). Among these 
four mechanisms, neutral dyamics are particularly suited 
to the analysis of interplays between landscape networks 

and community structures (Economo and Keitt 2010). 
Neutral models emphasize the eff ect of migration rate from 
the metacommunity to local communities on biodiversity 
structure (Hubbell 2001), a rate that is determined by patch 
and landscape structures (Economo and Keitt 2010). As a 
consequence, neutral metacommunities may refl ect the basic 
eff ects of landscape on biodiversity regardless of organism 
attributes. 

 In the present study, we explored modularity of landscapes 
as an indicator of structures perceived among organisms 
diff ering in dispersal abilities. Th e postulated behavior for 
modularity was an abrupt transition, as reported for other 
metrics (O’Neill et   al. 1988, With and Crist 1995, Keitt 
et   al. 1997, Urban and Keitt 2001). Furthermore, we explic-
itly analyzed the functional eff ect of landscape networks on 
metacommunity diversity, relating the average beta diversity 
of metacommunities to modularity and connectivity.  

 Methods 

 In the present work, we used the network approach to ana-
lyze the relationship between landscape structure and its 
perception by animals. Within this conceptual framework, 
a landscape is represented as a graph defi ned by a set of 
nodes connected by links. Typically, nodes correspond to 
habitat patches and links indicate functional relationships 
among them (Keitt et   al. 1997, Urban and Keitt 2001). 
Th e structure (topography) of the graph refl ects the spa-
tial arrangement of the patches in the landscape and also 
the scales at which animals interact with this arrangement 
(Keitt et   al. 1997, Economo and Keitt 2010, Borthagaray 
et   al. 2012).   

 Landscape structures 

 We generated diff erent random fractal landscapes with vary-
ing degrees of spatial autocorrelation in occupancy using 
the Hurst parameter ( H , from 0 to 0.8) and the propor-
tion of space occupied ( p , from 0.1 to 0.9) (Supplementary 
material Appendix 1). Fractal landscapes of 50    �    50 cells 
were generated using the fi eldsim algorithm proposed 
by Brouste et   al. (2007) and implemented in R software 
(FieldSim package, R Development Core Team). Th e 
algorithm generates landscapes of cells with auto-correlated 
values between 0 and 1. Th ese landscapes were transformed 
to occupied and empty cells, assigning a value of 1 or 0 to 
each cell when values were below or above the proportion 
of occupancy simulated, respectively (Ferrero 2010). Using 
a graph-theoretical approach, we estimated a network of 
 p  occupied cells with  H  degree of spatial autocorrelation for 
each fractal landscape. High values of  p  and  H  indicated 
a high proportion of occupancy and extreme aggregation, 
and low values of  p  and  H  indicated a low proportion of 
occupancy and low aggregation. 

 For each landscape, we constructed a gradient of dis-
tances with 50 break points from the closest to the most 
distant patches. Th us, we examined 50 networks defi ned 
by threshold distance for each of the fractal landscapes. 
Network links were estimated using centroid to centroid 
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Euclidean distances between cells (Urban and Keitt 2001). 
Two cells in a network were connected by a link when the 
separation between them was below a critical distance (one 
of the 50 break points under consideration) (Keitt et   al. 
1997, Urban and Keitt 2001). Considering all combinations 
of the Hurst parameter, the proportion of space occupied 
and the gradient of distances connecting pairs of cells, we 
constructed a total of 4050 networks. In addition, 10 empir-
ical landscapes were analyzed using the same procedure. Th is 
approach has been used successfully to identify critical scales 
in network metrics as connectedness or correlation length 
(Keitt et   al. 1997, Urban and Keitt 2001).   

 Modularity 

 Modularity was estimated for each of the networks along 
the distance gradient using an algorithm based on simulated 
annealing implemented in the R software (igraph pack-
age, Csardi and Nepusz 2006, R Development Core Team, 
Supplementary material Appendix 2). Simulated annealing is 
a stochastic optimization technique that identifi es modules 
in a graph by maximizing a function of modularity (Newman 
and Girvan 2004, Guimerà and Amaral 2005, Reichardt and 
Bornholdt 2006). Th is algorithm has better sensitivity and 
computational cost performances that are better than 
alternative approaches (Danon et   al. 2005). To determine 
modularity, the algorithm requires that the network is 
connected. Th erefore, at each distance the largest compo-
nent was selected and its modularity estimated (Bodin and 
Norberg 2007). Four non-linear models were evaluated to 
describe the association between modularity,  m , and thresh-
old distance,  d  t , used to connect cells in simulated landscapes: 
1)  m    �    a  �    cd  t �   bd  t  

2 ; 2)  m    �     ( a  �    cd  t ) e  
bdt ); 3)  m    �    ae  (bdt)  and 

4)  m    �    ad  t  
b , with model selection determined by the lowest 

Akaike’s information criterion value (AIC). Th e parameters 
 a ,  b  and  c  represent maximum modularity, main trend, and 
attenuation in the slope, respectively. Th e parameters of the 
models fi tted were compared along the gradient of propor-
tion of occupancy ( p ) and aggregation ( H ). 

 For each network, we also computed landscape con-
nectedness (the proportion of all pairs of patches mutually 
connected) using the connectedness function implemented 
in the package sna in R software (Butts 2013, R Development 
Core Team). As a complement, we estimated the minimum 
distance at which the whole network was connected, i.e. the 
percolation point (following Rozenfeld et   al. 2008), and 
plotted the landscape network at this distance.   

 Metacommunity dynamics 

 We evaluated the eff ect of landscape structure on metacom-
munity diversity with a neutral model (Hubbell 2001). Each 
occupied cell of the landscape was inhabited by a community 
of 100 individuals (starting with a uniform distribution of 
abundances) belonging to 20 species. Each iteration involved 
the following steps: 1) all communities were randomly 
sorted to update diversity; 2) one individual was randomly 
removed from a focal community (the community in which 
biodiversity was updated); 3) the metacommunity from 

which individuals were able to immigrate was determined 
by the sum of species abundances among local communities 
directly connected to the focal community; 4) an individual 
removed was replaced with another from a random sample of 
the same community with a probability of 1-m, or from the 
metacommunity with a probability of m; 5) steps 1 – 3 were 
repeated for all local communities. After 500 iterations, we 
computed a Jaccard index of beta diversity among all pairs of 
local patches using the  ‘ vegdist ’  function of the vegan pack-
age in R (Oksanen et   al. 2011, R Development Core Team). 
Average beta diversity among all pairs of local communities 
was calculated as a measure of spatial structuring. Th is neu-
tral model was simulated with 39 (0 to 1) migration rates for 
a landscape with a Hurst parameter of 0.4 and an occupancy 
of 0.20. Results from previous calculations demonstrated 
that this landscape correctly represented the main patterns 
emerging from the whole set of landscapes. 

 For each migration rate value, we used the mean 
beta diversity of the metacommunity and the threshold 
dispersal distance to construct landscape network relation-
ships. To examine the predictive ability of each network 
metric, we fi tted a linear regression to the plot of mean beta 
diversity on modularity (or connectivity). Finally, we related 
the variances explained by these regression models to the 
migration rate of the neutral model.   

 Results 

 Landscape modularity decreased and connectedness increased 
along the gradient of threshold distances in all simulated and 
empirical landscapes (Fig. 1, 2 and Supplementary material 
Appendix 2). However, landscape modularity tracked a grad-
ual decrease without a single transition, and this was also the 
case for connectedness. Moreover, at the critical threshold 
distance (percolation point), the habitat network was still 
fragmented (in most cases) into several modules (modular-
ity values  �    0.6), even when connectedness indicated a fully 
connected network (Fig. 1). 

 Th e gradual reductions in modularity were consistent 
across all simulated landscapes, and degrees of patches aggre-
gation and density did not aff ect this general trend (Fig. 1 
and Supplementary material Appendix 2). Furthermore, for 
all landscapes analyzed, the best model was  m    �     ( a  �    cd  t ) e  

bdt , 
which described a decreasing linear and then exponential rela-
tionship between modularity and threshold distance, except 
in landscapes with  p      �     0.8 and  p      �     0.9 (Supplementary 
material Appendix 2). As the same function described the 
change in modularity with dispersal distance in most of the 
simulated landscapes, it was therefore possible to explore 
the existence of systematic trends in the parameters of this 
function in response to landscape structure ( p  and  H ). While 
clear trends were observable (Fig. 3), the whole function was 
consistent among all simulated landscapes. Th e main dif-
ferences in parameters occurred only at high levels of patch 
aggregation ( H ) involving more gradual or sudden declines 
in modularity in landscapes with high or low patch densities 
( p ), respectively (Fig. 3). 

 Large values of mean beta diversity occurred in the 
absence of migration from neighboring patches (Fig. 4a). 
Migration lead to an abrupt reduction in beta diversity as 
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and Crist 1995, Urban and Keitt 2001, Laita et   al. 2011). 
However, the patterns of landscape modularity in gradients 
of dispersal ability have not been subjected to detailed scru-
tiny. We have demonstrated here for the fi rst time that, in 
spite of potential access to all parts of the landscape beyond 
the critical threshold distance, when high levels of modular-
ity persist, landscape perception by organisms may still be 
fragmented and aff ect biodiversity patterns. Furthermore, 
the continuous nature of changes in modularity, in contrast 
to other metrics, suggests that it may be used to determine 
how far systems are from tipping points (Scheff er 2009). 
Importantly, development of the detection abilities of this 
kind of metric, which might be used in early warning analy-
ses, is now a pressing imperative in ecology and conservation 
biology (Scheff er 2009, Sol é  2011, Barnosky et   al. 2012). 

 Network modularity and connectivity provide comple-
mentary metrics of the landscape structure that shape 

the network became more connected at larger threshold 
distances. At low migration rates, beta diversity resembled 
the pattern for modularity; at higher migration rates, the 
pattern resembled the inverse of the trend in connectivity. 
Th ese qualitative trends were confi rmed in the relationship 
between the proportion of variation explained by the linear 
models of connectivity and modularity along a gradient of 
linkage distance (Fig. 4b).   

 Discussion 

 Th e existence of abrupt transitions between disconnected 
and connected landscapes in gradients of dispersal abilities 
is viewed as a major property of landscapes and metacom-
munities, which is robust across diff erent methodological 
approaches and systems analyzed (O’Neill et   al. 1988, With 

  Figure 1.     Landscape connectedness (gray line) and modularity (black line) along gradients of dispersal ability in simulated landscapes, 
e.g. threshold distances to link patches. Networks at the percolation point are depicted within each plot and the percolation distance is 
indicated by a vertical dotted line. Plots correspond to simulated landscapes at three levels of spatial aggregation ( H    �     0.2;  H    �     0.4;  
H    �     0.6) and three proportions of occupancy ( p    �     0.2;  p    �     0.4;  p    �     0.6). In Supplementary material Appendix 1 presents a full set of spatial 
aggregations and spatial occupancies.  
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  Figure 2.     Landscape connectedness (gray line) and modularity (black line) along a gradient of threshold distances connecting patches on 
real landscapes. Vertical dotted lines indicate percolation distances; inset networks were estimated at these distances. Empirical landscapes 
were: (a) temporary ponds in Uruguay (34 ° 25 ″ 47 ″ S, 53 ° 98 ″ 10″W), (b) patches of vegetation in the Atacama Desert, Chile (Chile 
(20 ° 29 ″ S – 20 ° 26 ″ S), (c) towns in Canelones, southern Uruguay (34 ° 13 ″ S – 34 ° 50′S, 55 ° 30′   – 56 ° 30′W), (d – i) water bodies located near 
Mar del Plata, in eastern Argentina (A: 38 ° 2′41.95″S; 58 ° 33′13.97″W; B: 37 ° 58′45.63″S, 58 ° 27′45.06″W; C: 38 ° 1′27.89″S, 
58 ° 24′14.13″W; D: 38 ° 7′49.45″S, 58 ° 6′45.02″W; E: 38 ° 0′56.75″S, 58 ° 13′39.27″W; F: 38 ° 3′19.88″S, 57 ° 46′46.04″W), and (j) Antilles 
islands, east of Hispaniola (14 ° 42′N, 62 ° 42′W).  
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dominates at low migration rates. We emphasize that even 
when the association between modularity and biodiversity 
was weaker than the association of biodiversity with con-
nectivity, the continuous nature of modularity confers 
upon this index considerable potential in the analysis of 
natural ecosystems. 

 In our analysis of neutral communities all species have 
the same dispersal ability, representing the threshold dis-
tance the mobility of all species (Hubbell 2001). However, 
real communities have large variation in dispersal ability 
among organisms (Keitt et   al. 1997, Urban and Keitt 2001). 
Interspecifi c variation in traits related to dispersal  –  e.g. body 
size  –  should determine that diff erent species perceive diff er-
ent landscapes (Borthagaray et   al. 2012). As consequence, 
diff erent degrees of inter-communities diff erentiation  –  beta 
diversity  –  could be promoted by the same landscape, among 
species with diff erent dispersal abilities but conforming the 
same metacommunity. Th is eff ect of landscape perception 
among organisms could impact on local interactions with 
non-evident consequences on local diversity and its variation 
among communities. 

 Th e search for tipping-points in landscape connectivity at 
which sudden shifts occur has important implications for the 
design and management of conservation strategies. However, 
the ability to predict tipping points before they are reached 
is certainly problematic due to abrupt non-linear ecosystem 
responses to spatial and temporal variations (Scheff er 2009, 
Sol é  2011). Consequently, fi nding suitable tools for the 
detection of tipping points is an elusive target in ecological 

biodiversity structure. According to the predictions of ran-
dom landscape and percolation-based models, sudden 
breakup of the landscape into smaller disconnected frag-
ments occurs in all simulated and empirical landscapes (Keitt 
et   al. 1997, Urban and Keitt 2001, With and Pavuk 2012). 
Th e distance at which this transition takes place is related 
to habitat path occupancy and aggregation (With and Crist 
1995, With and King 1999). Th is connectivity pattern has 
been corroborated by increasing numbers of empirical exam-
ples in several terrestrial ecosystems (Keitt et   al. 1997, Urban 
and Keitt 2001, Borthagaray et   al. 2012, With and Pavuk 
2012). Th e existence of a single abrupt transition in connec-
tivity has important eff ects on the total amount of resources 
that diff erent individuals in the same metacommunity are 
able to access, which in turn acts as a determinant of patterns 
in biodiversity (Economo and Keitt 2010), body-size distri-
bution (Borthagaray et   al. 2012) and population persistence 
(With and Pavuk 2012). 

 However, the gradual trend in modularity we detected 
indicates that an abrupt transition in connectivity is not 
the only possible outcome of these relationships. Notably, 
all the simulated and empirical landscapes had gradual 
decreases in modularity across gradients of threshold 
distance. Our analysis of trends in beta diversity 
indicates roles for both connectivity and modularity, 
with relative relevance of each determined by migration 
rate among local communities. At high migration rates, 
connectivity may be more associated with metacom-
munity diversity, while an association with modularity 
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  Figure 3.     Response of landscape modularity ( m ) to a gradient of linkage distance ( d  t ). Th e model  m    �     ( a �    cd  t ) e  
bdt  best fi t the simulations. 

 a, b  and  c  are parameters representing maximum modularity, main trend, and attenuation in the slope, respectively. Symbols indicate the 
proportion of occupied cells ( p ) in the landscape:  ▫   p    �     0.1;  ⚬   p    �     0.2;  ▴   p    �     0.3;  �   p    �     0.4;  �   p    �     0.5;  ▪   p    �     0.6;  ⚫   p    �     0.7;  ♦   p    �     0.8 
and  Δ   p    �     0.9. Landscape aggregation ( H  ) reduces maximum modularity ( a ) and also leads to steeper reduction in modularity with dis-
tance to linkage, but only in landscapes with low occupancy. To an infi nitesimal extent, the reverse might be true for landscapes with 
larger occupancies.  
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 Our analyses indicate that the role of landscape modular-
ity in shaping biodiversity is probably enhanced by ongo-
ing global changes in landscape structure and function 
that reduce migration rates. Fragmentation and habitat 
loss are widely recognized as two main drivers of landscape 
structure (With and King 1999, Fahrig 2003, Biswas and 
Wagner 2012, Cushman et   al. 2012, Rubio and Saura 
2012). On gradients of organism dispersal, individuals 
experience a gradual reduction in modularity, which repre-
sents a transition from access to local patches to access to 
the whole system. Migration rate is expected to interact with 
dispersal distances in determining a major role for modu-
larity at low rates of organism movement among patches. 
Additional processes directly connected with individual 
movement among landscapes, such as metapopulation 
dynamics (Liebhold et   al. 2004), species diff erentiation 
(de Aguiar et   al. 2009), or disease propagation (May 2006), 
are expected to be dependent on the degree of modularity 
in patches of habitat (Fortuna et   al. 2009, Bellisario et   al. 
2010, Carstensen et   al. 2012). Th is study aimed at improving 
understanding of animal perceptions of landscape structure 
and should motivate further empirical and theoretical stud-
ies of the role of landscape structure on biological processes.           
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conservation issue from a landscape perspective (Schumaker 
1996, Keitt 2000, Ritters et   al. 2000, Ewers et   al. 2013). In 
this sense, modularity is probably capturing a component of 
landscape structure not evident from other analyses (Bodin 
and Norberg 2007, Fortuna et   al. 2009). 
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  Figure 4.     (a) Mean beta diversity along a gradient of linkage 
distance (  d  t ) estimated for 39 values of migration rates (from 0 to 1). 
(b) Explained variation for mean beta diversity by landscape 
connectedness (gray line) and modularity (black line), in a gradient 
of migration rates.  
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