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Resumen

El regulador relativo Reg(L/K) de una extensién de cuerpos de nimeros L/ K estd estrechamente
relacionada con el cuociente Reg(L)/Reg(K) de reguladores cldsicos de L y K. En 1999 Friedman
y Skoruppa [FS99] demostraron que Reg(L/K) posee cotas inferiores que crecen exponencialmente
con el grado absoluto [L : Q], siempre que el grado relativo [L : K| sea suficientemente grande.
Friedman y Skoruppa partieron de una desigualdad analitica que involucra Reg(L/K) y desarrol-
laron un andlisis asintético que funciona bien para grados relativos [L : K| > 40. En esta tesis,
partimos de la misma desigualdad, pero para grados [L : K] < 40 usamos técnicas numéricas y
asintdticas para demostrar el crecimiento exponencial de las cotas inferiores cuando [L : K| > 12.
Imponiendo algunas hipétesis sobre la descomposicién en L/ K de los lugares arquimedianos, obten-
emos también buenas cotas inferiores para Reg(L/K) para algunos grados [L : K| < 12. Por
ejemplo, si K es totalmente complejo obtenemos buenas cotas inferiores para el regulador relativo
si[L:K]>5.

Abstract

The relative regulator Reg(L/K) of an extension of number fields L/ K is closely related to the
ratio Reg(L)/Reg(K) of classical regulators of L and K. In 1999 Friedman and Skoruppa [FS99)
showed that Reg(L/K) satisfies lower bounds that grow exponentially with the absolute degree
[L : Q], provided the relative degree [L : K] is large enough. They started from an analytical
inequality involving Reg(L/K) and carried out an asymptotic analysis which was successful for
relative degrees [L : K] > 40. For smaller [L : K| we start from the same inequality, but use
extensive numerical calculations and asymptotics in a different variable to prove exponentially
growing lower bounds when [L : K] > 12. By making assumptions on the splitting in L/K of the
Archimedean places, we also obtain good lower bounds on Reg(L/K) for some degrees [L : K] < 12.
For example, if K is totally complex we obtain exponentially growing lower bounds for the relative
regulator whenever [L : K| > 5.



Chapter 1

The relative regulator

1.1 Overview of the problem and results

The regulator Reg(L) of a number field L is one of its classical invariants, being essentially the
co-volume of the lattice LOG(O7) under the usual logarithm map LOG taking the units OF of
L to the Euclidean space RAZ. Here A; denotes the set of Archimedean places of L, and for
acL* ve Ay, (LOG(CL))U = e, log |al,, where e, = 1 if v is real, e, = 2 if v is complex, | |, being
the absolute value corresponding to v extending the usual absolute value on Q.

The regulator appears naturally in several contexts, both algebraic and analytical. In the
analytical setting, the regulator occurs in the residue of the Dedekind zeta function, which leads to
the inequality [Lou98a], [Lou98b], [Lou98c]

= (elog(IDL) "™
hLReg(L) S |DL‘ W N

where hy, Dy, and n are the class number, discriminant and degree of L, respectively. Thus, lower
bounds for Reg(L) become important when we need upper bounds for the often elusive class number
hr.

The first lower bounds for the regulator were published in 1932 by Remak [Rem32]. Using the
geometry of numbers he proved, for L totally real, that there exist absolute constants by > 0 and
b1 > 1 such that

Reg(L) > bobY. (1.1)

Remak [Remb52|, and later Pohst [Poh78|, Silverman [Sil84], Friedman [Fri89] and others, applied
geometric methods to obtain various lower bounds for the regulator in terms of the discriminant,
the subfields of L or heights of elements of L.

Using a new analytic method, Zimmert [Zim81] in 1981 was able to remove the assumption that
L is totally real in Remak’s inequality . Zimmert gave explicit absolute constants ¢y > 0 and
c1 > 1 such that for any number field L we have

Reg(L) > cocf. (1.2)

In 1987 Bergé and Martinet [BM87] introduced a relative form R(L/K) of the classical regulator,
associating it to an extension L/K of number fields. They defined R(L/K) essentially as the co-



volume of the lattice resulting from projecting the lattice LOG(O7 ) onto the subspace perpendicular
to LOG(K™). Costa and Friedman [CF91] modified Bergé and Martinet’s definition by slightly
changing the lattice, and proved that their relative regulator Reg(L/K) satisfied

1 Reg(L) < Reg(L)

Reg(L/K) = [O% - WiNL 1 (05)] Reg(K) ~ Reg(K)

< R(L/K), (1.3)

where Wg denotes the group of roots of unity in K. For simplicity, we will take the equality in
(1.3)) as our definition of the relative regulator Reg(L/K )E| Relative regulators are closely related
to the covolume of the lattice LOG(E(L/K)), where the relative units F(L/K) are defined as

E(L/K)={e€ O : Np/k(e) € Wk}

In fact,

covol(LOG(E(L/K))) = Reg(L/K) H v/ (number of places of L above w) > Reg(L/K).

weAK

Of course, Reg(L/K) is a generalization of the usual regulator, in the sense that Reg(L/Q) =
Reg(L). Note also that any lower bound for Reg(L/K) is also a lower bound for Reg(L)/Reg(K).
Thus a lower bound for relative regulators implies a lower bound for the classical regulator of L
that incorporates the regulator of the subfield K.

Bergé and Martinet applied the geometry of numbers to generalize to Reg(L/K) some of the
lower bounds known for Reg(L), and asked if results as strong as Zimmert’s might hold for the
relative regulator. Having introduced relative heights to prove some of their bounds, they asked if
an analogue of Lehmer’s conjecture |Leh33] on heights might holdE|

In 1999 Friedman and Skoruppa [FS99, p. 115] proved a lower bound for Reg(L/K) which is
exponential in [L : Q] for [L : K] large enough. Namely, for some absolute constants dy > 0,d; > 1,
they showed for any extension L/K of number fields that

K1\ [K:Q)
Reg(L/K) > (dod[lL'K]) . (1.4)
For [L : K] > 40 they proved [FS99, Cor. 1]E|
Reg(L/K) > 0.014 - 1.151¥, (1.5)

There is no a priori reason for the restriction [L : K| > 40 in (1.4)). It is a consequence of
Friedman and Skoruppa’s method of making estimates which are sharp only as [L : K| — oco. In

! For relative class groups, relative units and relative regulators, see §7 of Henri Cohen’s book Advanced Topics
in Computational Number Theory |[Coh00, pp. 347-387].

2 For a discussion of Lehmer’s still unproved conjecture, see §3.6 of Waldschmidt’s book Diophantine Approxima-
tion on Linear Algebraic Groups |[Wal00, pp. 86-105].

3 We note that there is a slip in Friedman and Skoruppa’s paper [FS99]. More precisely, in bounding J; in the
proof of their Lemma 5.6, the real part of the error term o in the exponential was neglected. This did not affect
the proof of their Main Theorem , but it did affect the value of the numerical constant do. By sharpening
the asymptotic estimates of [FS99] and using computer calculations for intermediate degrees (between 40 and 139),
Sundstrom in his Ph.D. Thesis [Sunl6] was able to verify for [L : K] > 40. We will use different asymptotics
and computations for [L : K] < 40.



fact, they conjectured [FS99, p. 118] that there are absolute constants fy > 0 and f; > 1 such that
for any degree [L : K] we have
Reg(L/K) > fof, "', (1.6)

where rp /= rank(E(L/K)) = #(Ar) — #(Ak).
For simplicity we will use the absolute degree [L : Q] instead of the relative unit rank r, /g . If
[L: K] > 3, they are interchangeable in ([1.6]) since [L : Q]/6 <7/ < [L: Q]. Indeed,

[L:Q] o L:Q [L:Q] _ [L:Q] .
R i ey ([L: K] >3).

[L:Q] >rp k>

The main aim of this thesis is to prove the following extension of Friedman and Skoruppa’s

inequality ((1.5]).

Main Theorem. There are absolute constants eg > 0 and ey > 1 such that for any extension
of number fields L/ K of degree [L : K| > 12 we have

Reg(L/K) > eoe[lL:Q] (e0 >0, e; > 1). (1.7)

Moreover, (1.7) holds if [L : K] = 10, or if K is totally complex and [L : K] > 5. It also
holds for [L : K] = 8 provided all real places of K have at least one real place of L above it.

We also get for L totally real if [L : K] > 3, but this case was known by geometric methods
even when [L : K| = 2. Our exponential growth constant e; for the totally real case is better than
the geometric one when [L : K] > 6 (see Table [1.3| below).

Our work will concern only the case [L : K] < 40, as higher degrees are covered by inequality
F_II In fact, for [L : K] > 12, [L : K] =10 and [L : K| > 5 if K is totally complex, the constants
ep = 0.02 and e; = 1.013 in are explicit (see Table , but we phrased our main result so as
to emphasize that our aim was to obtain a lower bound on Reg(L/K) that increases exponentially
with [L: Q].

Table 1.1: Values of C' making Reg(L/K) > 0.02 - Cl:Q for 2 < d = [L : K] < 40.

2 3 4 5 6 7 8 9 10 11
0.603 | 0.489 | 0.790 | 0.715 | 0.898 | 0.838 | 0.969 | 0.916 | 1.018 | 0.972
12 13 14 15 16 17 18 19 20 21
1.054 | 1.013 | 1.082 | 1.045 | 1.105 | 1.071 | 1.123 | 1.092 | 1.138 | 1.110
22 23 24 25 26 27 28 29 30 31
1.151 | 1.125 | 1.163 | 1.138 | 1.172 | 1.149 | 1.181 | 1.159 | 1.188 | 1.167
32 33 34 35 36 37 38 39 40
1.195 | 1.175 | 1.201 | 1.182 | 1.207 | 1.189 | 1.212 | 1.194 | 1.216

Q|| Q| Q&) Q~

4 We re-do the known case [L : K] = 40 to show that inequalities can be improved by treating small degrees on
their own (our C is 1.216 instead of 1.15).



On inspection of the table, we find an exponentially growing lower bound for d > 12, with C
ranging from 1.013 to 1.216 in the range 12 < d < 40, such that Reg(L/K) > 0.02 - -9,

We now put our result in the greater context of Lehmer’s conjecture on heights of algebraic num-
bers. Friedman and Skoruppa remarked [FS99, p. 118] that their conjectural inequality implies
the existence of a smallest Salem number, an important unproved special case of Lehmer’s conjec-
ture. They were unaware that in 1997 D. Bertrand |[Ber97| had already studied units while framing
a higher-dimensional Lehmer conjecture. Bertrand investigated covolumes of lattices LOG(FE) for
general subgroups £ C 07, and conjectured an inequality of the type covol(LOG(E)) > Cy, for
some positive C,,, depending only on the rank rg > 2 of E. Bertrand’s conjecture was proved for
rg > 3 by Amoroso and David [AD99].

Friedman and Skoruppa’s conjectural inequality features a lower bound growing expo-
nentially with the rank, and so is stronger than Bertrand conjectured. Recently, Rodriguez Vil-
legas [Chil9, Appendix] and Amoroso and David [AD19] conjectured an exponentially increasing
lower bound

covol(LOG(E)) > gogi”, (1.8)

for any subgroup F of units of rank rg > 2. Here gg > 0 and ¢; > 1 should be absolute constants
(BRVAD conjecture)ﬂ

Costa and Friedman |[CF91, Thm. 4] showed that for subgroups E C O} of any totally real field
L, inequality (with g1 = 1.4) followed easily from work of Schinzel [Sch73| and Pohst [Poh78§].
Thus, the BRVAD conjecture was long known in the totally real case. Our inequality provides
additional evidence in favor of the BRVAD conjecture.

1.2 Approach to the proof

The first steps of our proof of lower bounds for Reg(L/K) for [L : K] < 40 are the same as
Friedman and Skoruppa’s proof for [L : K] > 40. The difference will emerge in the way we analyze
the functions appearing in the fundamental inequality below. They proved this inequality using a
series O/ (t;a) [['S99, p. 117] that they attached to a fractional ideal a of L and ¢ > 0. We note
that ©p/g(t; a) is the inverse Mellin transform of the partial zeta function attached to the ideal
class of a used by Zimmert to prove his regulator bounds [Zim81]. The importance of O,k (t; a)
for us is that its constant term is Reg(L/K)/wr, where wy = #(Wp) is the number of roots of
unity in L.

Friedman and Skoruppa observed that ©p,/k(t;a) is an obviously decreasing function of ¢ and
that the usual ©-identity held, i. e. @L/K(tfl, a) = t[L:@]/2@L/K(t, (ad)~1), with 0 being the (ab-

solute) different ideal of L [FS99, p. 120]. Thus ¢t — e /K (t,a) is increasing. Taking 4 they
obtained the inequality

Ok (ta) + [L?Q]t@; (@) >0 (t > 0). (1.9)

The definition of O,/ is rather unwieldy as it involves an ry,/-dimensional integral. Using Mellin

5 For rg = 1 one needs to use an L'-norm of LOG of a unit, as in Lehmer’s conjecture. Indeed, Rodriguez
Villegas used an L'-norm for any rank and so included rz = 1, i.e. Lehmer’s original conjecture. Amoroso and
David conjectured that Rodriguez Villegas’ inequality might be strengthened using the L?-norm for 75 > 2.



transforms, Friedman and Skoruppa [F'S99, Prop. 3.1] proved the more tractable expression

Reg(L/K
Or/K(t.a) = egfu/) 272N T £y (log(tea) + auw), (1.10)
L aEa/iE)L/K)U)GAK

1 c+100
fuw(y) = Zi/ e s WD (s)Putw (s + )" ds  (d=[L: K], y € R, any ¢ >0), (1.11)
™ C

—100
where p,, and ¢, denote, respectively, the number of real and complex places of L extending the
place w € Ak, r2(L) is the number of complex places of L,

—2/[L:Q] 2
Cq = 77(\/ |Dr| nL/Q(a)) , Ay = glog INormy, g (a) - (1.12)

Using (1.9)-(1.11]), and setting y = log(tcq), one has (for any y € R) the fundamental inequality

RGg?(ﬂLL/m22—7"L/K7T_T2(L)/2 Z {—1—[[/?@ Z ﬁ(aw“‘y)}wg fw(aw+y)' (1‘13)

aEa/EL/K weEAK

a#0

The function f,, and its logarithmic derivative will be the central analytic objects of study in this
thesis. It is not hard to show that f,, is positive and log-concave, but we will need a higher convexity
result, as well as inequalities comparing f,,’s with different parameters.

If we take a = Op, in the sum over a € a/F(L/K) in , we see that the sum includes a term
corresponding to a = 1. Friedman and Skoruppa’s strategy to prove was to drop all terms
with a # 1 in and get a good lower bound for the term with a = 1 (note that 1,, = 0). To
follow this strategy, one first has to prove that the terms dropped are nonnegative. Unfortunately,
we have very little control over a,,. On the favorable side, ¥ is a free real parameter which can be
set optimally.

It turns out that a convexity property of —;—{” would ensure the desired nonnegativity of the
term with brackets in . In [FS99] the authors found a convex and increasing function p, such
that for d=[L: K] >0

w

- j}”(y) > ewdp(y) (Vw € Ag). (1.14)

Note that >, c 4, €wlw = 2 Jog |Normy, so(a)] > 0 since a is a nonzero algebraic integer. As p is
convex and increasing, Friedman and Skoruppa [FS99, p.128| estimated from ((1.14))

2 ! 2

T Z l(aw+y)2m

[L : Q] W fw Z 6wp(aw + y) > Qp(y + ﬁ log(NL/Q(a))) > 2p(y)

wEAK

Thus the terms in the sum ((1.13) will be positive if 2p(y) > 1. As with Friedman and Skoruppa,
this gives our initial inequality
Reg(L/K)
wy,

> (2p(y) — 127w xa B2 T fuly), (1.15)

wEAK



valid provided ([1.14]) holds for a convex increasing p. Thus, our main work will be to find a good

p in (1.14), and a good lower bound for the product [],c 4, fw(y) in (L.15). We will choose y so
that 2p(y) — 1 =1/100 (or any fixed small positive number).

Table 1.2: C'(yo) and yp in (1.17) for K totally complex and 2 < d = [L : K] < 40.

d 2 3 4 5 6 7 8 9 10 11
Yo -0.933 | -1.031 | -1.083 | -1.116 | -1.138 | -1.154 | -1.166 | -1.175 | -1.183 | -1.189
C(yo) | 0.790 | 0.898 | 0.969 | 1.018 | 1.054 | 1.082 | 1.105 | 1.123 | 1.138 | 1.151
d 12 13 14 15 16 17 18 19 20 21
Yo -1.195 | -1.199 | -1.203 | -1.206 | -1.209 | -1.212 | -1.214 | -1.216 | -1.218 | -1.220
C(yo) | 1.163 | 1.172 | 1.181 | 1.188 | 1.195 | 1.201 | 1.207 | 1.212 | 1.216 | 1.220
d 22 23 24 25 26 27 28 29 30 31
Yo -1.221 | -1.222 | -1.224 | -1.225 | -1.226 | -1.227 | -1.228 | -1.229 | -1.230 | -1.230
C(yo) | 1.224 | 1.228 | 1.231 | 1.234 | 1.237 | 1.240 | 1.242 | 1.244 | 1.247 | 1.249
d 32 33 34 35 36 37 38 39 40
Yo -1.231 | -1.232 | -1.232 | -1.233 | -1.234 | -1.234 | -1.235 | -1.235 | -1.236
C(yo) | 1.251 | 1.252 | 1.254 | 1.256 | 1.257 | 1.259 | 1.260 | 1.262 | 1.263

The simplest case for our purposes occurs when f,, is the same function for all w € Ay, as
happens if K is totally complex or if L is totally real. So we assume for now that K is totally
compler. Then f, = f(o,q4), a function depending only on d = [L : K] < 40. Here f( q)(y) = fu(y)
in , with e, = 2, p, =0 and ¢, = d, as we must have if w is a complex place. As remarked

above, fo.q4)(y) > 0, and —%(y) is known to be increasing in y. Graphing this logarithmic

o flo.a) . . . .
derivative suggests that —% is convex, as we will eventually prove using asymptotic and numerical

calculations )| This means that we can choose the optimal lower bound in (T.14)), namely

—1 [
p(y) = pa(y) = Qdfizji Y)- (1.16)

We shall prove that lim,—,_ p(y) = 0 and lim,_,, p(y) = 00, so for each d there is a unique yo € R
such that 2p(yp) — 1 = 1/100[] Thus, from (1.15) we get

Reg(L/K)

wr 279 T2 g 4

— 0.01- (27 74 g0y (0) 20) Y =2 0.01-C(yo) Y. (1.17)

Numerical calculations show that C(yp) < 1 for d < 4, so we get exponentially decreasing bounds
for Reg(L/K) if d = [L : K] < 4. Fortunately, we get lower bounds that increase exponentially

. . . o £ . .y
5 Numerical “evidence” suggests much more is true for all d: Not only the second derivative of —f(z—‘j; is positive,

its derivatives to all orders are positive. This is obvious for d = 1, but already for d = 2 the proof required delicate
properties of the modified Bessel functions K, [KM18| Prop. 6].

" Since in practice p can only be evaluated to a given accuracy, in Tablewe actually have 2p(yo) — 1 > 1/100,
but it is nearly an equality.



with [L: Q] if 5 < [L : K] < 40, since C(yo) > 1.018 in that range (see Table [1.2)). For example, if
[L: K] =10 and K is totally complex, using wy, > 2 and Table we obtain

Reg(L/K) > 0.02 - 1.138/5C (K totally complex, [L : K] = 10).
For [L : K] = 40 we obtain
Reg(L/K) > 0.02 - 1.263-% (K totally complex, [L : K] = 40).

It is interesting to note that, for [L : K] > 0 and L totally complex (regardless of K), Friedman
and Skoruppa [FS99, Corollary 2] proved Reg(L/K) > 1.33/%Q. Our calculations show that for
[L : K] = 40 the lower bounds are not far from their asymptotics.

When L is totally real, the same line of reasoning (contingent on proving the convexity of

—%(y) and numerical calculation of yo and of f,(yp)) gives the lower bound
Reg(L/K) > 0.02 - Cy (yo) Y, (1.18)

where C1(yo) is given in Table

Table 1.3: C1(yo) and yo in (1.18]) for L totally real and 2 < d = [L : K] < 40.

d 2 3 4 5 6 7 8 9 10 11
Yo -1.196 | -1.418 | -1.539 | -1.615 | -1.667 | -1.704 | -1.733 | -1.755 | -1.773 | -1.788
Ci(yo) | 0.878 | 1.103 | 1.270 | 1.396 | 1.493 | 1.572 | 1.636 | 1.690 | 1.735 | 1.775
d 12 13 14 15 16 17 18 19 20 21
Yo -1.800 | -1.811 | -1.820 | -1.828 | -1.834 | -1.840 | -1.846 | -1.851 | -1.855 | -1.859
Ci(yo) | 1.809 | 1.838 | 1.865 | 1.888 | 1.910 | 1.929 | 1.946 | 1.962 | 1.977 | 1.990
d 22 23 24 25 26 27 28 29 30 31
Yo -1.863 | -1.866 | -1.869 | -1.872 | -1.874 | -1.877 | -1.879 | -1.881 | -1.883 | -1.884
Ci(yo) | 2.002 | 2.014 | 2.024 | 2.034 | 2.043 | 2.052 | 2.060 | 2.068 | 2.075 | 2.082
d 32 33 34 35 36 37 38 39 40
Yo -1.886 | -1.888 | -1.889 | -1.891 | -1.892 | -1.893 | -1.894 | -1.896 | -1.897
Ci(yo) | 2.088 | 2.095 | 2.100 | 2.106 | 2.111 | 2.116 | 2.121 | 2.125 | 2.130

As remarked above, in the totally real case an exponentially growing lower bound for Reg(L/K) has
long been known whenever L # K. In our case, we get this only for [L : K] > 3, but Tablem is still
interesting because the geometrically obtained lower bound grows at best like 1.406/%Q [CFI1, p.
290]. Table [1.3|shows that the analytic method beats this as soon as [L : K] > 6, reaching 2.131°@
when [L : K| = 40. Friedman and Skoruppa [F'S99, Cor. 2] showed that the lower bound reaches
2.36!4U for [L: K] > 0 and L totally real.
When the Archimedean places of K differ in their splitting behavior in L/K, they give rise to
various functions f,, in the fundamental inequality, so we let for y € R,
1 c+ioco
W) = foa W) =5 e PROVT (5P (s + §)" ds  (e,p,g >0, p+g>1). (1.19)

c—100



Thus, in (1.11]) we have fi,(y) = fp..q. (¥), and there is no longer an obvious p to choose in (|1.14)).

In Figure we graph, for degrees [L : K| going from 5 to 8, the logarithmic derivatives —}%
corresponding to all possible splittings in L/K of a real place w. We see that they are all convex

and nested (7. e. they do not cross).

Figure 1.1: The functions —M for all signatures in degrees 5 to 8.
71,72

(r_1.r_2)=(5.0) (1.1 2)=(6.0)
151
5 (r_1,r2)=(3,1) (r_1.r_2)=(4.1)

(r 1.5 2)=(1.2) 15 (1r2)=(2.2)

(r_1.1_2)=(0,3)
10

(_1.r.2)=(7.0) (r1.1_2)=(8.,0)

sl (1.2

)=

(r_1.1.2)=(5.1) 201 (r_1.1.2)=(6,1)
)=(3.2) (r1,r2)=4.2)
)=

(r_1.1-2)=(1.3) (r_1,r.2)=(2.3)

(r_1r_2)=(04)

o

-20 -15 -1.0 -0.5 0.5 20 -15 -1.0 -05 05

Figure [I.] suggests we just take for p the one corresponding to the least number of real places
above a real place w, i.e. none or one depending on the parity of [L : K]. A complex place w

of K can only split completely in L/K, so we must also verify the previous choice of p satisfies
T
J0,d)

(y) > 2dp(y). We are thus lead to the following strategy for proving our Main Theorem.

The Three Steps

Step 1 (Nesting). Prove for degrees d < 40 and all integers r; > 0, ro > 1, with r + 2ry = d,

! !
BEICEST DR CRL S 1

f(Tl,Tg) o f(T'l—‘rQ,’r'z—l)

f/O d—1)/2 fll d—1)/2
Oa-0/2) () o T2

If d is odd, also prove — <
f(o,a-1)/2) fa,-1)/2)

. These inequalities must hold for all y € R.



Step 2 (Complex place). For degrees d < 40 proveﬁ

f/
flo.a —2{0:4/2) (o)) if d is even,
o R (7 € R). (1.20)
fo.a) —2 0D () if s odd
(0,(d—1)/2)

Step 3 (Convexity). Prove, for 4 < d < 40, that —%(y) is convex in yH

Once the Three Steps have been accomplished, we will have for each d <40 a convex p in ([1.14]
for which we can find yo € R such that 2p(yp) — 1 = 1/100. Then, in view of (1.15)), for each d we
will try to find a Bg > 1 such that for all K and all L/K with [L : K] = d we have the lower bound

(om0 T fulon

wEAK

)1/[1(:@} >

As this will be for only one value of 3y and finitely many possible splitting patterns of w, this Step
4 will turn out to be easier that any of the previous three. As announced above, we will succeed in
finding such a By for [L : K| > 12. This is carried out in detail in Chapter

Taking the Three Steps is easy when d = 1 (since in that case f,(y) = e~¢"), and is possible
using some properties of Bessel functions for d = 2 (see [KM18, Prop. 6]). Unfortunately, we have
not been able to find a proof that works for a general d. Instead, the first part of the process will be
to verify that the Three Steps hold for |y| > D, r,, for some computable D,, ,, and a fixed d < 40.
The second part of the process will be to implement a rigorous numerical verification of the Three
Steps for |y| < Dy, r,. The first part works for a general r1,r2, and involves calculating explicit
asymptotics as y — £oo, but the second part requires extensive computations for each signature.

The asymptotics of f(, 4, and of all its derivatives, were worked out by Braaksma in the general
context of Meijer G-functions [Bra64], but without explicit inequalities. We carry out the explicit
asymptotics in Chapter [2| with a view to making D, ,, as small as we can. Various computational
problems arise in Chapters 3 and 4 where we verify Steps 1 to 3 for |y| < D, ,, the difficulties
being considerably more pronounced for Step 3 (convexity). To delay some particularly boring
proofs, we relegate them to the (long) Appendix, which also contains a short review of log-concave
functions and our PARI/GP programs.

8 A factor of 2 appears with —f'/f in (1.20)) because e,, = 2 appears in (1.14) when w is complex.
9 We exclude d < 3 because we will not make any claims for such small degrees and because it allows us to avoid
some special cases in the asymptotic analysis.



Chapter 2

Asymptotics: Convexity of —F near
+00

In this chapter we find the first N terms of the asymptotic approximations to

1 ct+ioco
fly) = / e~ 4P (s)rtrer (s + %)Tz ds (y € R)
21 Jo—ioo
and its derivatives. These asymptotics will be the main tool to carry out the Three Steps in
for large values of |y|. When y — —o0 it is easy to estimate the above integral: One simply shifts
the contour to the left, acquiring the corresponding residues, and brutally estimates the integral
over the new contour (see .

The asymptotics of f and its derivatives as y — 400 are far more difficult and were worked
out by Braaksma [Bra64]. We will follow him, making all his inequalities explicit (see §2.1] and
the Appendix). Braaksma’s strategy is easily lost amongst all the long formulas, so we now give a
quick sketch of his main idea.

An integral over a vertical line L of the form ﬁ J L e~%YT'(As+ B) ds, where A, B are constants,
is easily evaluated. However, we have to deal with (i. e. obtain the asymptotic expansion of order
N for) the considerably harder integral %m I e dsy H?Zl I'(Ajs + Bj) ds. Braaksma approximates
the complicated I'-product by C*T'(As + B) by writing

d 4 T(A;s+ B;
[[T(A4;s + B;) = C*T(As + B) <Hjc_~slr((A;+J;9) ])>

j=1
[15_, T'(4;5 + B))
CsI'(As + B)

= C°T'(As + B) ( — PN(S)> + C°T'(As+ B)Py(s), (2.1)
where Py (s) is a polynomial of degree N making C*I'(As+ B)Px(s) an asymptotic approximation
to H?zl I'(Ajs+ B;) on a convenient vertical line. Thus the term C°T'(As+ B)Py(s) in (2.1), upon
integration on a vertical line, will lead to the N-term asymptotic expansion. The previous term
will lead to the remainder and our extensive efforts to estimate it explicitly.

10



2.1 Asymptotic expansion of f)(y) when y — 400
The t—th derivative of f with respect to y is given by
0 (v LI ¥ ) "
— — . —say rT1TTr2 1\72
1) = 10 ) = (51 [ e s e as)
(=)

M+ioco
= / / ste™SWD ()12 (s + 32 ds (y € R, any M > 0), (2.2)
21 M —ico

where for our purposes t = 0,1,2 or 3, and d := r1 + 2r2. To avoid special cases that we will not
need in the end, we will assume that the non-negative integers r1 and ro satisfy r1 +ry > 3, as
we will use r1 + r9 > t. Applying the change of variable s — —s in the integral , and using
L(—s+1) = (—s)'(—s),

o (y) = (=d)f /_M+oo eSW (=)D (—s)1H 720 (—s 4+ )2 ds = (;d)t /_MHOo 2°h(s) ds
2mi —M —ioc0 2 2my —M —ioc0 ’
where
2= e, h(s) :=TD(=s)" 27D (—s + 1)'T(—s + 1), (2.3)

The variable z will prove convenient to avoid writing double exponentials like exp(—e¥). Note that
Z — 400 as y — +00.
For z > 0 define

w1100
H(z) = 2% /_' h(s)2" ds (w:i= —M <0). (2.4)
Thus,
FO(y) = (—d)' H(e™). (2.5)

. . . N . _ +1 r
Following Braaksma [Bra64], using (z + j)I'(z +j) =T(z+j+1) forz = —N —ds — "= +1 - F
and 5 =0,1,..., N, we obtain

i

N .
1 w100
H(d™ %) = (2m)?1 Z(—1)’24k2_/ D(1—k—ds— "5 +¢—22)25ds

k=0 w—100
) w100
—i(2m)d72 /‘ o(s)T(—N —ds — 2H +t — 22)2°ds, (2.6)
in the form main term + error term, where
Ay = (2m)TdEE (2.7)
N N—k
(27T)1_dd_dsh(5) k+1 ri+1 r .
o(s) = — A (DA [T (=N —ds — 2+t — 2 4 ),
F(*N*dS*TITJFt*%?) k=0 j=0

his as in (2.3) and Aq,..., Ay are explicitly computable in terms of r1,79 and ¢ (see §6.4.2| in the
Appendix).



2.1.1 Error estimates.

Define the error function for z > 0

w100
o(z) = / o(s) I(—N —ds — "+t — 2)2°ds. (2.8)

w—100
Since I'(s) is the Mellin transform of e*, we have [MHO8| pp. 15-20]

1 w100 z 1

(T — ds)2* ds = %e—” (>0, T—dw>0). (2.9)

2mi Ww—100

Using this formula with "= 1 — % +t— "¢ —k and w such that T'— dw > 0, we find that the
term in blue in (2.6)) is given by

w—100

N 1 w+io0o
2m) > (—1)’“Ak2i/ F(1—k—ds— "2 +¢t—22)25ds
i

2 d—1 l _ritr N
_ | 7?1 e Ry (—1)k AT (2.10)
k=0

We want an upper bound for the error term o(z) with z > 0, so we first bound p in (2.7)).

Lemma 2.1.1. The constants Ay in can be chosen in such a way that the following hold.
There exist constants K1, Ko > 0, given explicitly in terms of r1,79 and t, such that in the region

O(K;) :={s € C: Re(—s) > K1},
the function o defined in , is bounded by
lo(s)| < K. (2.11)
Also, there is an explicit formula that calculates Ay from Ao, A1,..., A1 (k=1,...,N).

Proof. See of the Appendix. We will only use the case N = 2. O

Lemma 2.1.2. Let vy := ”H + 2 —t+ N > 0. There exists constants K| and Kj > 0 such that
in the region ©(K1), we have lo(s )] < K} and

\I’(—ds _ 7)| < Ké‘s‘féf'yedee(s) log|ds\erRe(s)er(arg(fs))Im(s).
Here arg(z) denotes the principal argument, i. e. arg(z) =0 for z > 0.

Proof. The proof uses Stirling’s formula in an explicit form (see of the Appendix). O

Using the previous two lemmas, we can obtain an upper bound for the function o(z), so we can
write an asymptotic expansion for the function H with an explicitly controlled error term. More
concretely, for the function H (d*dedy) we have the following estimate as y — +o0.

12



2 d

1
Lemma 2.1.3. Let v := ”;1 +% —t+N >0, K1 > max (1 AHQ) andy > log(dKy) =: S. Then
the function H defined in has the following N*™ order asymptotic expansion when y — +00

N
e VT SN ) e~ i(2m) Y E(y),
k=0

H(d_dedy) _ (27rc)ld—1

where the error term E(y) is explicitly bounded as follows

IE(y)] = |o(e®)] < Ce ¥ —tHN+1) g=ev

for some explicitly computable constant C = C(K1,7,d).
Proof. See §6.4.4] of the Appendix. O

f "
2.1.2 Asymptotic expansion of (—fT) (y) when y — +oc.

To obtain the asymptotic expansion of the function (—%) we will use the identity

FON W Sy w)?
(_f(y)> =T T Yy

together with the asymptotic expansion found in Lemma [2.1.3] That lemma easily yields an
asymptotic expansion for f®(y) (t =0,1,2,3), when y — 400, as follows

(2.12)

FO @) = (—d) H(e™)
_ (7d)tH(d—ded(y+log d))

d—1 R N
_ (d)t(27:)1d_ T1+;2+1 +t ey(—41+22+1 +t) 6—dey (Z(l)kAkdl—ke(l—k)y> (213)
k=0

—(=d)'i(2m) "2 F (y),
where the constants Ay = Ag(t,r1,72) are explicit, and F(y) := E(y + log(d)) is bounded by

c —y (%—H—N—H) —de¥
r1+ro+1 t Ne €
e

[F(y)l = |E(y +log(d))] < ,  fory>S.
We can rewrite equation (2.13]) in the more standard form

f(t) (y) _ Aod(_l)t(Qﬂ)dfldwaer—l e—y(w—t—l) e,dey

(r1,r2)
N ~
' (Z(—l)kAke_ky +Fr1,r2,t(y)€_(N+1)y> , (2.14)
k=0

13



where (omitting the dependence on r1,73),

A = Ay(t) = Afff)tc)zk (k=0,1,...,N), (2.15)

and for y > S, the error function

—iF(y)e
1+r2+1 1t eiy(r1+;2+l *t+N) )

Fm,rz,t (y) =
2w Agd™

has the following upper bound

C

< =: . .
|FT1)T27t(y)| — drl«;:”Q —t+N(2ﬂ.)%+l Mt (2 16)

For simplicity, from now on we will write simply F} := F| r, +(y).

Replacing (2.14) and then in (2.12)) we get

" 3
eles® S | S0y, Feim®)
) 3
f(n,rz)(y) f(n,rz)(y) (f(r1 r2) ( )) (f((r(‘)l)rz (y )>
— 3 3y[2k —o(— )kAk( Jek 4 Fye~(N+Dy
Y oaio(—1)FAg(0)ehy 4 Fye (N+1y

(S0 (—DF Ap()e ™ + Fpem W+ ) (SN (~1)F A1) v + Frem ) (2:17)
(SN0 (- DkA(0)e v + Fye (V1)

(S (- DF (e + Fle*(NH)y):i

(S DF A + Foe(N+1)y)3] |

For instance, if N = 1, then from ([6.47) we get

+2

Ag(t) =1, Ay(t) = (rf +rirg — 1271t + 135 — 1279t + 126* — 1) .

24d

If N =2 we get (and will need) the far more complicated rational numbers

- 1
A2(t) = {755
— 288r1t% + 15 — 2415t + 1687r5t° — 288rot® + 144t* — 24riry — 19275t — 24r1 75 — 3361179t (2.18)

(ri1 + 27“:1)’7“2 247“115 + 3r1r2 48r1r2t + 168r1t + 2r1r2 48r1r2t + 312r1r2t

+ 576r1t% — 19215t + 57612t — 384t + 22r7 + 221179 — 26471t + 22r5 — 264rat + 264t% — 23).

Expanding the right hand side of (2.17) and grouping all the terms that depend on the functions

14



Fy, F1, Fy, 5 we get

(_ f((jl)’m)(y))” _ d3e3y(2;.\’:0 aje—jy + (Z?;;il a;j(y, Fo(y), Fi(y), Fa(y), F’g(y)))e—(N—‘rl)y)
Forry W)/ (SN (= 1)k A(0)eh + Fy(y)e~(N+1w)3

)

(2.19)
where y — «a;(y, Fo(y), Fi(y), F2(y), F3(y)) are bounded functions for N+1 < j < 3N +3, but con-
stant (functions) for 1 < j < N. To simplify notation, we shall denote o (y, Fo(y), F1(y), F2(y), F3(v))
(for N +1 < j < 3N + 3) simply by «;(y). Note that the aq,...,an depend only on Ay,..., Ay

defined in ([2.15]).

2.1.3 Bound for the error term.

We need a bound for the error term (in red) in the asymptotic expansion . Although the
constants «; are huge rational expressions in terms of r1,ro and ¢, it turns out that the constants
ap, a1 and ap are surprisingly simple. Also the functions a;(y) are polynomials in the error functions
Fo(y), Fi(y), F»(y), F3(y). This is the content of the next lemma.

Lemma 2.1.4. Using the previous notation, we have ag = a3 = 0, ag = d%' Also the functions

a;, with N +1<i <3N + 3 are of the form

3
ai(y) = eNHN T N () Fo(y) O Fi(y) Fa(y) Fa(y)®, (2.20)

J=0 I=(ig,i1 ig,i3)
t0+i1+i2+1i3=]

where hyi(x,y) € Q(z,y) are rational functions with rational coefficients.

Proof. Expanding the right hand side of (2.17) and calculating the constant coefficient of e=7¥,
( =0,1), we see that

Qp = 21‘10(1)3 -3 ~0
ar = 34g(2)4Ap(1)A
2

A direct calculation using the explicit definition of the constants Ay, Ay, Ay in 1} shows that
ag = a3 = 0. A similar direct computation shows that ay = d%'

Finally, from li and the definition of the constants Ay, € Q, it’s clear that the functions a;
are of the form (2.20)). O

We consider the special case N = 2, as we will need this later. Factoring out by e~2¥ in (2.19)
and using Lemma along with (2.14) we get

Fon®) | (52 (C1)PAp(0)e—Fv 1 Fpe—3u)3

_ de (% + (0a(y) + 0aly) + -+ ag(y)) V) (2:21)

ridro41 o TR
<f<n,r2>(y)ey(”22+1)edey (Aod(Qﬂ—)dfld—%_l) >

(f&m@) e (d + (aa(y) + auly) + -+ ao(y)) e)

15



where the functions a;(y) are bounded by

lai(y)] < eB~ Z S |hrilr )| MPMPMPM? =: B0, (i=3,4,...

7=0 = @ZO )i, 12‘13) )
t0+11+i2+13=)

Note that €; > 0.

, n
2.1.4 Positivity of (—f7> (y) for y >0

, "
We look for an explicit yg € R such that (—%) > 0 for all y > yo. From log-concavity (see the
line preceding (6.5)) in the Appendix), we know that f(, ,,)(y) > 0 for all y € R. Therefore, from

the expression (2.21)) we see that
(1) 1
B f(m,rg)(y) 50 (

1
f(m,rz)(y) 2 ( 3(y) + Oé4(y) 4t Oég(y)) €—y> > 0.

d
Since |a;(y)] < e®=D¥Q;, i =3,4,...,9, we have
2 +(aztas+ - +ag)e ™V > — — kK(y),

where £(y) 1= Z?::«: Q;e?=9¥. Since k(y) is decreasing, we see that if

then d% — k(y) > 0 for y > y*.

Table 2.1: The value of y* in (2.22) for signatures (0,72) with 3 <79 < 40.

d 3 4 5 6 7 8 9 10 11 12
y* | -0.461 | 0.169 | 0.655 | 1.048 | 1.378 | 1.662 | 1.911 | 2.133 | 2.333 | 2.514
d 13 14 15 16 17 18 19 20 21 22
y* | 2.681 | 2.835 | 2.977 | 3.111 | 3.236 | 3.354 | 3.465 | 3.570 | 3.670 | 3.766
d 23 24 25 26 27 28 28 30 31 32
y* | 3.857 | 3.944 | 4.027 | 4.107 | 4.184 | 4.258 | 4.330 | 4.399 | 4.465 | 4.530
d 33 34 35 36 37 38 39 40

y* | 4.593 | 4.653 | 4.712 | 4.769 | 4.825 | 4.879 | 4.932 | 4.983

(2.22)

Note that such y* € R satisfying d% — k(y*) = 0 always exists and is unique since k(y) is strictly
decreasing, limy_, o £(y) = 0 and limy_,_ k(y) = +00. Also note that, after a change of variable
x = e Y, the equation (2.22) becomes a polynomial equation in the variable z, thus it can be

16



solved (to a given desired accuracy, for instance, using the command polrootsreal of the program
PARI-GP). Table[2.1|shows the value of y* solving ([2.22) E| using the program PARI-GP, for signatures
(0,72) for 3 < ry < 40.

2.2 Asymptotic expansion of f*)(y) when y — —o0

In this section we construct an asymptotic expansion for f)(y) when y — —oco. This will prove

much easier than the analysis as y — oo because it can be accomplished by a shift of the integration

contour, acquiring residues, followed by a straight-forward upper bound for the integrand along the

new contour. In we will adjust the number of residues according to the required accuracy.
For M >0,z >0 and d := 71 + 273, let

(—d)t M+ioco
Go(s) :=s' 2 T(s)" 2 D(s + D)2, FO(z) 1= 2 —- / G.(s)ds (2.23)
2m M —ioco
where the principal branch of log is used to define z°. Note that f((g TQ)(y) =FO(2)if 2 :=e W,

We are interested in the asymptotic behaviour of F'(*) (z) when z — 400, or equivalently as y — —o0
in f®(y). To avoid special cases below, we will suppose that r| + ro > 4

Figure 2.1: The complex contour C in ([2.24]).
1, -
_I + iT < M+ iT

0.5

A 4 A
-1 05 g 0 M
-0.5
L > M — iT
-— — il ’ !
4 -1
Let C be the complex contour shown in Figure Thus, by Cauchy’s residue theorem
1

— 7{ G.(s)ds = Ress— (G:(s)) . (2.24)
211 C

When T — +o0o the integral over the green line in Figure corresponds to f (t)(y), whereas the
integrals over the horizontal blue lines go to zero. Also, the integral over the red line corresponds

! In practice, we cannot fix y* with infinite accuracy, so we just choose a yo such that d~2 — k(y™) is guaranteed
to be a very small positive number.
2 This is why in Step 3 on page |§| we only consider d > 4.
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to the error term.

Lemma 2.2.1. The residue of G,(s) at s =0 is a polynomial in log(z), more explicitly

e (log z)i—1-1
ReSS:O (Gz(s)) = jzl—:’—t ejm, (225)

where ej = e;(r1,72,t) are explicitly calculable real constants of alternating signs. The last two of
them are given by
Critry = n"2/?

r2
€ri4ro—1 = T2 (V(Tl + 27’2) + 2rglog 2) 7& 0,
where v 1s Fuler’s constant.

Proof. The Laurent series of the Gamma function I'(s) around the points s = 0 and s = 1/2 are
given by

F()—1 + —W2+72 +O(s E ls| < 1 (2.26)
s) = S 0 5 2 S k__laks S , .
) 1
I(s+3) =7 — (v +2log2)y/ms + O(s? E bys", s\<§,

where - is Euler’s constant and the coefficients ay € C are given by the following recurrence relations
(see |GRO7, page 894] for the formulas and Chapters 40-41 of [Nie06] for the corresponding proofs)

251:0(_1)7”+15m+1ak—m—1

F , S1=7 Sn=C((n),n>2. (2.27)

a1 =1, ap=-7v, ap=

The coefficients b, € C can be calculated in the following way. By the duplication formula for
the Gamma function [Art15, page 24], we know that
25—1

Nz

The entire function ﬁ has Taylor series near s = 0 given by

I'(2s) =

L(s)I(s+ 3). (2.28)

1 = > fus"t, seC, (2.29)

k=0

”\

where the coefficients f € C are given by the recurrence relations [GRO7]

S o(= 1) ski1 famk
n-+1

f0:17 fn—l-l: y S1=7, S'rL:C(n)a n > 2.

Therefore, from ([2.26)), (2.28)) and (2.29)), we see that the coefficients by can be obtained multi-
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plying term by term the following three Laurent series:

1 1
M(s+3)= @F@s)\/ﬁl—?s = 2@F(2s)ﬁexp(—2slog(2))
= (—2log2) i &
S WD SETTD S ) o
I=—1 J=0 J: k=0
Thus the coefficients by are given explicitly by the formula
2log?2
by, = Z Jm— 121al(]!)
Gtl+m=k
Jj20,1>-1,m>1
In conclusion we get
1 ot >
k
F(S)T1+T2 = gritra (Tl + 7'2) r1+ra—1 +- Z kS
k=—r1—r9
oo
r2
L(s+3)2=m2 —rom2 (y+2log2)s+-- = desk,
k=0
where
k= Z ap, apy -~ - alT1+T2
ll+"‘+lr1+r2:k
dp, = > bbby,
lt-tlry =k

(2.30)

(2.31)

and the coefficients ag, by can be calculated explicitly using the formulas (2.27) and (2.30)).

Using 2° = eslos(?) = S, %

> (log(z))™
>

m=0

Ress—o (G(s)) = Coeff 15" < sm> (D(s)"*™D(s + 3)™)

—1—t

> (Coeffsa (r<s>”+"“2r<s T ;w))

a=-—r1—"T2

(log Z)faflft

[Er——

and replacing (12 in the definition of G, we get

5y L | (log2) o1t
= X | X CoelfuT(s) e - CoeftnT(s + )" | 2oy
—a—1-—1)
a=—r1—r2 \l=—r1—72
—1—t a Cg—1— r14+72 r1+72 P 1—
l a—1—t 1 1 j 1—¢t
- Z Z c - d(l—l % = Z c_j - dl—j %
Ca—1-0)! A G-1-1)
a=—r1—72 \l=—r1—7r2 =1+t l=j
r1+7r2 i—1—t r1+7r2
(log 2)
= Z ejm, Where ej = Z C_| dl—j
J=1+t 1=j
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Using the recurrence relations for the coefficients ay and fx, it’s easy to see that the signs of
the coefficients c¢;, and dj, are given by sgn(cy) = (—1)k¥*"1+72 son(dy,) = (—1)*. Hence the sign
of the coefficient e; is given by

sgn(e;) = (—1)"Fr2d, (2.32)
This shows that the expression
ri+r2 i—1—t
-3 (log 2)’
ReSs:() (Gz(s)) = & ejm, (233)

is a polynomial in the variable log(z) with coefficients of alternating signs.
Note also that the last and the second to last coefficients e; are given by

Critre = 7rr2/2 (234)
T2 T2
€ritra—1 = Copy—ryt1do + Copy—pydy = (=y(r1 +72))72 — 1 (rem2 (v + 2log2))
=~ ((ry +2r2) + 2ralog2) £ 0. O (2.35)

2.2.1 Error estimate in the residue formula for f®(y).

j—1—t
In this section we estimate the approximation error when the finite sum (—d)* Z;S{ft ej%

is used to approximate the function F®)(z). Such error function comes from a contour integral over
a line of the complex plane. In fact, by Cauchy’s residue formula and the form of the contour C
depicted in Figure we can split the contour integral fc G.(s)ds in the form

T T
Ress_o (Ga(s) = QLM i G.(s)ds = % /TGZ(M i) du — % /TGZ(—1/4 i) du
1 —1/4 1 M
— G.(x+iT)dx + — G.(x —iT) dx. (2.36)
271 M 271 _1/4

—0 as T—+o0

By Stirling’s formula, we have that
ID(x 4 iT)| = V2r T V212 (1 + O(1/T))

and

1
’r <a; +iT + 2) ‘ = V2T /2 (1+ 0(1/T))
as T' — 4+o00. Thus we conclude that

|G (z +4T)| = 7198 (22 + T?)4/? o

1\"
[D(x44iT) 2T <33 +iT + 2)

exponentially fast as T" — 400, for all  in a compact real interval. Thus, taking lim7_,,~ in
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(2-36), we get

1 [e¢] 1 oo
Ress— (G:(s)) = 271-/ GZ(M+z'u)du27r/ G.(—1/4+iu)du

F® 1 [
( (2) _ / G.(—1/4+ iu)du (using (2.23))).
_ ) o
Replacing (2.25)) in the previous equality and using (2.34]), we obtain
FO(z) "¢ (log)imit P (log 21t
= Mol 52— ~1/4 - e I MY
) Z ej G 1 / G.(—1/4+iu)du = Zej(j—l—t)!+ (2)
j=1+t J=1+t
ri+ra— ritra—l j—T1—T2
r2/2 (IOg Z) + Tt I (lOg Z)] (Tl +rg—1-— t)'
ri+ry—1—1) L+ Z 7"2/2 (ri4rs—1-1) j—1-1) 7r2/2(log z)r1tra 1=t E(Z)>
J=1+4t

s /2 (log z)r1tra—1-t
=T

(7‘1+T2—1—t)!

<1+S(7"1,T2,t;2)+H(7”1,7"27t;2)), (237)
where

B(z) = % /_Oo G(—1/4 + iu) du

ri+ro—1 i—1r1—19
. R 6] . '(10g Z)j
S(r1,re,t; 2) = Z eyl (ri+r2—1 t).m,
Jj=1+t
—1—-1)!
H(ry,72,t;2) == (r 472 ) E(z) (= the error term).

7-[-7‘2/2 10g(z)7'1+7“2717t

Now we estimate H(r1,79,t;2). First we estimate E(z) as follows.

‘/ G.(—; +iu) du

< / |G (=% +iu)| du

—00

o0 1, .
= [ T (i 1) da

—00

= e ~log> h R T t/Q I (—1+iu TR E (L )| du
= 16 4

Thus E(z) is defined by a convergent integral and satisfies the upper bound

1
‘E(Z)’ < C(T17T27t) ' %7
where L e
C(r1,ra,t) = 277/ (15 +u 2)1/? 0 (=1 + )"0 (L +iw) | du. (2.38)
Therefore,

|H(T1 ro t'Z)‘ < (Tl + 72 —1—t)!0(7‘1,’l“2,t)

. 2.39
= Ve g (2:39)
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We proceed to find an easily calculated upper bound for C(ry,rg,t).
Using I'(s + 1) = sI'(s), we obtain

s'T(s)" T2 (s+ 3)™ =T(s + 1)'T(s)" 2 7'T(s + 1), (2.40)
Therefore, for s = —1/4 + iu, using the inequality |I'(z + iy)| < I'(z) (z,y € R, z > 0), from
(12.40) we get
1 ri1+re—t 1 T2
|s'T(s)" 72T (s + $)™| < T(3/4)"|T <—4 + zu) r <4> : (2.41)
Using the inequality
3 3
‘F <4+iu>‘ §F<4>, Vu € R,
we see that, on abbreviating p :=r; +ro —t — 2 > 0, we have
00 © |1 3 4 p+2
/ ‘F(—%—i—iu)‘pw du:/ ’(‘L—w)lﬁdu
. oo [~ uf?
PG s
S/ e (G )T du
o (1)
o 2
< 4?*%(3)?/ T (2 +iu)|” du. (2.42)
—0o0
To estimate [*_|T' (3 + iu) |2 du, we use |GRO7, p. 895]
Dz +iw)]® 1 u? !
——| = 14+ — ,u € R, Z<p).
2
Therefore = — ‘F({f& Z)“) is decreasing for x > 0. In particular, for all © > 0 we have
U3 +in)] T+
T (3)] T ()l
Thus,
T (3 +iu)|? <T(3)* |01 +iu)*. (2.43)
Since |I" (1 + iu)|? = S () (see [MO48, Chapter 3]), we get
oo (o.9)
/ |F(1~|—iu)|2du:/ T gu=T (2.44)
oo _ oo Sinh(mu) 2

From ([2.43]) and ([2.44) we obtain

/OO T (3 +iu) ]2du < F(3/4)2g. (2.45)

—00
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Replacing (2.41)), (2.42), (2.45)) in (2.38), calculating I'-values numerically, and using d = r; +
2ry, 0 <t < 3, we obtain

C(ry,me,t) < 2.8905 - (17.7716)%. (2.46)

In conclusion, replacing all the previous inequalities in (2.37)), we get a residue approximation for
f®(y) in the form principal term + error term

FO(y) = (=d)'7"Pey(—dy) 727 (L4 Sily) + Hily)) s (2.47)

where

1
¢t = cr,rot) = (tra 1= (2.48)

ri+ro—1 .
_ (ri+ro—1—1) "2 (—dy)i 172
St(y) = S(T‘l,’l“g,t;e dy): 71'7"2/2 ) Z ejW’ (2'49)
j=1+¢
—1-=t)2. S (17.7716)4
HW)| = [H(r, e )| < T )12.8905 - (17.7716)7 & (2.50)

nr2/2 ’dy’rl—i—rz—l—t ’
with H as in (2.39)). Note that the error term Hy(y) — 0 as y — —oo. For simplicity of the notation,
sometimes we denote simply S; = Si(y) and H; = Hy(y) (t =0,1,2,3).

, "
2.2.2 Asymptotic expansion of (—’%) (y) when y — —o0.

Using (2.47) we can find an approximation by residues for <_%> ‘

<_f’(y)>" _ S WIW? 3£ W W) ) 2 W) _ v 1)
f(y) fy)? 33 (1+ So + Ho)®' :

U= —cscg (1+ S5+ H3)(1+ So + Hp)?
+3cpc1co(1+ Sy 4+ Hay)(1+ Sy + Hi)(1+ So + Ho) — 263 (14 S, + Hy)3,

where the ¢, are as in ([2.48)) and we used (2.47) for ¢t = 0,1,2,3, to replace each appearance of
fo f', f" and f by its approximation.

2.2.3 Bound for the error term.

To have a valid asymptotic expansion of (—%) we need to isolate the main term from the error
term in (2.51)) and then obtain an upper bound for the error.

Lemma 2.2.2. With S; as in (2.49), let

To=1+2Sy + S5+ S2 + 25053 + S35, Ty =1+ 35 +35% + 53,
Ty =1+ 8o + S1+ S2 + SoS1 + 5152 + 5052 + S0.5152.

23



1

Then (—]}/(y))> can be written in the asymptotic form

(_ f’(y)>” _ G & [To+e1] +3cocrca [Ty + e2] — 2¢3 [T + €3]
f(y) y3 - ¢y (14 So+ Ho)? ’

with explicit upper bounds |e;| < Ai(y), i = 1,2,3, where A;(y) — 0 monotonically as y — —oo.
Proof. By direct calculation, we can write the numerator of (2.51)) in the form

— C3 0(2) (1 + Sg + Hg)(l + SO + H0)2 —+ 302 C1 Co(]. + SQ + HQ)(I + Sl + Hl)(]. + SO + H())
— 2011)) (1 + 51+ H1)3 = —C3 C% [1 + 2S5y + S3 + Sg + 2553 + 5353 —|—€1] (2.52)
+ 3cp ¢ co [1 + So + S1 + Sy + SpS51 + 5155 + S5 + 555155 + 52} — 20? [1 + 351 + 3512 + Si’ + 53] s

where the terms ¢; are the functions involving the error terms H;, and are given by

e1 = (14 S3+ H3)(2Ho + 2SoHo + HZ) + H3(1 4 28y + S2)

go = (1+ 81+ S+ Hy + Ho + 5152 + SoHy + H2S1 + HoHy)Hy (2.53)
+(H1 + Hy 4+ SoHy + HyS1 + HQHl)(]. + So)

e3 := 3H,+3H?+6H,S, +3HS, +3H,5? + H}.

The terms with no ¢;s (the blue terms) in (2.52)) form the principal term when y — —oo.
Recall from (2.34) that e, 1r,—1 = —W%(’Y(Tl + 2r9) + 2r9log 2) # 0. Thus each function S;(y)
defined in (2.49)) is a Laurent polynomial of the form

-l j—r1— ri+re—1—t
(ri+ro—1-—1)! " (—dy)i—m1—r2 Qi
oily) = G—i=nor : .t €C, 0). (2.54
t(y) 7I.r2/2 j;t e] (j 1 t)‘ ; yz (alyt Ot ;é ) ( )
The constants «;; are given explicitly by
(r14+ro—1-1)! i trg—i
0= (=1)" - - L2 : 2.55
Oél,t ( ) 77_72 dl(r1+r2_Z_1_t)‘ ( )

Note that, by (2.32)), S; is a polynomial in 1/y with positive coefficients and vanishing constant
term. In particular, S;(y) — 0 and Si(]y|) tends monotonely to 0 as y — —oo. Also, by (2.50)),
lim,—, o Hi(y) = 0. Thus, as y — —oo, the numerator ¥ in (2.51)) tends to

2(7‘1 —+ r9 — 1)
((r1+r2 =113

using (2.48). Therefore, using (2.55)) we see that, as y — —oo, the principal term in (2.52)) is of the
form

—0368 + 3cocico — 20? = — <0,

3r1+3re2—6

2(’/’1 +7ro — 1) Py
i DET 2

=Y
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where the coefficient of the term % is given by

p1 = —c3ci(2a10+ a13) + 3cocrca(ar + arg + a12) — 261 (3ar1)
(v(r1 +2r9) + 213 log(2)) (r1 + 12 —2) (r1 + 172 — 1)

— 6 .
(7“1 + 27’2) ((Tl +7r9 — 1)')

< 0.

To find an upper bound for the error term in (2.51)), we first need a bound for the ;. Let us
write the functions Hy(y) in the form

dy
e
’ ‘y’T1+7‘2—1—t

Ht(y) = ht(y) (t =0,1,2, 3)7 (2'56)

where, by (2.50),

dy

—1 =2
|ht(y)| = ‘]t[t(y)yr1+1"2717t6—T (Tl + 79 1 t). C(Tl, 79, t)

<
— 7'('7"2/2 dritra—1-t

=: Kt.

Note that, using (2.46)), we have

(ri+ry—1—1)!(2.8905 - (17.7716)7)
(/)2 dritra—1-t '

From (2.32) we know that the signs of the constants e; are given by sgn(ey,4r,—i) = (—=1)°, thus
2%

K; <

from (2.55)) we get a;¢ > 0 for all i. This implies that [Si(y)| < Si(Jy|). Hence from (2.53]) and
(12.56) we get

le1] < (1+ Ss(Uyl) + Hs) (2Ho +250(y) Ho + Ho ) + Hy (1+20(lyl) + So(ly)?) = Ar(y)  (2:57)

le2l < (14 Sa(lyl) + Sa(lyD) + Hy + Hy + Su(y)Sa((yl) + Se(ly) Hr + HaSi(lyl) + Ha ) Ho - (2.58)

+ (i + Ha + So(ly) Hy + HaS1(y)) + HaH ) (1+ So(lyl) = Aa(y)

—~ —~2 — —~2 — —~3
les| <3Hy +3Hy +6H15:1(|yl) + 3H1 Si(lyl) + 3H1S1(|yl)> + Hi =: As(y), (2.59)
— dy
where H; := Kt\ymiﬁ (t=0,1,2,3). Note that if a < b < 0, then 0 < A;(a) < A;(b) since the
same holds for each S; and for I;'t. O

"

2.2.4 Positivity of <—f7l> (y) for y < 0

We need a y,. < 0 such that (—%) > 0 for all y < y,. From the logarithmic concavity of f (for

a proof, see the line preceding (6.5 in of the Appendix), we know that the function f(y) is
positive. Thus from (2.47) we get that

Fly) = 7" Peo(—dy)" 271 (14 Soly) + Ho(y)) > 0,

for all y € R. Therefore, formula (2.51)) says that it suffices to find y, < 0 such that the numerator
given in (2.52)) is negative for all y < y,.
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Using the bounds (2.57), (2.58) and (2.59)) for the errors €;, we see that it is enough to find
Yy« < 0 such that

—c3c§ [1+ 2850 + S5+ S5 + 25053 + S353] + 3co 1 c2[1+ So + St + S2 + SoS1 + 515 + 8052
+805185] —2¢f [1 4381 +3Sf + S;] + E <0 Yy < 34), (2.60)

where each S; = Si(y) is given by (2.54) and F is defined as
E = E(y) := c3¢3A1(y) + 3cocicaha(y) + 263 A3(y).

Note that F(y) decreases monotonically to zero as y ~\, —oo, since each A;(y) does. Also the blue
term in ([2.60)) is a polynomial P in 1/y. Note that P(1/y) tends to —% <0asy— —oo.
Therefore, such y, < 0 in (2.60)) exists and can be found in practice by making sure that

P <y1> <0, ‘P (;)) > B(y.), (2.61)

and that y, lies to the left of any smallest critical point of y — P(1/y). Using the program PARI-GP
we find the values of y, listed in Table for signatures (0,72), for 4 < ry < 40.

Table 2.2: The value of y, solving (2.61]).
d 3 4 5 6 7 8 9 10 11 12 13
Y * -11.62 | -10.28 | -9.45 | -8.87 | -8.45 | -8.14 | -7.89 | -7.69 | -7.52 | -7.38
d| 14 15 16 17 18 19 20 21 22 23 24
Y | -7.26 | -7.16 | -7.07 | -6.99 | -6.92 | -6.86 | -6.81 | -6.76 | -6.71 | -6.67 | -6.63
d| 25 26 27 28 29 30 31 32 33 34 35
Y« | -6.99 | -6.56 | -6.53 | -6.50 | -6.48 | -6.45 | -6.43 | -6.41 | -6.39 | -6.37 | -6.35
d | 36 37 38 39 40
Y« | -6.33 | -6.32 | -6.30 | -6.29 | -6.28
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Chapter 3

/
Convexity of — J} on an interval

f
(see Tables [2.1]and [2.2)). In this chapter we prove the validity of a numerical subdivision algorithm

to prove the same on the compact interval [y., y*], finishing the proof of convexity (Step 3, p.[9).

NN
In §2.1.4) and §2.2.4| we proved (—f—> (y) > 0for f = floq (4 <d<40)and y > y* or y < y.

3.1 Idea of the method

Although our aim is to prove the convexity of —fT/(y) for f = f(0,q) and y in a compact interval, it
is convenient to use the identity

fo.a) fao)
-y = (y + log 2) (3.1)
J0,4) ~ fiao)

which follows form Gauss’ duplication formula We prefer to use f = f(40) since the integral

defining f(0 d has 2d I'-factors, while f (d.0) only involves d of them. This will make the numerical
calculations in this chapter far easier for large d.
For simplicity, in this section we write f := f4) (with d < 40 fixed). First year calculus shows

"
"

; "3
<—j}> = fi— fa Ji: 3ff§, fo = ff-i-Q(J;?? : (3.2)

More interestingly, log-concavity shows that f; and fo are decreasing (and negative) functions (for

the proof, see in the Appendix). Therefore, to check positivity of <—7> over a compact

interval of the form [L, R] it is enough to find a finite sequence of points

L= Yo <y1 < - <Y = R satisfying fl(yj) > fg(yj_l) (] =1,..., k) (3.3)

It turns out that for (—oo, 0] N[L, R], the function f; stays sufficiently far above fa for this to work
very simply as follows.

Algorithm for y; negative in (3.3
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Constructing the sequence yo,...,yr on (—o00,0]N[L,R] (if L <0).

1. Choose € > 0 small enoughﬂ and construct e—numerical approximations fi num and f2 num of

f1 and fy (see , i e.
1) = from@) <€, 1f2(y) = fonum(y)] <€
for all y € (—o0,0] N [L, R]. Set i =0, yo := L and go to step 2.
2. Set 6 = 1/10.

(@) If finum(yi +9) — € > fonum(¥i) + €, then set y;41 := y; + d and go to step 3.
(b) Otherwise, set 0 < §/2 and repeat the previous stepE|

3. If yiy1 <0 and y;41 < R, go to step 2 with ¢ replaced by ¢ + 1. Otherwise output the list of
yi’s.

The details of the residue method approximation are given in The PARI-GP code can be found
in of the Appendix.

Unfortunately, this method is not practical for the positive part of the interval [y., y*], as even
for moderate positive values of y the functions f; and fs are too close. This makes the value of §
in step 2 of the previous algorithm becomes of the order 1078 for y ~ 5 and d > 10. So to cover
an interval of the form [0,10] we would need approximately 10° iterations. Unfortunately, since
€ > 0 has to be very small, the residue approximation of f; and fs requires thousands of residues,
making the numerical evaluation of fi num and fo num too slow. Instead, to ensure that f; > fo on
[0,400) N [ys, ¥*] we do the following.

Algorithm for y; positive in (3.3)
Constructing the sequence y,...,y;r on [0,+00)NI[L, R].

1. We make an asymptotic normalization of the functions f; and f;. Essentially we divide (and
multiply) f1 and fo by their asymptotic approximations when y — 400 and take logarithms
in order to separate them away from each other as much as possible. Such asymptotic

approximations of f; and fo are based on the results of For details see Call fin

and f3, such normalized functions.

The problem of checking fi; > fo turns out to be equivalent to checking that

Fy:= fon — fin > Iy,

where F3 is the logarithm of the ratio of the asymptotic expansions, an easily evaluated convex
decreasing function.

! In practice, we chose € = min(l/lOO7 (f1,num(yo) — f2,num (yo))/lo). If this eventually proved too large to advance
after some y;, we would replace yo (= L) by y; and start again.
2 Since fi and f» are decreasing, this ensures that for y; <y < y;11 we have

J1() > fiWit1) > froum (Yit1) — € > fonum(yi) + € > fa(yi) > f2(y),

which is the desired inequality for the interval [y;, yit+1].
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2. Divide the interval [0, R] in, say, 1000 subintervals [Ry, Rj1] (the number of subintervals will
depend on d). For each of them do the following.

2a) Find a bound |F](y)| < My (Vy € [Rk, Ry+1]) for the derivative of Fj. Details are given
in Lemma [6.5.11

2b) Given € > 0 small, we can construct an e—numerical approximation Fi num of Fy using,
for instance, the Double Exponential Method for numerical integration described in §6.2]
of the Appendix, in such a way that |F1(y) — Fi num(y)| < €, for all y € [Ry, Ri41]-

2¢) Set yo = Ri. Check that Fy(yo) > Fa(yo) and suppose that yo,...,y; € [Rk, Rx+1] have
already been constructed. Choose € > 0 so that F>(y;) + € < F1 Num (¥i)-

2d) Using the properties of the function Fy, we can prove that the point y;11 := y; + 9, with

_ I3 Num(yz) FQ(yz) — €

Fz(yz) Fo(Riy1)
—Rp1 + M,

>0, (3.4)

satisfies F1(y) > Fa(y), for all y € [yi, yit1].
2e) Set i < i+ 1 and repeat the last two steps until y; > Rj41 for some 1.

The details of the normalization method in step [I] are given in and the analysis of the
parameters we need for numerical integration in step [2] are given in The PARI-GP codes used
for steps [I] and 2] can be seen in of the Appendix.

3.2 The asymptotic corrections of f; and fs.

In this section we describe a numerically efficient method to check the validity of the inequality

<—f7,> = f1 — fo > 0 on the interval [0,4+00) N [L, R]. More precisely, using the asymptotic
expansion of f and its derivatives given in (2.14), we perform a normalization of the functions f;
and fo such that a simple Newton-type algorithm applied to those new normalized functions is

reasonably fast verifying (—f—/> > 0 on [0,+00) N[L, R] (see §3.2.1]).

f
g ! 3
Recall f; := 3L = fT + 2(%) , where f = f( ). Although we are mainly

interested in the case (r1,72) = (d,0), we work in general. Since, by log-concavity (see (6.5)) in the
Appendix), we know that f > 0, f < 0,f” > 0, f”/ < 0, we obtain that fi, fo < 0. Recall from
(2.14) that the asymptotic part of order 2 for the function f®(y), (t =0,1,2,3) when y — +o0, is
given by

2

e~ dexply Z Ay exp(—ky), (3.5)
k=0

ri4ro+1 <T1+T2—1
e 2

FO(y) == Ag(—1)t(2n)4 " d™ +2t, Y

with Ay = A(t) as in (2.15). Define the asymptotic parts fi, and fa, of fi and fo, respectively,
as the result of replacing each appearance of f(*) in f; and fy by its asymptotic approximation,

N R R e B
fla.:3(f§0))2, fan i= 0 2 ) (3.6)
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Using the fact that f; < 0 and fo < 0, and after verifying the same for fi, and fa,, we get

, " f2
f f f2a fa fZa fa,
(—f) >0<:>f1>f2<:>f—i>1<:> f;a<:>10g<f>>log<f;a>

<~ log (;;2 > log <f{1 > > log (%) .

So, we consider the logarithmically normalized functions

fin = log <fi> and  fo, :=log (j{;i)

Thus an equivalent way to verify that f; > fo over a compact interval, is to prove that the

asymptotic corrections
f2 N1 fi
Fy:= fon — fin = log ( —log | =—— ), Fy:=log | 2
f2a fla f2a

satisfy F; > F5 over such interval. Note from that ﬁk € Q for k=0,1,2, and so %i(y) is a
rational function of e™¥ with rational coefficients. We can therefore prove the convexity of F5(y) by
writing F as a quotient of rational polynomials in e~ ¥, and then verifying numerically that such
rational function has no positive roots. For this we use the PARI-GP function polrootsreal which
gives rigorous intervals bounding the location of real roots of polynomials with rational coefficients.
As Figure and Table show, F1 and F5 become reasonably separated where f1 and fo are
not, so one can readily prove Fy > F5 numerically. The details of the method are given in

fia

(3.7)

Table 3.1: Some values of the functions f; and f> in signature (r1,r2) = (5, 3).
y f fa y f fa
0.05 | -9386.54 | -9397.97 0.56 | -33160.78 | -33179.85
0.10 | -10600.82 | -10612.85 0.61 | -37813.79 | -37833.86
0.15 | -11985.10 | -11997.77 0.66 | -43155.18 | -43176.30
0.20 | -13564.44 | -13577.77 0.71 | -49290.29 | -49312.51
0.25 | -15367.71 | -15381.75 0.76 | -56340.99 | -56364.37
0.30 | -17428.21 | -17442.99 0.81 | -64448.23 | -64472.83
0.35 | -19784.35 | -19799.90 0.86 | -73775.12 | -73801.00
0.40 | -22480.44 | -22496.81 0.91 | -84510.47 | -84537.70
0.45 | -25567.64 | -25584.86 0.96 | -96872.84 | -96901.48
0.51 | -29105.01 | -29123.13 1.01 | -111115.33 | -111145.46

3.2.1 Newton-type subdivision method.

To check that Fy > F, over a compact interval [a,b], we will approximate F; from below by a
line, and (the convex) Fb from above by a secant line. Suppose we have a uniform bound for the
derivative |F{| < M over [a,b]. Then if we can check that Fi(a) > Fy(a), we can ensure that
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I and 1 . 10° fi and fy log(—fi} and log(— f2)

0.014 125
0.012 27
0.01 M5
0.008 [ 1t
0.006 [ 1051
0.004 10F
0.002 951
0 9 :
0 0.5 1
y y Y

Figure 3.1: f; and fo (with the graph of fo completely covering that of fi), along with their
asymptotic corrections F; and F; for (r,r2) = (5, 3).

a a-+od b

Figure 3.2: Fy, F» and the positivity subinterval [a,a + §].



Fy > F5 over the subinterval [a,a + ], where

min(b— 0, AUPEE) O HES LM >0

4=
b—a otherwise.

Geometrically § is obtained intersecting the line through (a, F2(a)) and (b, F5(b)) with the lower
estimate for the tangent line to Fy given by y — —M(y — a) + Fi(a) (see Figure B.2). We can
iterate this method replacing a by a + ¢, to check F} > F; over all of [a, b]. An explicit value of M
is given in Lemma in the Appendix.

3.3 Approximating f®

In approximating f(), it is illustrative to start with a trivial case. Namely, if (r1,79) = (1,0), then
fr1,00)(y) = exp(—e?). If we try to compute f using the power series for the exponential, we are
very successful for y < 0 or even for small positive values of y, but we get a computational disaster
already for moderately large y due to the oscillating character of the series.

The same phenomenon happens in general if we approximate f) = f((:z 7,2)(3/) by the (con-
vergent) power series expressing f as a sum of residues (obtained by shifting’ the vertical line of
integration far to the left). Therefore, for positive values of y we compute f ® (y) directly from its
definition as an integral. To make this fast and accurate, we use Double Exponential numerical
integration. Since this technique is not so widely known, we devote of the Appendix to this
method and its application to the computation of f (1), Here we will show how to use the truncated
power series.

3.3.1 Computing f) using residues.

In this subsection we improve the approximation using the residue at s = 0 of Since we need
a stricter control over the error term, we use a variable number of residues. In practice, six residues
will be enough for our purposes. For z = e~® with y € R, let G, be the meromorphic function

defined in ([2.23)) by

1\
G.(s) = G.(s;7r1,79,t) = s'2°T(s) 12T (s + 2> . (3.8)

We note that G, has poles in the set P = {sj = 1%] (j=1,2,. )} For k € N even, let v be the
complex contour shown in Figure [3.3 Denote by Pi the set of poles of the function G, that are
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1
2
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A"
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Figure 3.3: The contour v in (3.9).

1,..., k)} So by Cauchy’s residue theorem

.. 1—i /.
inside the curve . Then Py = {s; = 5% (j =
k .
1-— 1
ZRGS <GZ, 2‘]> = 27”,?{GZ(S) ds (3.9)
J=1 Y
integral over line (1) integral over line (2)
2%k—1

I -
[/ GZ(2+z'u)idu+/ ' G.(z +iT) dx +
2mi | J_r 9

- 2k—1 .\ ? .
G, |- +iu ) idu+ G.(x —iT)dx |. (3.10)

T 4 _2k:4—1
integral over line (4)

integral over line (3)

+

T2t exponentially fast, we have that

Since |G, (z +iT)|
2 i
lim Gy(x —iT)dr =0= lim Gi(x +1iT) dx.

Therefore, taking limp_, ;o in (3.10]), we get

k . 00 00
ZRes (GZ, 1;) = % {/ G.(2+iu)idu — / G, (—2k4_ L —i—iu) idu]
j=1 —o0 —00
24100 00
:217”[/+ Gz(s)ds—i/ G, <—2k4_1+iu> du}
2—i00 —00
£ 1 [ 2%k —1 . £ E
= (Cgi)yt) — 271_/00 G, <— 1 —f—zu) du =: (cg/t) — (kgg (3.11)
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Lemma 3.3.1. Let f)(y) and G.(s) be as in [2.2) and (3.8) and let k € N be even. Then
k .
E(y) = Ex(y) = fO(y) — (=d)" > Res(G., 5 (3.12)
j=1

satisfies

C(k) vra?'T (431)

Bl < d ek~ D450 (vy € R), (3.13)
2
where C(k) = O(kt_g(”“”)) as k — oo is given by
ri+r2 r2
o = Ch) @)
ot o) ()
r(3)[r(-3)] r(1)[r(G-3)17 \r(g-3)]

Figure [3.4] compares |E(y)| to the upper bound in the Lemma in a sample case.

E(y) and its upper bound when (ry,r2. ) = (4.3.0)
5 k=2 residues k =4 residues
251 T . . : . :

3000

2500

2000

1500

1000

051
500 |

Figure 3.4: The error |E(y)| and its upper bound (3.13|) for r; =4, 7o =3 and t = 0.

Proof. We first estimate G(s) = G,(s) along vertical lines. Abbreviating u := —%‘:1 + iu,

|G (ug)| < ‘e_dy“’“F(uk)””Q_t T(ug + 1) T(ug + 3)™. (3.15)
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Applying k/2 times the identity wI'(w) = I'(w + 1) to the I'-factors in (3.15]), we get

T (2 +iu) L (% +iu)
F(uk) = k/2 (l ~ (2k 1) +Zu) F(Uk + 1) = ;Z?;l (l +1l (Qk 1) —I—ZU)
Flu 1 1) = L (§+iu) (3.16)

o (g~ () i)

Since |I'(x + iu)| < I'(z) for z > 0 and u € R, we just need a lower bound for the elementary
products in (3.16]). Separating the last factor in the product we get

k/2 k/2 k/2—1
TLC- 2+ =TT(0-§+9"+0) 2 G+?) TT (- 5+D"
1=0 =0

Writing the last product in terms of the I'-function and using the reflection formula, we obtain

(- (25 )= (o) (i) o

Proceeding in analogous way for the other factors we get

»

kﬁ)l <l+1_ (2/€4—1>_|_iu> > <116+u)% <r(§) |712\(/§—’§)\>’ 5.15)
T (e (500 = () (i)

Replacing (3.16[)-(3.18)) in (3.15]) we get the estimate

’G (_ <Qk4—1> Hu)‘ < e (dy (21{4— 1)) ( : (F(5/4)):+2r2t>>nmt

G+ (g
(

(T(5/4))! t F(3/4)>’"23 _
(CRXCE (r(i)ﬁé—';))) (G+)* (7))
1 < GEZTR :

)

with Cj as in (3.14). Note that C(k) = O (kt_g(”“'z”)) — 0, as kK — oo, by Stirling’s formula
coupled with the reflection formula I'(w)I'(1 — w) = 7/ sin(mw).
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We can now turn to bounding £ = Ej, in (3.12)). From (3.11))

E(y) = (=d) /Oo G. <—2k4_1 +z’u> du,

27 J_

and (3.19)) we see that to bound |E(y)| we need the classical integral [Nie06, page 158]

/00 dv TATEMT (M - 3)
oo (A2 22)M L(M)

(A>0, M >1).

Applying this with A = %, M = % = %, we get the desired upper bound (3.13)). O

To evaluate f()(y) using Lemma we need the following fast method for calculating
residues, whose proof is found in §6.5.2| of the Appendix.

Proposition 3.3.2. There exist explicitly calculable coefficients cp; (1<p<ri+mry, 1<i<k)
such that

k k ri+re p

4 1-i log(z)
E :ReS(GmlT) = E :Z E : p,z( (p— 1))1
=1 i=1 p=1

AN
3.4 Approximating _(fT) from the approximation of f®.

In the previous sections we have described how to approximate f® (y) by a computable fg)) (y)
within an error bounded by ¢;, that is

fOU) =W +Ey), B <a (t=01,2,3)
where féf)) (y) is given by |i if y > 0 or for the blue part in 1' if y < 0. Elementary calculus

shows that . , ,
<_f> _ Sfff _QL(f];) _f f :A(f,f/,f”,fm),

where A is the rational function

3ABC —2B3 — A2D

A(A,B,C, D) := VE

(3.20)

By bounding the propagation of errors in such a rational expression, we can control the accuracy
of our calculation of <_Tf/
We start with the following elementary lemma, where we interpret Hy and Hy as small pertur-

bations of X and Y, respectively.

Lemma 3.4.1. Suppose the real numbers X,Y, Hy, Hy, Mo, My satisfyY # 0, |[My/Y| < %, |H,| <
My and |Hp| < My. Then
X+H X | X 1

— Sl <oMy) oMy —.
Y+H, Y| ooyr Ty
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The lemma implies a simple upper bound for the error committed on estimating f'/f by fi,/ fap-
Higher logarithmic derivatives are messier, as the following shows.

Lemma 3.4.2. Suppose for t=0,1,2,3 we are given real numbers f, félt;,) and ¢; > 0, satisfying
1FO — (D] < e and eo/| £ < 1/¥/2. Then

oMy + 20 A(FD, £V 12 1D
(F0y? |

AP, f O, @ FEy — AFO, £ FD | <

where
Mo =3(f)%e0 + 3| £V + €,
My =[ D12 fPle2 + ) + es(IFD] + e2)” + 2(3(F L)) 2er + 31 f D} + )
+ 3<’f§}2))\ (|f§11))|€0 + |f§g)|€1 + 6061) + 62(|f§>)| + 61) (|f§g)| + 60))

Proof. Write &) = £ + E, where |E;| < &, t =0,1,2,3. Then

A(f(O)vf(l)vf(Q)vf(S)) = A(fég) +E07f(1) + Elaf(2) + EQ)f(S) +E3)

— N2+ 38 1D 1D — 2£5)2 + H
()2 + Ho

)

where
Ho = 3(f{))*Eo + 31 E§ + E5,
Hy = ) (R B+ B) — By (1) + B) — 2 (30807 En + 372 + Y
+3(SD (S Bo + S By + BoEy) + Ex(S3) + Br) (F) + Fo) ).
Since |E;| < €, we have |Ho| < My and |Hq| < M;. Lemma [3.4.1] with
X = —fQE? +3fQFP LY — 206D, v = (1),

concludes the proof. O

3.5 Numerical verification of convexity in [y., y*].

After programming in PARI/GP the algorithms described in pages and [28) we get a finite (but
long) sequence of points {y;} satisfying (3.3), ensuring the convexity of — f(’ d,o)/ f(a,0) on [y«, y*] for
4 < d < 40.

In the case of the algorithm for y; negative, the corresponding numerical output is summarized
in Table[3.2] As Figure shows, the length of the sequence and the corresponding time to perform
the algorithm increase nonlinearly with the degree d, making it impractical to apply this algorithm
for large degrees, say for d > 50E|

3 For all the numerical calculations in this thesis we used PARI/GP on a Linux Ubuntu 20.04 PC platform with
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Time (seconds)

# Residues

Something similar happens for y; positive. The PARI/GP program for the algorithm on page [2§]
gives the numerical parameters shown in Table As can be seen in Figure the number n of
terms required by the Double Exponential method to evaluate Fy num increases linearly with the
degree d. However, since the precision needed to perform the computations also increases linearly
with d, the final time required by the method increases in a nonlinear way.

«10% Time to subdivide the interval [y,,0]
3.5 T T T T T
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3t 1
25+ o
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L * 4
15 “
¥
1F * .
*
05 wx* 1
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d
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*  Length smallest subinterval
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Figure 3.5: Time, number of subdivisions, Number of residues and length of shortest /largest subin-
terval in [y,, 0] as functions of the degree d.

an Intel Core i5-9400F CPU and 8 GB of RAM.
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d 3 4 5 6 7 8 9 10 11 12 13
Number of subdivisions * 744 1326 1895 2814 3700 4696 6045 7406 8702 10095
Time (seconds) * 12 24 36 59 89 129 189 263 346 448
Length shortest subint. * 1410262107 [57107* [ 27107 [ 25107 [ 12107 12107 [ 1.1107* [ 1.1107* | 5.6 107°
Length largest subint. * 0.1815 | 0.0803 | 0.0738 | 0.0346 | 0.0330 | 0.0158 | 0.0154 [ 0.0150 | 0.0073 | 0.0072
d 14 15 16 17 18 19 20 21 22 23 24
Number of subdivisions 12155 14211 16142 18068 19992 22241 25330 28297 31163 34021 36860
Time (seconds) 600 781 987 1201 1478 1797 2431 2802 3256 3851 4513
Length shortest subint. | 5.5 107 [ 54 107° | 5.3107° | 5.3107° | 52107 [ 2.6 107° | 25107 | 25107 [ 25107° | 2.5 107> | 2.5 10~°
Length largest subint. | 0.0070 | 0.0034 | 0.0034 | 0.0034 | 0.0033 | 0.0033 | 0.0033 | 0.0016 | 0.0016 | 0.0016 | 0.0016
d 25 26 27 28 29 30 31 32 33 34 35
Number of subdivisions | 39690 42512 45330 49839 54163 58396 62616 66804 70966 75108 79234
Time (seconds) 5179 5958 6784 8133 9371 10752 12288 13914 15666 17483 19387
Length shortest subint. | 2.5 107 [ 2.5107° [ 24 107° [ 1.210™ | 1.2107° [ 1.2107™° [ 1.2107° [ 1.2107° | 1.2 107> [ 1.2 107° | 1.2 107
Length largest subint. | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007
d 36 37 38 39 40
Number of subdivisions 83346 87442 91534 96175 102477
Time (seconds) 21545 24644 26150 29131 32472
Length shortest subint. | 1.2 107 [ 1.2107° [ 1.2107° | 591076 | 5.9 107°
Length largest subint. 0.0007 0.0007 0.0007 0.0003 0.0003
Table 3.2: Overview of the subdivision task on [ys, 0].




d 3 4 5 6 7 8 9 10 11 12 13
n * 995 1147 1312 1488 1674 1867 2067 2274 2487 2705
Number of subdivisions * 2 4 7 13 19 27 36 49 60 76
Time (seconds) * 19 43 95 205 327 504 708 1023 1291 1694
Length shortest subint. * 0.472 0.232 0.125 0.062 0.031 0.031 0.015 0.015 0.015 0.007
Length largest subint. * 0.472 0.500 0.500 1.000 0.990 0.980 0.970 0.960 0.950 0.941
d 14 15 16 17 18 19 20 21 22 23 24
n 2928 3156 3389 3626 3867 4112 4361 4613 4869 5128 5390
Number of subdivisions 95 110 128 148 166 174 201 200 225 237 249
Time (seconds) 2261 2689 3084 3656 4199 4418 5183 5219 5959 6367 6780
Length shortest subint. 0.007 0.007 0.003 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001
Length largest subint. 0.932 0.922 0.913 0.904 0.895 0.886 0.877 0.868 0.860 0.851 0.842
d 25 26 27 28 29 30 31 32 33 34 35
n 5655 5923 6186 6453 6720 6988 7255 7522 7789 8054 8318
Number of subdivisions 256 271 275 279 280 285 290 304 310 330 347
Time (seconds) 6997 7473 7698 7923 8090 8194 8230 8290 8570 8890 9070
Length shortest subint. | 0.001953 | 0.001953 | 9.76 10~% | 48 107* | 24 107* | 1.2107% [ 6.10 107° | 3.05 10> | 1.52107° | 7.6 1076 | 3.8 107©
Length largest subint. 0.834 0.826 0.743 0.669 0.602 0.542 0.487 0.439 0.395 0.355 0.320
d 36 37 38 39 40
n 8581 8841 9099 9354 9606
Number of subdivisions 355 360 377 398 430
Time (seconds) 9169 9669 10059 10334 10488
Length shortest subint. | 1.9107% | 95107 | 471077 [ 231077 | 1.1 107
Length largest subint. 0.288 0.259 0.233 0.210 0.189

Table 3.3: Overview of the subdivision task on [0, y*].




Chapter 4
f/

(r1,72)

Behavior of —
! (r1.72)

as (r1,r9) varies

In this chapter we prove Steps 1 and 2 described on page Namely, for d = r1 + 2ry < 40, we
prove the following inequalities for all y € R.

e IR CUE
e w
ii 2§EEZ?§§§‘”§ (d even), (4.3)
e ey

For empirical evidence of inequalities (4.1)-(4.4) in degree 20 and 21, see Figures and As
Figure suggests, the numerical part of the proof of (4.3]) will be the most delicate of the four.

1

We will proceed as in Chapters and where we showed (—fTI) > 0. Namely, we will use

the asymptotic expansions of f ( TZ)(y) as y — oo to first find a compact interval [L, R] C R such
that (4.1)-(4.4) hold for y ¢ [L, R]. Then we shall use a subdivision argument for y € [L, R]. This
last step will be a lot easier than for (—f7/> because y — —
the theory of log-concavity (see (6.5 in the Appendix).

% is known to be increasing by
71,72
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4.1 Asymptotics: Numerical verification of inequalities (4.1))-(4.4)
for |y| > 0.

We start by verifying that inequalities (4.1)), (4.2)), (4.3) and (4.4]) hold for y — +oo. From formulas
(2.14) (with N = 2) and (2.16) in Chapter [2| we know that for y — 4o0:

10(g) = me ) i (G~ T e + Bae + Re ™), (45)

ritrotl
2

where r; = (—1)!Ag(t)d(2m)4td™ +20=1 | Fy(y)| < M, are bounded and Ay(t) are explicit ra-
tional constants depending only on 71, 73 and t. Since we later use the PARI program polrootsreal,
we round M; up to a rational number in applications. For y — —oo we have

_\tr2/2 —d ri+ro—1—t —1—¢) r1+r2—1 —d j—ri—ro
Wy (=d)'7"=(=dy) (r1+ 12 )! (—=dy)
R B L e TTE > e iy H ), (46)

j=1+t

where by (2:50) and (247),

(r1+r2—1—t)! (17.7716)* ay A7
7Tr2/2‘dy’7‘1+7‘2—1—t €4, ( . )

|Hy(y)| < 2.8905 -

and the e; are constants depending only on 7y and ry (given explicitly in the proof of Lemma [2.2.1)).
We will use the asymptotic expansions to convert each inequality (4.1)), (4.2), (4.3) and (4.4)
into a polynomial inequality. That will give us a compact interval [L, R] outside of which the
corresponding inequality holds.
To find R so that (4.1) holds for y > R, we use the asymptotic expansion (4.5]) for both (r1,72)
and (r1 + 2,72 — 1). Substituting them in (4.1)) we get the equivalent inequality
Ao(1) = Ay(U)e ¥ + Ap(e™ £ Fi(y)e™™ _ Bo(1) = Bi(De™? + By(De ™ + Giye™ o
Ag(0) — A1 (0)ev + Ax(0)e=2 + Fy(y)e ~ Bo(0) — B1(0)e™v + Ba(0)e~2 + Go(y)e v’

where the constants Aj, and the error functions Fy(y), F1(y) are associated with the signature
(r1,72), while Bj, and Go(y), G1(y) correspond to (r1 +2,r2 — 1).

Using f > 0 we see that the denominators in are positive, therefore we can cross multiply
and rearrange terms to get that is equivalent to

k=0 k=0 k=0 =0
2 2
< Gi(y) ( Do (-1 AR 0)e e 4 Foy)e™ ) + Foly) Y (~1)* Bi(1)e e
k=0 k=0
2 2
— Fl(y)(Z(—l)kBk(O)e*kye 3 4 Go(y)e 6y> — Go(y) Z(—l)kAk(l)efkye 3y
k=0 k=0

Since |Fy(y)| < M; and |Gy(y)| < N; are bounded functions, and for y > 0 the functions Ag(t) —
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AL(t)e™ + Ay(t)e v and By(t) — Bi(t)e ™ + By(t)e %Y are positive, we see that to ensure the
validity of (4.1) for y > R, it is enough that for all y > R we have

2 2 2 2
D> (DM ‘“’) <Z<—1>’€B7c(0)e’“y> - (Z(—l)’“ﬁc(l)eko (Z(—l)%w)ew) <

k=0 k=0 k=0 k=0

2
- N (Z | A, (0)|e=*+3)Y 4 Me~ ) — M, Z | B (1)|e~ 3y
=0
2
(Z | Bi(0)|e~B+3)w 4 N()6_6y> - No Z | A(1)]e= B3,
k=0

Making the change of variable x = e¢™¥ we convert this inequality into a polynomial inequality in
the variable z > 0. The inequality can be solved numerically using the command polrootsreal of
the PARI-GP program.

Likewise, to obtain L so that holds for y < L < 0, we use the asymptotic expansion
for both (r1,72) and (r; + 2,72 — 1). Replacing them in we get the equivalent inequality

l—r —m 1Tt % Z;jl:;m_l ej% + Hi(y)
o g i Dt CATLTE L )
< l—r—rg—1 L+ %Z;QMH_I e}% + 11 (y)
g L et e g S 1 ()

/

where the constants e; and error functions Ho(y), H1(y) are associated with (rq,72), whereas €}

and Iy(y), I1(y) are associated with (r1 4+ 2,72 — 1). Again by log-concavity, the sums involving Hy
and [; are positive. After cross multiplying (remembering that now y < 0), the inequality above

becomes
%(1 +Saa(y) + Hi(y) (14 Spo) + o) < (1+Sa0(y) + How)) (1 +S5a(y) + Li(y)), (4.9)

where the S are the polynomials in i

ri+ra—1 i
(AT —1)! pa (=dy)
Saol0) = TemE X e

r -1 ;
2N (—dy)
Saily) = I Z A P

Jj=2

(r1 4 r2)l g~ (dy)

o) = T r=S RSV
_ (A DURE (dyy
Spaly) = C—YG) Z €; TR
j=2
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From (2.50) and ([2.46)), we get the following error bounds, valid for y < 0

R =
) < 28005 +T2/;|§2/'|(+17727 16)% % < 5.5005. (1 :r/Qz(_ 2;;)(177721 9
) < 2a0s. O CEE A <ass (o e =
)l < 28905 (ﬁ;(::?1:/21|);z./l(iz'”727116) ¥ < 2.8005- (r;(;:r?);(l)!é;)lrffrzlﬁ)d =:i1(y)-
Expanding inequality and grouping all the error terms on the right we obtain
a(1+ 542@) (14 S5.0(w)) = (14 Sa0v) (1+ 551(») < —a(1+ Sa1() 1o(v) (4.10)

—q(1+ Spo(y))Hi(y) — aH1(y)Io(y) +

ri+ro—1

where ¢ = L

(14 Sa0)Ii(y) +

(14 Sp1(y))Ho(y) + Ho(y) 1 (y),

. Using the bounds for the error terms, the triangle inequality and the fact that

the functions Sj4 ;,Sp,; are positive, we see that to ensure the validity of ( . ) for y < L, it is

enough that for all y < L we have

2 (14 Saa()) (1+ Spo(v)) -
—q (1+521()) io(y) -

(1+Sa0(y) 1+ SB1(y)

) <
(1 + S"j‘bs y)) wi(y) — qwi(y)io(y)

— (14825 ) in(w) - (1 + S%*?i(:g)) woly) = wo(y)in(y),  (4.11)

where
+r2—1 i —
(ritrg =1 (—dy)’ "
Sely) = lej]—— :
’ r2/2 ]Z—; G =)
Sabs( ) (7’1 Ty — 2)! 7"1%1 | | (_dy)jfmfm
_ \VimreTar P RS VA
2 J i—92)
nrz/ et (j—2)!
y Tt ri—ro—1
abs B Tl + 7'2 .] 1 2
SB,O(ZJ) = re1)/2 Z e ]’ (j—1)! ’
o3 (r1 419 — 1) 22 y)J el
t(y) W Z e J\ TR
As before, (4.11]) is a polynomial inequality (this time in the variable z = %) It can again be

solved numerica

ly using the command polrootsreal of the PARI-GP program. Table shows

the intervals [L, R] found for inequality (4.1]) using the above estimates.
Inequalities (4.2)), (4.3) and (4.4) are handled just as we have done for inequality (4.1). The
intervals [L, R| found for inequalities (4.2)), (4.3) and (4.4) are shown in Tables and
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r2

ry 1 2 3 4 5 6 7 8 9 10
0 = [11.91,-0.85] | [-9.52,-0.72] | [-8.39,-0.59] | [-7.73,-0.46] | [-7.31,-0.33] | [-7.01,-0.20] | [-6.78,-0.08] | [-6.61,0.03] | [-6.47,0.13]
1 [12.70,-0.44] | [-9.63,-0.47] | [-8.36,-0.39] | [-7.67,-0.30] | [-7.23,-0.21] | [-6.93,-0.11] | |-6.71,-0.01] | [-6.54,0.08] | [-6.40,0.17] | [-6.29, 0.25]
2 [-9.79,-0.15] [-8.33,-0.16] [-7.60,-0.11] | [-7.15,-0.04] -6.85,0.02 -6.63,0.10 -6.46,0.17 -6.33,0.25 -6.23,0.33 -6.14,0.40
3 [8.20,0.06] | [7.51,0.07] | [-7.06,0.11] | [-6.76,0.16] | [-6.54,0.22] | [-6.38,0.28] | [-6.26,0.34] | [-6.16,0.41 6.07,0.47] | [-6.01,0.53
4 [7.4,026] | [-6.94,027] | [-6.66,03] | -6.45,034] | [-6.3,04] | [-6.18,0.44] | [-6.08,049 ] | [-6,0.55] [5.94,0.6] | -5.88,0.66 ]
5 -6.80,0.41 -6.53,0.43 -6.34,0.46 -6.20,0.49 -6.09,0.54 [ -6.01,0.58] -5.93,0.63 -5.87,0.68 [-5.82, 0.72] | [-5.78, 0.77]
6 26.38,0.56 6.21,0.57 ~6.09,0.60] | [-5.99,0.63] | [-5.91,0.67] | [-5.85,0.71] | [-5.80,0.75] | [-5.75,0.79] | [-5.72,0.84] | [-5.68,0.88]
7 [-6.06, 0.69] | [-5.96, 0.69] | [-5.88,0.72] | [-5.82,0.75] | [-5.77,0.79] | [-5.72,0.82] | |-5.68,0.86] | | -5.65,0.90] | [-5.62,0.94] | [-5.60,0.98]
8 -5.82,0.80 -5.76,0.80 [-5.71,0.83] -5.67,0.86 -5.64,0.89 -5.61,0.93 -5.58,0.96 -5.56,1.00 -5.54,1.03 -5.52,1.07
9 -5.62,0.91 -5.59,0.90 [ -5.57,0.93] -5.59,0.96 -5.52,0.99 -5.51,1.03 -5.49,1.05 -5.47,1.09 -5.46,1.12 -5.44,1.15
10 [5.46,1.01] | [-5.45,0.99] | [-5.45,1.02] | [-5.44,1.05] | [-5.43,1.08] | [-5.42, 1.11] | [-5.41,1.14] | [-5.40,1.17] | [-5.39, 1.20] | [-5.38,1.23]
11 -5.33,1.09 [-5.34, 1.06] -5.34,1.10 -5.34,1.13 [-5.34,1.16] -5.33,1.19 [-5.33,1.22] -5.33,1.24 -5.32,1.27 -5.32,1.30
12 -5.21,1.18 [-5.23,1.15] -5.25,1.17 -5.25,1.20 [-5.26,1.23] -5.26,1.26 [-5.26,1.29] -5.26,1.31 -5.26,1.34 -5.26,1.37
13 [5.12,1.25] | [-5.14,1.23] | [-5.16,1.24] | [-5.18,1.27] | [-5.19,1.30] | [-5.20,1.32] | [-5.20,1.35] | [-5.20,1.38] | [-5.21,1.40] | [-5.21,1.43]
14 [5.03,1.33] | [-5.07,1.30] | [-5.09,1.29] | [-5.11,1.33] | [-5.12,1.36] | [-5.13,1.38] | [-5.14,1.41] | [-5.15,1.43] | [-5.16,1.46] | [-5.16,1.48]
15 [-4.96, 1.41] | [-5.00,1.37] | [-5.03,1.36] | [-5.05,1.38] | [-5.07,1.41] | [-5.08,1.44] | [-5.09,1.46] | [-5.10,1.49] | [-5.11,1.51] | [-5.12,1.53]
16 [4.89,1.48] | [-4.93, 1.43] | [-4.97,1.43] | [-4.99,1.43] | [-5.01,1.46] | [-5.03,1.49] | [-5.04,1.51] | [-5.06,1.54] | [-5.07, 1.56] | [-5.07,1.58]
17 [4.83,1.56] | [4.88,1.51] | [-4.91,1.49] | [4.94,1.49] | [-4.96,1.50] | [-4.98,1.53] | [-5.00,1.56] | [-5.01,1.58] | [-5.02,1.60] | [-5.03,1.62]
18 [4.781.62] | [-4.83, 1.58] | [-4.86,1.54] | [-4.89,1.54] | [-4.92,1.55] | [-4.94,1.57] | [-4.96, 1.60] | [-4.97,1.62] | [-4.99,1.64] | [-5.00,1.66]
19 [4.73,1.69] | [4.78,1.64] | [-4.82,1.61] | [-4.85,1.60] | [-4.88,1.60] | [-4.90,1.61] | [-4.92,1.63] | [-4.93, 1.65] | [-4.95,1.68] | [-4.96,1.70]
20 [4.69,1.75] | [4.74,1.71] | [-4.78,1.68] | [-4.81,1.65] | [4.84,1.65] | [-4.86,1.66] | [ -4.88,1.66] | [-4.90,1.68] | [-4.92,1.71] | [-4.93,1.73]
21 (465181 | [-4.70,1.77] | [-4.74,1.74] | [-4.77,1.72] | [-4.80, 1.70] | [-4.83,1.70] | [-4.85,1.71] | [-4.87,1.72] | [-4.88,1.73] x
22 [4.62,1.86] | [-4.67,1.83] | [-4.71,1.80] | [-4.74,1.78] | [-4.77,1.76] | [-4.79,1.75] | [-4.82,1.75] | [-4.84,1.76] | [-4.85,1.77] *
23 [4.59,1.02] | [4.63,1.88] | [-4.67,1.86] | [-4.71,1.84] | [-4.74,1.82] | [-4.76, 1.81] | [-4.79,1.80] | [-4.81,1.80] x *
24 [456,1.97] | [-4.60,1.94] | [-4.64,1.91] | [-4.68,1.89] | [-4.71,1.88] | [-4.73,1.87] | [-4.76,1.86] | [-4.78,1.86] * *
25 [4.53,2.02] | [-4.57,1.99] | [-4.61,1.97] | [-4.65,1.95] | [-4.68,1.93] | [-4.71,1.92] | [-4.73,1.91] * * ¥
26 [-4.50, 2.07] | [-4.55, 2.04] | [-4.59, 2.02] | [-4.62, 2.00] | [-4.65, 1.98] | [-4.68, 1.97] | [-4.71, 1.97] * * *
27 [4.48,2.12] | [-4.52, 2.09] | [-4.56, 2.07] | [-4.60, 2.05] | [-4.63, 2.03] | [-4.66, 2.02] * * * *
28 [-4.45, 2.17] | [-4.50, 2.14] | [-4.54, 2.12] | [-4.58, 2.10] | [-4.61, 2.08] | [-4.63, 2.07] * * * *
29 [4.43,2.21) | [-4.48,2.18] | [[4.52, 2.16] | [-4.55, 2.15] | [-4.58, 2.13] x ¥ * * ¥
30 441,225 | [-4.46, 2.23] | [4.50, 2.21] | [4.53, 2.19] | [4.56, 2.18] * ¥ ¥ * *
31 -4.40, 2.30 -4.44, 2.27 -4.48, 2.25 -4.51, 2.24 * * * * * *
32 [4.38,2.34] | [-4.42,2.31] | [-4.46, 2.29] | [-4.49, 2.28] * * * * * ¥
33 1.36, 2.38] | [-4.40, 2.35] | [-4.44, 2.34 * * * ¥ * * *
34 -4.35, 2.42 -4.39, 2.39 -4.43, 2.38 * * * * * * *
35 [4.33, 2.45] | [-4.37, 2.43] * * * * * * * ¥
36 -4.32, 2.49 [-4.36, 2.47] * * * * * * * *
37 -4.30, 2.53 * * * * * * * * *
38 [-4.29,2.56] * s * s s * * s s

Table 4.1: The intervals [L, R] for inequality (4.1).




r2

ry 11 12 13 14 15 16 17 18 19 20
0 -6.35,0.23 -6.26,0.32 -6.18,0.40 -6.11,0.48 -6.05,0.55 -6.00,0.63 -5.95,0.71 -5.91, 0.78 -5.87,0.86 [-5.84,0.92
1 -6.20,0.33 -6.12,0.40 -6.06,0.48 -6.00, 0.55 -5.95,0.62 -5.90,0.68 -5.87,0.74 -5.83, 0.82 -5.80,0.89 *
2 [6.07, 0.46] | [-6.00, 0.53] | [-5.95,0.59 ] | [-5.90,0.64 ] | [-5.86, 0.70] | [-5.82,0.76 | | [-5.79, 0.81] | [-5.76, 0.86] | [-5.73,0.92 ] "
3 -5.94, 0.59 -5.89,0.65 -5.85, 0.70 -5.81,0.75 -5.78, 0.79 -5.74,0.83 -5.72,0.88 -5.69, 0.93 * *
4 -5.84,0.71 -5.80, 0.76 -5.76,0.81 -5.73, 0.85 -5.70, 0.89 -5.67,0.93 -5.65, 0.96 -5.63,1.00 * *
5 [5.74, 0.82] | [5.71, 0.87] | [-5.68, 0.91] | [-5.65,0.95] | [-5.63,0.99 ] | [-5.61,1.02 | | [-5.59,1.05 | . " "
6 [5.65,002 ] | [-5.63,0.96] | [-5.60, 1.00] | [-5.58, 1.04] | [-5.56,1.07 ] | [-5.55,1.10 | | [-5.53,1.13 | . " *
7 [5.57, 1.02] | [-5.55,1.05] | [-5.53, 1.09] | [-5.52,1.12] | [-5.50, 1.15] | [-5.49,1.18 | * " - "
8 [5.50,1.10 ] | [5.48,1.14 ] | [-5.47,1.17 ] | [-5.46, 1.20] | [-5.45,1.23 | | [-5.44,1.25 | - " ” .
9 [5.43,1.18] | [5.42,1.21] | [5.41, 1.24] | [-5.40, 1.27] | [-5.39,1.30 ] " " " " .
10 | [5.37, 1.26] | [-5.36, 1.29] | [-5.36,1.31] | [-5.35,1.34 | | [-5.34, 1.36] " " " ” n
11 | [5.31, 1.33] | [-5.31,1.35 | | [-5.31, 1.38] | [-5.30, 1.40] " " " " " .
12 | [5.26,1.39] | [-5.26,1.41] | [-5.26,1.44] | [-5.26, 1.46] - * * " " .
13 [-5.21,1.45 | | [-5.21,1.47 ] | [-5.21,1.49 | * * * * * * *
14 | [5.17, 1.50] | [-5.17,1.52] | [-5.17, 1.54] * " " ” " " "
15 | [5.12, 1.55] | [5.13,1.57 ] . - " " " " " "
16 [-5.08, 1.60] | [-5.09,1.62 ] * * * * * * * *
17 [-5.04,1.64 | * * * * * * * * *
18 | [5.01, 1.63) - " . . . n " : "

Table 4.2: The intervals [L, R] for inequality (4.1) (continuation).




Inequality (4.2)

Inequality (4.3|)

Inequality QQ[)

d L R L R L R
2 %k *k *kk %k *% *k
3 %k %k *k *k *k *k
4 K% K% -12.7612 | -0.8428 *%k *%
5 | -11.9082 | -1.2821 *x *%k -12.3027 | -1.1787
6 K% K% -10.2123 | -0.5096 Kk Kk
7 -9.5231 | -1.0928 K% ok -9.9584 | -0.9066
8 K% *% -9.0268 | -0.2280 *% K%
9 -8.4007 | -0.9271 Kk ok -8.8585 | -0.6823
10 K% *% -8.3442 | 0.0157 *k *%
11 | -7.7485 | -0.7777 Kk *ok -8.2208 | -0.4926
12 *k *ok -7.9003 | 0.2285 *k Kk
13 | -7.3216 | -0.6438 *x K% -7.8039 | -0.3298
14 *k *k -7.5880 | 0.4160 *ok *ok
15 | -7.0197 | -0.5242 Kk ok -7.5095 | -0.1886
16 ok Kok -7.3560 | 0.5830 *ok *ok
17 | -6.7945 | -0.4170 Kk K%k -7.2900 | -0.0644
18 *% *k -7.1767 | 0.7333 *% *k
19 | -6.6199 | -0.3206 K%k *ok -7.1199 | 0.0460
20 *ok K% -7.0337 | 0.8699 *ok *k
21 | -6.4803 | -0.2335 *x K% -6.9840 | 0.1455
22 *k *% -6.9170 | 0.9948 *k *ok
23 | -6.3660 | -0.1544 Kk ok -6.8728 | 0.2358
24 *%k Kk -6.8197 | 1.1114 *%k Kk
25 | -6.2707 | -0.0763 Kk K%k -6.7800 | 0.3204
26 *% K% -6.7374 | 1.2196 x5k K%
27 | -6.1898 | 0.0008 Kk *ok -6.7014 | 0.3987
28 K% *% -6.6668 | 1.3205 *k K%
29 | -6.1204 | 0.0726 K%k *% -6.6339 | 0.4714
30 *k *ok -6.6056 | 1.4150 *k Kk
31 | -6.0601 | 0.1398 *x ok -6.5752 | 0.5392
32 *k Kk -6.5519 | 1.5040 *k *ok
33 | -6.0071 | 0.2028 Kk *%k -6.5238 | 0.6029
34 Kok Kok -6.5044 | 1.5879 *ok *ok
35 | -5.9603 | 0.2621 Kk ok -6.4783 | 0.6627
36 *k K% -6.4622 1.6674 K% *%
37 | -5.9185 | 0.3181 Kk *ok -6.4377 | 0.7193
38 *k *% -6.4243 | 1.7428 *k K%
39 | -5.8810 | 0.3711 K%k K% -6.4013 | 0.7728
40 *%k *% -6.3901 1.8146 *%k *%
Table 4.3: Intervals [L, R] for inequalities (4.2)-(4.4)).




4.2 Subdivision algorithm for y in a compact interval.

In the previous section we constructed a compact interval [L, R] C R such that inequalities (4.1]),
(4.2)), (4.3) and (4.4) hold for y € R\ [L, R]. To prove that those inequalities also hold for y € [L, R]
f(,v"l,'r“z)(y)

are increasing (see
f(rl,rz)(y) 8 (

we use the fact that, for any signature (r1,r2), the functions y — —

(6.5)).

Let us start with inequality (4.1) and suppose for a moment that we can evaluate our function
with infinite precision. As in to prove that

_f(,m,rz)(y) < f(/r1+27r2_1)(y)

_ — h(y),
f(r1,r2)(y) - f(r1+2,r271)(y) (y)

9(y) =

for y € [L, R], it suffices to construct a finite sequence of points L = y; < --- < y, = R such that
9(yit1) < h(y:) (i=1,...,n —1). We proceed similarly for inequalities (4.2)), and ([4.4).

As can be seen in Tables - the values of y we have to consider in the subdivision
algorithm are always smaller than 3, so in practice to numerically evaluate the functions g and h
inside the interval [L, R], we can use the residue method. More precisely, we use the results of
to construct approximations gapprox and happrox of g and h respectively, such that

l9(y) — gapprox(y)‘ <e
|h(y) = happrox (y)| <€,

for a small suitably chosen ¢ > 0, and construct a finite sequence of points L=y < --- <y, = R
recursively, in such a way that

happrox (Vi) — € > Gapprox(Vit1) + € Vi=1,...,n—1.

This readily implies that g(y) < h(y) for all y in [L, R].

The number of subdivisions needed for inequality is shown in Table Only the signatures
with degree less than 40 and r2 > 1 are shown, as these are the only ones needed. Using the same
method, the number of subdivisions needed for inequalities , and is shown in Table
Observe that the number of subdivisions needed for inequality is considerably bigger than
for inequalities and , as we expected from looking at the graphs of the functions involved.
In all cases the subdivision points tend to accumulate near the right endpoint of the interval we
are subdividing, due to the fact that the curves involved come very close together as the variable
1y increases.
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d | Ineq. M Ineq. @D Ineq. (]ED d | Ineq. M Ineq. (I@D Ineq. M
2 * * * 22 * 391 *
3 * * 23 54 * 59
4 * 20 * 24 * 481 *
5 9 * 10 25 59 * 66
6 * 36 * 26 * o581 *
7 13 * 13 27 65 * 77
8 * 55 * 28 * 676 *
9 16 * 18 29 69 * 87
10 * 84 * 30 * 761 *
11 21 * 23 31 76 * 95
12 * 113 * 32 * 908 *
13 25 * 28 33 85 * 103
14 * 161 * 34 * 1059 *
15 30 * 34 35 95 * 110
16 * 202 * 36 * 1203 *
17 34 * 41 37 102 * 116
18 * 262 * 38 * 1337 *
19 40 * 49 39 110 * 122
20 * 329 * 40 * 1382 *
21 48 * 54 * * * *

Table 4.4: Number of subdivisions in [L, R] needed for inequalities (4.2])-(4.4) (see §4.2)).

o1




r2

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 * 12 17 25 33 41 54 66 75 95 112 | 128 | 144 | 169 | 193 | 219 | 243 | 272 | 314 | 354
1 13 18 27 35 42 54 66 76 94 112 | 127 | 140 | 167 | 190 | 212 | 234 | 255 | 294 | 335 *
2 21 29 37 46 58 68 79 99 114 | 129 | 144 | 169 | 191 | 212 | 233 | 254 | 286 | 321 | 357 *
3 31 37 50 61 69 85 102 | 117 | 132 | 149 | 173 | 196 | 218 | 238 | 256 | 284 | 319 | 353 * *
4 39 52 62 72 89 104 120 | 135 | 154 | 178 | 201 | 223 | 242 | 262 | 295 | 326 | 356 | 384 * *
5 52 64 76 93 107 124 138 | 160 | 183 | 205 | 227 | 248 | 271 | 305 | 337 | 367 | 392 * * *
6 66 s 94 111 127 140 164 | 188 | 210 | 231 | 253 | 278 | 313 | 346 | 375 | 403 | 429 * * *
7 80 97 113 129 146 169 193 | 214 | 235 | 256 | 286 | 319 | 354 | 384 | 411 | 438 * * * *
8 99 114 132 148 174 196 218 | 240 | 259 | 291 | 328 | 359 | 391 | 419 | 445 | 470 * * * *
9 118 132 149 174 199 222 243 | 263 | 298 | 333 | 367 | 396 | 424 | 451 | 477 * * * * *

10 134 149 176 201 223 245 265 | 303 | 337 | 371 | 403 | 430 | 457 | 483 | 522 * * * * *
11 155 175 202 225 247 269 308 | 342 | 375 | 406 | 434 | 462 | 487 | 532 * * * * * *
12 182 201 225 248 271 308 345 | 378 | 409 | 439 | 466 | 492 | 540 | 586 * * * * * *
13 209 226 248 269 307 345 380 | 411 | 441 | 469 | 495 | 545 | 593 * * * * * * *
14 234 250 268 305 344 381 412 | 443 | 470 | 500 | 550 | 598 | 643 * * * * * * *
15 259 271 302 340 377 411 443 | 473 | 499 | 552 | 602 | 647 * * * * * * * *
16 291 312 341 370 408 441 471 | 498 | 552 | 601 | 649 | 694 * * * * * * * *
17 335 353 377 406 436 469 497 | 547 | 598 | 647 | 696 * * * * * * * * *
18 376 393 412 438 462 493 537 | 592 | 644 | 692 | 737 * * * * * * * * *
19 415 430 448 469 495 524 581 | 635 | 686 | 733 * * * * * * * * * *
20 452 467 484 501 532 580 625 | 676 | 725 | 771 * * * * * * * * * *
21 487 502 522 555 588 632 676 | 718 | 762 * * * * * * * * * * *
22 527 556 587 617 651 684 724 | 766 | 804 * * * * * * * * * * *
23 591 619 648 679 710 742 775 | 811 * * * * * * * * * * * *
24 653 680 709 738 768 798 830 | 861 * * * * * * * * * * * *
25 711 738 766 793 823 852 882 * * * * * * * * * * * * *
26 769 794 820 850 876 905 934 * * * * * * * * * * * * *
27 823 848 872 899 927 955 * * * * * * * * * * * * * *
28 875 899 924 951 994 1045 * * * * * * * * * * * * * *
29 925 950 989 1039 | 1088 * * * * * * * * * * * * * * *
30 989 1038 | 1084 | 1129 | 1177 * * * * * * * * * * * * * * *
31 1086 | 1129 | 1173 | 1219 * * * * * * * * * * * * * * * *
32 1175 1216 | 1262 | 1305 * * * * * * * * * * * * * * * *
33 1261 1303 | 1345 * * * * * * * * * * * * * * * * *
34 1346 | 1386 | 1426 * * * * * * * * * * * * * * * * *
35 1428 1467 * * * * * * * * * * * * * * * * * *
36 1507 1544 * * * * * * * * * * * * * * * * * *
37 1583 * * * * * * * * * * * * * * * * * * *
38 1658 * * * * * * * * * * * * * * * * * * *

Table 4.5: Number of subdivisions in [L, R] needed for inequality (4.1).




Chapter 5

Numerical lower bounds for Reg(L/K)

In the previous chapter we concluded the proof of the Three Steps (see page , establishing that

e it dis even,
o) = paly) = 1 Fb )2 e g (5.1)
_Em(y)a if d is odd,

is a convex increasing function affording the lower bound for the terms —f/,/ f., appearing
in the fundamental inequality for 8 <d < 40[| Recall that fu, = f(,,q.), Where f(, ) was
defined in , and py, (resp. qu) is the number of real (resp. complex) places of L lying above
the Archimedean place w of K.

In this chapter we take the step still remaining, . e. we prove lower bounds for the right-hand

side of
Reg(L/K)

wr,

> (0.01) - 2~ FAL=#AD = (D2 TT £, (). (5.2)

wEAK

This is the practical version of . Throughout this chapter we fix yo = yo(d) as given
i Table so that it satisfies 2pq(yo) — 1 > 0.01 nearly with equality. In the different sections
of this chapter we deduce lower bounds for the relative regulator under varying hypotheses on the
degree d or on the splitting of the real places in L/K.

5.1 Exponentially growing lower bounds for [L: K| > 12
Using

r(L)= > pu, (D)= D qu.  r(K)+ra(K)=#Ax, (L) +ra(L) = #AL

wEAK weAK

1 'We did assume (for convenience) that r1 + r2 > 4 in proving Steps 1 to 3. This is not a problem since we will
make no claims to new exponentially increasing lower bounds for the relative regulator when d = [L : K] < 8, except
when K is totally complex and d = r2 > 5 or when L is totally real and d = r1 > 6.
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we can rewrite ([5.2)) in the form
Reg(L/K)

wr

> 0.01 -2~ (CupetZu @)t A= Tu @ TT fulyo) = 0.01 J] Fipwaw) (0),  (5.3)

wEAK

Where ']Z:(pw7Qw) = 2*(pw+qw*1)ﬂ-—%qw f(puMQw)'

To find a lower bound for [],, fp..q.(¥0) we estimate

H f(pquw)(yo): H f(pw,qw)(y@ H f(o,d)(yo) (5.4)

weEAK weAR weA [
w real w complex
7 ; r2(K) i (K) 42dra(K) < AL:Q)
= ( H f(pw,qw)(yo)) : (f(o,d)(yo)) > Bariii) g2dra(B) > Ol
weA
w real
where . ) . )
A= (f(O,d) (yO)) 2, B, = I%}(grl {(f(p,q) (y())) ¢ }7 C:= min(BTa AC) (55)
p+2q=d
Replacing this in (5.3]), we get
M > 0.01 - ol (5.6)
wy,

Table shows the values of A., B, C and yg for 2 < d < 40. Observe that for d in the table, the
minimum over p, g in the definition of B, is always attained at the signature with the smallest
possible p, i.e. at (p,q) = (0,d/2) for d even and at (p,q) = (1,(d — 1)/2) for d odd. Thus, for
d = [L : K] fixed, the constant C in will have the smallest value when K is totally real and
each real place has as many complex places above it in L as possible. This also implies that in
Table the entries corresponding to d even are the same as the entries in Table corresponding
to degree d/2 for K totally complex. We also note that C' > 1 as long as d > 10, d # 11. Thus we
have proved the first claim in our Main Theorem.

For general L/K we can say nothing more about Reg(L/K). However, if we keep track of how
much we give up in our estimates by assuming the worst case, we can improve our lower bounds if
we have additional information on the splitting of the Archimedean places in L/K. The following
notation will keep track of these losses. For p=0,1,...,d = [L : K| with p = d (mod 2), let

froa-
ﬁ(yo), if d is even,
P
rp =71p(L/K) :=#{w € Ak : wreal and p, =p}, ¢p:= ~((0(;121))) (5.7)
Py . .
(yo), if dis odd.

From r1(L) = 3 c 4, Pw, We get

d d
d Z rp > Z prp =ri(L). (5.8)
p=0 p=0
p=d (mod 2) p=d (mod 2)
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d 2 3 | 4 [ 5 | 6 | 7 | 8 9 10 11 12 13 14
C 0.603 | 0.489 | 0.790 | 0.715 [ 0.898 | 0.838 | 0.969 | 0.916 | 1.018 [ 0.972 | 1.054 | 1.013 | 1.082
Yo -0.683 | -0.277 | -0.933 [ -0.659 | -1.031 | -0.825 | -1.083 | -0.918 [ -1.116 | -0.978 | -1.138 | -1.020 | -1.154
A. 0.686 | 0.536 | 0.894 | 0.775 [ 0.997 | 0.898 | 1.058 | 0.975 | 1.100 | 1.027 | 1.129 | 1.065 | 1.152
B, 0.603 | 0.489 | 0.790 | 0.715 [ 0.898 | 0.838 | 0.969 | 0.916 | 1.018 [ 0.972 | 1.054 | 1.013 | 1.082
minimum in
B, attained for | [0,1] | [1,1] | [0,2] | [1,2] | [0,3] | [1,3] | [0,4] | [1,4] | [0,5] | [1,5] | [0,6] | [1,6] | [0, 7]
[p.q] =
d 15 16 | 17 | 18 | 19 [ 20 | 21 22 23 24 25 26 27
C 1.045 | 1.105 | 1.071 [ 1.123 | 1.092 | 1.138 | 1.110 | 1.151 [ 1.125 | 1.163 [ 1.138 | 1.172 | 1.149
Yo -1.051 | -1.166 | -1.074 [ -1.175 | -1.093 | -1.183 | -1.108 | -1.189 | -1.121 | -1.195 | -1.131 | -1.199 | -1.140
A, 1.094 | 1.169 | 1.117 | 1.183 | 1.136 | 1.195 | 1.151 | 1.204 | 1.164 | 1.213 | 1.175 | 1.220 | 1.185
B, 1.045 | 1.105 | 1.071 [ 1.123 | 1.092 | 1.138 | 1.110 | 1.151 [ 1.125 | 1.163 [ 1.138 | 1.172 | 1.149
minimum in
B, attained for | [1,7] | [0,8] | [1,8] | [0,9] | [1,9] |[0,10] | [L,10] | [0, 11] | [1, 11] | [0, 12] | [1,12] | [0, 13] | [1, 13]
[p,q] =
d 28 20 | 30 | 31 | 32 | 33 | 34 35 36 37 38 39 40
C 1181 | 1.159 | 1.188 [ 1.167 | 1.195 | 1.175 | 1.201 | 1.182 [ 1.207 | 1.189 [ 1.212 | 1.194 | 1.216
Yo -1.203 | -1.148 | -1.206 | -1.155 | -1.209 | -1.161 | -1.212 | -1.166 | -1.214 | -1.171 [ -1.216 | -1.175 | -1.218
A, 1.226 | 1.193 | 1.232 | 1.201 | 1.237 | 1.207 | 1.241 | 1.213 [ 1.245 | 1.218 | 1.248 [ 1.223 | 1.252
B, 1181 | 1.159 | 1.188 | 1.167 | 1.195 | 1.175 | 1.201 | 1.182 [ 1.207 | 1.189 [ 1.212 | 1.194 | 1.216
minimum in
B, attained for | [0, 14] | [1, 14] | [0, 15] | [1, 15] | [0, 16] | [1, 16] | [0, 17] | [1,17] | [0, 18] | [1, 18] | [0, 19] | [1, 19] | [0, 20]

[p,d] =

Table 5.1: The value of C' in (5.5) and (5.6).




If f(og)(yo) > 1 and d is even, using 1' we get

d
H f(pquw)(yO) - H (f(p,d%v)(%))rp = H (Cpf(ovg)(yo))rp = (f(o é)(yo))z”rp Hc;"

weA [ p=0
w real

> (Fogyo) ™ T = (( I cZS‘“)‘“l““(f<o,g><yo>)d5iff;>)dﬂ(K).

Similarly, if d is odd and f(l @)(yo) > 1 we obtain
72

d . 1K (L) dri(K)
TT G0 = (( T1 ) ™™ (s o0) o) #09)
wEAK p=1
w real p odd

Therefore, if we have information on 7,71 (L) and 71 (K) we can replace B, in (5.5) and (5.6) by

r1(L)

1 d2ry(K)
ET — ( H C;;p) TR ' ( (og)(yo)) " (if d is even and f( )(yo) > 1), 59)
p= fro a oK) (if d B '
p=d m%d 2) ( (1,%)(90)) @?ri(K)  (if d is odd and f(l,dzl)(yo) > 1)

In the following Table we calculate ¢, = ¢,(d) and f(o ¢>(y0) and f(l @)(yo) for d < 40. The
1) T
corresponding PARI-GP codes can be found in of the Appendix.

5.2 Lower bounds for Reg(L/K) for some splitting types.

As we saw in the previous section, for relative degrees d = [L : K] < 12 we do not in general obtain
lower bounds for Reg(L/K) growing exponentially with [L : Q]. Here we make some assumptions
on L/K that allow us to still get such bounds. We can, for instance, assume a lower bound

Pw > Po (for all real w € Ag), (5.10)

for the number p,, of real places of L above any real place w of K. In terms of r, in (5.7)), this
means r, = 0 for p < pg. We conclude, as in (5.3]) and (5.4)), that assuming (5.10]) implies

Reg(L/K - (K)o . ; r(K) &
L) > 001 (Foanm) (Fprzey@0)) ™ = 0.01 (Fo. () I«
p= dp(nfod 2) p= dp(nfod 2)
d
o= tp(d) = (Flpaey ) p=op(d)=pry Y ap=mi(D). (5.11)
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) f(()’%)(yo) for d even
d vector cp with p=0,1,...,d and p=d mod 2 N(lﬂ)(yo)fordodd
2

2 1.00,1.13 0.36
3 1.00,0.93 0.11
4 1.00, 1.30, 1.56 0.38
5 1.00,1.13,1.20 0.18
6 1.00,1.38,1.78,2.17 0.52
7 1.00,1.23,1.44,1.63 0.29
8 1.00,1.42,1.91, 2.45, 3.02 0.77
9 1.00,1.29,1.60,1.92,2.23 0.45
10 1.00,1.44,1.99, 2.65, 3.39,4.21 1.19
11 1.00,1.33,1.72,2.15,2.60, 3.07 0.73
12 1.00, 1.46, 2.06,2.79, 3.68,4.70, 5.85 1.89
13 1.00,1.36,1.81,2.33,2.91, 3.56,4.24 1.19
14 1.00,1.47,2.10,2.91,3.91,5.11,6.53,8.14 3.045
15 1.00,1.39,1.88,2.47,3.17,3.98,4.88,5.87 1.959
16 1.00, 1.48,2.14, 3.00,4.09, 5.45,7.11,9.06, 11.33 4.95
17 1.00,1.41,1.93,2.59, 3.39,4.35,5.46,6.72,8.143 3.23
18 1.00,1.49,2.17,3.07,4.25,5.75,7.61,9.88,12.58, 15.75 8.15
19 1.00,1.42,1.98,2.69, 3.58,4.67,5.97,7.51,9.286, 11.29 5.38
20 1.00, 1.50, 2.19, 3.13, 4.38, 6.00, 8.05, 10.6, 13.73,17.48, 21.91 13.49
21 1.00,1.43,2.01,2.77,3.74,4.95,6.44, 8.23, 10.35,12.83, 15.67 8.995
22 1.00,1.50,2.21,3.18,4.49,6.21,8.44,11.2,14.78, 19.09, 24.30, 30.48 22.47
23 1.00, 1.44,2.05, 2.84, 3.88, 5.20, 6.85, 8.89, 11.36, 14.30, 17.75, 21.75 15.09
24 1.00,1.51,2.23, 3.23,4.59, 6.40, 8.78,11.8, 15.73, 20.58, 26.54, 33.77, 42.39 37.60
25 1.00, 1.45,2.07,2.91,4.00, 5.42,7.23,9.50, 12.29, 15.69, 19.77, 24.58, 30.20 25.40
26 1.00,1.51,2.24,3.27,4.67,6.57,9.09, 12.3, 16.60, 21.96, 28.66, 36.90, 46.93, 58.97 63.15
27 1.00, 1.46,2.10,2.96,4.11, 5.62,7.57,10.0, 13.17,17.01, 21.70, 27.35, 34.07,41.95 42.89
28 [1.00,1.51,2.25,3.30,4.75,6.72,9.36, 12.8, 17.40, 23.24, 30.64, 39.89, 51.31, 65.24, 82.02] 106.42
29 [1.00,1.46,2.12,3.01,4.21,5.81,7.89,10.57, 13.98, 18.26, 23.56, 30.04, 37.88, 47.23, 58.28| 72.60
30 [1.00,1.52,2.27,3.33,4.81,6.85,9.61, 13.29, 18.14, 24.44, 32.51, 42.74, 55.53, 71.35, 90.69, 114.07] 179.83
31 [1.00,1.47,2.14, 3.05,4.30,5.97,8.17,11.05, 14.75,19.44, 25.34, 32.65, 41.61, 52.48, 65.51, 80.97] 123.15
32 [1.00,1.52,2.27,3.35,4.87,6.97,9.84,13.69, 18.82, 25.55, 34.27, 45.44, 59.58, 77.29, 99.22, 126.08, 158.66] 304.62
33 [1.00,1.47,2.15,3.09, 4.38,6.12, 8.44,11.49, 15.46, 20.56, 27.03, 35.16, 45.26, 57.67, 72.75,90.90, 112.52] 209.33
34 [1.00, 1.52,2.28, 3.38,4.92,7.08, 10.04, 14.06, 19.45, 26.58, 35.92, 48.00, 63.47, 83.04, 107.56, 137.97, 175.29, 220.67] 517.12
35 [1.00,1.48,2.17,3.13,4.45,6.25,8.68,11.90, 16.13, 21.61, 28.65, 37.59, 48.81, 62.77, 79.95, 100.88, 126.15, 156.37] 356.43
36 [1.0, 1.5, 2.2, 3.4, 4.9, 7.1, 10.2, 14.4, 20.0, 27.5, 37.4, 50.4, 67.1, 88.6, 115.7, 149.6, 191.8, 243.7, 306.9] 879.5
37 [1.0, 1.4, 2.1, 3.1, 4.5, 6.3, 8.9, 12.2, 16.7, 22.6, 30.2, 39.9, 52.2, 67.7, 87.0, 110.8, 139.9, 175.1, 217.3] 607.8
38 [1.0, 1.5, 2.3, 3.4, 5.0, 7.2, 10.4, 14.7, 20.5, 28.4, 38.9, 52.7, 70.7, 93.9, 123.6, 161.1, 208.2, 266.7, 338.8, 426.8] 1498.3
39 [1.0, 1.4, 2.1, 3.1, 4.5, 6.4, 9.1, 12.6, 17.3, 23.5, 31.6, 42.1, 55.6, 72.6, 94.1, 120.8, 153.8, 194.1, 243.1, 302.0] 1037.9
40 | [1.0, 1.5, 2.3, 3.4, 5.0, 7.3, 10.5, 15.0, 21.0, 29.3, 40.3, 54.9, 74.1, 99.1, 131.3, 172.4, 224.5, 289.8, 371.0, 471.1, 593.7] 2556.3

Table 5.2: The vector ¢, and f(o g)(yo) or f(l @)(yo) for degrees d < 40.
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In view of the restriction ayy > 0, >y, = r1(L), the product in (5.11)) is minimized when all but
one of the «,, vanish, the exception p = p(d, pp) minimizing ¢, for p > py. From ({5.11]) we obtain

Reg(L/K)

- ro(K)
> 0. r(D)
o= 2001 (foaw)) 4

If f(()’d)(yo) < 1lort; <1 we cannot deduce exponentially increasing lower bounds, but if both of
these inequalities are reversed we have, using (L) > pori(K),

Reg(L/K - ST =
% > 0.01A%42(K) gdn(K) > o 91040 (foo,a)(yo) > 1, tp > 1, pyw > po for w real),
L
(5.12)
where ) ;
—(F 2d 5 . 4Po/d N i (R
A= (fo.0)(10)) 2, B:=1t;"", C := min(B, A). (5.13)
Table [5.3] gives the values of ¢, for d < 12.
d | p=1| p=2 | p=3 | p=4 | p=5 | p=6 | p=7 | p=8 | p=9 | p=10 | p=11 | p=12 | f0,4)(y0)
2 * 0.6442 * * * * * * * * * * 0.2222
3 0.1170 * 0.4779 * * * * * * * * * 0.0237
4 * 0.7137 * 0.8842 * * * * * * * * 0.4101
5 0.1870 * 0.5958 * 0.7427 * * * * * * * 0.0788
6 * 0.8532 * 0.9847 * * * * * * 0.9691
7 0.2902 * 0.7099 * 0.8408 0.8987 * * * * * 0.2251
8 * * * * * |
9 0.4583 * * * 0.6376
10 * * *
11 | 0.7353
12 *

Table 5.3: Values of ¢, in (5.11) for d <12 and 1 < p < d, p = d (mod 2), and fgq(yo)-

We can now prove some exponentially lower bounds for degrees 8 and 11, finishing the proof of the
results in section [L.1]

Proposition 5.2.1. Suppose L/K is an extension of degree 8 (resp. 11) such that every real
place of K has at least 2 (resp. 5) real places of L above it. Then the relative requlator satisfies
Reg(L/K) > (0.02) - 1.015Q (resp. Reg(L/K) > (0.02) - 1.02[L:Q),

Proof. From Table we see that the assumptions of ([5.12)) are fulfilled with py = 2 if d = 8, and
po =5 if d = 11. If d = 8, the same table shows that p = 2,7, = 1.0511 and

C = min(2.5003/1%,1.0511%/%) = 1.0125 - - - .
For d = 11, the table gives p = 5,t; = 1.0487 and
C = min(1.8176'/22,1.0487%/11) = 1.0218- - - .

The Proposition now follows from (5.12) and wy, > 2. O
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Chapter 6
Appendix

In this chapter we present some additional information, both numerical and analytic, about the
main results of this thesis.

6.1 Log-concave functions

We shall say that a function f : R — R is logarithmically concave (abbreviated log-concave) if it
is positive and log(f) is concave. For (positive) smooth functions this is equivalent to —f’/ f being
an increasing function. The product gh and the convolution product

() c+1i00
(9% h)(y) = / g(@)h(y — ) da = — eV G(s)H(s) ds (6.1)

—00 2mi c—100

of log-concave functions g and A is again log—concaveE] Here all integrals are assumed finite and
the two-sided Laplace transforms G := L(g) and H := L(h), where L(f)(s) := [~ _e** f(z) dx, are

assumed to converge at s = c € ]RE]
In this thesis we deal extensively with convolutions of the following three log-concave functions.

1 c+1i00 B
go(y) :==exp(—eY) = 5 /Cioo e *YI'(s) ds, (6.2)
g1(y) = e¥ exp(—e?) = G exp(—eY) = 1 /CHOO e T (s+1)ds (6.3)
dy 2mi c—100 7
/2 1 c+1i00 L )
91 (y) =€~ exp(—e”) = i /Cioo e (s + 5)ds, (6.4)

where y € R and the integrals are independent of ¢ as long as ¢ > 0. Indeed, letting ¢*” denote the
n-fold convolution of g with itself, from (2.2]) and (6.1)) we have

(D) fiply () = d' (7" 5 g % 1) (dy) (p+q>t, di=p+2).

! For the product gh this is obvious, but for g * h see [Sim11} p. 203].

2 To make the comparison easier with the Mellin transform conventions more familiar to number theorists, we
have chosen the exponent e*® in the Laplace transform instead of the usual e™*®. Since y — G(y) is log-concave if
and only if y — G(—y) is log-concave, this distinction is not important here.
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Hence (—1)* f((;)q) is log-concave (0 <t < p+ q). In particular, f := f((z?)q) is positive and
f//
o f

are all positive increasing functions of y € R if p + ¢ > 3.
We now calculate

f///

(y)v - f,,

() (6.5)

1"

(-2 =3f;f _ (f;+2(ff'§3) " (6.6)
I A R 4 )

which writes (—f’/f)” as a difference of two decreasing negative functions, as claimed in (3.2]).

6.2 Numerical integration by the double exponential method.

In this section we describe an application of a numerical integration technique called the Double
Exponential Method. We need this tool to evaluate the function f in and its derivatives
accurately in regions where the method by residues is too slow or useless. The double exponen-
tial transformation is an optimal variable transformation invented by Takahasi and Mori [TM74]
which has proved immensely useful for useful for high-accuracy numerical integration of analytic
functions. Its advantage over traditional methods is that its cost grows nearly linearly with the
desired accuracy, i. e. it takes O(D log D) operations to achieve D digits of accuracy. In practice it
can quickly give 10000 provably accurate digits, a feat far beyond the capacities of other methods.

Although Takahasi and Mori published a (non-rigorous) account of their method in 1974, it
was hardly noticed by number theorists for more than 20 years. We follow the account in Pascal
Molin’s (unfortunately unpublished) doctoral dissertation [Mol], where he gave a detailed and
rigorous version with explicit error bounds.

Let us consider the numerical evaluation of an integral over the real line

I= /Jroog(x) dx, (6.7)

in which g(x) is analytic in an open neighborhood of R C (CEI A change of variables = ¢(u) such
that ¢(—o00) = —00, ¢(400) = +00 and ¢'(u) > 0 transforms into

+oo
1= [ g(ow)s'wu

— 00

Applying an approximation by the simplest Riemann sum, we get the quadrature formula

In=h Y g(¢(kh))¢/(kh) ~ I (h > 0).

k=—00

3 Double exponential numerical integration also applies well to finite intervals, but we do not treat this case here.
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For computational purposes we have to truncate this series to a finite sum
i = Z ¢/ (kh) (N_, N4 >0), (6.8)

where N = N_ 4+ N, + 1 measures the cost of the approximation I ~ [ }(LN)

is

. The overall error of

ALY =1 TN =114 1, — TV = AL +
where

AIh::I—Ih:/+OO (¢(u)) e ( du—hz ¢ (kh),

—00

k=—o00
is the discretization error, and
—1-N_
e =0, -1 =n Y ¢ '(kh) + h Z ¢/ (kh),
k=—o0 k=1+N4

is the truncation error (which depends on h, Ny, N_, ¢ and g).

In general, for a fixed h, if g(¢(u))¢’'(u) decays rapidly as u — +oo, then AIj, becomes large
if h is relatively big compared with the efffective support of g(¢(u))¢’(u). On the other hand,
if g(¢(u))@'(u) decays slowly as u — +oo, then egN)N becomes large. Therefore |Al| and |e)) |
cannot be made small at the same time and there should be an optimal decay rate of |g(¢(u)) ¢’ (u)]
as u — +oo. Takahasi and Mori [TM74] suggested making the decay of |g(¢(u))¢'(u)| be doubly
exponential, i. e. for some ¢ > 0 we have [g(¢(u))¢(u)| ~ exp(—cel*l) as |u| — oco. Quadrature
based on this idea are called double exponential numerical integration formulas. Of course, each
behavior of g at infinity requires a different change of variable ¢ to ensure that ¢’ - g o ¢ decays
doubly exponentially at infinity. Thus, Takahari and Mori created a method rather that a single
formula.

Double exponential integration can be proved to give excellent results for analytic functions
g [Mol], provided we have some prior information on how ¢ decays in a (complex) neighborhood
of infinity. Here we apply it to calculate the functions f®) (y) in , which are defined by an
integral and play a central role in this thesis. Their crucial property is that they are analytic in y
and decrease exponentially along the integration contour. Pascal Molin [Mol, Th. 2.3] proved the
following double exponential integration formula with explicit error bounds.

Theorem (Takahasi-Mori, Molin). For 7 € (0,7/2), o0 € (0,7) and D > 1, define
Zr={z=p+it:peC, |arg(p)| < 7 or larg(—p)| < T or p=0, t €R, t € [sin(r),sin(7)]},
so that R C Z, C C. Assume F : Z; — C is analytic in the interior of Z, and satisfies

|F(2)| < Py exp(—alz]?) (z€R, P,a,8>0, Br <1/2),
|F(2)| < Pyexp(Ae7?) (2 € Z., Pyy,A>0, v<p). (6.9)
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\ sin(‘c) /

T N
Fa
7 I
Figure 6.1: The complex region Z,.
Define
1 ) A cos(yo)
0= o= =9 3 AU =
tan(B7)’ « a( cos(fo) sm(ﬁa)) cos(77)
ol B
A07+1>ﬂ7 <Aa’y>57 1 <A(,fy+1>
Cypi=A;, | ———— — 0y + lo ,
( 0B 0B B=v "\ a8
o0
Lo (r) == inf {X eR: / exp(—az?) dz < exp(r)} (r e R),
X
and assume
2o arcsinh (Lq (D + log(2P))))
h < > ’ N).

< h s S E, Tlog(aPs + 2 D05y’ "= h (n€N)
Then

00 n
‘ / F(z)de —h Y F(sinh(kh)) cosh(kh)‘ <eD.
- k=—n
Moreover, as D — oo, using the largest h € R and smallest n € N satisfying the above conditions,
we have n < kDlog D for some k = k(«, 8,7, T, P1, P2, A, 0).

We will apply the above theorem to
(—d)t M+ioco
FOy) = / stexp (—sdy) T(s)" 2 (s + 5)"ds  (t=0,1,2,3, y €R, M >0),
210 JM—ico
which we regard ias an integral over the real line by writing

10w = 18,00 = G e inty) [ o) (6.10)

71,7
(r1,r2 o .
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where
g9(z) = (M + iz)" exp (—dizy) (M +iz)" T T(M + § + iz)"™. (6.11)

We first bound g on the real line.

6.2.1 Upper bound for |g| over R
Write the the factor (M +ix)! T'(M +ix)™*"2 of g in the form

r1+7
(M +iz)! T(M +iz) 7 = (M + iz)7+ T(M + i) o

Stieltjes 1889 version of Stirling’s formula with an error bound reads [Sti89][p. 433] [SS90|[p. 456]

‘ logI'(z) — ((z— 3)logz — = + %log(QW))’ < 1277 60522arg(z)/2) (larg(z)| < m).  (6.12)

Applying this to the half-plane where |arg(z)| < 7/2 we get

{(M—l—i:n)rlﬂz F(M+z'a:)’ = exp(%)w(Mj%fﬂﬂ < V2rexp(g;—M) exp(¢(z)) (x € R),

where .
P(x) = i(M — %) log(M? + z%) — xarctan(7) + m log(M2 + 2).

Note that ¢ is an even function. Suppose we find z¢ > 0 such that ¢(z) < —mx/4 for z > xg. Then,
_t e
|(M +iz) 772 T(M +iz)| < My exp(—%|x) (x € R),
where

M = \/ﬂexp(ﬁiM — M) max (1, sup {exp(o(z) + %w)})
z€[0,z0]
< V2rexp (g7 — M) max (1,exp(% (M — %) log (M? + x§) + 205 + m log(M? + x%)))

In conclusion, we get the bound for x € R

N\t Nridra| N C\\Ttre
|(M + iz)' T(M + ix) | = | (M + iz)7r2 T(M + ix)

< Mjexp(—aq|z|), (6.13)

with a; = 7 (ry +r2) and

9, o r1+r2
M, = <\/27r exp(gr — M) max(l, exp(3(M — 1) log(M? + x3) + zo ] + Lc;g(% g;c())))
(6.14)
Similarly,

IT(M + § +iz)| < Myexp (— %) ,
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where

My = 2mexp (g7 — M) max (1, sup {exp(g(x) + %‘T)})?

z€[0,To]
< V2rmexp (537 — M) max (1,exp (% log((M + %)2 + i%) + Z%0))

and M
o) 1)2 2 z
o(x) = - log ((M +3) +a ) — x arctan (MJF%),
and zg > 0 is a point satisfying
o(x) < ——x, Vx>
In conclusion, we get the bound
IT(M + % +iz)"| < Myexp(—az|z[)  (z €R), (6.15)
with ag = 7re and
My = (Var exp (ghy — M) max (1 exp(Y log(M +3)* +7) + 570))) " (6.16)

Combining (6.13)) and (6.15) we obtain for x € R,

lg(@)| = |(M +iz)" exp (—dizy) T(M +iz)" "2 T(M 4+ 1/2 + iz)"| < Prexp (— a\m|ﬁ),

where a = =% (r1 +2r2), B =1, Py = M1 Ms, and My, M; are defined in (6.14)) and (6.16)).

6.2.1.1 Finding z¢ and zg.
To find x9, note that dividing by M the inequality ¢(z) < —Fx, we get with v := 7,

t

(1~ ) (2log M + logl1 +4%) — waretan(u) + 5o b

(2log M + log(1 + u?)) < —%u.
Since we are considering % <M <4,t<4,r +re > 2, it suffices to find ug = xﬁo > (0 such that

1
Au) := 3 (2log4 + log(1 + u?)) — uarctan(u) + 2(2log 4 + log(1 + u?)) + %u <0, Yu>up.

Using the graph of the function u — A(u) (Figure and some basic calculus, we see that ug = 32
works. Therefore we can take zg = 32M. B
To find Zy, note that dividing by M + % the inequality ¢(z) < —Fx, we get

M
?(M + 3)(2log(M + 3) + log(1 + 02)) —varctan(v) < —Jv (v:= Mj_%)

Since % < M <4, it is enough to find vy > 0 such that for v > vy we have

1
n(v) = 5(210g(4 +3) +log(1+ v2)) — varctan(v) + %v <0.
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Figure 6.2: The function A(u) = 3 (2log4 + log(1 + u?)) —u arctan(u) +2(2log 4 +log(1+u?))+ Zu.

Using the graph of the function v — n(v) (Figure and finding the roots of its derivative, we
see that vg = 7 works. Therefore we can take o = 7 (M + %)

Figure 6.3: The function n(v) = % (2log (4 + 1) + log(1 4 v?)) — varctanv + Jv.

6.2.2 Upper bound for |g| over Z,.

From now on we fix 7 = 7/4. The function g defined in (6.11]) has a holomorphic extension to Z,
if we require M > 1, as we assume from now on. Set z = x1 + ix3 € Z,. Then

T
l9(2)] = ((M —x9)? + x%) P et (M — o +izy) M2 D (M + 3 — 20 +421) . (6.17)

Using the Stieltjes-Stirling formula (6.12)), noting that |arg(M + iz)| < 3w /4 for z € Z,, we get

IT (M — 25 +iz1) | < V2mexp (13@ ~ M) exp (¢(M; z1,22)), (6.18)
where
1 T
d(M;xq,29) = §(M — X9 — %) log ((M - 1'2)2 + x%) — x1 arctan (M lx ) + 29,
— X2
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and

-
Ay = inf M — ' = ‘ ‘
U iy, (M e inl} =[5
Similarly, for the other I'-function appearing in (6.11)),
T (M + 5 — 2 +izy)| < \/2wexp(% — M — §) exp(¢(M + 3;21,22)). (6.19)

Replacing (6.18]) and (6.19) in (6.17) we get
l9(2)] < CeXP(%log ((M — z2)” + 95%) + droy + (r1 + r2) ¢(M; 21, 22) + 129 (M + %;371,362)) ;

where

r1+7r2 T2
Pyi= (Vamexp (885 - M) (Varesp (oS - M - 1)) (6.20)
Using
log (M — z2)* +27) <log (M +|z])?) = 2log(M + |z]) < M + |z| + log(2),

lg(2)| < Pyexp (% log ((M —29)* + x%) + dzoy + (r1 + r2) d(M; 21, 22) + 126 (M + %;xl,x2)>

< Pyexp(9(]z])),

where

$(|z|) = % (log(2) + M + |z|) + d|z|y + (11 + r2) [% (M + |2 + %) (log2 + M + |z|) + |2| (g + 1)]
+ 79 [% (M +1+|z|) (logQ + M + % + |z]) + |2 (% + 1)] ) (6.21)

Let us fix v = % Then 1@) is satisfied with

A= sup (B(12]) exp(-2)) ) - (6.22)

|z|>0

To find this supremum we can use elementary calculus. The critical points of u — ¢(u) exp(—yu)
are the solutions of

¢'(u) = 79(u). (6.23)
Using (6.21)), we see that (6.23)) is a quadratic equation in u whose only positive real solution is

v = || = —b+ Vb? f4ac’
2a
+yr M + %77“1 log2 + %77“171' + ydy + %)77"1 + 3yre + %’715 — 11 — 2rg, (6.24)
ci=—t/2—dy—(ri+72) (3log(2) + M +53+Z) —ry (Slog(2) + M+ 1 +7%)
+ (5t (log (2) + M) + (r1 +72) (% + 1) (log (2) + M) + 19 (% +3) (log(2)+ M +3)).

a:="r1/2+ra, b= vyrom + yralog 2 + 2yro M

Hence, the supremum A in ([6.22) is

A = §(u*) exp(—yu), (6.25)
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which yields the estimate for z € Z-, |g(z)| < Prexp (Aexp(v|z])) , where v = 3, P> is given by

(©:20). 6 by (6.21), u* by (6.24) and A by [:29).

Given D > 1 and the choices § = o < 7 = 7, we now have all the parameters needed to apply
the Takahasi-Mori-Molin theorem to f®). Thus, letting

fse(y) = ; e~ My Z (sinh(kh)) cosh(kh), (6.26)
k=—n
we have
) (=d)" _amy—p
7O) ~ )] = |Ey)] < ey, D) = S (t=0123.  (627)

6.3 Error bound for our numerical approximation to F} in (3.7).

We now deduce an upper bound for the error ‘Fl — (10g(f2approx/ f2a) — 108(fLapprox/f1a)) |
f1a, f2, are defined in (3.6 and, using the notation of (|6.26)),

fso - fs1 fs3 fs1 s
= = — 2 _
fl approx 3 (fS())2 ) f2approx fSO + fSO

Recall from (6.27), that we have an approximation f®)(y) = fs;(y)+F;(y)= computable4-error with
an explicit upper bound for the error term |E;(y)| < e¢(y, D). Thus,

. JJOF L (s2(y) + Bo())(Ba(y) + Fa(y) _ g0 +an
b f? (fso(y) + Eo(y))? Br+b
Y f P fss(y) + Es(y) fs1(y) + B1(y)\®  astas | po+us
fa = / 2 (f) ~ fso(y) + Eo(y) ? (fso(y) + Eo@)) ~ Batbo 2 Ao+ 1y

where
ar = fsi(y)fsa(y), Bri= (fso(y)®, azi=1s3(y), B2i=Tfsoly, p2:= (Fs1(y))®, Ao := (fso(y))?,
are the main parts, and the corresponding perturbations are given by

a1 = fs1(y) Ea(y) + 2 () Er(y) + Er(9) Eay), i 1= 2fs0(y) Bo(y) + Eo(y)®,  as = Ea(y),
by = Eo(y), s = 3(f1 (1) Er(y) + 361 (1) (E1 () + (Ba())?,
Iy := 3(fs0(y))* Eo(y) + 3fs0(y) (Eo(y)) + (Eo(v))*.
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Using Lemma for the expressions aﬁiigll %;ig; and ’;\211;2, along with the upper bounds for

the errors E;(y), we get
fs1(y) - fsa(y L0t [fs1(y)fs2(y)]
|fi = 3(%07‘ 3 B b 3*\ < 3( (2lfs0(y)le0(y, D) + (e0(y, D))?) sl

2(|fs1(y)le2(y, D) + [fs2(y)len(y, D) + e1(y, D)52(3/7D))(fs()(1y))2) =: errory,

and

e fss(y) 2(fS1(y)) | = oy
*fso(y)  (fso())3 B2 + be Aotle B2 Ao

U fs 1
FoBEEE2) <oy, D) L (e 4,)

_}a2+a2 Mo +uz Qo &’<’a2+a2_%
Patb2 B2

+2(3(fs1(y))?e1(y, D) + 3|fs1(y)|(e1(y, D)) + (e1(y, D))?) W) =: erTory.

Therefore, using the definitions of f1,,0x a0d f2,ppr0x; We get

errory errory

’ |f2 - f2approx‘ > (628)

‘fl - flapprox‘ <

f lapprox

anpprox '
Using (6.28)) and log(1 + €) < /€ for € > 0, we obtain

f2a rox fla rox f2 fl
— | log <pp — log | —2PPX < |log + |log
( f2a fla f2approx fl approx
€ITory erTor]
< \/ + \/ = eITorp, .
anpprox fl approx

6.4 Proofs of claims from Chapter .

The proof of Lemma will hinge on computing an explicit asymptotic expansion, so we turn
to this subject first.

6.4.1 Explicit asymptotic expansions

For K > 0 let Q(K) := {s € C|Re(s) > K}. Fix an integer N > 0 and suppose for some
a; €eC (0<j<N)and E,k € R with k > K, the function g : Q(K) — C satisfies for all s € (k)

o1-3-%

:0

2|8

(6.29)
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Then we shall write N
S)N(Zajs_j;m;E> (k> K),
=0

and call ( Z;V:O a; s7I: K E) an (explicit) asymptotic expansion of g of order N. Of course, a; = a4
depends only on g, but K, x and E have some freedom. In fact, usually E will depend on k. Even
K plays a role since often estimates will hold only for x > K. To operate with these expansions it
is convenient to rewrite the above definition as

o G(s)
g(s):zg + N (o €C, k> K, |G(s)|<E VseQr)), (6.30)
=0

where G : Q(K) — C is defined by the above equality.
For a fixed a € C, the expansion of ag(s) is clearly ag(s) ~ (Z;V:U aajs~;k;lalE). If N < M,
reduction from degree M to degree N expansions is given by

M N M
s) ~ < g ajsfj;R;E> = g(s) ~ ( E a;s 7 K; =~ T g \aj\/f”NJrl). (6.31)
Jj=0 J=0

j=N+1

Sums and products of expansions of the same order are easily defined. Namely,

N N ~
g(s) ~ (Zajs_j;li; E)7 g(s) ~ (Zdjs_j;/%; E) =
; —

=0 j=0 =0
N N ~
) ) X Ol Elaj| + El|a
R := max(k, k), E:ZE: E: % +Zw
Jj=1i=N+1—j j=0

Suppose now that f(z) = zzozo apz® is a Maclaurin series with real coefficients a;, > 0, con-
vergent for |z| < « for some v > 0, and we wish to compute the asymptotic expansion of f(b/s*)

for some b € C and k € N. For (real) z € [0,7), the Lagrange form of the remainder gives
GN+LF(N+1)(

flz) = oo axz® + Ry(x), where Ry(z) := S on N1 kT = W)') for some & € (0, ).
Assuming Re(s) > x and |b|/r/ < v we have

f(b/s%) Zakbks k4 Z apbts™Ik = Zakbks Ik L Ry (b/s7).

k=N+1 k=0
However, since we are assuming aj, > 0, we find for some & € (0, [b/s?|) C (0, |b|/x7),
0 ‘b|N+

|Rn(b/s7)| Sk:%;laﬂb/s”k Ry(|b/s’]) = (N + 1)l[si(N+1)

[bIM* v (k)

(N + Dl[spiV 1

Sl <
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where pn (k) 1= SuPgc(o,p|/xi] {\f(N“)(f)]}. Hence we have the asymptotics of order j(IN 4+ 1) — 1

N
F(b)s) ~ (Zakbks k40 s ((N“)‘l);m;\b]N+1MN(n)/(N+1)!) (5 > (|bl/7)7). (6.32)
k=0

If 5 > 1 the estimate of Ry (b/s’) shows that this is not naturally an expansion of order N, but
rather of order j(N + 1) — 1 with coefficients of s~ vanishing for jN < £ < j(N + 1), but we will
always apply the reduction operation to make it of order N. An example, which we will
need, is (the reduction to order N of)

bVt exp(|b| /K7
exp(b/s?) ~ (Zk" ; ,|| (N—f(1|)‘|/ )> (k> 0).

We now compute a few other expansions. Let

N-1

S VI U e A o A T N ) N GO L
g(s)'_s+a_1——;_s(;0 5 N 1+g)_; — N (6.33)

Since we are assuming Re(s) > k > 0, we obtain for real a,

eyt lal”
s+a (; ’ mm(l 144 )) (k> max(0, —a)). (6.34)
Similarly, for a € R,
N ,
e i
% <JZ '™ min(1,1 + g)) (> max(0, —a)). (6.35)

Suppose now that for some ¢ € R and b > 0 we want to obtain the asymptotic expansion
of g(bs + ¢) from that of g ~ (Z;y:o o575 k; E). If Re(s) > & := max (0, (k — ¢)/b), so that
Re(bs + ¢) > Kk, we have

E (b|8|) (N+1) - Eb—(N+1)|S|—(N+1)

N
g(bs +¢) — : ’ < = <
‘ jg() (bs+c)i| = [bs+ N+ ‘1+%|N+1 (min(1,1+§))(N+l)

(6.36)

Since (bs+c¢)™F = b7 (STIQ)J., its asymptotic expansion can be computed as a scalar multiple of the
b

j-th power of the expansion (6.34). Summing multiples of these and adding the error estimate in

(6.36)), we obtain the desired expansion of g(bs + ¢).
We will need to find the asymptotic expansion of exp(g(s)) from that of g(s) ~ (Zjv 0ok E).
Most of this work is already done since for Re(s) > k

N .
e = exp(G(s) /s ) e T e/ (IG(s)| < ). (6.37)
j=1

70



We have already seen how to compute the expansion of e®/ Sj, and hence of the product above.
Since for any z € C, we have |e* — 1| < |z|e/?l, we conclude

xp(G(s)/5" ) = 14 L) IF(5)] < [G(s)| exp(|G(s)/s¥]) < Bexp(B/s™ 1),

Thus we have asymptotics of order N for exp(G(s)/s™ 1) ~ (1;k; Eexp(E/x"11)), and so (6.37)
yields an expansion of order N for exp (g(s))

We will also need the asymptotics of log(1 + ¢) for a € R. Since (ZNH( log(l — t)) =
N'/(1 — t)N*1 we obtain from (6.32)

log(1 + 2 ( Z o ) (k> |a]) (6.39)
P 35” T (- ) | |
Next we obtain the expansion of Q(s)/(12s), defined by
I'(s) = Vorss M2 se Tt (s ¢ (—00,0]), (6.39)

and so closely related to Stirling’s formula. The explicit asymptotics of Q(s)/(12s) were worked
out by Stieltjes [Sti89] [SS90] for s ¢ (—o0,0] in terms of Bernoulli numbers as

n—1
Q(s) Bai Bz
125 ; ook — gt T < e e cos? (3 arg(s))

(n>1).

Since Bj = 0 for odd integers j > 1 and |arg(s)/2| < w/4 if Re(s) > 0, we obtain for any x > 0

N+2
Q(s) N g ) % if N > 0is even,

fN+3|B | . )
W)(]\ﬁ% if N >1is odd.

6.4.2 Proof of Lernma m
We begin by recalling the notation used in Lemma [2 For a fixed integer N > 0, let

(2m) 1 4d%T(s) 1472~ T (s + 1)'T(s + 1 al i, T .
— p(—g) — A N
¥(s) == o(—s) T(—N +s) +k§_0: k ];[ (=N +s¢+7),
1 1
s; = ds — %H:H%—gﬂl(s— D (di=r142r, t=0,1,20r3). (6.41)

Lemma states that there exist Ay and K1, Ky € R such that Re(s) > K implies |¢(s)| < K.
1—d _T1+72 ¢

More precisely, Ag := (2m) 2 d ™~ 2 and for any K7 > 1/2, we shall give an algorithm calculating
Ay €R (1 <k < N)and Ky = K2(K;) such that Re(s) > K7 > 1/2 implies [¢)(s)| < K2[f The

4 It would appear at first sight that the A depend on N, and should therefore be written Ag,n (1 <k <N).
However, in the end we will prove that the A, n determine the k-th term of the asymptotic expansion of f(t)(y) (see
(2.3) and Lemma [2.1.3]), and hence turn out not to depend on N. We therefore always write Ay for Ag n.
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algorithm will turn out to be just the computation of a certain explicit asymptotic expansion of
order N using the results of

Since we always assume K > 3 and s € Q(K7), we have Re(s;+1) > 1/2. Using I'(s;, —j+1) =
(st —j)[(s¢ — j) for j =0,1,..., N, we find

(2m) L ddds s T (s)r 4T (s + 1) Yo
¥(s) = (50— N) e (s¢— 4)
7=0
N N—k A
NS 1A TT (50— N +9) = (50— N) (£Gs) — (5). (6.42)
k=0 j=1
T 1-d dsst r1+79 S 5 N— N N—k
£(s) = o Flgi)—i—l Dis+ 3 Hst—J =Y (=D)FA [ (se = N+ ).
t §=0 k=0 j=1

Denoting by Q(s)/(12s) the error committed in replacing logI" by Stirling’s approximation (see
6.39), we get

N—-1
ri+rg (r1+r2)Q(s)

1
5(8) _ ( H (St _j))(27T)1fdedslogdetlog3(2ﬂ_) 3 S(s—i)(m—i-m)e*(r1+r2)s€7125 (643)
=0

Q(s¢+1)

Q(s + 3) )/((St i 1)st+% +12(5t+1))

12(s + 3)

(2m) %z exp(rgslog(s +3) —ra(s+3) + 72

where log denotes the principal branch of log on C — (—00,0]. Note that this branch satisfies
log(ab®!) = log(a) + log(b) if Re(a) > 0 and Re(b) > 0. Letting A := ¢+ 1 — 42+t > —q/2 and
noting s; + 1 = ds + A, we have

log(s+3) = log s+log(1+5), log(s;+1) = log(ds+A) = log s+log(d+%) (Re(s) > 1),
since
Re(d+ 42) =d+ ARe(1/s) = d+ ARe(s)/|s|* > d — (d/2)Re(s)/|s|* > d — (d/2)/Re(s) > 0.
Letting
h(s) :=q(s) + A— 2 + roslog(l + &) + ds log(ﬁ) + (M2 4+ 1 —t) log(d + 4),

N—-1 .
) ds+A 1=d [Ty (st —J)
- By Cl)=em 2 S

._ Q(s) Qs+
q(s) == (r1 +1r2)Hs + 12 1204

DOl
Z
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we obtain
£(s) = O(s) exp (q(s) + Atdslogd+ (t+ (s — 1)(r1 +12)) log s
— 2 4+ roslog(s+ 3) — (ds+ A — 2)(log s + log(d + )))
= O(s) exp(q(s) + A+ dslogd + (t+ (s — 1)(r1 + r2)) log s + ras(log s + log(1 + )

— (ds+A—3)(log s+ log(d + 2 ))) = C(s)exp(h(s) + log s) = C(s)sexp(h(s)).

Since Aj := (27T) 7 2t , Y in can be written in the form

N N—k
W(s) = (st = N)(E(s) = () = (st = N)(Cls)se™™ = (=1 A T] (st = N +))
k=0 j=1
B Norpy L A=L=N 0 O6)s e s (CDRAYT A1 N+
= Aolds) ™ 1+ — )<A0(ds)Ne kzzo Ao(asy 1L (1+ )
Norpg (AL =N o N (DR A1 N+t
Ao(ds) (1 ds )(C’(s)e kZ:O Ao(ds)k e (1 ds ))’ (6-44)
where
Oty = ——S (1 a1 T ) (=270 (6)
(27?)%(ds)N*1 s 0 ds d
~ =+ s s S
hs) = hls) = (M2 — £+ 1)log(d) = (11 +72) 352 + 7 ?2((12)) Qder )
1 A
+ (raslog(1 + %) — %2) + (T1 ;LTQ 1—1t)log(l+ I —)+A—dslog(1+2). (6.46)

The proof of Lemma [2.1.1] is now clear. It suffices to prove that we can compute an explicit
asymptotic expansion g(s) ~ (Zé\fzo a;s9 kK E) for g(s) = C(s)eM®), valid for any x > 1/2
Indeed, induction on k shows that for any polynomial p(z) € Clz] of degree N with p(0) = 1,
and in particular for p(z) := Zjvoaj J, it is possible to find Ay € C (0 < k < N) so that
p(z) = Ek 0 AO?,C’VI H (1+ w) Then, by definition of asymptotic expansion
of order N, |3N+1(C( )eh( —p(1/s))| < E for Re(s) > &
We now show how to compute an expansion for C (5)e™*). We saw in how to compute
a product, sum and exponential of explicit asymptotic expansions, so most of our work is done.
Indeed, the product Héy:_ol(l + %) in is already of the form p(1/s), with p a polynomial
of degree N, and so its asymptotic expansion is just (p(1/s); k;0) for any £ > 0. The expansion for

® We must also show that ap = 1, since we claimed (and used) a value for Ag. This is clear since limge(s) oo C(8) =
1 and limge(s)— oo ?z(s) =0, as follows directly from the definitions of C' and h.
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the other factor in (6.45)) is given by (6.35)). Namely,

e B (i
14 dhitl _1+d$ = G " nin(1,1 + 4 AR '

Since % > max(0, —A/d), we have an asymptotic expansion of C’(s) for any x > % The function
h(s) in 6.46)) contains a sum of terms of the kind Q(b;s + ¢;)/12(b;s + ¢;), with b; = 1 or d and
c; = 0,5 or A. By and the paragraph following we obtain an explicit asymptotic
expansion for Re(s) > 3 valid for the three Q-terms (using —A/d < 1/2, already noted above).
The other terms in have an expansion given by (6.38), valid again for Re(s) > 3 (but we
have to expand one of the logarithms to order N + 1 since s multiplies it). This concludes the proof
of Lemma R.1.71

For example, if N = 2 (the case used in this thesis) the coefficients A; and As are given by

Ay = Ao(r +rire — 1201t + 75 — 129t + 12¢* — 1) /24, (6.47)
As = Ay (7“1 + 231y — 2473t + 3rr — 48r¥rat + 1681t + 2r 73 — 48175t 4 3121 7ot — 288713
+ 175 — 2473t + 168r3t? — 28819t + 144t* — 24r3ry — 19292t — 247173 — 3367 19t + 5761112
— 19273t 4 57619t% — 38413 4 2217 + 22119 — 26471t + 2213 — 26479t + 264> — 23) /1152.

6.4.3 Proof of Lemma .

-ds — ~ds

/ Case Im(s) <0

Case Im(s) >0

~ds — -ds

Figure 6.4: Real parts and arguments of the complex points —ds and —ds — 7.

We prove a more prec1se version of Lemma [2.1.2] that goes as follows.
Assume v = “H +3 —t+N >0 and K1 > max(%, 7—22) where d := r1 + 2ro. Then for
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Re(s) < —K1 we have the inequalities |o(s)| < Ko and

\F(—ds _ 7)‘ < Ké|s|—%—'ye—dRe(s) log|ds|+dRe(s)+darg(—s)lm(s)’ Ké — /27Te’y+%d—'y—1/2, (6.48)
where arg(s) is the branch of the argument which is real for s > 0, and Ky = K2(K1) is as in the
lemma proved in the previous subsection.

The bound on p was already proved for any K7 > 1/2, so we now prove the other bound. Note

1
that Re(—ds — ) > 1/2 since we are assuming Re(s) < —K; < Wd 2. Using (6.39)), and ([6.40))
with N = 0, we have |Q(s)/(12s)| < 1/6 for Re(s) > 0. Hence for Re(s) < —K] we have

Q(=ds—7)
|ID(—=ds — )| = |V2n(—ds — fy)*dsfvfl/QedSJ”e12(*“]7)

_ \/%e'y—&—%edRe(s)e(—dRe(s)—'y—l/2) log |ds+’y|edlm(s) arg(—ds—v)

< \/ﬂev-‘r%edRe(s)e(—dRe(s)—w—lﬂ) log |ds|edIm(s) arg(—ds—7)
< /27_‘_67—&—%edRe(s)e(—dRe(s)—7—1/2) log |ds|edIm(s) arg(—s) (6.49)

_ Ké|s|—%—’ye—d Re(s) log |ds|+d Re(s)+d arg(—s)Im(s)‘
For (6.49) use Im(s) arg(—ds — ) < Im(s) arg(—ds) (see Figure[6.4) and arg(—ds) = arg(—s). O

6.4.4 Proof of Lemma .

Recall that for z > 0 and any w < 0 we defined in (2.4))

1 w100
H(z) = — 2T (=) T (—s + 1)'T(—s + 3)" ds
27 w—100
We prove a more precise version of Lemma that goes as follows.
1
Assume v =" + 2 ¢ 4 N >0, K; > max(3 7—22) and y > log(dKy). Then

2
H(d %) = (27r31d_16_y(”+;21_t)e_6y i(—l)kAke_ky — i(2m) 2 E(y), (6.50)
k=0
where
< ST (1 B TR et (651

where Koy = Ko(K1), as in .
Aside from the explicit constants, the main point of course is that E(y) is bound by e™¥ times the
smallest term in the sum, 7. e. that corresponding to kK = N.

Proof. Set z := edy.' Combining (2.6 and (2.9), we see that (6.50) is just notation if we define
E(y) =o0(z):= f;:l;o 0(s)T'(—ds—y)z® ds. We now turn to the proof of the estimate (6.51)). Using
the previous lemma and parameterizing the contour integral by s = w(1 +iz) (x € R), we get for
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any w < —Kj,

w4100 w4100
o< [ el (ds = )zt ds| < Kalef® [ |P(-ds )] las
w4100
< KQKéZw(_w)—;—v/ e—dRe(s) log |ds|4+d Re(s)+d arg(—s) Im(s) |d8|
w—100

oo
_ KQK&ZW(—Q))_é_’Y/ e—dw log(—dwv1+22)+dw+dwzx arctan x)(_w (We set s = w(l 4 Zl’))
—0o0

( ) dx
:KQKQ(—wﬁVz‘”(—dw)d‘”/ eI @) dy :KgKé(—wﬁV/ e ! @) dg, (6.52)

where f(z) := —1log(1 + %) + 1 + z arctan(z) and we have chosen w := —2'/4/d = —e¥/d < —K;
by our assumption on .
We now find lower bound for f. Note that f is even, f(0) = 1 and its first two derivatives are

given by f'(x) = arctan(z), f”(x) = 1/(1 + 2?) > 0. Therefore, for 0 <z <1 we have 55 2f > . By
Taylor’s Theorem with remainder we conclude that f(z) > 1+ % > for x € [0,1]. Hence

1 1 22 o0 v
| e s [ o2 (15) gy < oo | et dn = et [T (6.53)

0 0 0 —dw

If 2 > 1, the convexity of f yields f(z) > f(1) + (z — 1) f'(1) = Zz + 1 — } log 2. Hence

—.438dK7 d
/OO edwf(x) dr < /OO edw(%x+1—1/210g2) dr = i . i ( +17l10g2)d < de ! ﬂ, (6 54)
1 1 dr  —w
where we used w < —Kj and § — 710g2 = (0.4388---. Combmmg , recalling w :=
—e¥/d, the assumption y > log(dKl) and the value of K2 in 1 48)), we get 1 O

6.5 Proofs of claims from Chapter

6.5.1 Bound for F]

We now prove a rather complicated, but algorithmically useful, bound for the derivative F| that
was needed in Chapter [3] to check inequalities in compact intervals.

m\»—‘

v+

Lemma 6.5.1. Fiz N =2 and assume v := "S5+ 2 —t4+ N > 0, K; > max(3, 152, y > log(K1),
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and let Fy(y) := log(]f%(y)) — log(;Tl(y)) as in (3.7). Then its derivative F| = F{(y) satisfies

| Po., — Ro| + [R3 — Ps,
1+ 2.5
+ Ro Ry

|F]| <|Pyy — Ra| + |P1y — R1| + 2| Py, — Ro| +

Roa+R R§ RZ
2 |P3a - POa‘ (’ROa - R0| ||RO21R1:|| + \RzRggRla\ ‘R2 - R2a’ + W&%m ’Rl - Rla‘)

+
R2 Ro2
1 + 2R2%1 ‘ ‘1 + 2R23(}%1a
F R Ry — P
+ 6 [Poa — Rol + |4 lal (6.55)
)2+ RoRy
’PIa - P0a| <‘R2a RQ’ ‘Rla ‘ Rla |R0 + Roa‘ ‘RO ROa’ T ‘ B Rla‘)
+ )
2+ —R;%?l 2+ Bafa
where (again omitting y)
f(i+1) a(Li+1) % (fagi)) =
Ri="—r, Ria="—7, DPa=—3=", |[Ri—Ril<C; |Ri—P,l<C (0<i<3),
[0 (3) (@)
fa fa
and

_ |Ria(y)|Mip1e™3Y | Ri(y)|Me=3 o 2 N
a Nit1(y) N;(y) ' Ni(y) = ]Z;( 1)7 Aj(i)e™?,

-~ S5 o ki1 + (~1)dA; (i) e + (Jrg 1|+ dMi)e™ R, (y)|Mze=
Cily) i= | Puly)] 22201 J + 2

‘Z;’:O ,jS_le—jy’ Ni(y)
Koio1 = —dAg(i—1), Ky = <z Tl*;”””) Ag(i — 1) + dAy (i — 1),
K1 = — (2 ”J”;Jrl) A(i — 1) — dAy(i — 1) + Ay (i — 1), (6.56)
K3i—1 = (Z W) Ay(i — 1) — 245(i — 1).

867.438dK1

7'('3/2\/ dKl

with the ;1\(/)(2) as in (2.15) and Ko(K1) as in (6.50). Moreover, R;,(y), Ni(y) and P;, are explicit
rational functions in e™Y, and |R;(y)| is positive and monotone increasing in y.

M; = Mi(K:) = (2m)°F (e/d) mes 8/d<1—|— )KQ(Kl),

Before giving the proof, we explain how the lemma gives an algorithm for finding an upper bound
on |Fy(y)| valid for all y in any given interval [a, b], provided a > log(K7). Namely, first we replace
by C; or C; every difference |R; — R;,| or |R; — Pi,| appearing in (6.55). In the new inequality we
replace every function by its minimum or maximum value in [a, ], choosing always the one that
guarantees the inequality. The last sentence in the lemma tells allows us to find these extrema.
For the R; they are just the values R;(a), R;(b). For the other functions we locate their critical
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points in [a, b] (this amounts to finding the roots in [e7?, e 7] of a polynomial in z = ™), evaluate

them there and at the endpoints to obtain the extremal values. This may seem and is very coarse,
but since we always work with very short intervals [a,b], we do not really weaken the inequality
significantly.

Proof. 1t follows from log concavity that R; is strictly negative and monotone. From their definition
in the lemma and (3.5)), it is clear that R;,, P;, and N; are explicit rational functions of e™Y.
or r € et = so that (/6. 1ves an asymptotic expansion o or
F R, 1 H*() H(‘“/dd), hat (6.50) ei ymptotic expansion of H* f
x > log(dK1). By (2.5) we have f)(y) = (—d)!H(e¥?) = (—d)'H* (y+log d), so that for y > log K
we obtain the asymptotlc expansion (in the form (2.14) for N = 2),
(t) (t) —y(TAr2=l ey 3 t d—1 j—rtretl
[P ) = fa"(y) + CR(y)e ™ 2 e eV, Ci=Ag(-1)'(2m)d 2
Qe—-438dK:

w3/2\/dK;

T2 (6.57)

IFy(y)] < 2m) 5" (¢/d) Vet 8/d(1+ )Kg(Kl) — M,

We now apply this to
So S S f
fla fl f2 f2a,

as follows from the definition of F; in (3.7]). The problem is that so far we only control the difference

| f(t)(y) — fét) (y)| of two very small functions, as can be seen from the double exponential factor
e~ in (6.57) and (3.5). In contrast, the four ratios on the right hand side of (6.58)) are far larger
functions, as the double exponentials cancel out.

The main idea for bounding Fj is to write it as a function of the numerically well-behaved

7 (4+1)
ffj)l) — ff( 57—, and then find an upper bound for each of them using and (| -H

This explicit re-writing of all functions leads to the awkward and complicated expressions in the
lemma, but to no deeper waters.
Using the definitions (3.2)) and (3.6) we obtain

Fl = (6.58)

differences

(2) (1)
A_1O 5 o #(7) &() Ao
ATTETRT R o T

and

LD (f’>2 f” 12

fo TP T
J2 %)
2
By (fa S 108 (1) o (1) (R - 274 )
Faa PR+ 2 (1) 1Y + 260 (£2)°

5 We must warn the reader that f(z) is the 2-order asymptotic aproximation to f*, so fi G+ #* dyf(l) (cf. (6.59)).
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1;, % and % in terms of numerically well-behaved functions as follows.

a

!
We can express % ,

! /
ﬁ:RﬁRl—mo, Engﬁpla—zp()a
fl fla
fs  R3—Ro  6(R1— Ro) fou  Psa—Poa | 6(Pra—Poa)
- R2R1 ’ - Ro2 RQqua ’
p) 2+ f2a 1+ 270 2+
Replacing these expressions in ([6.58) we get
F| = (Py, — Ry) + (P — R1) — 2 (Po, — Ro)
R3 — Ry Psa — Poa Ry — Ry Pi,— P,
T 149 RZ 149 Ro2 +6 2+ RzR1 B 9 4 H2alhs (6.60)
+ RQRI + RQaRla R g

Now, we proceed to find an upper bound for each term inside parentheses in . Recall that
the only tools at our disposal are and the monotonicity of the functions R;. The first task
is to find an upper bound for |R; — R;,| and  |R; — P;,|. This will follow easily once we have a
bound for the relative errors

; i d p(i=1) (i)
o f(‘)—fé) Ao dyfa f
E’L — ‘fm ) EZ —_— W . (6-61)
a dy a
Adding and subtracting ]{ we get

foRY 2= f —f‘
Ry — Ro.| = |~ — < + Ro,|F1 + | Ro| Eo.
[Ro — Roa| i fa e | Roal E1 + |Ro| Eo

Using the same argument for each |R; — R;,| we get |R; — R;.| < |Ria|Fit1 + |R;|E;. Similarly,

£ (1) 14 (59) - 10| poen
ol < dy(;“) d”(;;gf;») [

As noted above, we can estimate R;, R;, and P;, in an interval by the greater of their values at the
endpoints of the interval.

Next we bound E; and E;. Using (6.57) we get, with Avo( ) as in and (| -7

f — 1
£

= |Pia| Eit1 + |Ri| Ei.

By = |{0W = 12w < M; exp(—3y)
) T Ao(i) = Au(G) exp(—y) + Az (i) exp(—2y)
Now, to do the same for E;, we first need an explicit expression for -2 fa Takmg derivatives in
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(3.5) we get, after some basic calculations,

L 0(y) = (<1 (2m)i L Ag(t)d- R

a exp(— y(% —t—2)) exp(—de?)

= dAo(t) + (¢ + 1 — L) Ag (1) + dAy (1)) exp(—y) + (—(t + 1 — BEREL) A (1)
— dAz(t) + AL(t)) exp(=2y) + (¢ + 1 = D) Ay () — 245 (1)) exp(—3y) .

Using this equation with t =i — 1 and replacing it in (6.61)), we get

N3 g rgiae I + SR (T2 (A (e + Fily)e ™)

3 _
2o Kji—1e” Y

Ei(y) = L (6.62)

1—d _T1+719 t

which leads to the values given in (6.56|). Replacing Ao(t) = (2m) 2 d” 2 " and using |Fiyi| <
M1, we obtain

_ S2 o kjim1 + (—1)7dA;(0)|e ™ + (|ks | + dM;)eY

Ei(y) < = (6.63)

In summary, we have proved so far that
|Ri — Ria| < |RialEir1 + |Ri|E:  (i=0,1,2), (6.64)
|Ri — Pia| < |Pia| Eip1 + |Ri| B (i=0,1,2,3), (6.65)

where, due to their monotonrc:lty, the terms |R;.|, |Ha| and |R| are evaluated at the endpoint
y = R of the interval [L, R], E;(y) is bounded by (6.62) and E;(y)) by (6.63). These are bounded
by rational functions in e™Y, so their critical pomts (and therefore their extreme values) in an
interval can be computed. Thus they can be bounded. These estimates give an upper bound for
the first three terms in the right hand side of .

To find a similar upper bound for the other two terms, namely for

R3 — Ry P3, — P, Ri— Ry Pra— FPoa
— and

R2 Ro2 9 R2R1 2 RQaRla )
L2505 14250 + + TRe

(6.66)

We note that the first one can be written in the form

Ro?2 Ro? 2 RZ
(Poa — Ro) (1+2R2;}%3)+(R —P3a)< +27, 5 )+2(P3a—P0a) (%—ﬁ%l
Roz
(1+2R R1) <1+2R2aofila)

Ther first two terms in the numerator are easily bounded using or - but the third term
RQIzOI%Ia — %‘. Since there is second term in , we

) . (6.67)

shows that we need upper bounds for
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RoaR1a  RaR:

also need to bound . After some easy calculations we get

Ro2 R2
‘Rzgla B R;}gil - ‘(R2a — Ry) g: + % : f;g (Ro + Roa) (Ro — Roa) — gi (R1 — Ri,)
< |Rg, — Ra| g;: +‘§§ ;(1)2 |Ro + Roa| |Ro — Roa| + Rg — Ry,
(6.68)
‘Riﬁla B R]jfg%l - ‘(Roa ~ o) (ng:a;i()) RgR}ziRla (Rz = oa) + RQJI;ZRM (B = Fa)
< |Roa — Ro| f}g;‘;iﬂ |R2R]j§Rla| |Ry — Ra,| + m;;ﬁ?m |R1 — Rial.

Replacing (6.68]) in , using (6.66]) and (6.67), we get finally get the bound (6.55) on F{. O

6.5.2 Proof of Proposition m

Proposition [3.3.2] follows directly from the following residue calculation.

Proposition 6.5.2. Let d := 11 + 2r2, gy(s) := sle"W*['\(s)""*™2T(s + 3)"2, and let i € N. Then
there exist explicitly calculable coefficients ¢, = c¢p; (1 < p <11+ r9) such that

ri+re

—dy)
Res, (gy y Z p ?_J

Proof. Define the ¢,’s by the truncated Laurent expansion

ri+r2
s'T(s)" T D(s 4 3)™ = Z % + (a function analytic at s = 13%),
p=1 (8 - T)p
where ¢, = 0 for p > 7o if ¢ is even. The Proposition follows from multiplying the above with the
MacLaurin expansion of e*dys, provided we can show that the ¢,’s are explicitly calculable. The
(finite) Taylor expansion around s = 5% of s* = ((s — 35%) + %)t is obvious, so we just need to
find the Laurent expansion of I'(s)" #"2I'(s + 3)2, which reduces to finding that of I'(s) around any
integer or half-integer. The MacLaurin expansion of I'(s 4 1) is given by |[GRO7, p. 903]) [Nie06, p.
40]

o0 n

1
_ k _ _ k+1
Do)=Y ek, =1 ui=— > COMCET Do (sl <1, (669)
k=0 k=0
where ( is the Riemann zeta function, except that ((1) := Euler’s constant. Using I'(s — 1) =

I'(s)/(s — 1) we can obtain the Laurent expansion of I'(s) around any integer. For half-integers we
use the duplication formula in the form

21725 /7T (25)

Mt 3) = "0
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which reduces the problem to finding the MacLaurin expansion of 1/I'(s). This follows from the

classical expansion [GRO7, p. 903]) [Nie06, p. 41],

1

Du+1) n+1

k=0

6.6 PARI-GP Codes

[ee] n
1
——— =) dwF,  dy=1,  dpy= D (=D C(k + 1) dp-
k=0 —

(6.70)

O]

In this section we provide the main PARI-GP programs used to obtain the numerical results of this
thesis. For all the numerical calculations we used PARI-GP version 2.13.1 on a Linux Ubuntu 20.04

PC platform.

6.6.1 Exponential growth rate of Reg(L/K).

The following PARI-GP program calculates the exponential growth rates shown in Tables

and for Reg(L/K).

1 \allocatemem (1500000000)

2 \p 100;

s \ps 50;

4 r1=0;

5 r2=de;

6 d=rl1+2*r2;

7 t0=0;

s cerosO=vector(ri+r2-t0);

9 dosO=vector (t0);

10 unosO=vector(r2);

n for(j=1,t0,dos0[jl=2);

12 for(j=1,r2,unos0[jl=1);

13 v210=concat (dos0,unos0) ;

14 AO=concat (ceros0,v210);

15 Cte0=(-d)"t0/(2*%(Pi) " (-(2%t0+r2)/2));
16 GO = gammamellininvinit (A0,O0);

17 h0(y) =CteOxgammamellininv (GO,sqrt ((exp(d*(y)))/(Pi~d)));
18 tl=1;

19 cerosl=vector(ril+r2-t1);

20 dosl=vector(tl) ;unosl=vector(r2);

21 for(j=1,tl,dos1[jl=2);

22 for(j=1,r2,unos1[jl=1);

23 v211=concat (dosl ,unosi);

24 Al=concat (cerosl,v211);

25 Ctel=(-d)"t1/(2%x(Pi) " (-(2*t1+r2)/2));
26 G1 = gammamellininvinit (A1,0);
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27 h1(y) =Ctel*gammamellininv(Gl,sqrt((exp(d*(y)))/(Pi~d)));

28 Flex(y)=-h1(y)/h0(y);

20 M(y)=(2"(-(de-1)/(2xde)))*(Pi~(-1/4))*(h0(y)) "~ (1/(2*de));

30 ystar=solve(y=-5,0,(1/de)*Flex(y)-1-0.01);

31 print("[d,y_star ,M(y_star)]=",precision([de,ystar ,M(ystar)],5));
32 write(valor_de_cte_con_K_tot_complejov2,"[d,y_star ,M(y_star)]="
33 precision([de,ystar ,M(ystar)],5));

1"

6.6.2 Right positivity interval [y*, +oo) for (—’%)

"

The following PARI-GP program finds a point y* > 0 such that (—f%) > 0 for y > y*, as shown in
Table 2.11

2 \p 300

3 allocatemem (1000000000) ;

4+ \ps 100

5 for(rr2=2,100,r1=0;r2=rr2;read(Value_of_R));

s d = r1+2*r2;
10

1n AO(t)= 1;
12 A1 (t)= (r172+rl1*r2-12%rl*t+r2°2-12*%r2* t+12*xt"2-1) /(24*r1+48%*r2);
13 A2(t)=

(1/1152) *(-23+22%r1*r2+144%t~4-384*%xt"3+r1 " 4+r2"4+2*%xr1 " 3*r2-...
14 —24%r172%r2+168*%rl1 2%t "2+2%rl1*xr2°3-24%xrl1*xr2°2-288*rl1*xt~"3-...
15 —288*%r2*%xt~3-192*%r1 2%t +576*%xrl1*xt"2-192*%xr2 " 2%xt+576*xr2*t "2
16 —48*%rl*r2 2%t +312%rl1*r2%t~2-48%1r1 " 2*%r2*%t—-. ..

17
18

19 coeficientes(P,n0,nl1,n2,n3)=
20 {my (PO);

21 my (P1);

22 my (P2);

23 my(PS);

24 my(salida);
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25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
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65

66

PO=P;

for(j=1,n0,P0=deriv(P0,MMO));

P1=PO;

for(j=1,n1,Pl=deriv(P1,MM1));

P2=P1;

for(j=1,n2,P2=deriv(P2,MM2));

P3=P2;

for(j=1,n3,P3=deriv(P3,MM3));
salida=(polcoeff (polcoeff (polcoeff (polcoeff(P3,0),0),0),0))/...
salida;

};

expr2(x) = (A0(3)-A1(3)*xx+A2(3)*x"2+MM3*xx"~3) * (A0 (0)
pO=expr2(0) ;

pl=polcoeff (expr2(x), 1,{x});

p2=polcoeff (expr2(x), 2,{x});

p3=polcoeff (expr2(x), 3,{x});
p4=polcoeff (expr2(x), 4,{x});
p5=polcoeff (expr2(x), 5,{x});
p6=polcoeff (expr2(x), 6,{x});
p7=polcoeff (expr2(x), 7,{x});
p8=polcoeff (expr2(x), 8,{x});
p9=polcoeff (expr2(x), 9,{x});

p3abs = {abs(p3_1110)*MO*M1*xM2+abs(p3_1101)*MO*M1*M3+

abs (p3_1011) *MO*M2*M3+abs (p3_0111) *M1*M2xM3

+abs (p3_0012)*M2*M3"2+abs (p3_0102) *M1*M3 " 2+abs (p3_0120) *M1*xM2 "2+
abs (p3_1002) *MO*M3 ~2+abs (p3_0000)

+abs (p3_3000)*M0~"3+abs (p3_0300)*M1"3+abs(p3_0030) *M2 "3+

abs (p3_0003) *M3~3+abs (p3_1000) *MO

+abs (p3_0100)*M1+abs (p3_0010)*M2+abs (p3_0001)*M3+abs(p3_2000)
*MO"2+abs (p3_0200) *M1 " 2+abs (p3_0020) *M2"2

+abs (p3_0002)*M3~2+abs (p3_2010) *M0 “2*M2+abs (p3_1200) *MO*M1 "2
+abs (p3_0021) *M2"2%M3+abs (p3_0201)*M1~2*M3

+abs (p3_1020)*MO*M2"2+abs (p3_0110) *M1*M2+abs (p3_2001) *M0 ~2%M3
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67 +abs (p3_.0210)*M1"2%*M2+abs(p3_0011)*M2%*M3

6s +abs (p3_1010)*MO*M2+abs(p3_0101)*M1*M3+abs(p3_2100)*MO~"2%M1
6o +abs(p3_.1100)*MO*M1+abs(p3_1001)*MO*M37};

70

71 soluc2=polrootsreal (p3abs*x+pdabs*x " 2+pbabs*x~3+p6abs*x "4+
72 pTabs*x " 5+p8abs*x~6+p9abs*x~7 - 1/d°2,[0,1071000]) ;

17

6.6.3 Left positivity interval (—oo,y.] for (—’%’) .

"

The following PARI-GP program finds a point y, < 0 such that (—f%) > 0 for y < y,, as shown in
Table 221

1 allocatemem (10°9) ;

2> \ps 200;

s \p 100;

1 for(j=3,40,for(k=5,5,r1=j;r2=k;read(Valor_de_L)));

s de=rl1+2*xr2;

10

11

12 al=gamma(s) "(ri+r2);

13 c(k)=polcoeff(al,k)*1.0;
14 a2=gamma (s+1/2) " (r2);

15 d(k)=polcoeff(a2,k)*1.0;
16

17 e(j)={

13 my (suma) ;

19 suma=0;

20 for (l=j,rl+r2,suma = suma+c(-1)*d(1-j));
21 suma;

22 };

23

24 ce(t)=1/((r1+r2-1-t)!);

25

26

27 S(t,y)=A{

25 my (suma) ;

29 suma=0;

30 for (j=1+t,rl+r2-1,suma =
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suma+(-1) " (j-r1i-r2)*((ri+r2-1-t) 1) /(Pi~(r2/2))*e(j)*
(dexy) " (j-r1-r2)/((j-1-t)1));
suma;
s
/*The bound for the constant C */
C=(2.89048) *(17.7715) ~de;
/*Upper bounds for the functions H_t(y) */
H(t,y)= ((r1+r2-1-t)!'*C/(Pi~(r2/2)*de " (ril+r2-1-t)))*
exp ((1/4) xdexy) /((abs(y)) "(ri+r2-1-t));

/*Upper bounds Lambda_i(y) for the error terms epsilon_i, .
i=1,2,3. Here H(t,y) are the functions \tilde{H}(t,y).x*/

epsilonl(y)=

(1+5(3,abs (y))+H(3,y) ) *x(2*H(0,y)+2%S(0,abs(y))*H(0,y)
+H(0,y) "2)+H(3,y) *(1+2*5(0,abs (y))+S(0,abs(y)) "2);
epsilon2(y)=(1+S(1,abs(y))+S(2,abs(y))+H(1,y)+
H(2,y)+S(1,abs(y))*S(2,abs(y))+S(2,abs(y))*H(1,y)+H(2,y)
*S(1,abs(y))+H(2,y)*H(1,y))*H(O,y)+(H(1,y)+H(2,y)+
S(2,abs(y))*H(1,y)+H(2,y)*S(1,abs(y))+H(2,y)*H(1,y))
*(1+5(0,abs (y)));
epsilon3(y)=

3xH(1,y)+3*%H(1,y) "2+6*H(1,y)*S(1,abs(y))+3*xH(1,y) "2%*S(1,abs(y))
+3*xH(1,y)*S(1,abs(y)) "2+H(1,y) "3;

/*L1(x) is the main term in the asymp. expansion of the
numerator of (-f'/f)'' as y->-oo0.

Here x=1/y, so L1(x) is a Laurent polynomial in x of the form
c_3*x"3+...+c_{-3r1-3r2+6}/x"(3r1+3r2-6) */

Li1(x)=((-ce(3)*ce(0) "2*(1+2*S(0, x)+S(3, x)+S(0, x)~2+2xS(0,
x)*S(3, x)+S(3, x)*S(0, x)"2)+3*xce(0)*ce(1)*ce(2)*x(1+S(0,
x)+S(1, x)+S(2, x)+S(0, x)*S(1, x)+S(1, x)*S(2, x)+S(0,
x)*S(2, x)+S(0, x)*S(1, x)*S(2, x))-2%xce (1) "3*x(1+3*xS(1,
x)+3*%S(1, x)~2+S(1, x)~3)));

Liderivada=L1";

/* yymin is a vector with all the roots of the Laurent
polynomial L1'(x). To convert L1'(x)
into a true polynomial, we multiply it by x7(3*rl1+3*r2-5).%/

yymin =polroots (L1(x) '*x~(3*rl1+3*r2-5));
largo=length (yymin) ;

/*The number of (complex) roots of L1'(x) x*/
minimo=10"100;
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6s for(kk=1,largo, if(abs(imag(yymin[kk]))<10~(-10),

66 minimo=min(real (yymin[kk]) ,minimo) ,));

67 ymin=minimo;

68 /*ymin is the point zl. The principal term decreases
monotonically to its limit for y<zl. x*/

6o /* E(y) is the upper bound for the error term. x*/

70 E(y)=ce(3)*ce(0) "2%xepsilonl(y)+3*ce(0)*ce(l)*ce(2)*epsilon2(y)

71 +2%xce (1) "3*xepsilon3(y);

72 /*"desig" find a point < -mini such that h(point)<0.x*/

73 desig(h, mini)={

74 my(Nl);

5 my (j);

76 my (x0) ;

77 my(sol);

78 j = 0;

79 %0 ceil (abs (mini));

so N1 107100;

st while(j < N1,if(0 < h(-x0-(1/100)%*j),j = j+1,so0l =

-x0-(1/100)*j; j = Ni1+1;));

s2  sol;

83 };

s yl = desig(Ll, ymin)*1.0;

s5 /*yl is a point <zl such that L1(y)<0 x*/

s¢ diferencia(y)= E(y)-abs(L1(y));

s7 y2 = desig(diferencia, ymin)*1.0;

88 /*y2 is a point <zl such that |L1(y)I|>E(y) */

so y0O = min(yl, y2)*1.0;

90 /*y0 is the point L */

91 write(valor_de_L_convex,"[rl,r2,L]=",[rl,r2,precision(y0,2)1);
, "
6.6.4 Evaluation of <_f7) using a variable number of residues.

The following PARI-GP program evaluates the function (—%) = f1— f2 using a number of residues

depending on the desired precision. It also subdivides the interval [y., 0] to check that fi > fo.

1 allocatemem (1000000000) ;
2 \p 80;
3 \ps 50;
4 /* This program evaluates the function F=numerator of
(=f£'/£) "' (F=3*%f*xf'xf''-2«(£"')"3-£7"2%xf"''"') within an specified
5 error = epsilon. The number of residues depends on epsilon. */
6 /*The interval we consider is [y_x,0] */
7 d=rl1+2%*r2;
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/*The Riemann Zeta function. If k=1 it is equal to the Euler's
constant . */

zetariem (k) ={

my (salida);

if (k==1,salida=Euler () ,salida=zeta(k));

salida;};

/*This function gives the values c(0),..,c(n), (n=>0) the
Taylor coefficients of Gamma(s+1). x*/

c(n)={

my (resultado) ;

my (vectorl) ;

vectorl=vector (n+1) ;

if (n==0, resultado=[1,-zetariem(1)],resultado=vector (n+2) ;
resultado[1]=1; resultado[2]=-zetariem (1) ;for(j=1,n,
resultado[j+1+1]=sum(k=0,j, (-1) " (k+1) ...

vectorll};

/*This function gives the values d(0),..,d(n), (n=>0) the
Taylor coefficients of 1/Gamma(u+l). */
de (n)={

my (resultado) ;

my (vectorl) ;

vectorl=vector (n+1) ;

if (n==0,resultado=[1,zetariem(1)],resultado=vector (n+2) ;

resultado [1]=1;resultado [2]=zetariem (1) ;for(j=1,n,

resultado[j+1+1]=sum(k=0,j,(-1) " (k) *...

for(j=1,n+1,vectorli[jl=resultado[jl);

vectorl;};

/*The function "alpha(j,i,t)" gives the jth-Taylor coefficient
centered at (1-i)/2 of s”t.x*/

alpha(j,i,t)={

!/ (Gr*(e-3) D *((1-1)/2) " (t-3) ; };

/*The function "beta(j,i,t)" gives the jth-Taylor coefficient
centered at (1-i)/2 of exp(-sdy)

except the exponential term g=exp(1l/2*d*y) which we will keep
as an extra variable for a moment.*/

beta(j,i,y)={

(1) j*d~j*xy~j/(3D};

/*The functions gamaiimpar and gamaipar calculate the m
th-Taylor coefficients gama(m,i) of

Gamma (s) centered at (1-i)/2, depending whether i is odd or
even respectivelyx*/

gamaiimpar (m,i)={

my (vectorc) ;

vectorc=c(2*%d+1); /*saves the vector [c(0),...,c(2%d+1)] =*/

my (coeffi);
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45 coeffi=polcoeff (Ser(sum(w=0,2*xd+1,vectorc[w+1]l*x"(w-1))/...

46 coeffi;l};

47 gamaipar (m,i)={

4s my (coeffi);

19 my(vectorc);

50 vectorc=c(2*xd+1) ;

51 my(vectorde) ;

52 vectorde=de (2xd+1) ;

53 coeffi=sqrt(Pi)*polcoeff (Ser(sum(j=0,2*d+1,(-2*xlog(2))"~j/(j!)
54 *x"j)*sum(w=0,2*%d+1,vectorc [w+1]*2 w*xx"w) *sum (p=0,2xd+1,

55 vectorde [p+1]1*x~p) ...

s6 coeffi;l;

57 gama (m,1i)={

53 my(coeffi);

5o if (frac(i/2)==0,coeffi=gamaipar(m,i),coeffi=gamaiimpar(m,i));
6o coeffi;l};

61

62 A(m,i)={
63 gama(m,i-1);};

64

65

66

67

s R(u,i,t)=(sum(j=0,t,alpha(j,i,t)*u"j))*((sum(s=0,d,gama(s-1,1i)*
60 u"s)) (r1+r2)+0(u~d))*((sum(m=0,d,a(m-1,i)*u"m)) "r2+0(u"~d))

70 +0(u~d);

71

6.6.5 Evaluation of log <]f72> — log (}le) by the Double Exponential method.

The following PARI-GP code was used to evaluate the normalized function Fj := kmg(%%) —

log (JZ%) on the subinterval [0,y*] using the Double Exponential method. This program also
subdivides that interval to ensure that F} > F5.

1 \p 190;

2 \ps 190;

3 allocatemem (1000000000) ;

14 for(migrado=3,20,rl=migrado;r2=0;

5 read (Right_Subdiv_Value_of_R);read(Double_Expo_and_Newton_Subd)) ;
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In(h)=log(h); /*Natural Logarithm =*/

/*The signature */

d = r1+2*r2;

M9=2; /*Vertical integration line. */

/*Double Exponential Method */

/*The function eneyh gives the values of n and h given the
inputs y=point, D=De=precision */

eneyh (y,De,te)={

my (t) ;

my (n) ;

my (M) ;

my (ustar) ;

my (A) ;

my (Deltala);

my (Deltalb) ;

my (M2) ;

my (gama) ;

my (x0) ;

my (Mprima) ;

my (M1) ;

my (alpha) ;

my (beta) ;

my (alphal);

my (A1) ;

my (L) ;

my (Ct) ;

my (h) ;

my (tau) ;

my (ustar) ;

M=M9; /*Vertical integration line */

/* Computation of constants M2, A, gama such that |f(z)|
M2*xexp (Axexp(gamalz|)) x/

tau= Pi/4;

t=tau/2;

gama=1/2;

ustar= -(1/4) *(4*gama*rl*M+8xgama*r2*xM+2*xPi*gama*rl+4*xPi*xgama*r2+

2*gama*1ln (2) xri+. ..

A= (ustar*((r1+2.xr2)*y+2.917369917*r1+2.917369917*r2)+

.6931471806%*(.50000. ..

Deltala= abs(M-(1/2)*sqrt(2))/sqrt(2) ;

Deltalb= abs(M+1/2-(1/2)*sqrt(2))/sqrt(2);

M2=(sqrt (2*xPi)*exp(1.1/(12*Deltala)-M)) " (ri1+r2)*

(sqrt (2*Pi)*exp(1.1/...

/*Computation of constants M1, alpha, beta such that [f(x)|<
Mi*exp(-alphalx| “beta) */
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48 x0=30%M;

49 Mprima = sqrt(2*Pi)*exp(1.1/(12*M)-M+(1/2*%x(M-1/2+te/(rl1+r2)))

50 *1log(M~2+x072)+(1/4)*x0*Pi);

51 M1 = ((max(sqrt (2*Pi)*exp(1.1/(12x(M+1/2))-M-1/2),
sqrt (2*Pi) *exp (1.1/(12%x(M+1/2))-M-1/2+1/2xM*1log ((M+1/2) "2+1372)

52 +13*Pi/4) )) "r2)*max ((sqrt (2*xPi)*exp(1.1/(12*xM)-M)) " (ri1+r2),
Mprima~(ri+r2));

53 alpha = (rl+r2)*Pi*x(1/4)+r2*Pi/4;

54 beta = 1;

55

56 alphal = alpha*(cos(beta*t)-(1/(tan(beta*tau)))*sin(beta*xt));
57 Al = Axcos((gama)*t)/cos(gama*xtau);

s5s L = (log(alpha)-De-log(2*M1))/(-alpha);

5o Ct = Al*x(((gama)*Al+1+1)/(alphal*beta)) " (gama/(beta-gama))

6o —alphal*x(Al*xgama...

61 h = 2xPixt/(De+Ct+log (4*xM2+2*xexp(-De-Ct)));
62 n = ceil((asinh(L)/h));
63 [n,h];};

6.6.5.1 C code used with the gp2c compiler.

The following code was used to compile the dot product function appearing in the Double Expo-
nential method of section using the gp2c compiler of PARI-GP.

2 dotp(v,w)={
3 my(salida);
14 salida=w*mattranspose(v);

5}

8 #include "pari.h"

10 void init_dotpvectores23(void);
11 GEN dotpvectores23(GEN v, GEN w);
12

13

14 void

15 init_dotpvectores23(void)

16 {

17 return;

18 }

19

20 GEN
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21 dotpvectores23(GEN v, GEN w)

22 {

23 long i, 1 = 1g(v);

24 double s = 0.;

25 for (i = 1; i < 1; i++) s += rtodbl(gel(v,i)) =*
rtodbl (gel(w,i));

26 return dbltor (s);

27 }

28

29 /*Compilation of the C-code */

30 1nstall(“1n1t prodpunto","v","init_prodpunto",
31 "./prodpunto.gp.so");

32 install ("prodpunto","DO,G,DO,G,","prodpunto",

33 "./prodpunto.gp.so");

6.6.6 Programs used in the proof of (4.1), (4.2), (4.3) and .

U

f
The following PARI-GP programs were used to prove the monotonicity of the functions _M

with respect to the signature (71, 72), more specifically, to prove inequalities (4.1} , , and
. ) for degrees d < 40.

1 /*This program checks that, for a fixed degree deg, the
function -f'/f for signature (rl,r2)

2 1s the smallest when the number r2 is the maximum possible,
i.e., when r2=deg/2 if deg is even

3 or r2=(deg-1)/2 if deg is odd. */

4 allocatemem (1500000000)

5 \p 150;

6 \ps 50;

7 serie_Gamma= gamma (u);

s serie_Gamma_en_un_medio= gamma (u+1/2);

9 degl=40;

10 deg2=40;

1 /* From degree=degl to deg2,

12 if degree is odd, decrease the signature from (deg-2,1) up to
(1,(deg-1)/2) checking positivity in each step.

13 if degree is even, decrease the signature from (deg-2,1) up to
(0,deg/2) checking positivity in each step.

14 */

15 for (deg=degl ,deg2,write("subdivision_vector_signature_ordering"

6 , —T-—-—-—-- e

17 print("--------—------ ") ;print ("DEGREE=",deg) ;

18 print("-------------- ")

19 if (frac(deg/2)!=0,for(j=1,(deg-1)/2, r=deg-2%xj;s=j;
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read (signature_ordering)) ,for(j=1,(deg)/2,

r=deg-2%*j;s=j; read(signature_ordering)));

write ("subdivision_vector_signature...

read (recursive_signature_ordering) ;

/* This program verifies that F1=(-f'/f)>F2=(-g'/g), where f
is the function associated with

the signature (1,(d-1)/2) and g is associated with the
signature (0,(d-1)/2).

The input is the degree d=degr odd.

The output is a finite interval [L,R] and a vector of
verification points v.*/

print ("signature " ,[1,(degr-1)/2]1);

print ("versus signature ",[0,(degr-1)/2]1);

/*Read the asymptotic approximations */

read (asymp_plus_infinity); /*Get the value of R=valordeR */

read (asymp_minus_infinity); /*Get the value of L=valordelL =x/

L=valordelL_diff_degs;

R=valordeR_diff_degs;

print ("[L,R]=",precision([L,R],2)); /*The finite interval to
consider x*/

/*From now on, we verify that F1>F2 on the interval [L,R]. */

read(residue_approx_of_ft); /#Using residues, this program

generates two functions F1, F2 approximating -f'/f

in signatures (1,(degr-1)/2) and (0,(degr-1)/2) on the
interval [L,0]*/

FFsub (y)={

my (al,a2);

al=F2diffdeg(y);

a2=Fldiffdeg(y);

[al,a2];

33

vsub=precision ([L,0],20);

flsub(x)=FFsub(x) [1]; /*0nly need flsub and f2sub to make
graphs. */

f2sub (x)=FFsub(x) [2];

print ("Subdividing the interval " ,[L,-1]);

read (interval_subdivision_function); /*Loads the function
subdiv(FF,v) for subdivision. */

vi=subdiv (FFsub,vsub); /#The subdivision vector for [L,-1] =%/

vl_low_precision=precision(vl,2);

nl=length(vl);

print ("# subdivisions needed (to the left)= ",nl);

read (double_exp_approx_of_£ft);/*Using the Double Exponential
Method, this program generates two functions F11, F12
approximating -f'/f in signatures (1,(degr-1)/2) and
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(0,(degr-1)/2) on the interval [0,R]=*/

FFsubb (y) ={

my (al,a2);

al=F12diffdeg(y);

a2=F11diffdeg(y);

[a1,a2];

+;

vsubb=precision([-1,R],100);

flsubb (x)=FFsubb(x) [1]; /*0nly need flsub and f2sub to make
graphs. x/

f2subb (x)=FFsubb(x) [2];

print ("Subdividing the interval ",precision([0,R],2));

/*Loads the function subdiv(FF,v) that subdivides [0,R] %/

read(interval_subdivision_function);

/*The subdivision vector for [0,R] x*/

vlia=subdiv (FFsubb,vsubb);

vl_low_precisiona=precision(vlia,b?2);

nla=length(via);

print ("# subdivisions needed (to the right)= ",nla);
write("subdivision_vector_signature_ordering_diff_degs",[[1, (...
concat (vl_low_precision,vl_low_precisiona)],";");

print ("Subdivision vector written on file
subdivision_vector_signature_ordering_diff_degs with format
[[1,(degree-1)/2],[0,(degree-1) /2] ,vector];");
print("-------------"-——-"—"———-~—~——~—~—~——-~—~————- ")
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