
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

UBIQUITOUS CLIENT SIDE

CUSTOMIZATION OF WEB

APPLICATIONS.

RAÚL MONTES TRONCOSO

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JAIME NAVÓN C.

Santiago de Chile, January 2010

c© MMIX, RAÚL MONTES TRONCOSO

c© MMIX, RAÚL MONTES TRONCOSO

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio

o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a su autor.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

UBIQUITOUS CLIENT SIDE

CUSTOMIZATION OF WEB

APPLICATIONS.

RAÚL MONTES TRONCOSO

Members of the Committee:

JAIME NAVÓN C.

JENS HARDINGS

LUIS GUERRERO

JUAN DE DIOS RIVERA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, January 2010

c© MMIX, RAÚL MONTES TRONCOSO

Para Mariela.

ACKNOWLEDGEMENTS

There are many people I would like to thank because, directly or indirectly, they were

helpful or they routed me in the right direction. But I want to give special thanks to some

of them who were of huge importance in finishing this thesis.

I thank Mariela for her unconditional love and constant support and encouragement

to complete this thesis. I also thank my parents because they understood and supported

me in professional and academic decisions sometimes not so easy to understand.

I want to thank Professor Jaime Navón for his guidance, help, trust and also for putting

pressure on me to finish this when I needed it. I thank him not only at an academic level

but also at a personal level.

Finally, I want to thank my friends: John Owen for our helpful discussions on topics

of this thesis, Raúl Acuña for teaching me what I needed about LATEX and Valeria Gho for

her help with the english translation and reviews of the text.

v

Contents

Acknowledgements . v

List of Figures . viii

Abstract . ix

Resumen . x

Chapter 1. Introduction . 1

1.1. Evolution of Web applications . 1

1.2. Customization importance . 5

1.2.1. Customization in Web applications 6

1.3. Existing approaches to Web application customization 7

1.3.1. Server side customization . 9

1.3.2. Client side customization . 12

1.4. Proposed approach to Web application customization 17

1.4.1. Important considerations and restrictions 18

1.4.2. An architecture for ubiquitous client side customization 19

1.4.3. Prototype implementation and results 20

Chapter 2. Ubiquitous client side customization 22

2.1. Introduction . 22

2.1.1. The browser as the Web application’s customization engine 22

2.1.2. Huge customization possibilities, but without universal access 25

2.1.3. A new architecture for client side customization 25

2.2. Main challenges . 26

2.2.1. Storing and retrieving customizations 27

2.2.2. Applying customizations to Web applications 29

2.3. An architecture for ubiquitous client side customizations 30

vi

2.3.1. Prototype Implementation . 34

2.4. Conclusions and Future work . 36

2.4.1. Conclusions . 36

2.4.2. Future Work . 37

Chapter 3. Conclusion and Future Research 38

3.1. Review of the Results and General Remarks 38

3.2. Future Work . 39

References . 41

vii

List of Figures

2.1 Three parts of the architecture . 31

2.2 Sequence diagram of a customization process 33

2.3 Example Web application before and after customizations 36

viii

ABSTRACT

JavaScript has empowered users beyond developers’ vision, letting them to customize

Web applications to their needs. Widely used tools such as Greasemonkey made this

possible by letting users modify applications through the injection of own or third party

scripts.

Current efforts however involve either browser extensions or a client side proxy, ap-

proaches that are both against the nature of Web applications. The customized application

is no longer available in an ubiquitous manner; the user of the application needs to install

and configure software on every place he or she wants to access it from. The need for

customization of Web applications is clear, but it should be aligned with the ubiquity that

the Web gave to its users.

We propose a software architecture to support client side customization in an ubiq-

uitous form, that requires minimal changes in current Web applications, using existing

standards to store and fetch the needed information and letting the user work with cus-

tomized applications from any modern browser and computer. This document describes

the proposed architecture, faced challenges, a prototype implementation that shows the

technical feasibility of the proposal and possible improvements in the future.

Greasemonkey-like userscripts were successfully used in the prototype, configuring

them once and accessing the modified application in different browsers and machines.

Applications implementing the proposed architecture will be customizable at the client

and universally accessible, keeping this basic principle of the Web. With current working

drafts, we could minimize the changes needed in Web applications further, increasing the

potential adoption of the proposal.

Keywords: client-side customization, ubiquitous customization, Web applica-

tions customization

ix

RESUMEN

JavaScript le ha dado poder a los usuarios más allá de la visión de los desarrolladores,

permitiéndoles adaptar aplicaciones Web de acuerdo a sus necesidades. Herramientas

ampliamente usadas como Greasemonkey lo hicieron posible permitiéndole a los usuarios

modificar las aplicaciones mediante la inyección de scripts propios o de terceras partes.

Sin embargo, los esfuerzos actuales involucran extensiones del browser o un proxy en

el cliente, lo que va en contra de la naturaleza de la Web. La aplicación adaptada no está

disponible ubícuamente; el usuario necesita instalar y configurar software en cada lugar

desde donde quiera acceder a la aplicación. La necesidad de adaptar las aplicaciones Web

es clara, pero debería mantener la ubicuidad que la Web le dió a sus usuarios.

Proponemos una arquitectura de software para soportar modificaciones en el cliente

de forma ubícua, necesitando cambios mínimos en las aplicaciones, usando estándares

existentes para guardar y extraer la información necesaria y permitiéndole al usuario usar

aplicaciones modificadas desde cualquier browser moderno y computador. Este docu-

mento describe la arquitectura propuesta, los desafíos enfrentados, una implementación

prototipo que muestra la factibilidad técnica de la propuesta y posibles mejoras a futuro.

Userscripts como los de Greasemonkey fueron usados exitosamente en el prototipo,

configurándolos una vez y accediendo a la aplicación modificada en diferentes browsers

y computadores. Implementando esta arquitectura las aplicaciones serán adaptables en el

cliente y universalmente accesibles, manteniendo este principio básico de la Web. Con

actuales trabajos en borrador, podríamos minimizar aún más los cambios necesarios en

aplicaciones Web, aumentando la adopción potencial de nuestra propuesta.

Palabras Claves: customización en el lado del cliente, customización ubícua, cus-

tomización de aplicaciones Web

x

Chapter 1. INTRODUCTION

The Web has emerged as an ideal platform for many uses that desktop applications

could not satisfy and even for replacing functions that used to belong to desktop applica-

tions. The Web supporting technologies have advanced enormously along its short life,

giving an idea of how important the Web has become.

When a user enters a Web application, he access the same Web application every other

user on the Internet. When an application lives on the Web it is accessible to a huge mass

of different users from different countries, cultures and tastes. Therefore, having the exact

same application for all those users could not be realistic. This is where the capabilities

of the application to be adaptable by its users earns importance. Users should be able

to customize its applications and every developer seems to know that – this is why users

almost always can see a “Preferences” section on every application, Web or desktop based.

Before entering the terrain of customization and in particular, of client side customiza-

tion, we present an overview of the evolution of the Web, specially in terms of technologies

and how these technologies have helped raise new orientations and uses of the Web. Later,

we define and explain the term “customization” in general and in the context of Web appli-

cations, in order to review current efforts in customization of Web applications and what

they still do not satisfy. We finalize this introduction with our proposal and the results

obtained.

1.1. Evolution of Web applications

For better understanding of the topics involved, we think it is important to start with

a brief history of the evolution of the Web, from its technologies and capabilities point of

view. Our review is based on material from the book “Foundation of Ajax” (Asleson &

Schutta, 2005).

1

The Web begun with just HyperText Markup Language (HTML), a subset of the ex-

istent Standard Generalized Markup Language (SGML), and HyperText Transfer Proto-

col (HTTP). The first one allowed people to write documents that could link to other

documents, while the latter was capable of transferring these documents from one server

in the world to any other computer connected to Internet. Back then, though, these doc-

uments were viewed by many people with just primitive textual browsers, compared to

current browsers.

Only static documents were available, for example research papers, information about

university classes, contact information or documentation. These documents were pub-

lished on the Web and then users could download and view them through their browsers.

However, expectations and requirements to the Web raised with the popularization of

personal computers and elaborated desktop applications like Microsoft Excel and Corel

Word-Perfect.

Efforts in both the client (browser) and the server emerged to give users dynamic

content. On the server side, the first to come up was Common Gateway Interface (CGI):

programs executed on the server that could generate the content served back to the client,

making possible to for example, show selling products from a database.

Later, by the hand of Netscape (creators of the first commercial browser, Netscape

Navigator) and Sun (creators of the Java programming language), applets were born. Ap-

plets were programs downloaded and executed inside the browser which offered dynamic

Web applications for users that have Java installed on their computers. Web applications

no longer lived only in the server but primarily in the client’s browser, which was respon-

sible of executing the applet’s code. This was the origin of the “thick clients” concept on

the Web, in contrast to a “thin client” just rendering the content generated by the server.

Later, JavaScript, a technology created by Netscape, joined the game. JavaScript was ini-

tially thought to interact with HTML documents and mutate its contents on the browser

(after the documents were loaded). But it quickly became more popular and available on

2

other browsers with the ratification by the European Computer Manufacturers Associa-

tion (ECMA) as the ECMAScript specification and the standardization by the World Wide

Web Consortium of the Document Object Model (DOM) – a representation of the HTML

document accessible programmatically by scripting languages like JavaScript.

The disadvantages of applets as a thick client application and insufficient capabilities

of JavaScript demanded the server to evolve too. Java, the programming language of ap-

plets, addressed the server side creating the servlets, a more secure and efficient alternative

to CGI, and later JavaServer Pages (JSPs). But this did not only happen in the Java world:

Active Server Pages (ASPs) from Microsoft and other languages as PHP and ColdFusion

were widely used on the server to create dynamic Web applications.

Nevertheless, all those server side technologies delivered a generated content that

had to be refreshed entirely whenever a change by the user or by the application was

made. A richer user experience like the one offered by applets was needed but without

its limitations. Thus, a number of technologies emerged to satisfy this need of richer

interactions on the client side.

Flash and dynamic HTML (DHTML) tried to offer a richer experience. The first is

a technology created by Macromedia for delivering applications that provide a user expe-

rience very close to that of a desktop application with a lower entry barrier than applets

from a developer point of view. However, Flash is a proprietary technology and, just like

applets, it requires users to install a browser plug-in in order for it to work. DHTML is

a combination of HTML, Cascading Style Sheets (CSS), JavaScript and the DOM that

lets developers write code that modifies the page on the fly at the browser, without server

intervention, but limited to the content delivered by the server.

The advantages of a Web application over a desktop one are clear. Not only are

they easy to deploy (because developers just update the application in their servers and

immediately the application is updated on all the clients) and easy to install by users (users

really do not need to install anything if they already have an internet connection and a

browser) but because of their almost null software requirements or even operative system

3

requirements, Web applications have “universal access”, as Berners-Lee (2006) referred

to or, in one word, they are ubiquitous. Users can access the same application whether

they are at work, at home, or even in a public internet lounge, needing only a browser and

an internet connection.

These important advantages make a Web application solution the first choice when

developing a new application, even with the poor responsiveness and user experience they

had, caused by this synchronous flow of requests and responses on every user action,

refreshing all the page to just update a little portion of it.

Many attempts have been made in order to improve the relatively poor user experience

of Web applications. Attempts like Remote Scripting based on Java, others based purely

on JavaScript without dependence on the server side, or some hacks within HTML and

JavaScript to make asynchronous requests to obtain content and refresh the page. But one

technique called Ajax overcame the others and is established now as standard de facto.

Ajax is a shorthand for Asynchronous JavaScript + XML and, as Garrett (2005) stated, it

is composed of:

• standards-based presentation using XHTML and CSS

• dynamic display and interaction using the Document Object Model

• data interchange and manipulation using XML and XSLT

• asynchronous data retrieval using XMLHttpRequest

• and JavaScript binding everything together

Ajax has made possible to close the gap between Web applications and desktop ones in

terms of user experience and interface responsiveness, without the need to install anything

and thus keeping itself aligned to the origins of the Web and its universal access, making

Web applications an even better choice.

4

1.2. Customization importance

Before going into why customization in software applications is so important, we must

distinguish between two different – but often confused or mixed – terms: customization

and personalization. We have taken Nielsen (2009)’s definitions, which groups these two

concepts as cases where “user experience is adapted to each individual user’s needs” but

he also differentiates both in the following way:

Customization: happens when the user tells the computer what he or she prefers

to see

Personalization: happens when the computer modifies its behavior to suit its

predictions about the current user’s interests

Customization implies a user with preferences about the way he or she wants to see

and interact with the application, and actions through which the user expresses his pref-

erences to the application. Thus, in response to those actions, the application reacts and

adapts itself to better satisfy the user’s taste.

“Everyone is unique” is almost a cliche but this is why an application needs to have

customization options. Software customization has been addressed in Human–Computer

Interaction research because developers must “write software for millions of users (at

design time), while making it work as if it were designed for each individual user (who

is known only at use time)” (Fischer, 2001). Even in an application such as a simple text

editor, some users might prefer to see eighty characters per line while others a hundred. A

dark background color might be comfortable for a user, but other people might find it an

outrage.

With the exception of some specific and often already customized developments, an

application’s audience is very large. Many people end up using the same application but

not everyone has the same preferences about how they want the application to be. If the

application has no customization options, it is difficult to satisfy a large number of users.

5

Since software is getting more and more complex in terms of number of features or

functionalities, the need for customization options is greater because on each feature or

functionality of the application, different users can have different tastes. Thus, in order

to meet the requirements of more users, the application would need to be adaptable by a

larger quantity of customization options. As Fischer (2001) explains, High–Functionality

Applications (HFAs) allow users to control how the HFA behaves through adaptation fea-

tures such as preferences and customization components and even sometimes by support-

ing end–user programming with macros and other simple programming languages.

Many different users use the same application, and they need to be able to customize

their experience with such applications. That fact is clear enough for developers, who

have included this customization options in their applications since long ago and keep

doing so, either having a central preferences section, preference options spread across the

application, or even both of them.

1.2.1. Customization in Web applications

Web applications are not an exception to general applications in terms of the need for

customization by its users. In fact, they might even be a good example of how important

it is for an application to be different for each of its users, both in terms of personalization

and of customization. As Baresi, Garzotto, and Paolini (2000) explain, “Customization

is assuming increasing relevance since complex web applications, such as portals, for

example, are offered to a large community of users with different needs and tastes”. But

this complexity in Web applications is greater every day, specially since the Ajax (Garrett,

2005) revolution because it raised to a new level the interactivity and features possible

in Web applications. From the year 2000 until today, Web applications offer many more

features that users may need to customize and thus customization is increasingly relevant.

There even is another factor to consider customization so important in Web appli-

cations. In most Web applications, users have to register (or sign up) in order to use it

– or have access to more functionalities. Thus, the concept of “user account” in Web

applications is widespread in a powerful way, as opposed to desktop applications. As a

6

consequence, although Web applications have only one logic deployment location (one of

its huge advantages, from Section 1.1) users expect to have a unique version of the ap-

plication that they can adapt to their taste; after all, they see a “Welcome, John” message

every time they are using the application.

The presence of customization options in Web applications can be easily found in

many contexts. For example, taking any social Web application like Facebook, at least

one thing must be customizable: e-mail notifications. Some users prefer to receive e-mail

notifications for every event that happens within the social network while others simply

hate any type of e-mail notification.

Another common example is a bulletin board Web application like phpBB or VBul-

letin. Besides all the customization options the admin has – affecting all of its users – each

user of the application has access to many configurations that change the way they interact

with the application. For example, visual changes such as the skin or font size, changes

in the application’s behavior such as e-mail notifications or show/do not show the user

online status and changes in the way users see information, such as date and time format

or display order of posts.

The need for customization in the context of Web applications is at least as important

as in desktop applications, but Web developers must deal with the fact that there is only one

instance of the application every user on the planet has access to. Thus, the possibilities

and ways of offering customization options are very different from desktop applications,

where every user has its own instance of the application and therefore any modification

applied to it does not affect other users in any way.

1.3. Existing approaches to Web application customization

In the case of common desktop software installed on some machine, the code that

runs when executing the application lives on the same machine, as well as the application

data and the information about how the user has customized the application. Of course,

there are variations where the desktop application loads some data from internet or other

7

computer but the point is that every user running the application has its own version of it

in his computer.

In the land of customization, having this own version of the application allows pow-

erful and broad forms of customizations, such as extensions and plug-ins (Birsan, 2005).

The widely used Firefox browser, for example, was built from its foundations as an exten-

sible application and because of that, every user has infinite possibilities of customizing

it. Users only have to download and install small pieces of software called “extensions”

and they can alter, extend or change the application’s interface, behavior or functionalities.

Since all users have their own instance of the browser installed on their machines, every

one of them can install different extensions and adapt the browser to meet their needs,

without affecting other users.

In Web applications the scenario is different: the code of the application itself is

completely contained on the server (or servers) hosting the application, but when the ap-

plication “runs”, it really runs partly on the server and partly on the client (the browser

that loaded the application).

Every time the user executes the Web application – that is, he enters the Univer-

sal Resource Locator (URL) where the application lives on his browser – the part of the

application that is executed on the browser is loaded from the server and, within this exe-

cution, the browser asks the server for some data or other pieces of the software – and thus

executing the server part of the application again.

The important thing to note about this is that the same code on the server is run for

every user of the application, and a potentially different code of the application is run on

every users’ browser. Thus, the application could offer customization options both in the

part that runs on the client side (the user’s browser) and also by identifying the user on

the server. At the server, this customization can be done whenever the server delivers data

or pieces of software to the client – this happens at the initial loading of the application,

where the server can deliver a potentially different part of the application on the client,

and also when the client side of the application asks the server side for information. At

8

the client side it must be taken into account that the part of the application running there

is loaded the same way every time the user “starts the application”, so any modification

done only on the client will be lost next time the user loads the application.

In the following subsections we discuss about the approaches, possibilities and limi-

tations of current efforts to provide customization options (in some cases, unintentionally)

to users of Web applications at both, server and client side.

1.3.1. Server side customization

We refer to server side customization in Web applications when the source of infor-

mation about customizations is the server side of the application. Besides, most of the

process of applying these customization is executed also on the server, thus delivering to

the browser an already customized client side of the application. There are three important

approaches for customizing Web applications that meet these restrictions. The following

subsections explore each of them.

1.3.1.1. Application’s Preferences section

The most basic form of customization and probably the first one everyone can think

of is the equivalent to the most common way of customizing in a desktop application: the

preferences section. As discussed before, the server side of a Web application is the same

to all of its users. Therefore, to be able to store and retrieve customization information the

application needs to identify and distinguish every user uniquely and user accounts cover

exactly this requirement.

The user has to register an account on the application and then log in with a username

(sometimes an e-mail) and a password. The application loaded for this user may be differ-

ent to the one loaded for another user if one of them entered the preferences section and

changed some of its values. Thus, while one user might see twenty items per page in a

shopping application, the other one might see fifty items per page on that same application.

Almost every Web application has a preferences section. Some let the user customize

just a couple of values while others have all sorts of options to alter behavior, look&feel

9

and features. Although we do not propose to eliminate this form of customization, there

are clear limitations to it: the only preferences that can be changed are the ones the applica-

tion’s developers have considered for user customization and they have assigned resources

for implementing them.

1.3.1.2. Plug-ins and extensions

Another form of customization, also based on desktop applications, is through plug-

ins and/or extensions. We mentioned Firefox as one of many desktop examples of this

approach, but within Web applications there are many as well. Blogs such as Word-

press, Forums or Bulletin Boards such as phpBB and vBulletin, Content Management

Systems (CMS) such as Joomla and Drupal and Project Management Systems such as

Trac and Redmine, to name a few: they all have a sophisticated plug-in or extension sys-

tem.

Generally, any person with the required knowledge can develop a plug-in or extension

and put it to everyone’s disposition. Thus, this decreases the dependency on the applica-

tion’s developers like seen in the previous approach. Nevertheless, it also has very impor-

tant limitations. They are not “per-user” oriented because only the Web application’s “ad-

ministrator” (or Webmaster) has the power to install these plug-ins or extensions. Aside

from this, although these plug-ins may also inject extra options in the preferences section

for configuring them, once they are installed, they alter the behavior, functionalities or

look&fell of all Web application’s users.

There is no more “per-user application” with this form of customization because it is

not oriented to provide a different experience to many different users of the same Web ap-

plication, but to provide a different base application for many different installations of the

software, each one having their own users. Therefore, in practice, it is like having different

applications created from one core application and any of them will offer only the previ-

ous form of customization to its respective users. For example, phpBB, before mentioned

as a bulletin board application, can be customized by its administrator with a variety of

plug-ins. Because of this there are many phpBB installations different from each other on

10

the Internet, delivering a different experience to its respective users. However, these users,

as mentioned earlier, can also differentiate their experience from other users belonging to

the same installation of the application using the previous form of customization already

present in phpBB.

1.3.1.3. Per-user widgets or gadgets

We have said that in a Web environment the same piece of software (on the server) is

running for all of its users, but this is not always true. The third approach tries to break

this principle making the server side of the application different for every user, or at least

it can be seen this way. The application has a – sometimes very complex – infrastructure

that allows it to dynamically load and present functionality to its users that does not live

in the same place of the application, and the best part is that the decision of wether or not

to load some piece of software from another place on the internet depends on each user.

This approach has been popularized with Web applications like Facebook, iGoogle

and Netvibes. “Facebook applications” (Gjoka, Sirivianos, Markopoulou, & Yang, 2008)

and “widgets” or “gadgets” (Pierce, Fox, Yuan, & Deng, 2008) are different names to refer

to these pieces of software that customize the application. Although there are substantial

differences between both of them, they share one important thing: users can add these

pieces of software developed by third parties – or even the same application’s developers

– into the primary application. These pieces of software can live and be executed on other

servers but communicate to the primary application through an exposed Application Pro-

gramming Interface (API). Therefore, it can be seen as a huge application where its server

component lives and runs in many distributed places and every user can run a different

version of the application if they use different pieces across this infrastructure.

In this form of customization, techniques such as HTML iframes, dynamically loading

JavaScript code, Ajax proxies or storing the third party’s piece of software in a special way

in the primary application’s servers are typically used to blend these other applications

into the primary application, because normal Ajax requests and other techniques usually

11

present in Web applications cannot load application code from other servers in different

domains.

Although there is minor dependency on primary application’s developers – after they

have built the API and all the components needed for this architecture – and it is possible

for any user to have a different application customized to meet his needs, this approach

has two drawbacks: the possibilities offered to third parties are limited by the API and

resources provided by the primary application’s developers; and supporting this architec-

ture needs a huge amount of development effort on the Web application. In cases such as

Facebook, the effort did pay off, but it is not the general case for every Web application.

Approaches on the server side are necessary, but they do not complete the picture.

Needs like no dependence on the Web application’s developers and unique adaptability to

every different user are not always met and still have drawbacks showing something else

is required.

1.3.2. Client side customization

In contrast to server side customization, we refer to client side customization when

the information obtained for these customizations and the changes to the application are

triggered and executed in the client side – usually, the browser.

The very existence of client side customization is because what users see about a Web

application is the result of the browser’s interpretation of the application. Developers can

tell the browser how they want the application to look and behave (that is the purpose of

Web standards), but in the end, the user will see what the browser will show to him – either

controlled by the application, the user or itself – and therefore developers do not have full

control of the Web application.

The client side of Web applications is growing, increasing complexity and sophis-

tication, specially since the Ajax introduction mentioned earlier. This has created new

opportunities for other forms of customization not possible (or at least not imaginable) in

the past, because the empowered client side of the application can have other sources of

12

information besides its own server. Also the client side is completely capable of altering

itself and therefore behave or look completely different.

There are only two sources where the client side of the application can store and load

customization information: the browser and other servers. There are no other possibilities

since there are no more actors involved. However, these two sources are very wide.

At the browser, cookies and special plug-ins or extensions offer storing and loading

information capabilities. Cookies are small text strings sent by a Web server to a browser

– or set on the client using JavaScript, for example. This text is stored at the browser, it

is associated with the sender’s site and it is sent back to the Web server on each future

request to the same website (Millett, Friedman, & Felten, 2001).

The most common use of cookies is to store information about the visiting user, for

example, the identification of its session so the server can know that the request is related

to all other past and future requests of the same user. In terms of customization cookies are

rarely used and when they are, it is for simple and non-critical things such as remembering

the last state of a panel (opened/closed) or the preferred language and locale, because of

its weak persistency nature. Cookies are easily and frequently deleted (and developers, as

previously stated, have no control on this) so in practice, a Web application cannot depend

on the persistence of a cookie beyond the scope of a user’s session. Also, because they

are sent back to the server on every request, they do not offer a good alternative to store

big quantities of information without being inefficient (in fact, they have a limit of 4096

bytes (Kristol & Montulli, 1997)). Even if we ignore these limitations, cookies are stored

only at the requesting browser. Therefore, when starting the application from any other

machine or any other browser on the same machine, all the information stored before will

not be available.

Plug-ins like Google Gears offer a more stable storage alternative with high data ca-

pacity. Gears is a browser plug-in that adds a local database to the browser in which a Web

application can store all kinds of information and even search through it. Customization

information could be easily stored and retrieved by the application but, like cookies, it is

13

only accessible from the browser where they were stored. Therefore a different machine

implies different information. In addition, like every other plug-in, it must be installed

on a browser to be accessible for a Web application so unlike cookies – part of the HTTP

standard – a user can have this possibility in one browser but not in others.

The second source of customization information are other servers. However, this im-

plies cross-domain requests from the application, and that is a restricted subject. Because

of many security concerns (and that is why the “same-origin policy” (Zalewski, 2009) ex-

ists), there is no direct way to communicate to another domain from within the client side

of the Web application. Things like generating an Ajax request to another server or loading

another domain’s application into an iframe and obtaining some data through JavaScript

communication are not possible due to these security restrictions.

There are techniques however that allow getting information from other servers with-

out falling into these restrictions, although they have some limitations. Among them we

can mention loading external scripts (sometimes customized through HTTP GET param-

eters) by dynamically inserting HTML script tags, the use of callback functions, cross-

domain requests through Flash or other browser plug-ins or extensions, cross domain re-

quest proxies, etc. One prominent solution in this area due to its security, cross browser

functionality and the quality offered in communication is Subspace (Jackson & Wang,

2007), although the focus of this and the other mentioned techniques is not customization,

but mashups or integration of widgets and similar type of components.

Although storing the information in another server does not compromise the “uni-

versal access” of the application as a whole (in contrast to using the browser), it has its

downsides as well: unavailability of the external service, risks such as appropriation of

personal information and service ceasing to be free, etc.

In this context, the browser and other severs offer only storage and retrieval facilities,

but developers should build all the necessary infrastructure in order to have client side

customization. We did not find any serious attempt to use, from the client side of the

application, these two sources of information to provide client side customization.

14

The Web application’s dependence on the browser interpretation mentioned earlier,

opens another chance of transformation and, as a consequence, of potential customization

of the application. A Web application can also be changed by changing the browser’s

behavior when interpreting the client side of the application.

A more aggressive but also successful approach was born from the modification of the

browser: to alter the client side of the application to meet customization needs. This ap-

proach began with Greasemonkey (Brooks, 2006), a browser extension for Mozilla Firefox

that can inject scripts written in JavaScript to the Web application. These scripts, called

“userscripts”, have a few restrictions and special rules they must obey and a few features

aside from normal JavaScript libraries (such as real cross-domain XMLHTTPRequests).

With Greasemonkey, a user can select which userscripts are injected to which Web

applications by filtering its URLs. These userscripts are stored locally on the browser and

injected each time a Web application is loaded from the server and meets the configured

criteria. Because JavaScript has the power to alter the style (CSS) and structure (HTML)

of the application, we could say it can apply any customization one can think of to the user

interface. Additionally, because JavaScript is indeed the behavior of the client side of the

application and can even alter itself, these userscripts can also change the behavior of the

application, at least in terms of what happens at the client side.

Greasemonkey was a revelation to many unsatisfied Web application users. Suddenly,

they could take a userscript – published in a repository or even if they had the right knowl-

edge, one programmed by themselves – and inject it to the Web application, changing

look&feel and functionalities. They could add configurable keyboard shortcuts, a missing

button, a summary panel of information, etc.

This Firefox extension is used by nearly 3 million people and over 39 thousands user-

scripts are published in the principal userscript’s repository, userscript.org, showing itself

as a successful approach to client side and user driven customization. After the success of

Greasemonkey, a Mozilla Firefox exclusive extension, alternatives for other browsers also

appeared. “Trixie” (2005) and “Turnabout” (Reify Software, 2008) for Internet Explorer,

15

“Greasekit” (Kazuyoshi, 2008) for Safari, and even out of the box support for userscripts

in Opera (Opera Software, n.d.).

The Greasemonkey approach did not only appear in many other browsers, spreading

its use, but was also followed by many other projects. Greasemonkey is very powerful

and general purpose, but with the cost of being more difficult to use and too elaborated

for many users. Thus, specific purpose extensions appeared – often built upon Grease-

monkey userscripts – using similar techniques to alter Web applications. For example,

“GTDInbox” (Mitchell, 2009) added “Getting things done” functionalities and “Better

Gmail 2” (Trapani, 2009) provided many customization options to Google’s Gmail. A

user just needs to install these extensions to enjoy the new features without knowing about

userscripts or worrying about anything else.

Besides these specific purpose extensions, others also appeared aiming to decrease

the programming skills needed for a user to build a userscript. However, as often, ease

of use comes along with less power or more narrowed scope. Printmonkey (Baldwin,

Rowson, & Coady, 2008) for example, helps users make printing templates that modify

the Web page for better printing. Koala (Little et al., 2007), on the other hand, can record

user actions on a Web page and play them later, therefore automating processes on the

Web. These two functionalities could also be added using userscripts and Greasemonkey,

but these particular extensions facilitate user’s tasks by avoiding writing/understanding

complex userscripts and instead creating these tasks with non-developer centric tools.

Based directly on userscripts, extensions that provide a simple and more intuitive user

interface have also been created. “Platypus” (S. R. Turner, n.d.) generates userscripts that

change the user interface, adding, removing or changing elements in a “What you see is

what you get” (WYSIWYG) mode, so a normal user can create a complex userscript that

will be loaded every time he or she visits the page, but in a simple way. Of course, it is

very limited compared to the capabilities of a normal userscript, but this is accessible for

a normal user.

16

More powerful than Platypus but harder to learn and use is Chickenfoot (Bolin, Web-

ber, Rha, Wilson, & Miller, 2005). Chickenfoot is another Mozilla Firefox extension

that lets the user create complex scripts but without knowing JavaScript (they are not like

Greasemonkey userscripts). The user writes the actions in a close to natural language and

an interpreter understands and executes these sentences. This extension can do anything

Platypus can do and much more but, even with close to natural language, the user will

need more knowledge and expertise to take advantage from this software.

It is possible to modify a Web page dramatically through browser extensions, both

in terms of appearance and behavior. But this approach has two important drawbacks:

the need to install additional software (it is not enough with just a browser) and the stor-

age of the customization information in the same browser. Because in this approach the

browser is also the storage location of the necessary information, it is not possible to load

the customized version of the Web application in another computer without having to do

the whole process again – installing the extension, looking for the scripts, templates or

equivalents, loading and configuring them.

Efforts in client side customization have been quite successful and it is widely used

because it allowed to overcome the downsides of server side customization – specially

the developers dependency. But the elimination of this developers dependency came at

the cost of loosing the ubiquity, and a client customized application in one computer or

even in one browser, is not accessible in any other browser or computer. Next we propose

an architecture that allows client side customization without loosing the ubiquity of the

modified application.

1.4. Proposed approach to Web application customization

A revision of what has been currently achieved in the customization of Web applica-

tions, reveals that there is still something missing. There have been efforts from develop-

ers, who know user customization is important, but users are still not satisfied. Initiatives

17

like Greasemonkey show us that users want more participation, because nobody but them-

selves knows how they want the application to be.

Developers, on the other hand, know they cannot adapt the application to meet every

user’s needs and tastes, because of development effort and also because they do not want

to bloat the application for every user just because a few want some particular button.

Approaches such as Greasemonkey help solve this problem, but some developers feel

threatened because they loose even more control over what the user sees – specially when

concerning ads. Although this threat is real (there are many userscripts that block ads and

even specialized Firefox extensions for this purpose), “resistance, as they say, is futile”,

claimed Google (GmailGreasemonkey10API, 2007) referring to users, when it released the

JavaScript API in its new version of Gmail. This API facilitates writing and maintaining

Greasemonkey scripts, giving direct access to interface elements and to event callbacks,

among other things.

The approach we propose is an architecture that does not give full control to devel-

opers, thus limiting the customization options offered to users, and does not give users an

unrestricted access to change everything either. We propose a joint venture between the

original developers, third party developers and the users in order to produce a more satis-

fying solution to the user, all this keeping one of the basic principles of a Web application:

universal access.

1.4.1. Important considerations and restrictions

There are two critical problems to solve if we want to give users customization capa-

bilities: where to store the information needed about the customization and how to apply

these customizations to obtain the desired effect on the user interface or behavior.

These problems however, must be solved considering a few restrictions and consider-

ations that guide this work and make it a real contribution. These guidelines are:

(i) Provide the user the ability to use the customized version of the application

anywhere he is, from his computer at home, his laptop computer, his office

18

computer or even in a public internet lounge. The only requirement should be

the identification of the user.

(ii) Minimize the development effort needed on the Web application side to sup-

port the desired capabilities, because the adoption resistance by developers will

increase as the cost increases.

(iii) Do not require any change or additional software installation in a computer to

support the architecture proposed, because that would directly imply the lack of

ubiquity in the solution. We cannot expect everybody to have a specific browser

or to install a specific extension or plug-in but we can assume every computer

will have a modern browser – after all, big applications like Gmail, Facebook

and Youtube require this to work properly.

(iv) Use only existing technologies, standards and specifications because we want

to build a solution applicable in today’s technology infrastructure. Otherwise,

we would have to wait perhaps five years for a new technology, standard or

specification to be available in any modern browser and server.

1.4.2. An architecture for ubiquitous client side customization

The architecture we propose considers three participants. The first one is the Web

application to be customized. According to one of our guidelines, the only change required

in the application is the inclusion and configuration of a general library that adds support

for ubiquitous client side customizations. This library has a customization engine that

stores and retrieves customization information and applies the customizations in the client

(browser). The library is not specific to any application, therefore it can be included in any

application without requiring additional development (although for the server side of the

library, platform specific components should be provided).

The second participant is the client or the user’s browser. Aside from being a modern

browser there are no additional requirements for it (therefore fulfilling the third guideline).

The browser, as always, is the responsible of running the client side of the application, in-

cluding the library installed on the original application. Thanks to this library, the browser

19

applies the customizations for the user and therefore presents him the customized version

of the Web application.

The final participant ties together the other two in terms of the customization process.

It is the place from where the library installed in the application will retrieve the cus-

tomization information through the browser. Customization information cannot be stored

in the client computer because of the first guideline. Neither can it be stored in the server

of the application because of the second guideline (this would require development ef-

fort on the application). Having this information in a centralized service has considerable

drawbacks too (explained in Chapter 2). Therefore, in our proposal the third participant is

an OpenID service provider.

OpenID (Fitzpatrick, Recordon, Hardt, Bufu, & Hoyt, 2007) is an open and decen-

tralized standard (users can have any number of service providers, change them at anytime

and even have their own server to provide this service) originally created for authentica-

tion control on different services or applications with the same digital identity. Therefore,

users can use the same identification information to sign up and sign in on any application

(with OpenID support).

The OpenID specification has an extension called “OpenID Attribute Exchange” (Hardt,

Bufu, & Hoyt, 2007) for storing and retrieving any kind of information using the same user

identification. With this extension we can provide support for storing and retrieving nec-

essary customization data using technologies and standards available today. Since this

information lives in a universally accessible place (an OpenID provider), we fulfill the

first and last guidelines.

This is just an overview of the proposed architecture. Section 2.3 of Chapter 2 refers

to the architecture in more detail.

1.4.3. Prototype implementation and results

Based on the architecture described above we developed a prototype implementation

and we tested it with customizations for an – also developed – example Web application.

20

The prototype implementation consists of three parts: a basic customization library,

an example Web application that includes this library and an OpenID provider prepared to

work in this context.

In this prototype implementation of the architecture we loaded customizations (in the

form of Greasemonkey-like userscripts) from the developed OpenID provider and applied

them in the client side of the application. This was done in different browsers and in differ-

ent machines obtaining the same results without requiring any software installation. Thus,

we provided access to the customized Web application on different browsers and comput-

ers transparently for the end-user. In addition, some existing Greasemonkey userscripts

were successfully tested on this prototype.

21

Chapter 2. UBIQUITOUS CLIENT SIDE CUSTOMIZATION OF WEB APPLI-

CATIONS

The following chapter is a paper, submitted for publication in the Journal of Internet

Technology.

2.1. Introduction

2.1.1. The browser as the Web application’s customization engine

Almost every application has a “Preferences” section, where the user can customize

it in several aspects that can go from simple visual details to the actual behavior of the ap-

plication. The preferences section exists because developers have no way to know exactly

how each one of the immense variety of users that could use the application will want to

interact with it. These customization options allow the application to adapt to the user

specific needs and tastes.

Web Applications are not the exception in the need for customization. They are almost

always used by many different users. As Baresi et al. (2000) pointed out, “Customization

is assuming increasing relevance since complex web applications, such as portals, for ex-

ample, are offered to a large community of users with different needs and tastes”. Web

applications are today even more complex and they offer many more forms of interaction.

Supported by technologies such as Ajax (Garrett, 2005), the Web has emerged as a plat-

form that can host applications with interactivity and features close to those one can find

only on desktop applications and therefore they have a large customization potential.

Web applications designed to support forums allow customization of the look&feel

with templates, change messages’ time-zone or show/hide avatars. Popular mail applica-

tions such as Gmail let you decide whether to activate keyboard shortcuts, choose the date

and time format or save a signature for your e–mails. All these customizations are pos-

sible only because the service provider and/or the developers thought you might need to

change those settings. If some users want to be able to change the way they visualize part

22

of the application, they are totally dependent on the developer’s interest in making this

change, the time to work onto it and, in some cases, even on the service provider agreeing

to update the software with the required change.

The users’ dependence on the application’s developers is partially solved through the

plug-in technology. If the application supports plug-ins, a piece of software developed

by a third party can be added to extend or change the original application. However,

the dependence on the service providers for plug-in installation remains, and since server

plug-ins change the application for all users, it does not represent a satisfactory solution

to the problem of customization for the individual user. Facebook (Gjoka et al., 2008) and

widget aggregators (Pierce et al., 2008) like Netvibes solved this limitation by allowing

per-user integration of “applications”, “widgets” or “gadgets”. This approach however

is many times impractical for many applications because it needs software and hardware

infrastructure and third party developers to support it.

At the end of 2004, Greasemonkey (Brooks, 2006), a free extension for Mozilla Fire-

fox browser, was born. This extension let users inject JavaScript code to Web pages, in the

form of “userscripts”, locally on the browser after serving the page. Since JavaScript com-

bined with the DOM API (Document Object Model) can change completely the user in-

terface, this extension in fact created a back door for customization. When open, this door

inverts the paradigm of Web server-client interaction from a top-down Web to a bottom-up

one, where “the focus shifts to the many ways readers will transform Web pages to suit

themselves” (Brooks, 2006).

But this paradigm is not new. It was 2001 when S. Turner used the concept of “Active

Browsing” to refer exactly what Greasemonkey does: “Instead of accepting web pages ‘as

is’, active browsers transparently modify, delete and edit web pages according to specific

user needs” (S. Turner, 2001). Because the browser receives data from the server and is its

responsibility to show it to the user, it has also the power to decide what to show and how.

With Greasemonkey, the user no longer depends on application developers. Even if

developers do not change the application or do not put an extra option for customization,

23

the end-user can customize the Web application to meets his own needs. Although not

many end-users know JavaScript to change things by themselves, the universe of people

that has the necessary knowledge is still vast – being JavaScript top ten in programming

community (TIOBE Software, 2009) – so the possibilities to adapt the application are

augmented.

The success of Greasemonkey is indisputable. The extension has been downloaded

almost 25 millions times (Lieuallen, Boodman, & Sundström, 2009). There are now

over 39 thousands userscripts submitted to the biggest community repository (Andrews,

n.d.), and that does not even counts personal userscripts not shared to the community.

The key problem solved by Greasemonkey was so real that equivalents in other mayor

browsers (with some limitations and differences) appeared like “PithHelmet” (Solomon,

2009) and “Greasekit” (Kazuyoshi, 2008) for Safari, “Turnabout” (Reify Software, 2008)

and “Trixie” (2005) for Internet Explorer and bundled support in Opera (Opera Software,

n.d.). This new paradigm has been widely used and quickly popularized because it ad-

dressed an unsatisfied and important need.

Even with Greasemonkey, end-users are still dependent on knowledgeable people ca-

pable of generating the needed userscripts. Although many people are creating and con-

tributing with their userscripts, some of them could require specific changes not available

in the community. Several proposals have been presented to allow inexperienced users

modify their Web pages. PrintMonkey (Baldwin et al., 2008) can be used to easily modify

a page for better printing, Koala (Little et al., 2007), focuses on Web process automation,

“Platypus” (S. R. Turner, n.d.) for creating userscripts that make visual changes to Web

pages with a graphical interface, Chickenfoot (Bolin et al., 2005) helps in creating scripts

expressed in a high-level language and Accessmonkey Framework (Bigham & Ladner,

2007) can inject scripts written in JavaScript into Web applications to improve its acces-

sibility. The last four are currently active projects, showing the importance of client side

modification of pages even for people without expert knowledge.

24

2.1.2. Huge customization possibilities, but without universal access

There are of course situations when a desktop application is preferred to a Web ap-

plication, but Web applications have a huge and exclusive advantage: the only thing a

user needs to use the application is a browser, which is a program that is free and comes

bundled with most operating systems. The user can start the application from any com-

puter (even modern mobile devices), without installing anything. This advantage can be

summarized in “ubiquity” or “universal access” as Berners-Lee (2006) refers to.

Many people are customizing the Web through scripts that run at the browser in the

way we described above. There is however one problem: this goes against the most impor-

tant advantage of Web applications we mentioned before, the universal availability from

every place, and every time when needed. Since the application we want is not the one

we get from the server, but the browser altered version, ubiquity is lost. To use the Web

application from another computer, we need to install not only a browser extension like

Greasemonkey, but also every userscript and its configuration. Furthermore, the browser

where our extension can be installed may not be available at that time.

We believe that although it is important that a regular user without expert knowledge

can change the look and behavior of a Web page according to his needs, this should not

come at the cost of doing it against the nature of Web applications. Consequently, the

changes implemented via userscripts or any other way should have the same availability

and omnipresence that the Web applications they target.

2.1.3. A new architecture for client side customization

We propose an architecture that supports ubiquitous customization, so modified ver-

sions of existing Web applications are accessible anytime and anywhere. The customiza-

tion lives on the Web but it is loaded and applied at the browser in the same way Grease-

monkey does.

We chose not to create a new protocol or specification to support this architecture

so Web browsers do not need to be changed. The architecture is based on existing Web

25

standards (HTTP, HTML, ECMAScript, CSS) and on applications that use these protocols

like OpenID (Recordon & Reed, 2006), so it can be implemented in today’s Web infras-

tructure with a minimal impact on existing Web applications. Web applications just need

to include and configure a light library to support this architecture.

In this paper we present first an overview of the main issues that need to be considered.

We propose then an architecture that takes those issues into account. The implementation

of this architecture into a working prototype allows us to show that the solution is not only

feasible but also quite simple. Finally, we present a preliminary evaluation of the results

and some ideas for further work.

2.2. Main challenges

To create an architecture capable of storing and loading modifications of Web appli-

cations that are accessible from everywhere requires solving two main problems:

• Where to store the customization scripts to be applied to the Web application

• How to apply the modifications to the Web application

Furthermore, these problems must be solved under the following restrictions:

(i) Minimal (or none) impact on existing Web applications. Otherwise, the addi-

tional development costs involved in building a customization-ready application

would discourage people resulting in just a few applications that could be cus-

tomized.

(ii) It should work on a standard browser. We do not expect this to work on very

old browsers, but it should work on any modern browser available today. This

is critical so we don’t have to wait perhaps for a long time before we could start.

(iii) Use of existing standards and specifications. We do not want to create new

standards for storing and loading of Web page modifications. This is to allow

the use of existing Web infrastructure and also not adding to the development

costs.

26

In the following subsections we examine the whole range of possible solutions to the

two main problems described above.

2.2.1. Storing and retrieving customizations

The information needed to be stored, and loaded later on, depends on the form of

the modifications or customizations, but it should contain a list of the Web applications

(URIs), the instructions to be applied to each of them to get the desired customization

and optional configuration parameters. This information can be stored only in one of the

following three places: at the client (i.e. browser), at the server (where the Web page to be

modified lives) and at “the cloud” (other servers on the Internet).

The first option (client) is used in Greasemonkey. This extension stores the infor-

mation on the client machine and requires a small browser intervention: installing the

Greasemonkey extension. Unfortunately, this solution therefore violates one of our re-

strictions. Even if we avoid installing anything at all in the browser (using cookies could

be a way, although very limited) the information would not be accessible from another

machine and therefore the ubiquity is lost anyway.

If the customization information is stored at the server and it is loaded from the appli-

cation itself, the customized version of the application will be as ubiquitous as the original

one. The problem is that this approach causes a big impact on Web application develop-

ment. It would need not only database intervention but also changes in both the model and

the interface of the application. This is because the information is associated to the user

who will have to indicate the modifications that will be applied in the application itself.

The biggest drawback, however, is that the modifications would be present only for one

particular application, and therefore could not be shared by other Web pages, as occurs

when the customization information is stored in the browser.

The important drawbacks associated to the first two possibilities lead us to the last

option: other servers on the internet. Although this approach doesn’t completely free the

Web application’s developers from implementing some way of loading the information

27

from the other server, either from the client (browser) or the Web application’s server,

the extra code needed is quite small and it will work with a standard browser (doing

the loading part only from the application itself). We discarded Web proxies because

of privacy and availability concerns, and we also discarded client side proxies because

they represent a form of client side alteration that compromises solution’s ubiquity too.

Storing is less problematic because in the worst case it could be done in this new server

directly by the user.

Perhaps the first idea that comes to mind to implement the approach of information on

another server would be a centralized external service. In the Mozilla Weave Project for

example, a Firefox extension keeps bookmarks, passwords and other personal information

on a service centralized by Mozilla for syncing later on other machines. This solution

has two big problems: first the eventual downtime of the only service that holds the in-

formation and second, that personal information will be on “other people hands”. For

many people the fact that the owner of the service is also the holder of the information

is risky because for example, they could start charging money or simply interrupt the ser-

vice at anytime. Centralized services can disappear at any time, like almost happened to

“tr.im” (tr.im Resurrected, n.d.), an URL-shortening service that was very close to shutting

down because they could not monetize their service. Even when there are many similar

services, they all share a centralized philosophy and if you decide for one of them, you

must stick with it or loose all the information.

Fortunately, centralized services are not the only choice. There are also some widely

used decentralized services. OpenID (Recordon & Reed, 2006), for example, is a “de-

centralized standard for user authentication and access control” that let users to have one

authentication information (and even personal information) and use it on every site that

supports this standard. There is no central service holding all the information. Every user

can choose any of the existing OpenID Providers, change it when they want and even have

multiple OpenID Providers simultaneously.

28

We chose the approach of an external service holding the information but in a decen-

tralized way, like OpenID. For this to happen the Web application has to be able to load the

information from this external service. The solution is based on OpenID 2.0 (Fitzpatrick

et al., 2007) and in an OpenID extension, OpenID Attribute Exchange 1.0 (Hardt et al.,

2007). This has the following advantages:

• It’s a widely used standard and with Attribute Exchange extension – already

implemented in many libraries and OpenID Providers – it can support all the re-

quirements and there is no need to add or modify anything, so no new standards

and/or protocol is needed.

• It doesn’t need special support by the browser, so the ubiquity of the application

is not compromised.

• The development effort is small.

• It has no dependency on a centralized service. Anyone can build his own ser-

vice using existing open source libraries. Furthermore, there are many OpenID

providers that support Attribute Exchange extension, so little development would

be required to support storing and loading the customization information.

To minimize development effort, most of the necessary code for OpenID authentica-

tion should be moved to the client side. Doing so, developers would only need to include

some client and server scripts into their applications to support the customization archi-

tecture.

2.2.2. Applying customizations to Web applications

Applying the modifications is not hard. Since JavaScript can insert “script tags” and

evaluate arbitrary JavaScript code, any information obtained from the external server as

JavaScript code or an URI that points to a script, can be easily applied. It is not even

necessary for the information to be JavaScript code. If there is an adequate parser at the

client side of the application, then the modification can be expressed even in a language

close to a natural language.

29

Besides a parser or the evaluation of JavaScript code, the client side of the application

should have an application programming interface (API) that allows at least storing and

retrieving options for the customizations (like Greasemonkey). Since we use OpenID and

Attribute Exchange, this can be done with Fetch and Store requests to the external server

to obtain and put back optional values for the modifications.

In a normal execution, the optional values and the modifications to be applied should

be fetched on the same request. When the customizations need to store a value for future

reference, then a store request should be generated.

2.3. An architecture for ubiquitous client side customizations

We describe here an architecture for ubiquitous client side customization of Web ap-

plications. The architecture considers three parts: the Web application to be customized

– composed of client and server components – , the browser where this application is

running, and the external service, where the information needed for customization of the

application is stored (Figure 2.1).

The browser does not need to be modified. In fact, it only acts because of the client

side component of the Web application and indirect responses from the external service

– detailed later. This is a key aspect in the proposal, because as we explained before,

any special behavior or feature required on the browser immediately compromises the

ubiquity on the customized version of the application. Thus, by interpreting JavaScript

code as usual, the browser communicates to the application to be modified, indirectly to

the external service, and apply the modifications to the application.

The external service is very close to any existing OpenID Provider (OP) supporting

Attribute Exchange extension. This extension supports fetch and store requests of arbitrary

attributes. However, only when the OP and the Relying Party (RP) – the application in this

case – understand the attributes and give them the required semantic, the standard can be

useful. Thus, for example, the standard permits to ask for the first name of the OpenID

Identifier’s owner. If both OP and RP understand that attribute, the communication is

30

Web application server

customization
information

Provider

(2) Indirect requests
for information

(3) Indirect responses
through webapp server

(1) Serves the application

Client side
(different browsers on

different machines)

JavaScript Component

(4) applies the
customization

FIGURE 2.1. The architecture has three parts: the Web application (living in the
server and the client), the client browser and the external service that holds the
customization information.

possible, but if the RP asks for favorite songs and the OP doesn’t know what is a favorite

song, then there will be no useful response to that fetch request (the OP will just ignore

that attribute).

There are many attributes defined nearly as standards (Sxip Identity, n.d.) that any

OP should understand and be capable of manage. Thus, the only development needed

for an OP to support the architecture is to be capable of managing and understanding the

new necessary attribute types that are needed for storing and fetching the customization

information. This comes along with any new user interface to give the user the possibility

of accept or reject petitions from applications that want to fetch modifications.

The application, on the other hand, can be of any type, can use any server side tech-

nologies and can have any design both of software and user interface. The only requisite

31

for these applications is to use standard client side technologies like HTML, CSS and

JavaScript (Flash, Silverlight, and other plug-in dependent client side technologies are not

covered).

One of our goals was that the solution imposed minimal additional development effort

on existing applications. This objective is indeed fulfilled since the changes needed on

existing applications are limited to the simple inclusion of a small script in Web pages

that want to offer client side customization and provide a RP endpoint to which OpenID

responses can be sent and passed back to the JavaScript component to apply the fetched

modifications.

The JavaScript component is independent of server side technologies, so a unique

script can be provided with no development cost (just including it in the Web page). The

RP endpoint at the Web application’s server is a little more complicated and, if security is

a matter – as always should be – then it is dependent of server side technologies because

it must execute code on the application’s server. Nevertheless, the code needed is very

simple and since there are OpenID libraries for most server side technologies it is easy

to implement. Furthermore, since there is no dependence on the actual Web application,

libraries for many server side technologies could be generated and delivered together with

the JavaScript library.

We present an outline of data flow of this architecture in action, to clarify how this

works (Figure 2.2):

(i) The JavaScript component on the application shows the user interface to start

the process of customization.

(ii) If the user completes the required data (an OpenID Identifier), the JavaScript

components queries the server for discovery of necessary data (maybe none) to

start an OpenID authentication.

(iii) With data collected from user and server, the JavaScript component starts an

OpenID authentication and fetches the information to customize the Web appli-

cation.

32

JavaScript
component

Application's
Server

User OpenID Provider

Ask identification data

Respond with
identification data Queries for discovery

of OP data

Indirect request of customization information

Delivers customization
 information

Ask for login and authorization

Login information and authorization approval

Delivers customization
 information through
script loaded

Applies customization
 on client

FIGURE 2.2. Sequence diagram of a customization process, where the applica-
tion’s server just acts as an OP discovery and RP endpoint to receive the OP in-
direct response and pass it to the JavaScript component, which does most of the
work.

(iv) The OpenID Provider asks the user to authenticate and to accept delivering the

information asked by the JavaScript component.

(v) The OpenID Provider responds to the application endpoint with the requested

information.

(vi) The application endpoint loads a script that passes the information to the JavaScript

component.

(vii) The JavaScript component interprets the information (modifications to apply

and their configuration values) and finally applies the customization to the ren-

dered Web page.

The first two steps and those in which the user authenticates himself and authorizes

the exchange of information in the OpenID Provider must be done only the first time in

the duration of a Web session because after that, the necessary data and the authentication

in the OpenID Provider can be done almost in background, without user intervention.

33

2.3.1. Prototype Implementation

To test the technical feasibility of the proposed architecture, we developed a prototype

implementation that included the three parts explained in previous section. The modifi-

cations used in this prototype were in the form of Greasemonkey userscripts (with some

limitations because the JavaScript component cannot emulate the full API provided by the

Greasemonkey extension such as the method for cross-site XMLHTTPRequests).

The OpenID Provider was developed in Java using OpenID for Java (Bufu, Baur,

& Scurtescu, 2009) library and Apache Tapestry 5 Web framework (Ship, 2009). It has

the user interface to login with a registered account and it can receive OpenID requests

according to OpenID 2.0 Specification and Attribute Exchange Extension 1.0 (AX) Spec-

ification. Comparing it with other current OpenID providers, the main difference is that

our implementation can understand two special attribute types in the AX fetch request

containing the modifications to be applied to the origin hostname of the request and the

optional key-value pairs of configuration. The implemented OP can have values for these

attributes stored and associated to the user account so it can respond to the fetch request

with this information.

The application example to be modified by client side customizations is very simple:

it is just a section of an online music shop that lists available songs with a link to a free

mp3 sample file for download. It was also developed in Java with Apache Tapestry 5 Web

framework and ran in a Jetty (Eclipse Foundation, 2008) Web server.

This test application was then modified in order to include the third part involved in

the proposed architecture: a JavaScript component and an OpenID RP endpoint.

The JavaScript component depends on the Prototype JavaScript framework (Stephenson

et al., 2009). Although this is not necessary at all, it was done for ease and clarity of the

implementation. This JavaScript component, when inserted at the bottom of a Web page,

inserts a little box on the bottom-right corner that triggers the user interface when clicked

34

(also contained in this component) for asking the required parameters to fetch and ap-

ply the customizations. Once obtained the modifications, this component evaluates the

userscripts so the code is executed and the customization is applied.

The JavaScript component generates the requests to the OpenID Provider using an

HTML iframe or popup depending on the mode of OpenID requests needed (immediate

or setup mode). When it needs information to generate the correct OpenID requests (like

discovering the OpenID provider URL from the identifier), it asks them via Ajax requests

to the OpenID RP endpoint also developed (and integrated into the application) which

can create cross-domain requests. Besides this task, the endpoint also receives OpenID

Provider responses and passes the data to the JavaScript component. This is done by

loading a Web page (in the same popup or iframe created by the JavaScript component)

that also loads the JavaScript component and passes the data via JavaScript callback func-

tions – which is possible now since the page is back onto the same domain. This form

of JavaScript OpenID authentication is based on “openid-selector” (2009) and “OpenID

Demo” (Ellin, 2009).

To increase compatibility with existing Greasemonkey userscripts, this JavaScript li-

brary also provides an API close to the one Greasemonkey has, so many userscripts can

be used with this prototype without changing them. Of course, almost all userscripts were

written to run on Firefox (since Greasemonkey is a Firefox extension), so in order to run

those userscripts on different browsers it may be necessary to alter them.

The JavaScript component itself was tested on Firefox 3.5, Internet Explorer 8 and

Safari 4. However, in order to successfully apply a customization in some specific browser,

the customization in the form of a userscript must be compatible with that browser too

because it will be evaluated with the specific browser’s JavaScript engine.

Two userscripts that modify the test Web application were loaded and configured into

the OpenID Provider and were fetched and applied on the test Web application – with

the JavaScript library and RP endpoint added – successfully. One of these userscripts

transforms the links to sample mp3 files into a Flash player that can reproduce the mp3

35

file via streaming. The second userscript just does some visual alterations to customize

the application to another visual taste (Figure 2.3).

(A) Original Web application (B) Customized Web application

FIGURE 2.3. The Web application is customized in the browser through cus-
tomizations in the form of Greasemonkey userscripts. This is done however keep-
ing the universal access of the customized application.

With minimal additional development we were able to get an application that con-

forms to the proposed architecture. The users can enjoy a customized version of the

application with the same universal access of the original application. The customized

version of the application was tested on different machines (Windows, Linux and Mac

OS machines) and on different browsers (Firefox, Safari and Internet Explorer), behaving

exactly the same on all of them.

2.4. Conclusions and Future work

2.4.1. Conclusions

The prototype implementation of the architecture demonstrated that it is indeed ca-

pable of storing the information required to apply customizations on Web applications,

loading this information on the client side of the application using only an OpenID iden-

tifier and applying them right in the browser, without installing anything on the client

machine and therefore making it independent of it.

36

The prototype also demonstrates that minimal effort is required to get ubiquitous cus-

tomization beyond the preferences or possibilities originally created by application devel-

opers. Users get a customized version of the original application, adapted to their par-

ticular needs and preferences, and easily accessible from any computer with any modern

browser.

2.4.2. Future Work

Current works on new Web specifications could well minimize the changes required

on the Web application further. For example, allowing cross-domain JavaScript requests

(like the JSON Requests (Crockford, 2009) proposal) and adaptation of OpenID protocol

to that type of requests, the endpoint functions should be less needed, or with a little more

adaption of the protocol, unnecessary.

The requests needed to load and apply the customizations on Web applications could

be also minimized by using cache. For example, the requests to the OpenID Provider

could be done only once per session and parts of that information stored in cookies and

browser cache, thus eliminating the need of per Web page requests.

37

Chapter 3. CONCLUSION AND FUTURE RESEARCH

More aggressive approaches in client side customization appeared because users of

Web applications were not satisfied with the customization options offered by original

developers. Users required more control and better adaptation capabilities in Web appli-

cations so they could modify them and make them meet their needs and tastes. Unfortu-

nately, current efforts solve this limitation at the cost of transgressing a basic principle of

Web applications: the modified application is not universally accessible.

The alteration of the browser as a mean to modify Web applications in the client, with-

out any cooperation from developers, leads to important limitations. For this reason we

favor joint venture approach where the original developers, third party developers and fi-

nal users participate. The application developer provides customization support to the end

users, something that does not add much to the development costs. In addition, third party

developers can greatly intensify development of customizations that are beyond normal

users’ potential.

We presented an architecture that enables Web application developers to extend cus-

tomization options offered to their users, with minimal development cost on Web applica-

tions. These customizations are applied in the client, giving more control and possibilities

to users, but in a way that is neither tied to a specific browser nor to the installation of

additional software. Since the architecture is not browser dependent and does not store

the customizations in the client, it keeps the ubiquity of the modified version of the Web

application.

3.1. Review of the Results and General Remarks

The spreading of new technologies, standards and specifications is a long process, spe-

cially when browsers must support them. The prototype implementation of the proposed

architecture proved its feasibility within the current Web infrastructure, so our architecture

should not require a time gap for its adoption.

38

The prototype also demonstrated the minimal effort needed to integrate this new func-

tionality to Web applications. This integration adds almost infinite possibilities to how

Web applications can be adapted by every particular user without increasing development

cost to both existing and new Web applications.

The use of Greasemonkey-like userscripts to represent the modifications to be applied

in the Web application gave us an important advantage. A potentially large base of already

developed userscripts could be available for users if existing Web applications adopt this or

a similar form of the developed prototype. This could dramatically increase the immediate

value of a Web application adopting our architecture.

With the prototype implementation of our architecture, we obtained similar results to

one of the successful examples of client side customization: the Greasemonkey Mozilla

Firefox extension. Our approach however does not depend on Mozilla Firefox, software

installations or local storage of customizations, therefore providing a universally accessi-

ble and client side customized Web application.

3.2. Future Work

With current works in progress on Web specifications, it should be possible to com-

pletely avoid (or at least minimize even further) the server component of the customization

library in the future. These works include forms of cross domain JavaScript requests such

as JSON requests or secure JavaScript messaging between iframes from different domains.

Although this would also require adaptations of the OpenID protocol, it would improve

this proposal both in terms of facilities to developers and simplicity of the customization

library.

The efficiency of the prototype implementation could also be improved. Currently, we

do not consider possible points of caching using browser’s cache or cookies. This could

minimize the required OpenID requests and therefore improve the process of applying

customizations.

39

The form of customizations is another point of extension. The prototype used user-

scripts, but the proposed architecture is not tied to any particular customization form.

Therefore, more accessible customization forms such as Chickenfoot’s scripts could be

possible if a parser is provided. Even a customizations generator could be integrated to

the customization library to let users create modifications from within the application it-

self.

Finally, another important topic is sharing customizations. The database userscripts.org

shows people are willing to share their efforts in customizing applications. With the pro-

posed approach a sharing section could be easily integrated, where users publish cus-

tomizations or look for customizations from other users. This opens the door for massive

adoption because of the increased value of sharing.

40

References

Andrews, J. (n.d.). Userscripts.org: Power-ups for your browser [Computer soft-
ware]. Author. Available from http://userscripts.org/

Asleson, R., & Schutta, N. T. (2005). Foundations of Ajax (illustrated ed., Vol. 13).
United States: Apress.

Baldwin, J., Rowson, J. A., & Coady, Y. (2008). PrintMonkey: giving users a grip
on printing the web. In Proceeding of the eighth ACM symposium on Document en-
gineering (pp. 230–239). Sao Paulo, Brazil: ACM.

Baresi, L., Garzotto, F., & Paolini, P. (2000). From Web sites to Web applications:
New issues for conceptual modeling. In S. Berlin & Heidelberg (Eds.), Conceptual
modeling for E-Business and the Web (Vol. 1921/2000, p. 89-100). Springer.

Berners-Lee, T. (2006). The World Wide Web - Past, Present and Future. Journal
of Digital information, 1(1). Available from https://journals.tdl.org/jodi/
article/view/3/3

Bigham, J. P., & Ladner, R. E. (2007). Accessmonkey: a collaborative script-
ing framework for web users and developers. In Proceedings of the 2007 interna-
tional cross-disciplinary conference on Web accessibility (W4A) (pp. 25–34). Banff,
Canada: ACM.

Birsan, D. (2005). On plug-ins and extensible architectures. Queue, 3(2), 40–46.

Bolin, M., Webber, M., Rha, P., Wilson, T., & Miller, R. C. (2005). Automation
and customization of rendered web pages. In Proceedings of the 18th annual ACM
symposium on User interface software and technology (pp. 163–172). Seattle, WA,
USA: ACM.

Brooks, T. A. (2006). No bad Web pages: reader empowerment and the Web. In-
formation Research, 11(3), 257-257. Available from http://informationr.net/
ir/11-3/paper257.html

41

http://userscripts.org/
https://journals.tdl.org/jodi/article/view/3/3
https://journals.tdl.org/jodi/article/view/3/3
http://informationr.net/ir/11-3/paper257.html
http://informationr.net/ir/11-3/paper257.html

Bufu, J., Baur, T., & Scurtescu, M. (2009). Openid for Java [Computer software].
Author. Available from http://code.google.com/p/openid4java/

Crockford, D. (2009). JSONRequest. Retrieved 2009-10-03, from http://json
.org/JSONRequest.html

Eclipse Foundation. (2008). Jetty Webserver [Computer software]. Author. Available
from http://www.eclipse.org/jetty/

Ellin, B. (2009). Openid Demo [Computer software]. Author. Available from
http://openid-demo.appspot.com/

Fischer, G. (2001). User Modeling in Human–Computer Interaction. User Modeling
and User-Adapted Interaction, 11(1), 65–86.

Fitzpatrick, B., Recordon, D., Hardt, D., Bufu, J., & Hoyt, J. (2007). Openid
Authentication 2.0 (Final ed.; Tech. Rep.). OpenID Foundation. Available from
http://openid.net/specs/openid-authentication-2_0.html

Garrett, J. J. (2005). Ajax: A new approach to web applications. Adaptive
path. Retrieved Nov 10, 2009, from http://adaptivepath.com/ideas/essays/
archives/000385.php

Gjoka, M., Sirivianos, M., Markopoulou, A., & Yang, X. (2008). Poking facebook:
characterization of osn applications. In Proceedings of the first workshop on Online
social networks (pp. 31–36). Seattle, WA, USA: ACM.

GmailGreasemonkey10API. (2007). Retrieved 2009-12-05, from http://code
.google.com/p/gmail-greasemonkey/wiki/GmailGreasemonkey10API

Hardt, D., Bufu, J., & Hoyt, J. (2007). OpenID Attribute Exchange 1.0 (Final
ed.; Tech. Rep.). OpenID Foundation. Available from http://openid.net/specs/
openid-attribute-exchange-1_0.html

42

http://code.google.com/p/openid4java/
http://json.org/JSONRequest.html
http://json.org/JSONRequest.html
http://www.eclipse.org/jetty/
http://openid-demo.appspot.com/
http://openid.net/specs/openid-authentication-2_0.html
http://adaptivepath.com/ideas/essays/archives/000385.php
http://adaptivepath.com/ideas/essays/archives/000385.php
http://code.google.com/p/gmail-greasemonkey/wiki/GmailGreasemonkey10API
http://code.google.com/p/gmail-greasemonkey/wiki/GmailGreasemonkey10API
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html

Jackson, C., & Wang, H. J. (2007). Subspace: secure cross–domain communication
for web mashups. In Proceedings of the 16th international conference on World Wide
Web (pp. 611–620). Banff, Alberta, Canada: ACM.

Kazuyoshi, K. (2008). Greasekit – User Scripting for all WebKit applications [Com-
puter software]. Author. Available from http://8-p.info/greasekit/

Kristol, D., & Montulli, L. (1997). HTTP state management mechanism (RFC No.
2109). Fremont, California, USA: Internet Engineering Task Force.

Lieuallen, A., Boodman, A., & Sundström, J. (2009). Greasemonkey [Computer
software]. Mozilla. Available from https://addons.mozilla.org/firefox/
addon/748

Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., & Kandogan, E. (2007).
Koala: capture, share, automate, personalize business processes on the web. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems (pp.
943–946). San Jose, California, USA: ACM.

Millett, L. I., Friedman, B., & Felten, E. (2001). Cookies and Web browser design:
toward realizing informed consent online. In Proceedings of the SIGCHI conference
on Human factors in computing systems (pp. 46–52). Seattle, Washington, United
States: ACM.

Mitchell, A. (2009). Gtdinbox for gmail [Computer software]. Mozilla Foundation.
Available from https://addons.mozilla.org/en-US/firefox/addon/3209

Nielsen, J. (2009, August 17). Customization of UIs and Products. Alertbox. Avail-
able from http://www.useit.com/alertbox/customization.html

openid-selector [Computer software]. (2009). Available from http://code.google
.com/p/openid-selector/

Opera Software. (n.d.). Opera: Tutorial – user javascript. Retrieved Oct 20, 2009,
from http://www.opera.com/browser/tutorials/userjs/

43

http://8-p.info/greasekit/
https://addons.mozilla.org/firefox/addon/748
https://addons.mozilla.org/firefox/addon/748
https://addons.mozilla.org/en-US/firefox/addon/3209
http://www.useit.com/alertbox/customization.html
http://code.google.com/p/openid-selector/
http://code.google.com/p/openid-selector/
http://www.opera.com/browser/tutorials/userjs/

Pierce, M. E., Fox, G., Yuan, H., & Deng, Y. (2008). Cyberinfrastructure and Web
2.0. In L. Grandinetti (Ed.), High Performance Computing and Grids in Action
(Vol. 16, p. 265-287). Amsterdam, The Netherlands: IOS Press.

Recordon, D., & Reed, D. (2006). OpenID 2.0: a platform for user-centric iden-
tity management. In Proceedings of the second ACM workshop on Digital identity
management (pp. 11–16). Alexandria, Virginia, USA: ACM.

Reify Software. (2008). Reify Turnabout [Computer software]. Author. Avail-
able from http://software.filestube.com/software,520e1a53,Reify+
Turnabout.html

Ship, H. M. L. (2009). Apache Tapestry 5 [Computer software]. Apache Software
Foundation. Available from http://tapestry.apache.org/tapestry5

Solomon, M. (2009). Pithhelmet [Computer software]. Author. Available from
http://www.culater.net/software/PithHelmet/PithHelmet.php

Stephenson, S., Fuchs, T., Dupont, A., Langel, T., Porteneuve, C., & Zaytsev, J.
(2009). Prototype JavaScript framework [Computer software]. Author. Available
from http://www.prototypejs.org/

Sxip Identity. (n.d.). Attribute types. Retrieved 2009-10-20, from http://www
.axschema.org/types/

TIOBE Software. (2009, December). TIOBE software: Tiobe index. Retrieved 2009-
12-08, from http://www.tiobe.com/index.php/content/paperinfo/tpci/
index.html

Trapani, G. (2009). Better Gmail 2 [Computer software]. Mozilla Foundation. Avail-
able from https://addons.mozilla.org/en-US/firefox/addon/6076

tr.im resurrected. (n.d.). Retrieved Oct 20, 2009, from http://blog.tr.im/post/
160697842/tr-im-resurrected

44

http://software.filestube.com/software,520e1a53,Reify+Turnabout.html
http://software.filestube.com/software,520e1a53,Reify+Turnabout.html
http://tapestry.apache.org/tapestry5
http://www.culater.net/software/PithHelmet/PithHelmet.php
http://www.prototypejs.org/
http://www.axschema.org/types/
http://www.axschema.org/types/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://addons.mozilla.org/en-US/firefox/addon/6076
http://blog.tr.im/post/160697842/tr-im-resurrected
http://blog.tr.im/post/160697842/tr-im-resurrected

Trixie [Computer software]. (2005). Available from http://www.bhelpuri.net/
Trixie/

Turner, S. (2001). Active Browsing. In Proceedings of the IASTED International
Conference Internet and Multimedia Systems and Applications (pp. 181–186). Hon-
olulu, HI, USA.

Turner, S. R. (n.d.). Platypus [Computer software]. Mozilla. Available from http://
platypus.mozdev.org/

Zalewski, M. (2009). Same–origin policy. In Browser Security Handbook (chap.
2.1.1). Retrieved 2009-12-03, from http://code.google.com/p/browsersec/
wiki/Part2#Same-origin_policy

45

http://www.bhelpuri.net/Trixie/
http://www.bhelpuri.net/Trixie/
http://platypus.mozdev.org/
http://platypus.mozdev.org/
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy

	Acknowledgements
	List of Figures
	Abstract
	Resumen
	Chapter 1. Introduction
	1.1. Evolution of Web applications
	1.2. Customization importance
	1.2.1. Customization in Web applications

	1.3. Existing approaches to Web application customization
	1.3.1. Server side customization
	1.3.2. Client side customization

	1.4. Proposed approach to Web application customization
	1.4.1. Important considerations and restrictions
	1.4.2. An architecture for ubiquitous client side customization
	1.4.3. Prototype implementation and results

	Chapter 2. Ubiquitous client side customization
	2.1. Introduction
	2.1.1. The browser as the Web application's customization engine
	2.1.2. Huge customization possibilities, but without universal access
	2.1.3. A new architecture for client side customization

	2.2. Main challenges
	2.2.1. Storing and retrieving customizations
	2.2.2. Applying customizations to Web applications

	2.3. An architecture for ubiquitous client side customizations
	2.3.1. Prototype Implementation

	2.4. Conclusions and Future work
	2.4.1. Conclusions
	2.4.2. Future Work

	Chapter 3. Conclusion and Future Research
	3.1. Review of the Results and General Remarks
	3.2. Future Work

	References

