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In this article we address the problem of getting the temperature dependence of the �-� scattering

lengths in the frame of the linear sigma model. Using the real time formalism, we calculate all the relevant

one loop diagrams. The temperature corrections are only considered in the pion sector, due to the

Boltzmann suppression for heavier fields like the sigma meson. From this analysis we obtain the thermal

behavior of the s waves scattering lengths a00 and a
2
0 associated to isospin I ¼ 0 and I ¼ 2, respectively. If

we normalize with the zero temperature value it turns out that
a0
0
ðTÞ
a0
0

grows with temperature, whereas the

opposite occurs with
a2
0
ðTÞ
a2
0

. Finally we compare our results with other determinations of the scattering

lengths based on the Nambu-Jona-Lasinio model and chiral perturbation theory.
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I. INTRODUCTION

The discussion of the thermal evolution of �-� scatter-
ing lengths turns out to be a relevant problem in the context
of heavy ion collisions. In fact, we know that in the central
rapidity region, precisely where the quark-gluon plasma is
expected to be created, a big amount of thermalized pions
will be produced. Those pions will interact among them-
selves and the �-� scattering lengths are crucial parame-
ters in order to describe the scattering amplitudes. At zero
temperature the�-� scattering lengths were first measured
by Rosselet et al. [1]. A recent review about the present
status of the experimental measurements of �-� scattering
lengths and their comparison with different theoretical
approaches can be found in [2].

In this article we will present a detailed calculation of
the thermal corrections to the �-� scattering lengths in the
frame of the linear sigma model [3]. As it is well-known,
the linear sigma model is an effective, renormalizable [4],
low energy description of hadron dynamics. Our calcula-
tions will be done using the real time formalism at the one
loop level.

II. LINEAR SIGMA MODEL AND
�-� SCATTERING

The linear sigma model in the phase where the chiral
symmetry is broken is given by the Lagrangian below,
where v ¼ h�i is the vacuum expectation value of the
scalar field �. The idea is to define a new field s such
that � ¼ sþ v. Obviously hsi ¼ 0.  corresponds to an
isospin doublet associated to the nucleons, ~� denotes
the pion isotriplet field, and c� is the term that breaks
explicitly the SUð2Þ � SUð2Þ chiral symmetry. � is a small
dimensionless parameter. It is interesting to remark that all
fields in the model have masses determined by v. In fact,

the following relations are valid: m ¼ gv, m2
� ¼ �2 þ

�2v2, and m2
� ¼ �2 þ 3�2v2. Perturbation theory at the

tree level allows us to identify the pion decay constants as
f� ¼ v. This model has been considered in the context
of finite temperature by several authors, discussing the
thermal evolution of masses, f�ðTÞ, the effective potential,
etc. [5–8].

L¼ � ½i��@��m �gðsþ i ~� � ~��5Þ� 
þ 1

2
½ð@ ~�Þ2 þm2

� ~�
2�þ 1

2
½ð@�Þ2 þm2

�s
2�

��2vsðs2 þ ~�2Þ��2

4
ðs2 þ ~�2Þ2 þð"c�vm2

�Þs:
(1)

Since our idea is to use the linear sigma model for
calculating �-� scattering lengths, let us recall briefly
the formalism. The scattering amplitude has the general
form

T�	;
� ¼ Aðs; t; uÞ
�	

� þ Aðt; s; uÞ
��
	

þ Aðu; t; sÞ
�

	�; (2)

where the �, 	, �, 
 denote isospin components.
By using appropriate projection operators, it is pos-

sible to find the following isospin dependent scattering
amplitudes

T0 ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ; (3)

T1 ¼ Aðt; s; uÞ � Aðu; t; sÞ; (4)

T2 ¼ Aðt; s; uÞ þ Aðu; t; sÞ; (5)

where TI denotes a scattering amplitude in a given isospin
channel.
As it is well-known [9], the isospin dependent scattering

amplitude can be expanded in partial waves TIl
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TI‘ðsÞ ¼
1

64�

Z 1

�1
dðcos�ÞP‘ðcos�ÞTIðs; t; uÞ: (6)

Below the inelastic threshold the partial scattering am-
plitudes can be parametrized as [10]

TI‘ ¼
�

s

s� 4m�2

�
1=2 1

2i
ðe2i
I‘ðsÞ � 1Þ; (7)

where 
‘ is a phase shift in the ‘ channel. The scattering
lengths are important parameters in order to describe low
energy interactions. In fact, our last expression can be
expanded according to

<ðTI‘Þ ¼
�
p2

m2
�

�
‘
�
aI‘ þ

p2

m2
�

bI‘ þ � � �
�
: (8)

The parameters aI‘ and b
I
‘ are the scattering lengths and

scattering slopes, respectively. In general, the scattering
lengths obey ja0j> ja1j> ja2j . . . . If we are only inter-
ested in the scattering lengths aI0, it is enough to calculate

the scattering amplitude TI in the static limit, i.e., when
s! 4m2

�, t! 0, and u! 0

aI0 ¼
1

32�
TIðs! 4m2

�; t! 0; u! 0Þ: (9)

III. PION-PION SCATTERING AMPLITUDES

The diagrams shown in Fig. 1, where the solid line
denotes a pion, and the dashed line a sigma meson, con-
tribute to the�-� scattering amplitude. The diagram with a
sigma exchanged meson has to be considered also in the
crossed t and u channels.

From these diagrams it is possible to get the results
shown in Table I. The isospin dependent scattering ampli-
tudes at the tree level have the form

T0ðs; t; uÞ ¼�10�2 � 12�4v2

s�m2
�

� 4�4v2

t�m2
�

� 4�4v2

u�m2
�

; (10)

T1ðs; t; uÞ ¼ 4�4v2

u�m2
�

� 4�4v2

t�m2
�

; (11)

T2ðs; t; uÞ ¼ �4�2 � 4�4v2

t�m2
�

� 4�4v2

u�m2
�

: (12)

Note that, the linear sigma model is in a better agree-
ment with the experimental results than first order chiral
perturbation theory.

IV. ONE LOOP THERMAL CORRECTIONS FOR
SCATTERING LENGTHS

For our calculation of the thermal corrections to the
scattering lengths, we will use the real time formalism.
At the one loop level it is enough to use the Dolan-Jackiw
propagators [12]. A general review about the real time
formalism, beyond the one loop level can be found in
[13,14]. In our case the most relevant thermal contributions
will be related to the pion sector, due to the Boltzmann
suppression in the case of the sigma meson and/or nucle-
ons. Therefore, for the pion propagators we will use

�ðk0; ~k; m�Þ
�	 ¼
�

i

k20 � ~k2 �m2
� þ i�

þ 2�nBðjk0jÞ
ðk20 � ~k2 �m2
�Þ
�

�	;

(13)

where nBðxÞ ¼ 1
e	x�1

is the Bose-Einstein distribution. For

the � meson propagator, we will restrict ourselves to the
T ¼ 0 case

�ðk0; ~k; m�Þ ¼ i

k20 � ~k2 �m2
� þ i�

: (14)

FIG. 1. Tree level diagrams.

TABLE I. Comparison between the experimental values [1], first order prediction from chiral
perturbation theory [11], and our results at the tree level.

Experimental Results Chiral Perturbation Theory Linear Sigma Model

a00 0:26� 0:05 7m2
�

32�f2�
¼ 0:16 10m2

�

32�f2�
¼ 0:22

b00 0:25� 0:03 m2
�

4�f2�
¼ 0:18 49m2

�

128�f2�
¼ 0:27

a20 �0:028� 0:012 �m2
�

16�f2�
¼ �0:044 �m2

�

16�f2�
¼ �0:044

b20 �0:082� 0:008 �m2
�

8�f2�
¼ �0:089 �m2

�

8�f2�
¼ �0:089

a11 0:038� 0:002 m2
�

24�f2�
¼ 0:030 m2

�

24�f2�
¼ 0:030

b11 � 0 m2
�

48�f2�
¼ 0:015
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There are many diagrams that contribute to the pion-
pion scattering amplitude at the one loop level. For each
one of these diagrams we have to add also the correspond-
ing crossed t and u channel diagrams. In Fig. 2 we have
shown only the s channel contribution.

Wewill give the analytic expression only for the first two
diagrams (2(a) and 2(b)) shown in Fig. 2. It should be
noticed that, when it corresponds, symmetry factors, iso-
spin index contractions, and multiplicity factors should be
included

iMa ¼ �2�4ð7
�	
�
 þ 2
��
	
 þ 2
�

	�Þ

�
Z d4k

ð2�Þ4 �ðk0;
~k; m�Þ�ðk0 � 2m�; ~k;m�Þ;

(15)

iMb ¼ 16�8v4
�

i

4m2
� �m2

�

�

�	
�


Z d4k

ð2�Þ4
� ½�ðk0; ~k; m�Þ�ðk0 þm�; ~k;m�Þ
� �ðk0 �m�; ~k;m�Þ�: (16)

In some of these diagrams we have to deal with terms


2ðkÞ and 
ðkÞ
k . In those cases the following identity is

useful [15]

1

N!

�
i@

@m2

�
n
� ¼ �nþ1: (17)

Actually this expression can be proved in the full ma-
trix formalism of thermofield dynamics. However, for
some diagrams, we checked our results using also the
Matsubara (imaginary time) formalism.
When dealing with integrals of the following shape,

I ¼ 2�i
Z
dk0Fðk0Þ

�
@

@m2
�

�
nBðjk0jÞ
2wk

�
ð
ðk0 � wkÞ

þ 
ðk0 þ wkÞÞ þ
�
nBðjk0jÞ
2wk

�
@

@m2
�

� ½
ðk0 � wkÞ þ 
ðk0 þ wkÞ�
�
; (18)

where Fðk0Þ is an arbitrary function and wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

�

q
.

We can integrate by parts getting I ¼ Iwk þ I�wk , where

Iwk ¼ 2� lim
k0!wk

�iðdFðk0Þdk0
ÞnBðjk0jÞ
4w2

k

� i
Fðk0Þsgnðk0Þðcschðjk0j2T ÞÞ2

16w2
kT

� i
FðwkÞnBðwkÞ

4w3
k

�

(19)

and

I�wk ¼ 2� lim
k0!�wk

��iðdFðk0Þdk0
ÞnBðjk0jÞ

4w2
k

þ i
Fðk0Þsgnðk0Þðcschðjk0j2T ÞÞ2

16w2
kT

� i
Fð�wkÞnBðwkÞ

4w3
k

�
:

(20)

After taking all the diagrams into account, we find the
following expression for the one loop thermal corrections
to the �-� scattering amplitudes

a b

c d

e f

g h

i j

FIG. 2. The ten relevant one loop diagrams (s channel only)
for the determination of the �-� scattering lengths. The solid
(dashed) lines denote pion (sigma meson) states.
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Aðs; t; uÞT ¼ ��4

�
14þ 80�2v2

�
1

4m2
� �m2

�

�
þ 48�4v4

�
1

4m2
� �m2

�

�
2
�
Aðwk; TÞ � 8�4Bðwk; TÞ

� 12�6v2
�

1

4m2
� �m2

�

�
2
Cðwk; TÞ þ �6

�
16v2 þ 32�2v4

�
1

4m2
� �m2

�

��
� ½D1ðm�;m�;wk; TÞ

þD1ð�m�;m�;wk; TÞ� þ 32�6v2½E1
0ðm�;m�;wk; TÞ þ E1

0ð�m�;m�;wk; TÞ�

þ 32�8v4½E1
1ðm�;m�;wk; TÞ þ E1

1ð�m�;m�;wk; TÞ� þ 8�6v2
�

1

4m2
� �m2

�

�
� ½F1

0ðm�;m�;wk; TÞ

þ F1
0ð�m�;m�;wk; TÞ� þ �6

�
96�2v4

�
1

4m2
� �m2

�

�
þ 16v2

�
F1
1ðm�;m�;wk; TÞ; (21)

Aðt; s; uÞT ¼ �4�4Aðwk; TÞ � �4

�
11þ 80�2v2

�
1

�m2
�

�
þ 48�4v4

�
1

�m2
�

�
2
�
Bðwk; TÞ þ 4�6v2

�
1

�m2
�

�

�
�

4

m2
� �m2

�

þ 3

m2
�

�
Cðwk; TÞ þ 16�6v2½D1ðm�;m�;wk; TÞ þD1ð�m�;m�;wk; TÞ�

þ 16�8v4½D2ðm�;m�;wk; TÞ þD2ð�m�;m�;wk; TÞ� þ �6

�
32v2 þ 32�2v4

�
1

�m2
�

��
� ½E1

0ðm�;m�;wk; TÞ

þ E1
0ð�m�;m�;wk; TÞ� þ 16�8v4½E2

0ðm�;m�;wk; TÞ þ E2
0ð�m�;m�;wk; TÞ� þ �6

�
48�2v4

�
1

�m2
�

�
þ 8v2

�

� ½F2
0ðm�;m�;wk; TÞ þ F2

0ð�m�;m�;wk; TÞ�
¼ Aðu; t; sÞT; (22)

where we have introduced the following definitions:

Aðwk; TÞ ¼ �1

ð2�Þ2
Z
dj ~kjnBðwkÞ

wk
; (23)

Bðwk; TÞ ¼ �
Z d3k

ð2�Þ3
�
nBðwkÞ
2w3

k

þ ðcschðwk2TÞÞ2
8Tw2

k

�
; (24)

Cðwk; TÞ ¼
Z d3k

ð2�Þ3
nBðwkÞ
wk

; (25)

Dnðx; y; wk; TÞ ¼ �
Z d3k

ð2�Þ3
nBðwkÞ
wk

�
�

1

fnðx; yÞ
�
�

1

4x2 þ 4xwk

��
; (26)

Enmðx; y; wk; TÞ ¼
Z d3k

ð2�Þ3
� ðxþ wkÞnBðwkÞ
2w2

kf
nþ1ðx; yÞfmð�x; yÞ

�
�ðcschðwk2TÞÞ2

16Tw2
k

þ nBðwkÞ
4w3

k

�

�
�

1

fnðx; yÞfmð�x; yÞ
��
; (27)

Fnmðx; y; wk; TÞ ¼ �
Z d3k

ð2�Þ3
nBðwkÞ
wk

�
1

fnðx; yÞfmð�x; yÞ
�
;

(28)

and where

fnðx; yÞ ¼ ð2x2 þ 2xwk � y2Þn: (29)

V. NUMERICAL RESULTS

The thermal corrections must be calculated numerically.
The different parameters in our expressions are renormal-
ized at T ¼ 0, since thermal corrections do not add new
ultraviolet divergencies. The linear sigma model, exclud-
ing the nucleons, has three parameters: m2

�, f�, and �
2.

The first two parameters, m2
� and f�, are given by experi-

ments and the third one is a free parameter. Notice that f�
is related to the vacuum expectation value v. In fact, at the
tree level f� ¼ v. The three parameters are not indepen-
dent. If instead of f� we use the vacuum expectation value
v and consider a mass of the sigma meson m� ¼
700 MeV, we have �2 ¼ 7, v ¼ 90 MeV; if �2 ¼ 5:6,
v ¼ 120 MeV [16]. We know, however, that the mass of
the sigma meson is about m� ¼ 550 MeV [17]. Therefore,
we need to find new values for � and v associated to the
new lower mass of the sigma meson. We found �2 ¼ 4:26
and v ¼ 89 MeV, following the philosophy presented in
[16]. The authors used the Padé approximant method, but
they also suggested an analytic approach in order to find
the variation of one parameter if the other two change as a
consequence of one loop corrections. The values given
above for �2 and v were found following this procedure.
The scattering lengths, including our thermal corrections,
are given by
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a00ðTÞ ¼ 0:217þ 3Aðs; t; uÞT þ 2Aðt; s; uÞT
32�

; (30)

a20ðTÞ ¼ �0:041þ 2Aðt; s; uÞT
32�

: (31)

The behavior of the normalized scattering lengths
a0
0
ðTÞ
a0
0

and
a20ðTÞ
a2
0

are shown in Fig. 3. Notice that a10ðTÞ vanishes
identically. We normalized with the zero temperature val-
ues of the scattering lengths, according to a two loop
perturbation calculation [18]. It is interesting to remark
that a00ðTÞ grows with temperature and the same occurs

with the a20ðTÞ. Similar calculations have been done in the

context of the Nambu-Jona-Lasinio model [19] and in the
frame of chiral perturbation theory [20]. The results from
the Nambu-Jona-Lasinio analysis do not agree with our
conclusions. In this approach both scattering lengths re-
main almost constant, but with the same growing tendency.
The results from chiral perturbation theory agree quite well
with our conclusions for a20ðTÞ. Nevertheless, a00ðTÞ is al-
most constant in this approach. In [21], a different deter-
mination of a00ðTÞ, based on the heat kernel expansion

technique applied to the linear sigma model, is presented.
We agree with their results.
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