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General Introduction 

A vast amount of literature has been developed on the climate change effects on water resources. 

Changes in means and variances and its spatial distribution are expected in the future (IPCC, 2008). 

In parallel, economic development is increasing the competition between the different uses like 

human consumption, agriculture and energy generation (OECD, 2011). Historically water 

management strategies have been based on past hydrological records but in this context, those 

records are not a good guide to future conditions and so the current  practices may not be robust 

(Draper & Lund, 2004; IPCC, 2008). 

Furthermore, there are other challenges than the ones related to the climate since the physical 

impacts will influence the human behavior (Rehana and Mujumdar 2014; Olmstead, Fisher-Vanden 

and Rimsaite 2016; Olmstead 2010). So, human adaptation is also observable as a rational response 

from water users like farmers. To completely understand the impacts of climate change in an 

agricultural context, these rational decisions and their dynamics must be considered.  

In this context of a changing climate and increasing resource pressure, it is imperative to develop 

efficient mechanisms that help secure the water availability and allow for its allocation and 

reallocation. To do so, dynamic economic modelling appears as one alternative to help understand 

the interactions between physical inputs and farmers or water managers. Human behavior is 

integrated by optimizing benefits on the long run in an uncertain context.  

So, the general objective of the present thesis is to study the dynamics of water decisions for 

agriculture in the presence of climate change. To do so, three adaptation strategies are analyzed 

and each poses a specific question to address: 

1. Changing the irrigation policy:  when permanent crops are already in production and water is 

not enough, what are the drivers for an optimal decision? 

2. Water storage policies: when storage is an alternative and future water inputs are uncertain, do 

dams mitigate the effects of climate change? 

3. Changing the crop mix: when a crop mix is affected in a region that faces water scarcity, does 

water become the limiting input instead of land? 

The flowing chapters develop each analysis in detail. 
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Abstract 

How farmers respond to water availability uncertainty is still a question under development. Special 

attention is required when permanent crops are grown. Climate change projections consider the increase 

of extreme events such as droughts and floods. Due to the nature of perennials, they are more exposed 

to uncertainty than annual crops. One of the adaptation alternatives that farmers have is the irrigation 

strategy but it has intertemporal effects that must be analyzed. We develop a dynamic theoretical 

economic model to assess the optimal irrigation decisions of a farmer who has a productive permanent 

crop. Both water dose and irrigated area are considered variable inputs. We build on previous literature 

by including three intertemporal effects: crop area survival between periods, irrigation impacts on future 

production, and probability of water restriction contingent on crop area. Our results are the same as 

previous research when enough water is available but when water is restricted the tradeoff between water 

dose and irrigated area becomes relevant. We calculate a threshold for water availability that determines 

which of the extensive or intensive irrigation strategies is optimal. Permanent crop dynamics also 

determine which irrigation practice should be applied. Ignoring these considerations may lead to 

suboptimal decisions with profit and water efficiency losses. 
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1. Introduction 

Perennial crops have largely expanded due to their high value returns. Between 2000-2020 the area 

dedicated increased 31% reaching 10% of global cropland (FAO, 2020). A key characteristic of perennials 

is that they are long-term investments as opposed to annuals that have a one-year cycle. Its production 

starts after a few years of growth, so payoff is highly dependent on the expected availability of inputs. Due 

to this climate change poses a large challenge for growers who need to keep the risk at the minimum. 

Future projections on water resources include a risk increase of floods and droughts (Bates, Kundzewicz, 

& Wu, 2008). So, to enhance adaptation and efficiency, farmers, water administrators and policy makers 

need to understand the economic dynamics of permanent crops. 

We study how permanent crops production can adapt to stochastic water shortages. Focusing on water as 

an uncertain resource, we model a farmer’s irrigation decisions for an already productive orchard. 

Managing irrigation is part of the strategies that can be implemented when water becomes scarce 

(Fereres, Goldhamer, & Sadras, 2012). Previous literature has accounted for irrigation decisions as an 

adaptation practice when less water is available, but the dynamics of perennials have been ignored. Also, 

crop land is usually taken as a fixed input, inducing less flexibility in the decisions. We found that this 

restriction induces suboptimal decisions resulting in loss of profits. 

2. Literature review 

How agriculture will deal with climate change events is still an open question (Chavas, Chambers, & Pope, 

2010). One way to analyze the farmers' response to changes in water resources is using crop-water 

production functions. García-Vila and Fereres (2012) explore the decisions of crop choice and water dose 

using a farm-scale model that maximizes farm income. They include a crop-water production function for 

annual crops. Impacts in the income were analyzed for different external effects such as water restrictions, 

prices, and policies. Similar results have been found for perennial crops: Berbel and Mateos (2014) show 

that lowering water doses may be a strategy for farmers to adapt to water scarcity in olive orchards. Their 

findings remark on the importance of the crop-water production function since it determines farmers’ 

income. Exposito and Berbel (2020) developed the microeconomics of the water allocation of the previous 

model applied in almonds. Crop-water functions are well documented for annual crops but perennials are 

still under development due to the complexity of long term responses and intertemporal effects (Fereres 

et al., 2012). 

Another related literature for this research is the analysis of uncertain water availability when perennial 

crops are grown. Feinerman and Tsur (2014) analyzed the economics of an uncertain cycle duration 

induced by stochastic water supply regimes. They develop a crop’s drought vulnerability index based on 

drought hazard to capture the limit between the positive and negative returns. Their model also accounts 

for the intertemporal effects of low irrigation, considering two years of crop survival in dry seasons. Their 

results demonstrate how a perennial crop may have negative expected profits if there exists a probability 

of drought. Arellano-González and Moore (2020) extended Feinerman and Tsur framework by including 

the possibility of water storage. Their results show that the adoption of perennials increases when water 

banks are available.  

In previous literature, water and crop land are key inputs in all cases, but most studies consider the second 

as a fixed input. Restricting the farmer options to change only the water dose reduces the adaptation 

alternatives. To understand the optimal decisions for permanent crops, both inputs should be considered 
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as flexible. In addition, the irrigation of one year affects the growth and production of subsequent years 

(Fereres et al., 2012). This intertemporal effect is one of the big differences between annuals and 

perennials and forces any analysis to be dynamic. Finally, previous work literature has focused on scarce 

water resources in stationary conditions (Chai et al., 2016; Expósito & Berbel, 2020) but how to incorporate 

uncertain shocks is still under development.  

We develop a dynamic theoretical economic model to assess the optimal irrigation decisions of a farmer 

that has a productive perennial crop. Our work extends the model of Expósito and Berbel (2020) by 

including the dynamics and intertemporal effects of irrigation on perennial production. Also, we consider 

a yield-water function based on the recommendation of previous research (Fereres et al., 2012). Finally, 

uncertainty on water availability is explored, similar to the development of Feinerman and Tsur (2014).  

The organization of the present paper remains as follows. In the next section, the model and theory are 

developed. A general approach is first presented, followed by specific scenarios to illustrate the problem. 

The fourth section considers a simulation of the model using a numerical example. We finish with a 

discussion of the findings and conclusions. 
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3. Profit dynamics of permanent crops in the context of water shortage 

3.1 Overview 

We model the decisions of a farmer that maximizes the expected benefits of harvesting a permanent crop 

and faces water shortage. The farmer decides the amount of crop area to irrigate and the water dose to 

apply. Water shortage occurs when the water available for irrigation is not enough to apply an optimal 

water dose to the whole crop area. The permanent crop has reached its productive age. These years are 

of special interest since it’s the period that allows the farmer to recover the investment made in the trees 

and their growing stage. The production is highly sensitive to irrigation, so a lower water dose will impact 

the farmer profits. 

One period 𝒕 refers to a year that includes the irrigation and the harvesting season. At the beginning of 

the analysis, the crop area is 𝑳. Since the crop is perennial, crop area cannot increase from one period to 

the next, but the farmer can choose to reduce it. For each period 𝒕, the water available for irrigation 𝑊𝑡 is 

known and the farmer decides the crop area to irrigate given by 𝒔𝒕 (≤ 𝑳) and the water dose to apply, 𝒘𝒕. 

Thus, total water applied in each period is less or equal to the total amount of water available in that 

period, 𝑤𝑡𝑠𝑡 ≤ 𝑊𝑡. We assume that irrigation is homogenous for all area 𝒔𝒕 and water storage is not 

possible. We also assume that the trees die if they are not irrigated in one period. The farmer does not 

consider any other use of the land. 

In each period, the profit obtained is 𝝅𝒕 = 𝑝 ∙ 𝜗(𝑤𝑡−𝐴, 𝑤𝑡 , 𝑠𝑡), 𝑤here 𝒑 is the output net price and 

𝝑(𝑤𝑡−𝐴, 𝑤𝑡 , 𝑠𝑡) is the production function. The production is the multiplication of the yield function and 

the irrigated area: [𝛿(𝑤𝑡−𝐴)𝑦(𝑤𝑡)] ∙ 𝑠𝑡 .  

Yield 𝛿(𝑤𝑡−𝐴)𝑦(𝑤𝑡) has two components. As discussed in the previous section, there is an important 

effect in yields of permanent crops when a poor water dose is applied in one period. It does not only affect 

the present production but also the output obtained in subsequent seasons. To capture this intertemporal 

effect, we propose a penalty function 𝛿(𝑤𝑡−𝐴). A are the number of future seasons that are influenced by 

the water dose. This penalty takes values between [0,1]. 

The second term 𝑦(𝑤𝑡) accounts for the crop-yield-water function, very common in the agricultural 

literature  (Fereres et al., 2012). We consider a stationary function for all periods since our analysis involves 

only the productive age of the tree (Tregeagle & Zilberman, 2016). We assume 𝑦(𝑤𝑡) is increasing, 

continuous and twice-continuous differentiable and strictly concave (Feinerman & Tsur, 2014). Keeping 

other inputs constant, yield increases with water dose up to a maximum, 𝑦𝑚𝑎𝑥, and then decreases. This 

upper level is attained when a water dose of 𝑤𝑜 is applied. 

We assume risk neutrality and a fixed output price so the problem to solve is: 

𝑀𝑎𝑥{𝑤1,𝑤2,…,𝑤𝑇,𝑠1,𝑠2,…,𝑠𝑇}            ∑ 𝑝 ∙ 𝛽𝑡−1 ∙ 𝐸[𝝑(𝑤𝑡−𝐴, 𝑤𝑡 , 𝑠𝑡) ]

𝑇

𝑡=1

 

 
𝑠. 𝑡.                   𝑠1 ≤ 𝐿 
                          𝑠𝑡 ≤ 𝑠𝑡−1 , ∀ 𝑡 = 2 … 𝑇 

𝑤𝑡 ∙ 𝑠𝑡 ≤ 𝑊𝑡 

𝑤𝑡−𝐴 are known for 𝑡 ≤ 𝐴 
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The expectation refers to the level of the water availability 𝑊𝑡 that is uncertain for 𝑡 ≥ 2. We are interested 

in analyzing choices in a water shortage context. For the first period, water shortage occurs when 𝑊1 <

𝑊𝑂: = 𝑤𝑜 ∙ 𝐿 and for 𝑡 ≥ 2 we have 𝑊𝑡 < 𝑤𝑜 ∙ 𝑠𝑡−1. Water shortage implies a relation of the water dose 

and area to irrigate as follows: 𝑤𝑡 ∙ 𝑠𝑡 = 𝑊𝑡. The farmer has only one choice to make, the crop area to 

irrigate (the water dose) since the other variable will be determined by the previous relationship. In 

presence of water shortage, the problem is to find the optimal combination of (𝑤𝑡, 𝑠𝑡) that satisfies this 

water restriction and maximizes the profit. The problem is presented graphically in Figure2.  

 

Figure 1: Yield function, profits and water availability for different combinations of (𝑤𝑡, 𝑠𝑡). 

The yield function 𝑦(𝑤) is plotted in the first quadrant. The right horizontal axis is the water dose 𝑤. 

Different levels of water dose are shown with its respective yield: 𝑤𝑜, 𝑤1
′  and 𝑤1′′ with 𝑦(𝑤𝑜) = 𝑦𝑚𝑎𝑥, 

𝑦(𝑤1′) and 𝑦(𝑤1
′ ′). For values 𝑤 ≤ 𝑤𝑜 the yield function is increasing. Values over 𝑤𝑜 are out of the 

analysis since the focus is water shortage.  

We assume that the penalty function 𝛿(𝑤𝑡−𝐴) = 1 and an output price 𝑝 = 1, so the profit is given by 

𝜋 = 𝑦(𝑤) ∙ 𝑠. It is shown in the second quadrant with the left horizontal axis as the irrigated area 𝑠. 

Different combinations of (𝑤, 𝑠) allows for different profit levels, with a maximum of 𝜋𝑜 = 𝑦𝑚𝑎𝑥 ∙ 𝐿.  

The third quadrant shows water availability 𝑊 = 𝑤 ∙ 𝑠. The higher water available is given by 𝑊𝑂 = 𝑤𝑜 ∙

𝐿. Given 𝑊1 ≤ 𝑊𝑂, different irrigation strategies may be used. An extensive one implies the irrigation of 

all the crop area that is available and adjusting the water dose. This scenario is given by  𝑊1 = 𝑤1
′′ ∙ 𝐿. On 

the other hand, an intensive policy maintains the water dose that maximizes the yield and adjusts the 

irrigated area. This case is 𝑊1 = 𝑤𝑜 ∙ 𝑠1′′.  
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If we connect all combinations of (𝑤, 𝑠) that satisfy 𝑊 = 𝑤 ∙ 𝑠 for a given 𝑊 we form a frontier, like an 

isoquant. A higher water availability, 𝑊2 > 𝑊1, will implicate a new level of this frontier. The optimal 

solution to the problem is the combinations of (𝑤, 𝑠) that is part of a water frontier that results on the 

higher profit. 

In the following sections we will develop in detail the conditions for an optimum in two periods. This time 

horizon is enough to illustrate the relevance of considering both irrigated area and water dose as input 

variables. Also, the impact of the intertemporal effects can be explained. The extension to more periods 

is evident.   

3.2 Optimal choices in two periods 

We assume water shortage will be only present in the first period, so 𝑊1 < 𝑊𝑂. Water dose and irrigated 

area are jointly chosen following the relation 𝑤1(𝑠1) =
𝑊1

𝑠1
. The second period has no restriction, i.e. 𝑊2 ≥

𝑤𝑜 ∙ 𝑠1, so both variables 𝑤2 and 𝑠2 are chosen. The problem becomes then: 

𝑀𝑎𝑥{𝑠1,𝑠2,𝑤2}           𝑝 ∙ 𝑦(𝑤1(𝑠1)) ∙ 𝑠1 +  𝑝 ∙ 𝛽 ∙  𝛿(𝑤1(𝑠1)) ∙ 𝑦(𝑤2) ∙ 𝑠2 

𝑠. 𝑡.                   𝑠1 ≤ 𝐿 
                          𝑠2 ≤ 𝑠1  
 
 
Optimal choices for the second period are predictable since no water restriction is present. Our interest 
is in the decisions of the first period, which are determined by the MNB of the irrigated area in t=1, 𝑠1: 
 

𝑝 ∙ [𝑦(𝑤1(𝑠1)) −
𝑊1

𝑠1
𝑦′(𝑤1(𝑠1))] − 𝑝 ∙ 𝛽 ∙ 𝛿′(𝑤1(𝑠1)) ∙

𝑊1

𝑠1
∙

𝑠2

𝑠1
∙ 𝑦(𝑤2) − 𝜆1 + 𝜆2 = 0 

 
𝜆1 and 𝜆1 are the shadow values of the irrigated area in 𝑡 = 1 and 𝑡 = 2 respectively. 
 
The first parenthesis accounts for the current marginal effect of 𝑠1 in the first period MNB. It is the trade-
off of increasing 𝑠1 that includes a positive impact since more area is productive. But also a second negative 
impact is present. It captures the effect of 𝑠1 in the water dose 𝑤1. When more irrigated area is chosen, 
the water dose decreases reducing the MNB. 
 
Changes in 𝑠1 will also impact on the MNB of the second period. Two effects are identified. The first is the 
effect on future production, through the penalty function 𝛿(𝑤1(𝑠1)). We expect this impact to be negative 
since an increase in 𝑠1 will lower the water dose 𝑤1which in turn decreases the potential production in 
𝑡 = 2. The other term is 𝜆2. Irrigating more crop land in 𝑡 = 1 allows for additional land in 𝑡 = 2 generating 
a future marginal benefit. 
 
To find the optimal solution for 𝑡 = 1 we look at the shadow value of irrigated area, 𝜆1: 
 

⇒ 𝜆1 = 𝑝 ∙ [𝑦(𝑤1(𝑠1)) −
𝑊1

𝑠1
𝑦′(𝑤1(𝑠1))] − 𝑝 ∙ 𝛽 ∙ 𝛿′(𝑤1(𝑠1)) ∙

𝑊1

𝑠1
∙

𝑠2

𝑠1
∙ 𝑦(𝑤2) + 𝜆2 ≥ 0 

 

𝜆2 is positive and already known, so 𝜆1 ≥ 0 will imply two alternatives: 
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1) 𝜆1 > 0, the MNB of 𝑠1 is positive, so it will be optimal to irrigate all crop land available. Following an 

extensive strategy, the optimal decision will be 𝑠1
∗ = 𝐿 and 𝑤1

∗ =
𝑊1

𝐿
. 

 
2) 𝜆1 = 0, the optimal solution is (𝑤1

∗, 𝑠1
∗) that results on a MNB of 𝑠1 equal to zero. In this case 𝑠1

∗ <

𝐿 and  𝑤1
∗ =

𝑊1

𝑠1
∗ >

𝑊1

𝐿
, so an intensive strategy is present. 

 
So, extensive versus intensive solutions will depend on the level of the water available. The optimal choice 

is not only determined by the level of 𝑊1 but also due to the intertemporal effects. This connects with the 

previous description of the isoquants of Figure 1. There is a threshold for 𝑊1 that will determinate the 

irrigation strategy. This limit is related to the functional form of 𝑦(𝑤1). Higher 𝑊1 allows values for the 

water dose 𝑤1 in the neighborhood of 𝑤𝑜. Equivalently, 𝑦′(𝑤1) and the indirect effect of 𝑠1, are near zero. 

This situation is comparable to the problem without water shortage described in the first section of this 

chapter. When 𝑊1 is below this threshold, the indirect effect of 𝑠1is relevant so water shortage becomes 

a problem. This case is where our analysis diverges from previous research. By allowing both area and 

water dose to vary, the profits may be higher than in the case where land is fixed. 

 
4. Simulation 

We simulate the previous model to explore the optimal decisions of a farmer that grows a permanent crop 

and faces a water shortage. We explore different time horizons and water availability scenarios. The 

analysis is developed in the same order as the previous chapter. Intensive versus extensive irrigations 

practices are identified. Also, intertemporal effects are present when water is restricted. 

At the beginning of the analysis, we assume that the farmer has 𝐿 = 15 ha of a permanent crop. For the 

production function, we follow agronomic literature and consider a third order polynomial for the yield 

response to water function (Goldhamer & Fereres, 2017). Given the previous assumptions we have 𝑤𝑜 =

662 𝑚3/ℎ𝑎 so 𝑊𝑂 = 𝑤𝑜 ∙ 𝐿 = 9.924 𝑚3. The intertemporal effect of a low water dose is assumed to 

extend for only one season so 𝑨 = 1. The penalty function is defined as 𝛿(𝑤): = (
𝑤

𝑤𝑜)
𝛼

 with 𝛼 = 0.7, for 

𝑤 ∈ [0, 𝑤𝑜]. For a water dose over 𝑤𝑜, 𝛿(𝑤) = 1. Figures 3 and 4 illustrates both components of the 

production function 𝜗(𝑤𝑡−1, 𝑤𝑡 , 𝑠𝑡) = 𝛿(𝑤𝑡−1)𝑦(𝑤𝑡): 
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Figure 2: Yield function as a 3rd order polynomial1. 

  

Figure 3: Yield penalty function. 

We first analyze what happens in one period. As explained before, the water availability determines if the 

best solution will be an intensive or extensive irrigation strategy. Without water shortage, the optimum 

will be 𝑤1
∗ = 𝑤𝑜 and 𝑠1

∗ = 𝐿 (extensive irrigation). But when 𝑊1 < 𝑊𝑂 and the water restriction becomes 

active, the trade-off between irrigated area and water dose appears. As explained in the previous chapter, 

water shortage implies a double effect of 𝑠1in the MNB (Figure 4). The first one is a positive one given by 

𝑝 ∙  𝑦(𝑤1(𝑠1)). The second one is a negative one since the water dose will decrease with a marginal 

increment of  𝑠1. This effect is 𝑝 ∙ 𝑤1(𝑠1) ∙ 𝑦′(𝑤1(𝑠1)). When both effects are equal, we have 𝜆1 = 0, so 

𝑠1
∗ < 𝐿. We see this happening for 𝑤1

∗ = 500 𝑚3/ℎ𝑎. This is the lower limit for 𝑤1. 

 

Figure 4: Trade off effects in the MNB of  𝑠1. 

We simulate different values of 𝑊1 as a percentage of 𝑊𝑂. The optimal choices (𝑤1
∗, 𝑠1

∗) will follow a 

pattern divided in two sections (Figure 5). Without water shortage, the solution will be up at the right. 

When 𝑊1 less but close to 𝑊𝑂, all crop area will keep irrigated so 𝑠1
∗ = 𝐿. Therefore, the water dose will 

 
 

1 𝑦(𝑤𝑡) = 𝑎1 ∙ 𝑤𝑡
3 + 𝑎2 ∙ 𝑤𝑡

2 + 𝑎3 ∙ 𝑤𝑡 with 𝑎1 = −0.01, 𝑎2 = 10 𝑎𝑛𝑑 𝑎3 = −100. 
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diminish to absorb the effect of having less water availability, following an extensive approach. This 

strategy will be maintained for a decreasing 𝑊1. When  𝑤1 reaches its lower limit, the intensive approach 

is preferred and will be kept for more severe shortages.  𝑊1 = 76%𝑊𝑂 is the water availability threshold 

that divides the extensive and intensive sections. 

 

 

Figure 5: Optimal irrigation strategies depending on the water availability. 

We extend the results by including a second period. Results are presented in Table 1. The first column has 

the variables and results of the profits, penalty and probability functions. The next two columns consider 

the one period analysis. The last three consider two periods, two that are deterministic and one with 

uncertainty. Water shortage is the same for the one period analysis that we detailed before and is assumed 

to be 90% for 𝑡 = 2 (𝑊2 = 90% ∙ 𝑤𝑜 ∙ 𝑠1). The third scenario considers 𝑊2 as a stochastic variable with a 

function probability defined as 𝑔(𝑠1) = 𝐺 
ln (𝑠1)

ln (𝐿)
 with 𝐺 = 0.7. 
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Table 1: Simulation results for one and two periods, considering different scenarios of water shortage. 

Two periods,  stochastic

W1≥Wo W1= 50%Wo W1= 50%Wo and W2≥W1 W1= 50%Wo and W2=90%·wo·s1

W1= 50%Wo and W2=90%·wo·s1 with 

probability g(s1) 

s1 15 10 11 12 12

w1 662 500 433 419 424

Profits in t=1 21,225,991 11,909,315 11,683,950 11,582,828 11,623,430

s2 11 12 12

w2 662 595 595

δ(w1) 0.7 0.7 0.7

g(s1) 0.6

Discounted profits in t=2 9,644,589 9,461,536 9,526,937

Total profits 21,225,991 11,909,315 21,328,539 21,044,364 21,150,367

s1 15 15 15 15 15

w1 662 331 331 331 331

Profits in t=1 21,225,991 10,488,940 10,488,940 10,488,940 10,488,940

s2 15 15 15

w2 662 595 595

δ(w1) 0.6 0.6 0.6

g(s1) 0.7

Discounted profits in t=2 10,452,904 10,155,824 10,244,948

Total profits 21,225,991 10,488,940 20,941,844 20,644,764 20,733,888

Losses 0 -1,420,374 -386,695 -399,600 -416,479

% Losses 0% -12% -2% -2% -2%

One period Two periods,  deterministic

Optimum using intensive or extensive strategies

Mantaining an extensive strategy (s1=s2=L)
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Two sets of results are shown. The first one displays the optimum choices for (𝑤𝑡 , 𝑠𝑡) considering that an 

extensive or intensive irrigation strategy may be applied. The second set maintains extensive practices 

(𝑠𝑡 = 𝐿) so it forces to adapt only the water dose 𝑤𝑡. This second approach is traditionally found in 

previous literature as discussed in the introduction, thus comparison of the profits of both sets are 

presented. 

Analyzing the first set, intensive irrigation is always preferred for the first period (𝑠1 < 𝐿 = 15) in the 

presence of water shortage. This accounts for the tradeoff between the water dose and irrigated area that 

has been discussed in the previous sections. Also, the cross effect of 𝑠1 in the production of the second 

period captured by the penalty function. The results of 𝑠2 indicate an extensive strategy since the all crop 

area is irrigated. One reason may be that water shortage is drastic for the first period but not so deep in 

the second. 

Water shortage also implies less profits in all cases as expected. In the one period analysis, this loss is  44% 

when water is restricted compared to the case where water is available. The profits are similar in 𝑡 = 1 in 

all scenarios where water is restricted. Comparing the two periods with water restriction, profits are higher 

when shortage is uncertain than when 𝑊2 is deterministic. This result is predictable since there is a 

probability of not having shortage that elevates the profits in 𝑡 = 2. Both profits are lower than the case 

where the restriction holds is only for 𝑊1. 

If we compare the profits between the two sets previously described, they are higher when the irrigated 

area is not fixed (see the last line). As we described in the previous sections, intensive management may 

be optimal when dealing with water shortage. Reducing only the water dose but not the irrigated area has 

many effects on the future profits. These are balanced when both variables vary. A more flexible irrigation 

strategy impacts not only in the profits but also on the total water used. For the first period, we have the 

same amount of water in all cases (𝑤1 ∙ 𝑠1 = 50%𝑊𝑜 = 4.962). But when the second period is analyzed, 

the water used in an intensive strategy is 15% to 22% less than with extensive irrigation. 
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5. Conclusions 

The dynamics of perennial crops are still an open question. They differ from annual crops due to the 

intertemporal effects that are carried from one period to the next. When water availability is uncertain, 

these effects become even more relevant. 

In the present analysis we have presented the problem of a farmer with a productive perennial crop that 

faces water shortage. The farmer can adjust not only the irrigation plan through the water dose but also 

the crop area that is irrigated. We construct an economic model that extends previous literature by 

considering the dynamics of permanent crops in the presence of relevant water shortages. 

Previous research often considers water dose as the only variable input, maintaining crop area as a fixed 

one. In permanent crops this is usually taken for granted, due to the high initial investment that takes to 

grow a productive orchard. Our model considers both inputs as flexible allowing for very different irrigation 

strategies: one as an extensive management when all crop area is irrigated and only the water dose is 

reduced and at the other hand will be the intensive one, where crop area is reduced and water dose is 

maintained.  

Our first contribution is the finding of a threshold that divides which irrigation strategy is optimal. When 

the water shortage is small, adapting only the water dose is the best decision to make. But when water 

shortage becomes higher, crop area should be reduced to minimize losses. So, our model shows the same 

results as previous research for small water shortages, but when water scarcity is deepened, the tradeoff 

between water dose and irrigated area needs to be balanced.  

A second contribution of our work is the consideration of intertemporal effects in three aspects: crop 

survival, crop productivity and the probability of having water shortage. The first one is due to the relation 

of crop area between one period and the next. Only irrigated areas survive from one period to another. 

This approach is frequent in dynamic problems, where the crop area is the state variable that evolves from 

one period to the next. The second effect is included in the production function. Agronomic studies 

indicate that a low water dose will have implications in not only present but also in future production 

(Fereres et al., 2012). Our work innovates in developing the microeconomics of this impact. A third effect 

arises due to the probability of water shortage. Whether water available is enough or not for irrigation is 

contingent on the crop area. We consider a probability function for water shortage that depends on the 

crop area of the previous period. These intertemporal effects are explicitly developed in the model and 

our theoretical results show that they are key in the determination of the optimal decisions of water dose 

and irrigated area. 

Given previous results, the analysis of farmer adaptation to water shortage must include both irrigation 

strategies and the dynamics of perennials. Without these considerations, the decisions modeled may be 

suboptimal. Our results indicate that including a flexible irrigation strategy avoids profits loss and also 

enhances water efficiency. This second result is of special attention given the global context of water 

availability. 

We have highlighted the dynamic nature of permanent crops in the presence of uncertain water inputs 

but future developments may enrich this work. First, we identify the need to improve in the production 

function. Water-crop relations are still under development to capture the carryover effects that have been 

presented. A more solid agronomic knowledge will allow for a more complete understanding of the 
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intertemporal effects. A second way is the extension of the problem to consider other options of farmer’s 

adaptations considering both permanent and annual crops. Also, replanting is not included so it may be 

aggregated to the present analysis. Finally, access to water markets could also be explored. The present 

research establishes a simple and basic theoretical basis for decision takers to deal with perennials in the 

presence of climate change.  
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Abstract 

 

New and efficient water management strategies are imperative to develop in the context of climate change 

since it will impact the mean, variance and spatial distribution of the supply. Also, the demand and 

competition between the different users is increasing. This scenario challenges the current practices like 

reservoir operation. Hydraulics has developed sophisticated mechanisms to formulate more flexible and 

adaptive operational rules but human behavior is not taken into account. The present research addresses 

the question of whether dams are a useful adaptation strategy for coping with the challenges of climate 

change. The novelty of the proposal is the development of a robust structure for water storage analysis. 

We complement previous literature of rational expectations in a poorly developed market like water 

storage markets. Using a dynamic economic approach, we develop optimal storage rules that are based 

on expected future water resources instead on historical records. Prices may not be observable, so we do 

not consider them. Instead, we reinterpret the resulting equilibriums to capture the marginal value of 

water. With this strategy we can find the long-run equilibrium for the storage policy and the marginal value 

of water. Our results indicate that the effect of having a bounded storage like a dam, limits not only the 

physical capacity for water storage but also affects the moment when storage begins. So, even when the 

dam capacity may never be reached, ignoring it in the analysis will overestimate the marginal value of 

water and mislead the decisions of water use. We then analyzed climate change effects through a decrease 

in the mean values of the water inflows and an increase in its variance. Also, non-stationarity was 

addressed. For the first effect, we found that the role of the dam is relevant when less water is expected 

on average. The operation rule should be adapted to the new projections and storage will start with lower 

levels of water availability. If no adaptation is allowed, the dam will be maintained at its full capacity. In 

the second case, changes in the variance present no changes in the storage rule, so the role of the dam is 

not affected. Finally, non-stationarity shows different trajectories towards the long run equilibrium of the 

storage policy. Climate change will affect these trajectories by accelerating or decreasing its convergence 

to the long-run equilibrium. Further work may be developed to include the interaction of storage with 

other management practices such as water markets or groundwater use. Also, this framework can 

contribute to the determination of the optimal capacity of the reservoir and the cost-benefit analysis that 

takes place when a new infrastructure is projected. 
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1. Introduction 

A vast amount of literature has been developed on the climate change effects on water resources. Changes 

in means and variances and its spatial distribution are expected in the future (IPCC, 2008). In parallel, 

economic development is increasing the competition between the different uses like human consumption, 

agriculture and energy generation (OECD, 2011). In this context of a changing climate and increasing 

resource pressure, it is imperative to develop efficient mechanisms that help secure the water availability 

and allow for its allocation and reallocation. Historically water management strategies have been based 

on past hydrological records but in this context, those records are not a good guide to future conditions 

and so the current  practices may not be robust (Draper & Lund, 2004; IPCC, 2008). 

In the past, farmers have developed different strategies to cope with water supply variability and one of 

the is building water storage infrastructure as dams or reservoirs (Kiparsky, Milman and Vicuña 2012; 

Hansen, Libecap and Lowe 2011). Their construction is a planned decision that can have a positive impact 

in the likelihood of a successful harvest during extreme events (Hansen et al., 2011). Historically dams are 

one of the first interventions when a basin is beginning its development with different objectives like 

supply stabilization for different water demands and flood control. Negative impacts may also occur when 

this kind of infrastructure is built. Their success depends not only on the proper design and operation but 

also on the previous analysis of the possibility of the basin closure (S. Vicuña, Alvarez, Melo, Dale, & Meza, 

2014). This phenomenon occurs when the available water resources fall short of meeting all the demands 

due to basin overdevelopment. In the presence of extreme events, the agents' exposure may increase 

since their portfolio of adaptation options is reduced.  

Most of reservoir operation is determined by a regulation based on historical hydrologic records 

(Georgakakos et al., 2012). Many authors have described that this fixed rule will not be enough to cope 

with the challenges that climate change poses (Draper & Lund, 2004; Georgakakos et al., 2012; Sebastian 

Vicuña, Dracup, Lund, Dale, & Maurer, 2010) 

Furthermore, there are other challenges than the ones related to the climate and hydraulics since the 

physical impacts will influence the human behavior (Rehana and Mujumdar 2014; Olmstead, Fisher-

Vanden and Rimsaite 2016; Olmstead 2010). So, human adaptation is also observable as a rational 

response from water users like farmers. To completely understand the impacts of climate change in water 

management as dam operations, these rational decisions and their dynamics must be considered. 

The present analysis addresses the question of whether dams are a useful adaptation strategy for coping 

with the challenges of climate change. To do so we develop an economical conceptual framework that 

relies on the optimization of expected benefits in time instead of only historical physical records. This 

strategy allows us to characterize an optimal policy for water storage and the marginal value of water. We 

model a representative agent as a benefit maximizer that chooses the interannual allocation of water by 

managing a reservoir. His decisions constitute a dynamic stochastic process since there is uncertainty in 

the future availability of water and the action taken in one period determines the future options. We then 

include changes in the water inflows to analyze the effects of different climate change projections. 
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2. Literature review 

This research considers water as a storable good similar to a commodity. So, rather than focusing on 

historical records to deduce a hydrological rule of operation, we consider the maximization of expected 

benefits as the key to have an optimal storage policy.  

Modeling the storage of commodities has a long tradition in the finance and macroeconomics literature, 

even in conditions of uncertainty. Scheinkman and Schechtman (1983) developed a simple model of 

production and storage, simulating a market for agricultural products. They assumed rational expectations 

of the storage speculators and risk-neutral producers with the possibility of supply responses in a partial 

equilibrium context in both a finite and infinite horizon problem. Following the same approach, Deaton 

and Laroque (1992) prove the existence of a stationary rational expectation equilibrium when the demand 

for consumption is linear. Since the stocks are non-negative, the solution for the price behavior is non-

linear. Cafiero et al. (2015) extended this result to situations where the production shocks may be 

unbounded. All previous studies treat uncertainty as a stationary stochastic shock that influences 

production. Also, these studies consider a fixed cost of storage or even a strictly convex cost function, but 

there is no inclusion of an upper bound for the amount stored. 

Even though Williams and Wright (1991) specifically mention that the traditional storage model does not 

apply to water, in recent efforts, their approach has been used for determining reservoirs' maximum 

capacity (Brennan, 2008; Xie et al., 2017) and water reallocation impacts (Truong, 2012). Also, Xie and 

Zilberman (2017) developed a water storage model that directly extends the storage model in competitive 

markets. Working with an infinite horizon problem that maximizes the benefits of using water, the authors 

deal with the non-linearity in the marginal value for water using an indicative function. Similarly, Truong 

(2012) formulates a model that maximizes the total expected present water revenues for an infinite 

horizon and considers that the formulation satisfies the Bellman equation assuming that the value function 

is differentiable. On the other hand, Brennan (2008; 2010) applies the same Euler Equations developed 

for commodities to assess the economic significance of a missing market for water storage and analyzes 

its potential empirically. The most significant difference between water and other commodities previously 

analyzed, is that water has a minimum storage of zero and an upper bound. This difference translates into 

a new restriction to the traditional mode, implying that the value function will be non-linear and its 

differentiability will not be assured. Oglend and Kleppe (2017) extended the traditional storage model to 

consider this upper bound on commodities with a fixed maximum capacity, like water or oil. They study 

the effects of this limit on price and its volatility. Guerra et al. (2021) make some technical precisions on 

the model of Oglend and Kleppe (2017) to ensure its convergence and the existence of a solution. 

We developed a theoretical framework for analyzing the optimal use of a dam when water inflows are 

uncertain. Our context considers a representative agent as a benefit maximizer of using and storing water 

subject to a maximum capacity of a reservoir. In order to capture the long-term equilibrium and also non-

stationarity conditions, we consider both an infinite and finite time horizon. The first approach is based on 

the traditional storage model developed by Wiliams and Wright (1991), but we include an upper bound to 

consider the fixed capacity of the dam similar as Oglend and Kleppe (2017) and Guerra et al. (2021). With 

this strategy we can find an optimal policy for the reservoir operation. Also, we will characterize the 

marginal value of water1. Both results are functions that depend on the water availability. They constitute 

an equilibrium for stationary conditions and we will call them the base case. Afterwards, we analyze the 

 
1 Example: The value of water is related to the benefits on using for irrigation in an agricultural context. 
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climate change impacts through changes in mean and variances of the water inflows. We calculate new 

optimal paths for storage and its related marginal value function. Also, we test the effects of the inflow 

changes in an already fixed policy. At the end, we complement the analysis to include non-stationarity 

inflows with a finite horizon model. This second approach considers stochastics dynamic programming to 

resolve the same maximization problem. 

The novelty of the proposal is the development of a robust structure for water storage analysis. Using a 

dynamic economic approach, we develop optimal storage rules that are based on expected future water 

resources instead on historical records. We complement the work done by Guerra et al. by applying the 

rational expectations approach in a poorly developed market like water storage markets. Prices may not 

be observable, so we do not consider them. Instead, we reinterpret the resulting equilibriums to capture 

the marginal value of water. We then show how this model serves to the question of analyzing a reservoir 

and its benefits in a changing context as climate change. 

 

3. Water storage model 

The problem we address first is the theoretical way to find the optimal policy of how much water to use 

and store in each period. We assume that the decisions are taken by a representative agent that acts as 

benefit maximizer who manages the reservoir designed for interannual stabilization of water supplies.  

This representative actor maximizes the sum of benefits of using the water over time for an infinite 

horizon. At the beginning of every period 𝑡, the total water availability is 𝑧𝑡 that is either consumed (𝑐𝑡) - 

generating a benefit of Π (𝑐𝑡)- or stored (𝑥𝑡). The reservoir has maximum capacity given and fixed of 

�̅�, thus 𝑥𝑡 has both a lower and upper bound (0 ≤ 𝑥t ≤ �̅�). Each period, the decision of how much water 

to storage is reversible, so 𝑥𝑡 is the stock of water. The next period starts and a new realization of the 

stochastic inflow (𝑤𝑡) is realized. So, 𝑧𝑡+1 includes 𝑥𝑡 multiplied by a loss of d (evaporation, leaks) and the 

new stochastic inflow (𝑤𝑡). Given 𝛽 as the intertemporal discount factor, the problem of the benefit 

maximizer agent can be stated as: 

𝑀𝑎𝑥
{𝑥𝑡}

 𝐸0 [∑ 𝛽𝑡  𝛱 (𝑐𝑡)

𝑇

𝑡=0

] 

           (Eq. 1) 

subject to ∀𝑡 ≥ 0: 

- Water balance : 𝑧𝑡+1≡𝑐𝑡+1 + 𝑥𝑡+1 ≡ (1 − 𝑑)𝑥𝑡 + 𝑤𝑡+1        

- Reservoir restriction: 0 ≤ 𝑥𝑡 ≤ �̅� 

- Inflows’ distribution : 𝑤𝑡 ∼ 𝑓𝑤(𝜇𝑡 , 𝜎𝑡) 

- Border conditions :  z0 given. 

In the next sections we developed the previous problem considering two decision horizons 𝑇: infinite with 

𝑇 = ∞ and finite where 𝑇 < ∞. 

3.1 Infinite horizon 

Following previous literature for a problem with infinite horizon, the maximization problem can be 

rewritten using a rational expectation context (Brennan, 2008, 2010; Deaton & Laroque, 1992; Guerra 

Vallejos et al., 2021; Oglend & Kleppe, 2017) . Since we are analyzing water resources, the market may not 

be well developed or competitive, so prices may not be observable. Instead, we use the marginal value 
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𝑀𝐵𝑡 ≡ Π′(𝑐𝑡) which is related to the benefit from using water or storing it. The decision on the amount 

of water to store (𝑥t) is given by the relation between the marginal benefit that is obtained in the present 

time and the expected marginal benefit of the next period: 

𝑀𝐵𝑡 ⋚ 𝛽(1 − 𝑑) 𝐸𝑡[𝑀𝐵𝑡+1]   (Eq. 2) 

There are three possible cases: 

a) If 𝑀𝐵𝑡 − 𝛽(1 − 𝑑) 𝐸𝑡[𝑀𝐵𝑡+1] > 0, i.e., the expected benefits of the next period are less than the 

benefits of using the water in the present, then the storage will be zero (𝑥t = 0). 

b) If 𝑀𝐵𝑡 − 𝛽(1 − 𝑑) 𝐸𝑡[𝑀𝐵𝑡+1] = 0, i.e., the expected benefits of the next period are equal to the 

benefits of using the water in the present, then the storage will be positive (0 < 𝑥t < �̅�). 

c) If 𝑀𝐵𝑡 − 𝛽(1 − 𝑑) 𝐸𝑡[𝑀𝐵𝑡+1] < 0, i.e., the expected benefits of the next period are greater than the 

benefits of using the water in the present, then the storage will be the maximum possible (𝑥t = �̅�). 

This situation is only attainable if the amount of water available is higher than the maximum capacity 

of the reservoir (𝑧t > �̅�). Therefore, in this case 𝑥t = min (�̅�, 𝑧t). 

Given 𝐹(𝑐𝑡) as the inverse demand for water consumption and denoting 𝑀𝐵𝑡 ≡ 𝑀𝐵(𝑧t) we can resume 

the three previous situations as a function with three intervals: 

𝑀𝐵(𝑧t) = {

F(𝑧t)                             if 𝑥t = 0

𝛽(1 − 𝑑) 𝐸𝑡[𝑀𝐵(𝑧t+1)]         if 0 < 𝑥t < �̅�
F(𝑧t − �̅�)                     if 𝑥t = �̅�

   (Eq. 3) 

 

So, 𝑀𝐵(𝑧t) will have two kinks, 𝑀𝐵∗ when 𝑧t = 𝑧∗ and 𝑀𝐵∗∗ if 𝑧t = 𝑧∗∗, with 0 ≤ 𝑧∗ ≤ 𝑧∗∗.  

In the first interval, when 0 ≤ 𝑧t < 𝑧∗, all water available will be consumed (𝑐𝑡 = 𝑧𝑡), so 𝑀𝐵 will equal the 

inverse demand F(𝑐𝑡) = F(𝑧𝑡). At the opposite side, when 𝑧t > 𝑧∗∗, storage reaches its maximum, so 𝑀𝐵 

will equal the inverse demand displaced by �̅�. In the middle, storage is positive. 

Another way of looking at the marginal benefit is through the following expression: 

𝑀𝐵(𝑧𝑡) = min  {  F(𝑧t − �̅�),   max{  F(𝑧t),   𝛽(1 − 𝑑) 𝐸𝑡[𝑀𝐵 (𝑧t+1)]   }  }   (Eq. 4) 

The previous equation is an extension of the storage model with no maximum capacity described in 

Williams and Wright (2005) 2, similar as the proposals of Oglend and Kleppe (2017) and Guerra et al. 

(2021)3.  

Inserting 𝑧𝑡+1 = 𝑤𝑡 + (1 − 𝑑)𝑥𝑡 and 𝑥𝑡 =  𝑧𝑡 − F−1(𝑀𝐵(𝑧t)): 

𝑀𝐵(𝑧t) = min {F(𝑧t − �̅�), max {F(𝑧t), 𝛽(1 − 𝑑)𝐸𝑡𝑀𝐵 (𝑤𝑡 + (1 − 𝑑)(𝑧𝑡 − F−1(𝑀𝐵(𝑧t))))}}  (Eq. 5) 

If we assume that the stochastic inflows 𝑤𝑡 are i.i.d. then the marginal benefit function becomes: 

 
2 In their work, the marginal benefit of a commodity is equivalent to its price and the function that describes it is given by:     𝑝t =

max  {  F(𝑧t),   𝛽(1 − 𝑑) 𝐸𝑡(𝑝𝑡+1) }. 

3 Authors assume a competitive market for commodities so instead of marginal benefit, they use prices.  
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𝑀𝐵(𝑧) = min {F(𝑧 − �̅�), max {F(𝑧), 𝛽(1 − 𝑑) 𝐸𝑓 (𝑤 + (1 − 𝑑) (𝑧 − F−1(𝑀𝐵(𝑧))))}}  (Eq. 6) 

Oglend and Kleppe (2017) define a similar function, with a difference in the last term. This implies a very 

different convergence in the solution which is discussed by Guerra et al. (2021)4. These authors propose a 

set of conditions in order to have a robust solution for the previous problem. In their work they also 

developed a bound model that incorporates free disposal. This assumption is not considered in our 

analysis. Hence, we prove the existence of a unique solution for Eq 6. following a similar logic as Deaton 

and Laroque (1992) shows for the traditional storage model and Guerra et al. (2021) uses in their bounded 

model. The details are in the Appendix. The solution is a numerical function 𝑀𝐵(𝑧t) that characterizes the 

long-term equilibrium with the storage policy 𝑥(𝑧t). Since neither of them is an analytical function, we 

simulate them to analyze its properties. The existence of a solution depends on the stationarity of the 

inflows, so to complement the present analysis, a finite horizon model is described next that can capture 

non-stationarity situations. 

3.2 Finite horizon 

Looking at the case of Eq.1 with a finite horizon  𝑇 we will be able to observe the trajectories towards the 

long-term equilibrium solution presented in the previous section and include a non-stationarity analysis. 

Following optimal control terminology, 𝑐𝑡 and 𝑥𝑡 are the action or decision variables and 𝑧𝑡 is the state 

variable. Given the relation between 𝑐𝑡 and 𝑥, once one of them is specified, the other is determined. Eq.1 

can be reformulated as one with only one decision variable where the objective is to find the optimal value 

function 𝑉(𝑧0): 

𝑉(𝑧0) = max
{𝑥𝑡}

 𝐸0 [∑ 𝛽𝑡  Π (𝑧𝑡 − 𝑥𝑡)𝑇
𝑡=0 ]   (Eq.7) 

subject to the same conditions as Eq.1. 𝑧0 and 𝑇 are given and known. 

The 𝑀𝐵(𝑧t) and the storage policy 𝑥(𝑧t) are resolved for every period using a backward strategy. The 

Kuhn-Tucker conditions of Eq.1 are resumed in the following inequalities: 

𝑀𝐵(𝑧𝑡 − 𝑥𝑡)    ≥   (1 − 𝑑)𝛽 𝐸 𝑡  [  𝑉𝑡
′ (�̅�,  (1 − 𝑑)𝑥𝑡 + 𝑤𝑡+1)  ]     when 𝑥𝑡 = 0 

=                   when 0 < 𝑥𝑡 < �̅� 

                ≤                  when 𝑥𝑡 = �̅� 

At the left side we have the 𝑀𝐵 of consuming water and at the right is the 𝑀𝐵 of storing water. The three 

intervals are consistent with the development shown in the infinite horizon analysis.  

We will model different periods and compare the results of this trajectories with the equilibrium given by 

the infinite approach. Also, the variation of the inflow distribution will be addressed to characterize the 

impacts of climate change in both 𝑀𝐵 of water and the storage policy 𝑥(𝑧t). The Appendix shows an 

example for three periods. 

  

 
4 Authors assume a competitive market for commodities so instead of marginal benefit, they use prices.  



8 
 

4. Results 

4.1 Base case simulations 

Assuming a linear inverse demand for water consumption, we simulate the function 𝑀𝐵(𝑧t) and the 

storage policy 𝑥(𝑧t) given a water inflow (shocks) distribution. We simulate both infinite and finite 

horizons. 

4.1.1 Infinite horizon 

We present the results using the infinite approach. The next figure presents the long run equilibrium for 

both 𝑀𝐵(𝑧t) and 𝑥(𝑧t)5: 

Figure 1: Marginal benefit of water 𝑀𝐵t(𝑧t) (left) and storage policy 𝑥t(𝑧t) (right).  

 

In the left graph, the 𝑀𝐵(𝑧t) when storage is upper bounded (Oglend, Guerra) is shown in blue. The three 

intervals explained in Eq.3 can be clearly identified. The first interval is when all water is consumed. In that 

section, 𝑀𝐵(𝑧t) equals the inverse demand for water consumption 𝐹(𝑧t), the green line. This lasts up to 

the first kink (𝑀𝐵∗ = 7.4, 𝑧∗ = 7.55) that marks the start of storage. In this second interval, part of the 

water is consumed and part is stored. The third interval starts in the second kink (𝑀𝐵∗∗ = 6.20, 𝑧∗∗ =

10.79). When the water available is higher than this point, the maximum capacity of the reservoir has 

been reached. So, even if storing may bring more benefits, it is physically restricted. From that point, the 

amount of water stored is kept fixed at 𝑥 and the rest of water is consumed. Hence, the 𝑀𝐵(𝑧t) is parallel 

to 𝐹(𝑧t).  

The same results are observed when the storage policy 𝑥(𝑧t) is analyzed (right graph). In blue we see the 

intervals and the same kinks that are related with the 𝑀𝐵(𝑧t): no storage, positive storage and the 

maximum capacity. The differences between the traditional storage model and the one with an upper limit 

can be clearly identified in the first kink. The amount of water stored is higher for the first case, so using 

this policy for a bounded situation like a dam will not be optimal. 

Just for comparison we include in magenta the case of the classical storage model developed by Williams. 

Two relevant differences between this traditional model and ours are worth commenting on. The first one 

refers to the first kink. The values in the classical model are 𝑀𝐵𝑜 = 7.53 and 𝑧𝑜 = 7.46. Since 𝑧𝑜 < 𝑧∗, 

storage starts when less water is available. Therefore 𝑀𝐵(𝑧t) is greater for the unbounded case. So, the 

 
5Simulation parameters: 𝐹(𝑧) = 15 − 𝑧, 𝑥 = 2, 𝛽 = 0.95, 𝑑 = 0 and 𝑤𝑡~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 2,  𝜎2 = 0.05). 
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𝑀𝐵(𝑧t) could be overestimated when the capacity is fixed but is not considered in the analysis. Even if the 

maximum capacity is large enough and may never be reached, it affects the start of storage so it should 

never be ignored. The second difference is the existence of a second kink. This point is related to the 

maximum capacity 𝑥, so it doesn’t appear in the traditional model. 

4.1.2 Finite horizon 

We consider 𝑇 = 10 to observe the trajectories of the decision variables. The results for the irrigation 

policy 𝑐(𝑧t) are presented in the next graphs: 

  

(a) (b) 

Figure 2: Irrigation policy for: (a) infinite horizon, (b) 10-period analysis without trends in the inflow. 

 

The long-term policy will be the equilibrium policy that is found with the infinite horizon (Figure 2a). In the 

finite solution, the policy presents multiple kinks that depend on how many periods are analyzed (Figure 

2b). In the final period, only one kink appears since no water will be stored. But, when more periods are 

included, the kinks are multiplied and storage appears. These results imply that the decision of how much 

water to use or to store is not the same in all periods and follows a trajectory. More details of the kinks’ 

origins are presented in the Appendix where the model using a three-period example is developed.  

4.2 Climate change effects 

4.2.1 Changes in the long run equilibrium 

As we pointed out previously, water resources are expected to vary with climate change. For the purpose 

of this analysis, we focus on precipitations since it’s highly correlated with dam inflows. Future projections 

consider changes in annual averages and in the occurrence of extreme events. So, we change the mean 

and variance of the water inflow distribution. To better understand the effect of each change we run two 

scenarios: one where only the expected value of the inflow (shock) was decreased and a second where 

only the variance of the shock was increased. In both scenarios, the demand, the maximum capacity and 

the other parameters are kept the same.  
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We start the analysis with the infinite approach. In the next figure the results for the new 𝑥(𝑧t) and 

𝑀𝐵(𝑧t) are presented: 

(a)               (b) 

Figure 3: Simulation results for two scenarios of climate change: mean decrease of the inflow (a) and variance increase of the 
inflows (b). The functions are the 𝑀𝐵t(𝑧t) water (up) and storage policy 𝑥t(𝑧t) (down). 

 

Figure 3a shows that a decrease in the mean inflow will shift the first kink to the left (𝑧∗ = 2.5).  This effect 

causes an up-shift of 𝑀𝐵(𝑧t). It is an intuitive result since less water is expected, so the MB water is higher. 

On the other hand, when the variance of the inflow is increased (Figure 3b), we do not observe any 

relevant variations from the base scenario. The first kink is very close, 𝑧∗ = 7.5 vs. 𝑧∗ = 7.55. But when 

the traditional model (in magenta) is compared with the bounded model, there are important differences. 

The gap that was discussed in the previous chapter becomes higher. Storage will start with significantly 

less water available, which will result in the loss of present benefits. So, using the traditional model for 

modeling a water dam will deliver misleading results. 

When both scenarios of changes are compared, the results are very similar to the previous analysis since 

the modification of the variance does not differ from the base case equilibrium. 

4.2.2 Inflow shocks 

Previous results have established the optimal policies when different inflows are expected. Next we will 

show the effects of a change in the inflows once the optimal storage policy is defined. We consider 

separately an increase in the mean and the decreased in the variance of the inflows. The following figure 

shows the realization of the different inflows and the consequent MB and storage decision: 
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(a)             (b)      (c) 

Figure 4: Impact of inflow realizations in the MB of water and storage policy: (a) base scenario, (b) decrease inflow’s mean and 
(c) increase inflow’s variance. 

 

The column on the left shows the base case since the inflow realizations have the same distribution as the 

one used to compute the base case of 𝑀𝐵(𝑧t) and 𝑥(𝑧t). As expected, we observe the correlation of the 

inflows’ realizations and the functions, in the sense that the realizations are well distributed in the three 

intervals.  

When the inflows mean decreases, the inflow realizations are concentrated in the third interval (Figure 

4b). It is clearly shown that in most cases the decision will be to store water and maintain the dam at its 

full capacity. The effects include a higher water availability and the consequent low 𝑀𝐵 of water. This is a 

counterintuitive effect. Since the mean decreases, less water resources will be expected in the future. This 

scarcity is usually related to high marginal values, but when storage is present, the effect is the opposite 

as shown in the example. 

When the change occurs in the variance the inflows are very similarly distributed as in the base case. So, 

no impacts are identified. 

4.2.3 Non stationarity 

As pointed out in the previous chapter, using an infinite horizon approach limits the analysis to stationary 

inflows. So, we complement the preceding results using the finite horizon model. We consider 𝑇 = 10 to 

observe the trajectories of the decision variables. The results for the irrigation policy 𝑐(𝑧t) are presented 

in the next graphs: 
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(a) (b) 

Figure 5: Irrigation policy for 10-period analysis considering non-stationarity in the inflows: (a) positive trend in the mean and 
(b) negative trend in the mean. 

 

Recalling the irrigation policy presented in the previous section (see Figure 2), we found that when the 

inflow has a positive trend, the trajectories of all periods converge (Figure 5a). The difference between 

them is reduced and in all periods the irrigation policy is the higher achievable. This is an expected result 

since the water availability is expected to increase in the future, so more water will be used in all periods. 

On the opposite side, when a negative trend is incorporated, the irrigation is different in each period 

(Figure 5b). Hence, the consequent water storage and its levels also differ between periods.  

Given previous results we show that there exist different irrigation levels in each period, so there are 

different trajectories towards the long run equilibrium. Hence, the dam will be used accordingly to the use 

of water in each period.  

We repeat the previous analysis but instead of varying the trend of the mean, we vary the trend in the 

variance. This change presents no difference between the base case. It is consistent with the previous 

analysis with infinite horizon where a change in the variance does not affect the base scenario.  
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5. Conclusions 

The present research analyzes the use of a dam to study whether this infrastructure is useful to mitigate 

climate change effects. Extending the dynamic economic theory of commodities, we developed a 

theoretical framework that is based on the marginal value of water when storage is available. The water 

availability depends on uncertain inflows that are affected are affected by climate change.  

To do so, we develop a model based on traditional storage model of commodities (Williams & Wright, 

1991), but including an upper bound for storage (Guerra Vallejos et al., 2021; Oglend & Kleppe, 2017). In 

our case, prices may not be observed since water markets may not be developed for storage. But the 

amounts of water used and stored are known, so our results still apply in the analysis of the marginal value 

of water and the storage policy. Our results indicate that the effect of having a bounded storage limit not 

only the physical capacity for water storage but also affects the moment when storage begins. So, even 

when the dam capacity may never be reached, ignoring it in the analysis will overestimate the marginal 

value of water and mislead the decisions of water use. 

Our model establishes a link between the marginal value of water and the inflow shocks, so climate change 

will have an effect on the marginal value of water. We analyze the impact of climate change on both 

functions through a variety of strategies. These include changes in the stationary distribution of the inflows 

and also trends in the expected means to simulate non-stationarity situations. We separate them to 

identify each effect more precisely. 

We found that the role of the dam is relevant when less water is expected to be available in the future. 

When the expectancy of the inflows decreases, the operation rule may adapt and storage will begin with 

lower levels of water availability. If no adaptation is allowed, the dam will be maintained at its full capacity. 

Changes in the variance present no changes in the storage rule, so the role of the dam is not affected.  

Finally, we find different trajectories towards the long run equilibrium of the water use policy. So, the 

decision of how much water to use or to store is not the same in all periods. These trajectories vary when 

non-stationary inflows are included. It converge is accelerated (decelerated) when a positive (negative) 

trend is incorporated. 

The present work could be extended to address the determination of the optimal capacity of the reservoir. 

It is realistic to expect a fixed maximum capacity in the short term, but in the long term, it may change. 

The capacity must be treated as a discrete decision variable, introducing a new non-linearity in the model. 

Also, not only the capacity has to be optimized but also the time this decision is made. Also, the model 

could include other strategies that are usually in place when storage decisions are taken. Groundwater 

management is a complementary alternative for water users when dealing with uncertainty. Aquifers may 

be considered as natural reservoirs. A generalization of the model developed could be used to model a 

basin including both superficial and underground resources.  Pumping costs may be considered so the 

maximum capacity could be modeled as an increasing cost function instead of a fixed restriction.   
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Appendix 

I. Demonstration of the long run equilibrium existence 

The demonstration is based on Deaton and Laroque (1992) Theorem 1 and is structured in 3 lemmas that 

will be used for the demonstration of the Theorem itself. 

For simplicity we will name 𝑀𝐵(𝑧) ≡ 𝑓(𝑧). Suppose that the equilibrium of Eq.6 is given by a function 

𝑔(𝑧), i. e.: 

𝑓(𝑧) = min {F(𝑧 − �̅�), max {F(𝑧), 𝛽(1 − 𝑑)𝐸𝑔 (𝑤 + (1 − 𝑑) (𝑧 − F−1(𝑓(𝑧))))}}   (Eq. A1) 

Then, the SREE is a function 𝑓 such that 𝑓 = 𝑔. 

The water availability 𝑧 is defined in the set 𝑋 = {𝑧 ∈ ℝ, 𝑧 ≥ 𝑤}, so both 𝑓 and 𝑔 are defined in 𝑋. 

We define the set  𝑌 = {(𝑝, 𝑧) ∕ 𝑧 ∈ 𝑋, 𝐹(𝑧) ≤ 𝑝 < 𝑝1} and let 𝐺: 𝑌 → ℝ such that:  

𝐺(𝑞, 𝑧) =  𝛽(1 − 𝑑) 𝐸 𝑔 (𝑤 + (1 − 𝑑)(𝑧 − F−1(𝑞)))          (Eq. A2) 

Given (𝑞, 𝑧) as the marginal benefit and water availability today, 𝐺 is the expected discounted marginal 

benefit for tomorrow.  

Eq. A.2 can be rewritten as: 

𝑓(𝑧) = min{F(𝑧 − �̅�), max{F(𝑧), 𝐺(𝑓(𝑧), 𝑧) }}    (Eq. A3)  

Take 𝑇 as the operator that assigns to a function 𝑔 the function 𝑓 that is the solution to the previous 

equation (𝑇𝑔 = 𝑓). 

Lemma 1. 

Suppose 𝑔: 𝑋 → (𝑝0, 𝑝1) is continuous and non-increasing. Then 𝐺(𝑞, 𝑧) is also continuous and non-

increasing in both its arguments 𝑞 and 𝑧. 

Proof Lemma1. 

Given the definition of 𝐺(𝑞, 𝑧) and the fact that the expectation of a continuous function is also 

continuous, 𝐺(𝑞, 𝑧) is continuous. A similar argument can be established for 𝐺(𝑞, 𝑧) to be non-increasing 

in both 𝑞 and 𝑧. 

▪  

Two relevant facts are important to notice: 

i) 𝐺(𝐹(𝑧), 𝑧) =  𝛽(1 − 𝑑) 𝐸 𝑔 (𝑤 + (1 − 𝑑)(𝑧 − F−1(𝐹(𝑧)))) = 𝛽(1 − 𝑑) 𝐸 𝑔(𝑤) = 𝑀𝐵∗ 

This is the maximum marginal benefit that is expected for the next period, since there is no storage and 

𝐺is non-increasing in 𝑧. Also, 𝑀𝐵∗ does not depend on 𝑧. 

ii) 𝐺(𝑝, 𝑧) ≤  𝛽(1 − 𝑑) 𝑝1 < 𝑝1 
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𝐺(𝑝, 𝑧) is bounded. 

Returning to Eq. A3, given 𝑧 we look for 𝑓(𝑧) ≡ 𝑞 that is the root of: 

min{F(𝑧 − �̅�) − 𝑞, max{F(𝑧) − 𝑞, 𝐺(𝑞, 𝑧) − 𝑞 }} = 0  (Eq. A4) 

Given the domain of 𝐺, 𝑞 ≥ 𝐹(𝑧) and so 𝐺(𝐹(𝑧), 𝑧) is the maximum marginal benefit expected. By Lemma 

1, 𝐺(𝑞, 𝑧) is non-increasing, so 𝐺(𝑞, 𝑧) − 𝑞 will be strictly decreasing. Both F(𝑧) − 𝑞 and F(𝑧 − �̅�) − 𝑞 are 

also strictly decreasing.  

We will analyze graphically the 3 possible cases: 

A. 𝐺(𝐹(𝑧), 𝑧) − 𝐹(𝑧) > 0.  

 

The function 𝐺(𝑞, 𝑧) − 𝑞 starts from a positive value and varies up to a negative value with the increment 

of 𝑞 up to 𝑝1. It has therefore a unique zero (𝑞∗) given by 𝐺(𝑞∗, 𝑧) − 𝑞∗ or 𝐹(𝑧 − 𝑥) depending on the 

relation between these two functions as the two green lines show. 

B. 𝐺(𝐹(𝑧), 𝑧) − 𝐹(𝑧) < 0 
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As opposed in Case A, the function 𝐺(𝑞, 𝑧) − 𝑞 starts from a negative value so the root is equal to 𝐹(𝑧) 

and is unique. 

C. 𝐺(𝐹(𝑧), 𝑧) − 𝐹(𝑧) = 0 

Following a similar argument than in the Case B, the root of Eq. A4 is also unique.  

Resuming, for a given 𝑧, we have found that there exists a unique 𝑞 that is the root of Eq. A4. 

 

Lemma 2. 

Given two functions 𝑔1 and 𝑔2, with 𝑔1 ≥ 𝑔2. Then, 𝐺1 ≥ 𝐺2 and also 𝑇𝐺1(𝑞, 𝑧) = 𝑓1 ≥ 𝑓2 = 𝑇𝐺2(𝑞, 𝑧), 

∀𝑧 ∈ 𝑋. 

Proof Lemma 2. 

Given 𝑧, we can observe two scenarios: 

i. 𝐺1(𝐹(𝑧), 𝑧) − 𝐹(𝑧) ≥ 𝐺2(𝐹(𝑧), 𝑧) − 𝐹(𝑧) > 0: 

 

Clearly 𝑞1
∗ ≥ 𝑞2

∗. They can take the same value if 𝐺1(𝑞, 𝑧) and 𝐺2(𝑞, 𝑧) are equal in that section of 𝑞. 

ii. 0 ≥ 𝐺1(𝐹(𝑧), 𝑧) − 𝐹(𝑧) ≥ 𝐺2(𝐹(𝑧), 𝑧) − 𝐹(𝑧): 
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In this case, 𝑞1
∗ = 𝑞2

∗ = 𝐹(𝑧). 

So, for any given 𝑧, we have demonstrate Lemma 2, which includes that T is an operator satisfying 

monotonicity. 

▪  

Lemma 3. 

Suppose 𝑧0 > 𝑧1, then 𝑓(𝑧0) <𝑓(𝑧1) and 𝑓(𝑧) is strictly decreasing. 

Proof Lemma 3. 

Up to now, 𝑧 has been fixed but the same logic followed before can be used for this demonstration. 

Graphically we have: 
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𝑝∗ is constant and does not depend on 𝑧 and 𝐺(𝑞, 𝑧0) − 𝑞 is the same function than 𝐺(𝑞, 𝑧1) − 𝑞, but 

shifted. So, if 𝑧0 > 𝑧1 then 𝑞0 = 𝑓(𝑧0) < 𝑓(𝑧1) = 𝑞1 and the function 𝑓(𝑧) is strictly decreasing. Also, 

there will be a unique 𝑧∗ such that 𝑝∗ − 𝐹(𝑧∗) = 0. 

In the illustration we have considered that 𝐺(𝐹(𝑧0), 𝑧0) − 𝐹(𝑧0) > 0 and 𝐺(𝐹(𝑧1), 𝑧1) − 𝐹(𝑧1) > 0, but 

the argument is similar when that condition is not attained.  

▪  

Theorem 1. 

Under the following assumptions A1-A5, there exists a unique SREE 𝑓(𝑧) that is continuous and non-

increasing. 

- A1. Inflows are i.i.d. a support given by [𝑤, �̅�]. 

- A2. The demand for water consumption 𝐷(𝑝): (𝑝0, 𝑝1) →  ℝ is continuous and strictly decreasing. 

- A3. 𝐹 ≡ 𝐷−1(𝑝). 

- A4. 𝐹(𝑤) ∈ (0, +∞) is the maximum marginal benefit. 

- A5. 0 < 𝛽(1 − 𝑑) < 1 ⇒ 𝛽 <
1

(1−𝑑)
. 

Proof Theorem 1: 

a) Let 𝒢 ≡ {𝑔: 𝑋 → (𝑝0, 𝑝1), 𝑔 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑔(𝑤) = 𝐹(𝑤)}. Then, the operator T maps 𝒢 into itself6. 

b) Define the metric 𝑑(𝑔1, 𝑔2) =∥ 𝑔1 − 𝑔2 ∥≡ 𝑠𝑢𝑝𝑧∈𝑋|𝑔1(𝑧) − 𝑔2(𝑧)| and suppose 𝑎 ≥ 0, scalar. If 

𝑔1(𝑧) ≤ 𝑔3(𝑧) = 𝑔2(𝑧) + 𝑎, ∀𝑧 ∈ 𝑋 then (𝑇𝑔1)(𝑧) ≤ (𝑇𝑔3)(𝑧) = 𝑇(𝑔2(𝑧) + 𝑎), ∀𝑧 ∈ 𝑋, since T is a 

monotonic operator. 

Define 𝛾 = 𝛽(1 − 𝑑), then: 

𝑇(𝑔2(𝑧) + 𝑎) ≡ min {F(𝑧 − �̅�), max{F(𝑧), 𝛾𝐸𝑔2(𝑤 + (1 − 𝑑)(𝑧 − F−1(𝑇𝑔2(𝑧) + 𝑎)) + 𝑎)}} 

 ≤ min {F(𝑧 − �̅�), max {F(𝑧), 𝛾𝐸𝑔2 (𝑤 + (1 − 𝑑) (𝑧 − F−1(𝑇𝑔2(𝑧))) + 𝑎)}} 

 = min {F(𝑧 − �̅�), max {F(𝑧), 𝛾𝐸𝑔2 (𝑤 + (1 − 𝑑) (𝑧 − F−1(𝑇𝑔2(𝑧)))) + 𝛾𝑎}} 

 ≤ min {F(𝑧 − �̅�) + 𝛾𝑎, max {F(𝑧) + 𝛾𝑎, 𝛾𝐸𝑔2 (𝑤 + (1 − 𝑑) (𝑧 − F−1(𝑇𝑔2(𝑧)))) + 𝛾𝑎}} 

= min {F(𝑧 − �̅�), max {F(𝑧), 𝛾𝐸𝑔2 (𝑤 + (1 − 𝑑) (𝑧 − F−1(𝑇𝑔2(𝑧))))}} + 𝛾𝑎 

 = (𝑇𝑔2(𝑧)) + 𝛾𝑎. 

 

 
6 F(z), F(z-x) and G(q,z) are continuous, so TG(z) is also continuous. 
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Taking a) and b) and by Blackwell’s contraction Theorem, T is a contraction mapping with modulus 𝛾 =

𝛽(1 − 𝑑). So, there is a unique fixed point f such that 𝑑(𝑓, 𝑇𝑓) = 0 and it can be found by iteration starting 

from any function 𝑔 ∈ 𝒢.   

⨂. 
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II. Finite horizon 3-period deterministic problem 

We consider a quadratic benefit function of water consumption, implicating a linear demand 𝐹(𝑐𝑡) = 𝑎 −

𝑏𝑐𝑡 , 𝑎, 𝑏 > 0. There is a constant inflow 𝑘 and no evaporation (𝑑 = 0). The problem can be stated as: 

𝑉𝑡(𝑧𝑡) = max
{𝑥𝑡}

 𝐸𝑡  [∑ 𝛽𝑡  ∫ F(q)dq

𝑧𝑡−𝑥𝑡

0

3

𝑡

] 

subject to 

𝑧𝑡+1 = 𝑥𝑡 + 𝑘    𝑡 = 1,2,3 

0 ≤ 𝑥𝑡 ≤ �̅�         𝑡 = 1,2,3 

 

Applying dynamic programming, the solution is found using a backward process. We start in 𝑡 = 3, and 

assume that the optimal storage rule is zero, i.e., 𝑥3
∗ = 0. Replacing in the value function, we obtain 

𝑉3
∗(𝑧3) =  𝑎𝑧3 −

𝑏

2
𝑧3

2. 

With this information we formulate the problem for 𝑡 = 2: 

𝑉2(𝑧2) = max
{𝑥2}

 ∫ F(q)dq

𝑧2−𝑥2

0

+ 𝛽𝐸𝑡[𝑉3
∗(𝑧3)] 

subject to 

𝑧3 = 𝑥2 + 𝑘 

0 ≤ 𝑥2 ≤ �̅� 

 

Using the Kuhn-Tucker first order conditions we find an optimal storage function in intervals with two kinks 

(𝑧∗ and 𝑧∗∗): 

𝑥2
∗(𝑧2) = {

0                                             𝑧2 ≤ 𝑧∗ = −𝐴(1 + 𝛽)

𝐴7 +
𝑧2

1 + 𝛽
                                          𝑧∗ < 𝑧2 < 𝑧∗∗

�̅�                                     𝑧2 ≥ 𝑧∗∗ = (�̅� − 𝐴)(1 + 𝛽)

 

Graphically: 

 
7 𝐴 is a constant depending on the parameters: 𝐴 =

𝑎(𝛽−1)

𝑏(1+𝛽)
−

𝛽𝑘

(1+𝛽)
. 
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Figure 6: Optimal storage function for the second period. 

 

This implies an optimal value function that is also defined in three intervals with the same kinks 𝑧∗ and 𝑧∗∗ 

as shown in the next figure: 

  
Figure 7: Optimal value function for the second period. 

 

The solution is strictly concave in each of its sections and also continuous. 

Analogously, we formulate and solve the problem for the first period 𝑡 = 1: 

𝑉1(𝑧1) = max
{𝑥1}

 ∫ F(q)dq

𝑧1−𝑥1

0

+ 𝛽𝐸𝑡[𝑉2
∗(𝑧2)] 

subject to 

𝑧2 = 𝑥1 + 𝑘 

0 ≤ 𝑥1 ≤ �̅� 

In this case we have to take into account the three intervals of 𝑉2
∗(𝑧2). 

The optimal storage rule is also a function by intervals but in this case more kinks appear (𝑧∗, 𝑧∗∗ and 

𝑧∗∗∗): 
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Figure 8: Optimal storage function for the first period. 

 

The Value function will also be in intervals with three kinks, but continuous and strictly concave in each of 

them: 

 

Figure 9: Optimal value function for the first period. 
 

In an economic analysis like this is important to analyze the behavior of the marginal value of water. Due 

to the concavity of the value function the marginal value will be linear and strictly decreasing: 
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 Figure 10: Marginal benefit function for the first period. 

 

The previous results are as expected. First of all, the concavity of the value function is demonstrated. 

Secondly, the kinks are expanded when more periods are considered; even in this brief 3-period analysis 

is reflected. This implies a mathematical difficulty to expand the analytical solutions to a more realistic 

context with longer horizons. 
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Abstract 

This article addresses the decisions of crop choice under water scarcity, focusing on low- to medium-

income nations. The traditional approach of treating land as a fixed input falls short when considering 

water scarcity and institutional water allocation. The research develops a novel crop choice economic 

model that considers water, not land, as the primary decision variable for farmers. The literature review 

explores various econometric models and their applications in understanding agricultural supply 

responses and climate change impacts. The methodology employs a multinomial logistic structure to 

analyze water allocations for crop choices, utilizing data from the National Agricultural Census of Peru. 

Results from tobit, panel tobit and seemingly unrelated regression models are compared between water 

and land allocations for specific crops. Despite partial identification of profit influences, few statistically 

significant models are identified, revealing challenges in attributing effects to chosen variables. The 

conclusion emphasizes the model's contribution to understanding water allocation decision-making under 

data constraints, suggesting future research explore medium and long-term effects with improved data 

quality for a more comprehensive understanding of crop-mix allocation complexities under water scarcity.  
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1. Introduction  

Crop choice and land use models have been widely used to understand the effects of a change policies, 

economics or even climate. Crop-mix models are frequently at farmers scale while land use models are 

national or sub-national. In both cases, econometric approaches are developed with requires a large and 

rich amount of data that matches allocations with weather and economic variables (Arora, Feng, 

Anderson, & Hennessy, 2020; Michael R Moore & Negri, 1992; Oczkowski & Bandara, 2013; Olen, Wu, & 

Langpap, 2016; Speir, Mamula, & Ladd, 2015). These requirements create a restriction for undeveloped 

countries, since datasets often lack completeness. And is in these low- or medium-income nations where 

agricultural patterns have a very important effect since their economies are highly depend on this activity 

(Melo & Foster, 2021). Understanding the decision in crop-mix allocations is fundamental to policy 

formulation. 

 

A long tradition of land use models is based on the dual multioutput technology where jointness is 

incorporated by a fixed input in a profit maximization function (Chambers & Just, 1989). Fixed inputs are 

defined when its farm level quantity is the variable that determines the producer decisions. In the case of 

variable inputs, price replaces quantity in the producer’s decisions. Land is usually considered as the fixed 

input and all other like water, fertilizer or labor are variable. The assumption behind is that there exists a 

market for all variables inputs and the producer can adjust the use of them in the short term. However, 

in at least two situations this doesn’t apply for water. First, when water is allocated through institutional 

settings. Is this case, there is no market for water so it’s not available to be bought or sold to adjust crops 

allocations. And secondly, in the presence of water scarcity. In times of droughts or in arid places, buying 

water is not an option. Even using underwater may not be available since it requires a prior investment 

to be used in times of irrigation season. 

 

Crop choices will depend on both variable and fixed inputs and its prices (Boggess, Lacewell, & Zilberman, 

1993). Optimal input allocation, including water, will depend on input and outprices and also yields and 

irrigation technology. These information is usually available in all countries. 

 

So, understanding crop-mix allocation in the context of water scarcity is still missing for low to medium 

income nations. The objective of this research is to develop a simple crop choice model that captures the 

economic rationality of the decision makers based on water allocations. We propose a comparison on 

water and land allocations for completeness. 

 

2. Literature review 

Chambers and Just (1989) applied a dual approach to the decisions on the allocations of fixed inputs. They 

develop a multioutput profit maximization function that characterizes land as the fixed input that provides 

a source of jointness on the input decisions. Using this approach, Moore and Negri (1992) extended the 

question of whether land or water are fixed inputs. Analyzing producer data at national level on land and 

water allocations, the authors found that water should be treated as a fixed-input instead of a variable -

one since due to the water entitlement context. Similarly, Moore and Dinar (1995) studied long-run farm 

behavior evaluating competing models of input use for surface water and land. Using the multiproduct 
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firm theory, ten counties in California were studied using 1988 production info resulting that both water 

and land were quantity fixed so they should be treated as fixed inputs. 

 

Boggess et al. (1993) develop a simple model to explain irrigation decisions and technology adoption. The 

authors maximize profits in order to choose which technology will be applied. Newer technologies may 

be more efficient and achieve higher yields but have higher fixed costs compared to traditional irrigation 

practices. Which technology will be optimal is determined by the marginal product of water and the price 

of water. The same model may be used to characterize crop instead of technologies choices. 

 

Oczkowski and Bandara (2013) run a comprehensive systematic econometric study of agricultural supply 

response at the regional level in Australia. Applying the multioutput profit maximization function 

proposed by Chambers and Just (1989) on 50.000 land allocation data points of 64 commodities and 24 

years they found that land allocations partially adjust to changes on prices, rainfall and other climate 

variables. Given the Australian institutional settings, the economic drives have small short-run effects on 

land-use allocations. Speir et. al (2015) follows the model developed by Moore and Negri (1992) 

considering water as a quantity fixed input. They estimate the impacts of water changes on crop and labor 

production at county scale in San Joaquin Valley (California). For their analysis they employed 22 years of 

a complete data set per county that included input and output prices for seven crop groups, total water 

availability and other external factors for six counties. They run regressions not only on the profit function 

but also to calculate labor, groundwater demands and crop supply. Among the results, they found that 

cotton was the most sensitive crop to water availability while permanent crops remained stable. Also, a 

structural change was identified in the 22 years related to annual crops and water supply. 

 

In recent econometric developments, Arora et al. (2020) study the effects of climate change on land 

allocations by including an explicit crop-specific yield-weather function in the profit function. Water is 

treated as a variable input and has impact on profits through the level of production. Melo and Foster 

(2021) proposed a similar approach but adapted to medium and low-income countries, where land 

allocations matched to weather specific data is not available. Profits were constructed using average 

regional data for ten fruits, vines, field crops, forestry, pasture and fallow land. Their results indicate a 

relative low impact of climate change on Chilean agriculture, that may be explained by the possibility of 

changing the crop-mix by the farmers, at least at the long-run. 

 

In this research farmer´s decisions are modeled, assuming they depend on the relative profitability of each 

activity  (Arora et al., 2020; Melo and Foster, 2021). Our analysis is based on Peru that accounts for the 

same data problems as Chile so different strategies were taken to form a dataset that matches crop 

allocations and profits. A novelty of our proposal is the consideration of water instead of land allocations 

as the decision variable of the farmers, following previous findings where water is a fixed input (M. R. 

Moore & Dinar, 1995; Michael R Moore & Negri, 1992; Speir et al., 2015). We also construct the model 

for land allocations to compare the results. 

 

3. Methodology 

3.1. Model description 
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The following econometric model analyzes the water allocations that determine crop-choices of a group 

of farmers. We call this group a conglomerate. Assuming individual decisions are driven by the 

maximization of the expected benefits per hectare, the decision of how much water to use for each crop 

is determined by the relative net incomes of each crop. 

   

The water used to irrigate a crop 𝒊 in a conglomerate 𝒄, 𝑾𝒊𝒄,  depends on the net benefits of all crops (𝒊  

+ j) and other variables, 𝒙𝒄, like location, source of water, irrigation technology, among others. We model 

𝑾𝒊𝒄 as the water share and asume that it has a multinomial logistic structure (Arora et al., 2020; Melo 

and Foster, 2021; Oczkowski and Bandara, 2013): 

 

𝑊𝑖𝑐 =
𝑒𝑥𝑝[𝑓(𝑥𝑐/𝛽𝑖)]

∑ 𝑒𝑥𝑝[𝑓(𝑥𝑐/𝛽𝑗)]𝑗∈𝐽

 

 

Taking one crop as a reference crop, the relationship between the shares becomes linear and the 

parameters 𝛽𝑖 can be estimated: 

 

ln (
𝑊𝑖𝑐

𝑊1𝑐
) = 𝑓(𝑥𝑐/𝛽𝑖) − 𝑓(𝑥𝑐/𝛽1) = 𝛽𝑖′𝑥𝑐 − 𝛽1′𝑥𝑐 = 𝛼𝑖′𝑥𝑐 

 

Previous theory is applied to water shares as follows. Water used to irrigate a crop i in conglomerate c on 

year t is estimated as the area multiplied by the irrigation rate: 

 

  𝑤𝑖𝑐𝑡 = ∑ ∑ ℎ𝑎𝑖𝑐𝑥𝑡𝑠*𝑟𝑎𝑡𝑒𝑖
2
𝑥=1

2
𝑠=1  

 

The subindexes x corresponds to the irrigation technology, superficial or drip, and s to the water source, 

superficial or underground. Using crop 1 as the reference crop, the water share 𝑊𝑖𝑐𝑡 is estimated as:    

  

 𝑊𝑖𝑐𝑡 = 𝑤𝑖𝑐𝑡/𝑤1𝑐𝑡 

 

Turning on the independent variables, water share depends on the net benefits 𝜋𝑖ct. We construct the net 

benefits using crop prices, yields and costs. A second explanatory variable is the total water available on 

the conglomerate. We also include dichotomic variables as irrigation technology, the source of water and 

the district where the conglomerate is located. 

  

3.2. Data description 

We applied the previous model using the National Agricultural Census of Peru. This census collects crop 

data from producers. Each producer represents an agroeconomic unit (UA). In a UA, more than crop may 

exist, also irrigation technologies may differ between them. The source of water, superficial or 

underground, may vary also in a UA. Given the quality of the data, UA data was aggregated into 

conglomerates. We consider years 2016, 2017 y 2019 and avoid using 2018 since the variables collected 

that year didn’t correspond to the series of the other years. 
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Data recollected on prices, yield and costs for each crop was very irregular so technical sheets were 

constructed for each crop grown in a tract for each year. We use these estimations to reconstruct the net 

benefits per crop. 
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4. Results 

Water shares models were estimated using tobit, panel tobit and SUR regressions. Similar models were 

run but estimating land shares for comparison. Table 1 shows the results of water allocations Wi, and land 

allocations Li for each crop i: asparagus (1), avocados(2), onion (6) and pomegranade (7). The indpendet 

variables are: Pi: indicates the relative profit of each crop i to grapes; Lnw: is the natural logarithm of total 

water availability; lIrrigation and lsource: are the dummies variables referred to superficial and drop 

irrigation and superficial and underground water source; Ldis: refres to different districts to explore if 

localization effects where present. Grapes was elected as the reference crop because it is the most 

frequent crop between tracts and years an also the area dedicated to it is the highest. Different lags for 

water availability were explored with similar results. 

 

The average and sd of estimates 𝛼𝑖 are presented in the first and second row of each explanatory variable. 

Only tobit regression results are displayed since no differences were found using the other formulations. 

 

We found very few statistically significant models. No differences were shown between water and land 

allocations. Own profits are expected to have a positive relation, this was found only in the case of onions. 

Cross profits are expected to have a negative effect which is found on asparagus and avocados. Water 

availability shows a negative impact which is contrary to expectation since more water should imply higher 

allocations. The effects of irrigation technology and the source of water were not important given previous 

results. The same applies for districts. 
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Table 1: Water and land shares allocation among crops. 

*Crops: 1: asparagus, 2: avocados, 6: onion and 7: pomegranade. 

 

 

 

  

Variable W1 W2 W6 W7 L1 L2 L6 L7

-0.2 -0.14 -0.16 -0.14 -0.21 -0.15 -0.15 -0.12

0.11 0.09 0.1 0.09 0.11 0.09 0.1 0.1

-0.74 -0.49 -0.91 -0.64 -0.78 -0.52 -0.9 -0.49

0.57 0.49 0.51 0.5 0.57 0.5 0.53 0.54

0.03 0.02 0.02 0.01 0.03 0.02 0.02 0.01

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.63 0.2 0.4 0.29 0.66 0.22 0.38 0.01

0.49 0.42 0.44 0.43 0.48 0.43 0.45 0.46

-0.03 -0.07 -0.09 -0.08 -0.03 -0.07 -0.09 -0.08

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

-0.15 0.42 0.81 0.61 -0.09 0.48 0.84 0.78

0.2 0.17 0.18 0.17 0.2 0.17 0.18 0.19

0.15 -0.01 -0.26 -0.1 0.11 -0.05 -0.28 -0.05

0.2 0.17 0.18 0.18 0.2 0.17 0.18 0.19

-1.13 -0.96 -0.69 -0.88 -1.09 -0.92 -0.67 -0.85

0.45 0.39 0.4 0.39 0.44 0.39 0.41 0.42

0.01 -0.04 0.14 0 0.02 -0.02 0.15 0

0.39 0.33 0.35 0.34 0.38 0.34 0.36 0.36

-0.5 -0.16 -0.77 -0.97 -0.54 -0.23 -0.81 -0.99

0.5 0.43 0.45 0.44 0.5 0.43 0.46 0.47

-0.45 -0.45 -0.26 -0.4 -0.43 -0.44 -0.25 -0.21

0.44 0.39 0.4 0.39 0.44 0.39 0.41 0.42

-0.13 -0.39 0.05 0.05 -0.16 -0.37 0.12 0.12

0.39 0.34 0.35 0.34 0.38 0.34 0.36 0.37

-0.86 0.3 -0.47 -0.65 -0.85 0.27 -0.47 -0.65

0.5 0.43 0.45 0.44 0.49 0.43 0.46 0.47

0.34 -0.33 -0.28 -0.33 0.31 -0.35 -0.3 -0.28

0.34 0.3 0.31 0.3 0.34 0.3 0.31 0.32

1.24 0.62 0.39 0.23 1.26 0.65 0.4 0.24

0.63 0.54 0.56 0.55 0.62 0.55 0.58 0.59

0.97 0.23 0.4 0.24 1 0.24 0.36 -0.15

0.83 0.72 0.75 0.73 0.83 0.73 0.77 0.79

N 516 516 516 516 516 516 516 516

r2_p 0.02 0.05 0.08 0.07 0.02 0.06 0.08 0.06

_Idis~110110

_Idis~110111

_Idis~110112

_cons

Statistics

_Isource_2

_Idis~110102

_Idis~110104

_Idis~110105

_Idis~110107

_Idis~110108

P1

P2

P6

P7

lnw

_Iirrigati~2
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5. Conclusions 

We have developed a simple crop-mix model that allocates water when data is not fully available. Profits 

influence could be partially identified, both own and cross effects, but the models lack significance. Also, 

no differences where identified between water or land shares models. Even though our results are quite 

similar to the effects shown by Oczkowski and Bandara (2013) who found that land allocations didn’t 

adjust completely to economic inputs. Given institutional settings may explain the lack of flexibility in the 

input allocations. 

 

So, the effects we wanted to understand were not identified. One reason may be the horizon of the model 

we run. We consider short-term effects when the adaptation of farmers to change the crop pattern may 

refer to a long-run response. Also, problems with the data used may also apply. Since we construct 

technical sheets for crop yields and crop costs, we had undermined the richness of data variability. 

Without this variability, no effect may arise in the regressions. Further research may include a better 

dataset with longer periods to explore both a medium and long-run effects and also the variance among 

the independent variables. 
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