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ABSTRACT

Automatic visual recognition of generic objects is a highly relevant area of study.

Nonetheless, intra-class and pose variations, as well as, background clutter and partial oc-

clusion, are some of the main difficulties to achieve this goal. As an application case, robots

with a robust visual system can achieve a high level of autonomy and a semantic under-

standing of their environments. Current state-of-the-art approaches to visual category-level

object recognition are generally based on two main steps: generation of visual descriptors

and training of visual classifiers using these descriptors and labeled images. Furthermore,

these steps are usually complemented using techniques oriented to include contextual in-

formation in the models. In this thesis, we contribute to the area of visual recognition by

proposing three techniques oriented to improve each of the previous steps, respectively.

First, we introduce a technique for building visual descriptors based on a Bag-of-Words

(BoWs) representation. In contrast to current approaches based on unsupervised cluster-

ing techniques, our proposal combines unsupervised and supervised information leading to

more discriminative BoWs representations. Afterwards, we present a technique to improve

the performance of current visual classifiers using a divide-and-conquer strategy based on

a Mixture of Expert (MoE) approach. We innovate with respect to current MoE techniques

by incorporating an embedded local feature selection scheme within each visual classi-

fier. Finally, we propose an approach that exploits contextual information to improve the

performance of object recognition techniques. We innovate with respect to state-of-the-

art techniques by considering scene dependent contextual relations among object classes.

We test the performance of all these techniques by applying them to common benchmark

datasets. Our results validate our main hypotheses indicating improvements with respect to

alternative state-of-the-art methods. This also shows that the ideas presented in this thesis

represent a relevant contribution to the state-of-the-art of category-level object recognition.

Keywords: Machine learning, object recognition, codebooks of histograms, context

based object recognition, embedded feature selection.
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RESUMEN

El reconocimiento automático visual de objetos genéricos es un área muy importante

de estudio. Sin embargo, variaciones intra-clase y pose tanto como ruido de fondo de

imagen y oclusiones parciales son algunas de las principales dificultades para lograr este

objetivo. Como ejemplo de aplicación, robots con un sistema de visión confiable pueden

obtener un mayor nivel de autonomía y comprensión semántica de sus entornos. Enfo-

ques actuales del estado de arte para reconocimiento visual de categoría de objetos son

generalmente basados en dos pasos principales: generación de descriptores visuales y en-

trenamiento de clasificadores visuales usando estos descriptores e imágenes etiquetadas.

Además, estos pasos son usualmente complementados con técnicas orientadas a incluir

informacion contextual en los modelos. En esta tesis, nosotros contribuimos al área de re-

conocimiento visual proponiendo tres técnicas orientadas a mejorar respectivamente cada

uno de los pasos previos. Primero, introducimos una técnica para contruir descriptores

visuales basados en representación de bolsa de palabras (BoWs). A diferencia de enfo-

ques actuales basados en técnicas de clustering no supervisado, nuestra propuesta combina

información no supervisada y supervisada conduciendo a representaciones de BoWs más

discriminativas. Luego, presentamos una técnica para mejorar la performance de clasifi-

cadores visuales actuales usando un enfoque de divide-y-vencerás basado en el enfoque de

Mixtura de Expertos (MoE). Nosotros innovamos con respecto al estado de arte de las ac-

tuales técnicas de MoE al incorporar un esquema de selección local embebida de caracterís-

ticas dentro cada clasificador visual. Finalmente, proponemos un enfoque que aprovechar

la información contextual para mejorar la performance de las técnicas de reconocimiento

de objetos. Nosotros innovamos en relacion a técnicas del estado de arte al considerar las

relaciones contextuales entre clases de objetos como dependientes de la escena. Nosotros

probamos la performance de todas estas técnicas al aplicarlas a bases de datos estándares

de prueba. Nuestros resultados validan nuestras principales hipótesis mostrando mejoras en

xiii



relación a métodos alternativos del estado de arte. Esto también muestra que las ideas pre-

sentadas en esta tesis representan una contribución relevante en el área del reconocimiento

de categoría de objetos.

Palabras Claves: Aprendizaje de máquina, reconocimiento de objetos, codebook de

histogramas, selección embebida de variables , reconocimiento de

objetos basado en contexto.
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1. INTRODUCTION

1.1. Background

Today, technology is changing the way people produce and handle information. From

business to science and engineering, there is a massive generation of huge databases storing

valuable information. The opportunities of an automatic and effective mining of these new

data sources are huge, however, finding relevant patterns in high dimensional data has

become a difficult task (Mitchell, 1997). Furthermore, in many applications the relevancy

of a pattern does not only depend on the observed data, but also depends on contextual

information. As an example, in the area of computer vision is known that relevant visual

features suitable to achieve a task such as human detection can drastically change if the

target humans are walking in a crowded environment, swimming in a pool, or sitting behind

a desk. Machine learning techniques have become the most attractive alternative to find

these patterns and to improve these automatic systems.

In particular, we focus on applying machine learning techniques to the task of category-

level object recognition using visual information. This is currently a major technological

challenge and goal, as there is an urgent need to increase the level of semantic understand-

ing that an automatic system can achieve from its environment. In particular, machine

learning based approaches have been the most successful techniques to improve object

recognition performance (Viola & Jones, 2004; Fei-Fei, 2005; Felzenszwalb, McAllester,

& Ramanan, 2008). Nevertheless, there is still plenty of space for relevant contributions in

this area.

In general terms, current state-of-the-art approaches to visual category-level object

recognition are based on 2 main steps: i) Generation of visual descriptors and ii) Training

of visual classifiers using suitable image descriptors and labeled images (Fergus, Perona, &

Zisserman, 2003; Felzenszwalb et al., 2008). Also, these steps are usually complemented

by technique oriented to include contextual information in the models, such as objects co-

occurrence (Choi, Lim, Torralba, & Willsky, 2010). In this thesis, we contribute to the area
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of visual recognition by presenting 3 techniques oriented to improve each of the previous

steps, respectively. First, we present a method to improve current techniques to obtain

visual descriptors using the so-called Bag of Visual Words (BoWs) approach. Then, we

present a technique to improve the performance of current visual classifiers using a Mix-

ture of Expert approach. Finally, we present a new adaptive scheme to include contextual

information to improve the performance of object recognition techniques. Next, we present

further details of each of these contributions.

In terms of generation of visual descriptors, a current popular approach is to build an

image codebook using low level image cues, such as gray-level contrast information. The

codebook is generally used in patch-based object recognition (Sivic & Zisserman, 2003;

Fergus et al., 2003; Csurka, Bray, Dance, & Fan, 2004). Under this approach, an image

is represented by a set of histograms of patches, where each histogram is associated to a

particular spatial region of an image. This histogram representation is also known as a

BoWs or “Bag-of-features” (Nowak, Jurie, & Triggs, 2006). A codebook is the complete

set of codewords, where each codeword is a representative element of a set of similar patch

descriptors. Then, this representation is used to train a visual classifier. This scheme has led

to successful object recognition, showing robustness to partial occlusion and within-class

shape variations (Sivic & Zisserman, 2003; Fergus et al., 2003; Csurka et al., 2004).

A usual option for generating visual codewords is to use clustering algorithms such

as K-Means (Sivic & Zisserman, 2003; Csurka et al., 2004; Zhang, Marszalek, Lazebnik,

& Schmid, 2007) or Gaussian mixture models (GMMs) (Dorkó & Schmid, n.d.; Larios et

al., 2007; Perronnin, 2008). The advantages of using clustering algorithms for codebook

generation are simplicity, low risk of overfitting, and computational efficiency. K-Means

is popular in this context due to its simplicity and relative efficiency with respect to other

options. Nonetheless, this algorithm ignores object labels which can help to find more suit-

able codebook to support object classification tasks. It is possible to find previous works

that use object labels during the codebook generation (Winn, Criminisi, & Minka, 2005;

Perronnin, 2008), however, labels are not directly combined with the clustering technique

2



or they are integrated with computationally demanding tools that do not offer the advan-

tages of K-means. In this thesis, we present Labeled K-Means or LK-Means, a codeword

generating approach that modifies the usual operation of the K-Means algorithm to include

class labels during the clustering process.

In terms of visual classifiers, we believe that it is important to enhance current ap-

proaches with more flexible schemes that can adaptively select relevant visual cues. As

an example, consider the case of recognizing a tennis ball and a regular pencil. While the

tennis ball can be easily characterized in a visual subspace of round-shapes and yellowish-

colors, the pencil has a more suitable characterization in a subspace given by long-straight-

shapes as visual cues. Currently, most standard classification algorithms do not explicitly

consider feature selection schemes. Instead, common approaches are based on off-line

feature selection or dimensionality reduction techniques that globally select some visual

dimensions.

In this thesis, we present a strategy for adaptive feature selection based on a “divide

and conquer” approach, where a complex problem is divided into multiple simpler prob-

lems. In particular, we extend the Mixture of Expert technique (MoE) by adding to its

regular operation an embedded feature selection scheme. MoE technique (Jacobs, Jordan,

Nowlan, & Hinton, 1991) is a probabilistic version of the “divide-and-conquer” strategy.

MoE divides the data into multiple regions where each region has its own classifier (Jacobs

et al., 1991). Under this scheme, predictions of the experts are weighted using a global

model known as gate function. Unfortunately, MoE does not make feature selection which

can be very helpful to deal with complex visual recognition tasks. In this thesis, we present

Regularized Mixture of Experts or RMoE, an extension of MoE that allows us to adaptively

select features in high dimensional visual domains.

In terms of contextual information, current approaches for category-based object recog-

nition only consider fixed contextual relations among objects. Under such scheme, the

probability of seeing a person and a dog under an office scene is the same that under a

public park scene. Clearly, this is not correct because the last case is more likely. In this

3



sense, contextual relations among objects do depend of the type of scene being analyzed.

We hypothesize that inference about latent relationships between scene and inter-object

co-occurrence can improve object recognition performance. Accordingly, in this thesis we

present an adaptive hierarchical approach based on a Mixture of Trees or AH-MoT which is

able to infer scene context to adaptively mix different possible contextual relations among

objects.

1.2. General Goals

The general goal of this thesis is to contribute to the state-of-the-art of category-level

object recognition techniques by developing algorithms oriented to enhance the different

steps of the common object recognition pipeline. In particular, we propose: i) LK-Means:

a discriminative scheme for the extraction of low level image descriptors that is able to

include object labels during the codebook generation, ii) RMoE: a regularized version of

MoE that provides an embedded feature selection scheme to adaptively select suitable vi-

sual features, iii) AH-MoT, a hierarchical approach based on a mixture of trees that is able

to adaptively use contextual information to improve object recognition performance.

1.3. Hypothesis

The general hypothesis of this thesis is conformed by three hypotheses. First, LK-

Means, a discriminative scheme for the extraction of low level image descriptors, is able to

improve the quality of clusters of K-Means for object recognition tasks. Second, RMoE,

a regularized version of MoE with embedded local feature selection, is able to improve

the classification accuracy of MoE by selecting relevant dimensions. Third, AH-MoT, a

hierarchical approach based on a mixture of trees, is able to improve object recognition

performance given by a single tree.
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1.4. Thesis Work and Main Contributions

The first part of this thesis describes LK-Means a novel supervised clustering method

based on K-Means. The proposed method is used to generate a codebook for an object

recognition application. An standard method of generation of codebooks is to apply K-

Means algorithm to visual dataset because of its speed, however, this algorithm generates

clusters only considering unsupervised information. The main idea is that the combination

of unsupervised and supervised information can lead us to more informative clusters. On

the other hand, the use of an algorithm similar to K-Means can allow us to overcome the

speed and integration limitations of alternatives discriminative approaches for codeword

generation. We believe that the combination of a class-dependent discriminative score with

a generative clustering score can help us to find most informative clusters. The proposed

method has been implemented and tested using standard object datasets. Results show that

LK-Means is able to outperform several alternative solutions.

The second part of the thesis describes RMoE, a method based on an ensemble clas-

sifier with an embedded feature selection scheme. The contributed method is based on

a mixture-of-experts model that incorporates a local feature selection using L1 regular-

ization. An usual method of ensemble classifiers is the mixture-of-experts where mul-

tiple local classifiers are combines considerins weights given by a set of gate functions.

Nonetheless, this algorithm consider all attributes in all local experts and gates functions.

Our fundamental intuition consists of the belief that particular subsets of dimensions, or

subspaces, are usually more appropriate to classify certain input instances. Our experi-

ments show a notorious improving of accuracy in relation to traditional mixture-of-experts

model and good feature selection capabilities for the experts classifiers.

Finally, the third part of the thesis describes AH-MoT, a new approach to use contex-

tual information for boosting object recognition performance. A regular way to model the

inter-object context information is using a tree-structured graphical model due to its easy-

ness to learning and inference process, which can be considered a fixed context model. In

particular, we use the flexibility of a mixture model to provide adaptive contextual relations
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among objects. Our proposed method learns adaptive conditional relationships among ob-

jects according to the scene information. We accomplish this by introducing a probabilistic

graphical model based on a conditional mixture of trees (Meila & Jordan, 2001). Each tree

represents some local relationship between objects. Experiments are performed using two

standard object datasets where we compare our method with an alternative state-of-the-art

technique. Our results show the advantages of our adaptive contextual scheme.

Accordingly, the main contributions of this thesis are:

• To build a algorithm that jointly considers unsupervised and supervised informa-

tion for codebook representation of images for object recognition applications.

The main advantage of this method is to use all available information under an

efficient clustering scheme. In our knowledge, LK-Means is the first technique

where it is proposed a supervised clustering algorithm using a algorithmic mech-

anism similar to K-Means.

• To build a method based on mixture-of-experts where the parameters are learned

simultaneously with the relevant features for each local expert and gate. The

main advantage of this method is the join training of classifiers under an em-

bedded feature selection scheme. In our knowledge, RMoE is the first work

where it is proposed an embedded feature selection inside a Mixture-of-experts

for classifier tasks.

• To build a method for context-based object recognition that considers latent re-

lationships between scene and inter-object co-occurrence under a probabilis-

tic framework. The main advantage of this method is the adaptability of co-

occurrence relationships according to scene type. In our knowledge, AH-MoT is

the first technique where it is proposed the adaptive use of multiple contexts.

• To implement and test each of the mentioned methods using real data, showing

significant advantages with respect to alternative state-of-the-art approaches.

Finally, these contributions are evidenced in the next serie of papers:
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• B.Peralta and A. Soto. Mixing hierarchical contexts for object recognition. Pro-

ceedings of the 16th Iberoamerican Congress conference on Progress in Pattern

Recognition, Image Analysis, Computer Vision, and Applications, 2011, pp 232-

239.

• B.Peralta, P. Espinace, and A. Soto. Adaptive hierarchical contexts for object

recognition with conditional mixture of trees. Proceedings of the British Machine

Vision Conference, 2012, 121.1-121.11.

• B.Peralta, P. Espinace, and A. Soto. Enhancing K-Means using class labels. ISI

Journal Intelligent Data Analysis, 2013.

• B.Peralta and A. Soto. Embedded local feature selection within Mixture of Ex-

perts. ISI Journal Information Sciences, 2014.

1.5. Document Structure

The rest of this thesis is organized as follows: Chapter 2 presents LK-Means. Chapter

3 presents RMoE. Chapter 4 presents AH-MoT. Chapter 5 presents the main conclusion of

this thesis and future avenues of research. The chapters of this thesis are self-contained,

thus, they can be read independently.
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2. ENHANCING K-MEANS USING CLASS LABELS AND AN APPLICATION TO

CODEBOOK GENERATION FOR OBJECT RECOGNITION

2.1. Introduction

Techniques to divide a set of N data instances into K groups are known as clustering

algorithms. Clustering algorithms are commonly used in an unsupervised learning frame-

work where the goal is to minimize an error function with respect to a given distance metric,

for example, intra-cluster distance. A robust model for clustering is a mixture of Gaussians

that has the ability to capture complex relationships among the data using a sound statistical

approach (Bishop, 2007). Despite its advantages, this technique tends to be slow mainly

due to the calculation of a covariance matrix. A faster and simpler clustering technique

is K-Means algorithm that uses a hard assignment of data points to clusters and assumes

a spherical covariance. While the simplicity of K-Means is one of the main reasons of

its popularity (Wu et al., 2007), its execution speed with respect to alternative clustering

techniques is also a desirable feature for intensive clustering tasks, e.g., the acquisition of

codewords for visual recognition (Jurie & Triggs, 2005).

In contrast to traditional clustering, supervised clustering is applied to labeled data.

Here, the goal is to find clusters with high purity, where purity of a cluster is defined as

the percentage of data in a cluster that belongs to its most frequent class. Figure 2.1 shows

an illustrative toy example corresponding to a 2D dataset with three spatial clusters and

two classes. After applying both, unsupervised and supervised clustering, unsupervised

clustering ignores class labels (Figure 2.1.a), while supervised clustering generates clusters

that focus on a given class (Figure 2.1.b).

We believe that the ideal situation shown in Figure 2.1 is far from common. Natu-

ral clusters arising in real datasets are generally not totally homogeneous with respect to

class labels, but they usually combines data instances from different classes. As a con-

sequence, we believe that a strategy that combines a class-dependent discriminative score

with a traditional generative clustering score can help to find most informative clusters. In
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FIGURE 2.1. Toy example comparing traditional and supervised clustering. There
are two class labels denoted by clear and dark circles. We see that while classical
clustering finds spatial clusters, supervised clustering finds clusters that are uniform
with respect to class labels.

this respect, the benefits of combining supervised and unsupervised information has been

explored before in (Lasserre, Bishop, & Minka, 2006).

Eick et al. (Eick, Zeidat, & Zhao, 2004) enumerate several applications of supervised

clustering, such as dataset compression, distance metric learning, or classification refine-

ment, among others. As an example, supervised clustering can be used to identify cus-

tomers profiles according to ordinal measures (e.g. age, salary, marital status) by finding

clusters that are homogeneous with respect to their buying behavior in terms of particu-

lar product categories (labels). Further uses of supervised clustering can be found in the

genetics and financial domains (Sinnkkonen, Kaski, & Nikkila, 2002).

Algorithms for supervised clustering usually have the form of a K-Medoids algorithm.

Due to the use of medoids, this method is more resistant to outliers than K-Means, but it

has the drawback of being considerably slower. In particular, assuming a fixed number of

iterations, K-Medoids has quadratic complexity in the number of data instances, while in

the case of K-Means this complexity is only linear (Bishop, 2007).

In relation to object recognition context, these clustering algorithms are applied to

generate codebooks usually in patch-based methods (Fergus, Perona, & Zisserman, 2003;

Csurka, Bray, Dance, & Fan, 2004; Jurie & Triggs, 2005; Winn, Criminisi, & Minka, 2005;
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Marszaek & Schmid, 2006). In this scheme, an image is represented by a set of histograms

of patches, where each histogram is usually associated to a particular spatial zone of an im-

age. This histogram representation is often known as a “Bag-of-features” (Nowak, Jurie, &

Triggs, 2006). A codeword is a representative element of a set of similar patch descriptors.

Then, this representation is used as input for a classification algorithm. This scheme has led

to successful object recognition, showing robustness to partial occlusion and within-class

shape variations.

Within this approach, the codeword generation step works as follows: a number of

small patches are cropped either around interest points, by random sampling, or using a

fixed grid over each image. Then, histograms are built and codewords are obtained by

means of a clustering algorithm such as K-Means or agglomerative clustering, where the

means of clusters are the desired codewords. Usually, the distribution of patches is different

for different classes, for example, patches showing a wheel are more likely to exist in

images of motorbikes than in images of airplanes. Hence, it is reasonable to think that

classes of images can be determined by evaluating the distribution of patches extracted

there. An example of scheme for using the proposed clustering for codebook generation in

object recognition applications is presented in Figure 2.2.

A common option for generating visual codewords is the use of an unsupervised clus-

tering algorithm such as K-Means (Sivic & Zisserman, 2003a; Csurka et al., 2004; J. Zhang,

Marszalek, Lazebnik, & Schmid, 2007), Gaussian mixture models (GMM) (Dorkó & Schmid,

2005; Larios et al., 2007; Perronnin, 2008), Mean-Shift (Jurie & Triggs, 2005), or hierar-

chical clustering (Agarwal, Awan, & Roth, 2004). The advantages of using clustering

algorihtms for codewords generation are simplicity, low risk of overfitting, and computa-

tional efficiency. Some works use label information for the codebook generation (Winn et

al., 2005; Moosmann, Triggs, & Jurie, 2007; Perronnin, 2008; Yang, Jin, Sukthankar, &

Jurie, 2008; W. Zhang, Surve, Fern, & Dietterich, 2009), however, in these works, labels

are used independently from the generation of codewords or they are included in methods

that are significantly more complex than K-Means.
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FIGURE 2.2. The codebook generated by K-Means associates patches only con-
sidering their distance. On the other hand, the use of labels in codebook generated
by LK-Means tends to generate more discriminative patches. In the case of K-
Means scheme, we can see that the second codeword in the second image leads to
a not relevant patch of the image (see more details in main text).

In this work, we present a new method for supervised clustering that is based on two

main hypotheses: i) A combination of supervised and unsupervised information can lead

us to most informative clusters, and ii) The use of a K-Means type of algorithm can allow

us to overcome the speed limitations of classical K-Medoids based supervised clustering

methods. We show evidence for these hypotheses in Section 2.4. Following these ideas, the

main contributions of this chapter are: i) Presenting LK-Means, a new supervised cluster-

ing algorithm that modifies K-Means cost function to incorporate supervised information,

ii) Empirical evidence showing that our method outperforms K-Means and a K-Medoid

supervised clustering method as measured by distinct metrics commonly used to access

clustering quality, and iii) Empirical evidence showing that our method is more efficient in

terms of execution time than a classical K-Medoid supervised clustering methods.

The rest of this chapter is organized as follows. Section 2.2 describes two baseline

methods,K-Means and K-Medoids, and previous relevant previous works. Section 2.3
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presents LK-Means, the proposed supervised clustering approach. Section 2.4 presents

and discusses our experimental results. Finally, Section 2.5 presents our main conclusions

and future avenues of research.

2.2. Background

2.2.1. K-Means and K-Medoids

K-Means algorithm is one of the most popular clustering techniques. This algorithm

partitions N data instances into K clusters, where the number of clusters K has to be

known a priori. Specifically, given a datasetX withN data instances xi ∈ Rd, i ∈ [1 . . . N ],

K-Means algorithm partitions X into K cluster Ck, k ∈ [1 . . . K], by minimizing the fol-

lowing cost function:

J =
N∑
n=1

K∑
k=1

δnk ‖xn − uk‖2 , (2.1)

where the indicator function δnk is given by :

δnk =

 1 xn ∈ Ck
0 otherwise,

‖ · ‖ refers to L2-norm and uk corresponds to the mean of cluster k.

Optimal parameters uk are found by minimizing Equation 2.1 using a gradient descent

approach. This results in an iterative procedure that alternates between assigning data in-

stances to clusters centers, and re-estimating cluster centers given the new assignations.

Convergence to a local minimum of Equation 2.1 is granted by the gradient descent type

of exploration and the finite set of possible assignations of data instances to clusters. In

particular, assuming a fixed number of iterations and dimensions, the computational com-

plexity of K-Means is O(NK). Algorithm 1 summarizes the main steps of the K-Means

algorithm.
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Algorithm 1 : K-Means algorithm.
1: Randomly select K data instances as initial means.
2: Associate each data instance with the cluster of its nearest mean and calculate the cost

function using Equation 2.1.
3: Calculate the new means as the centroids of the K new partitions.
4: Repeat steps 2 and 3 until there is no change in the cost evaluation (or the cost change

is below a suitable threshold).

While K-Means for fixed number of iterations and dimensions has a linear compu-

tational complexity with respect to the number of data instances, the computation of the

centroids is sensible to outliers (Bishop, 2007). To alleviate this problem, the K-Medoids

algorithm uses a more robust procedure to find the cluster centers, but this procedure has a

quadratic complexity with respect to the number of data instances. In particular, K-Medoids

minimizes a score that is similar to the one used by K-means, but it uses a more general

distance metric ν(x, x′) between data instances x and x′, as shown in Equation 2.2. An

example of metric ν(x, x′) is the Euclidean distance, used in K-Means, or the Jaccard dis-

tance, commonly used in applications related to transactional databases (Markov & Larose,

2007).

J =
N∑
n=1

K∑
k=1

δnkν(xn, uk) (2.2)

In contrast to K-means, K-Medoids minimizes Equation 2.2 with respect to parame-

ters uk by calculating a matrix that stores the distances between all pair of data instances.

Specifically, initially K-Medoids randomly chooses a set of K data instances as the ini-

tial set of K medoids and calculates the distance matrix between all the data instances.

Afterwards, it replaces each medoid with all non-medoid points and calculates all the pos-

sible configurations cost according to Equation 2.2. Next, it chooses as new medoids the

ones corresponding to the configuration with lowest cost. Finally, the method repeats the

search over the non-medoids elements until the medoids do not change. The procedure is

summarized in Algorithm 2.
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Algorithm 2 : K-Medoid algorithm.
1: Randomly select k data instances as initial medoids.
2: Associate each data instance to its most similar medoid and calculate the cost using

Equation 2.2.
3: for each medoid m do
4: for each non-medoid o do
5: Swap m and o and compute the cost of the configuration.
6: end for
7: end for
8: Select the set of elements corresponding to the configuration with lowest cost.
9: Repeat 3 through 8 until there is no change in the set of medoids.

Assuming a fixed number of iterations and dimensions, the computational complexity

of K-Medoids isO(K(N−K)2). This implies that in general K-Medoids is more expensive

than K-Means.

2.2.2. Related work

Semi-supervised clustering uses labeled and unlabeled data to find clusters that maxi-

mize a score related to cluster purity with respect to known class labels. Semi-supervised

clustering methods can be divided into two groups: Similarity based methods and search-

based methods (Basu, Bilenko, & Mooney, 2003). Similarity-based methods use a modified

distance function that considers the labels of classified examples and then uses a traditional

clustering algorithm. On the other hand, search-based methods modify clustering algo-

rithms themselves to accommodate for labeled instances, but do not change the distance

function (Blum & Mitchell, 1998).

In terms of supervised clustering, all available records have labels. Tishby et al. pro-

pose an agglomerative clustering algorithm (Tishby. & Slonim, 2000) using the notion of

“information bottleneck” (Tishby, Pereira, & Bialek, 1999). This technique minimizes the

information loss of the clustering related to a class conditional distribution. Embrechts et

al. (Demiriz, Benett, & Embrechts, 1999) propose a genetic algorithm for a version of

K-Means where the goal of the search process is to obtain clusters that minimize cluster

dispersion and cluster impurity. Cohn et al. (Cohn, Caruana, & McCallum, 2003) modify
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the popular EM algorithm for incorporating similarity and dissimilarity constraints. They

assume the presence of a human oracle that guides the clustering process. Basu et. al.

(Basu et al., 2003) modify the K-means algorithm to cope with class knowledge. They use

a careful initialization based on the neighborhood of the data instances.

Sinkkonen et al. (Sinnkkonen et al., 2002) propose a method called discriminative

clustering that minimizes distortion within clusters. In their work, distortion is related to

the loss of mutual information among classes and clusters, which is caused by representing

each cluster by a prototype. This technique seeks to produce clusters that are internally

as homogeneous as possible with respect to a class conditional distribution. The resulting

minimization is complex and they have to resort to approximations or simulated annealing

methods to find suitable solutions.

Jordan et al. (Xing, Ng., Jordan, & Russell, 2003) (and similarly Shental et al. (Bar-

Hillel, Hertz, Shental, & Weinshall, 2003)) transform training examples into constraints

based on the observation that instances of different classes should have a distance larger

than a given threshold. Then, they derive a modified distance metric that minimizes the

distance between data instances considering the constraints. Finally, they use a K-Means

algorithm in conjunction with the modified distance metric to compute clusters.

Eick et. al. (Eick et al., 2004) formally introduce the term supervised clustering. Their

work proposes supervised versions of some clustering algorithms, such as K-Medoids and

divisive clustering. In particular, the SRIDHCR algorithm (Single Representative Inser-

tion/Deletion Steepest Decent Hill Climbing with Randomized Restart) shows good per-

formance in their experiments when compared to alternative techniques, thus, we choose

this method as the baseline for comparison in our work.

Ye et. al. (Ye, Z.Zhao, & Wu, 2008) present a discriminative version of K-Means.

They simultaneously solve linear discriminant analysis (LDA) and K-Means optimization

using matrix algebra. An advantage of this method is that it makes a feature transformation

using LDA properties. For each iteration, their method needs to solve an optimization
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problem using linear search. Unfortunately, they do not show any measure of the speed of

their method.

In relation to extensions of K-Means, Deelers and Auwatanamongkol (Deelers & Auwatana-

mongkol, 2007) propose a scheme to initialize the K-Means algorithm using a recursive

strategy that, considering the data axis with highest variance, progressively divides the

data until they obtain a suitable number of clusters. Shanmugasundaram and Sukumaran

(Shanmugasundaram & Sukumaran, 2010) introduce a related scheme to initialize the K-

Means algorithm, where they divide the data into two smaller cells considering the data axis

with highest variance and keeping the two cells as far apart as possible. This procedure is

repeated until one can obtain a prefixed number of clusters. Kumar et al. (Kumar, Puran, &

Dhar, 2011) enhance the K-Means algorithm by considering particular data structures (red-

black tree and min-heap) that allow them to reduce computational time. These previous

works are valuable in terms of improving the initialization and time processing capabilities

of the traditional k-means algorithm, however, these works do not consider labeled data as

in our technique. In this sense, these techniques can be considered as complementary to

our work.

In a related research task, Lasserre et al. (Lasserre et al., 2006) propose the idea of

a convex combination of unsupervised and supervised information in machine learning.

They introduce a Bayesian framework to combine unlabeled and labeled data, where they

find that under limited training data, the best performance is given by a combination of

both views. Here, we also follow a similar idea but in the context of a supervised version

of the K-Means algorithm leading to a different optimization problem and solution. As

shown by our experiments, our proposed strategy provides several advantages with respect

to alternative techniques for supervised clustering.

2.3. Labeled K-Means

Following Eick et. al. (Eick et al., 2004), several supervised clustering methods follow

a K-Medoids approach that is very time consuming. Inspired by (Lasserre et al., 2006), we
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propose LK-Means, a K-Means like algorithm with a modified cost function that considers

a convex combination of both, a class-dependent and non-class-dependent cost functions.

We assume a labeled dataset X with N training instances (xi, yi), where xi ∈ Rd,

yi ∈ [1, . . . , L], and i ∈ [1 . . . N ]. We assume that the clustering problem requires K

clusters. LK-Means replaces the tradicional K-Means cost function in Equation (2.1) with

the following function:

J(ulk, δ
l
nk) =

N∑
n=1

[
α

K∑
k=1

L∑
l=1

δlnk
∥∥xn − ulk∥∥2 ρlk + (1− α)

K∑
k=1

δnk ‖xn − uk‖2
]

(2.3)

where δlnk refers to the supervised indicator function that assigns instance xn to mean

ulk, which in turn corresponds to the mean of data instances in cluster k with label l. ρlk
represents a prior factor for data instances with label l inside cluster k, δnk refers to the

unsupervised indicator functions, and uk corresponds to the mean of all data instances in

cluster k. Equation (2.3) represents a convex combination, where parameter α in the range

[0, 1] manages the balance between the supervised and unsupervised clustering scores.

In particular, prior factor ρlk for data instances with label l inside cluster k is defined

as:

ρlk =

∑N
n=1 δ

l
nk∑N

n=1 δnk
(2.4)

ρlk represents the confidence of label l in cluster k, with values in the range [0, 1]. When

this weight is near one, cluster k tends to contain only elements with label l. In the opposite

case, when this weight is near zero, cluster k tends to contain no elements with label l.

The unsupervised indicator function δnk for data instance xn and cluster CK is defined

as:

δnk =

 1 if xn ∈ Ck
0 otherwise
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In terms of each unsupervised mean uk, it is defined as the weighted mean over all

supervised means ulk for the corresponding cluster k:

uk =
L∑
l=1

ρlku
l
k (2.5)

To find the optimal parameters: δlnk and ulk, we minimize Equation (2.3) using a

block coordinate descent approach that resembles the operation of the K-Means algorithm.

Specifically, we alternate optimizations of Equation (2.3), first with respect to δlnk and then

with respect to ulk. Following the K-Means terminology, we call these steps assignment

and update-steps, respectively. We refer now to each of these steps.

In terms of the assignment-step, cost function J in Equation (2.3) considers each data

instance n in separate terms of the main sum, therefore, we can independently optimize J

with respect to each indicator δlnk. Furthermore, in the assignment-step we fix the value of

the supervised means ulk and, as a consequence, we also fix the values of the unsupervised

means uk. As a result, the assignment that minimizes the cost function J is given by:

δlnk =

 1 if k =j

[
αδlnj

∥∥xn − ulj∥∥2 ρlj + (1− α)δnj ‖xn − uj‖2
]

0 otherwise.
(2.6)

In terms of initialization, initial values for the supervised indicator functions δlnk are

calculated using a Laplace smoothing. We use this procedure to avoid empty values for the

supervised means vectors which can appear in the case of clusters without elements of the

corresponding class. In this case, the supervised mean of a missing class is given by the

unsupervised cluster because all elements have a value near to zero.

Specifically, we apply a Laplace smoothing according to:

δlnk =
λlnk + γ

1 + LKγ
, (2.7)
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where λlnk is defined as:

λlnk =

 1 if xn ∈ Ck ∧ yn = l

0 otherwise.

We apply a Laplace smoothing (Nigam, McCallum, Thrun, & Mitchell, 1999) with a

constant γ = 0.001. This small constant can be interpreted as the global uncertainty about

the label of an element.

In terms of the update-step, we only need to find the optimal supervised means since

each unsupervised mean uk is a function of the corresponding supervised means ulk. Ap-

plying the corresponding partial derivatives to Equation (2.3), we have:

∂

∂ulk
J =

N∑
n=1

−2αδlnk
(
xn − ulk

)
ρlk +

N∑
n=1

−2(1− α)δnk (xn − uk) ρlk (2.8)

By rearranging components in Equation (2.8) and setting the derivative to zero, we

obtain:

N∑
n=1

αδlnkxn −
N∑
n=1

αδlnku
l
k +

N∑
n=1

(1− α)δnkxn −
N∑
n=1

(1− α)δnkuk = 0 (2.9)

Assuming iteration t and that we are computing the optimization for the supervised

mean of a given class label l′, we use the previous supervised means ul(t−1)k to approximate

u
(t)
k by updating only the maximized component ul′k and fixing the rest. Then, u(t)k =∑L
l=1,l 6=l′ ρ

l(t−1)
k u

l(t−1)
k + ρ

l′(t−1)
k u

l′(t)
k = u

(t−1)
k − ρ

l′(t−1)
k u

l′(t−1)
k + ρ

l′(t−1)
k u

l′(t)
k . Renaming

the variables associated to previous iterations u(t−1)k , ul(t−1)k and ρl(t−1)k as ũk, ũlk and ρ̃lk,

respectively, and considering that the optimization is computed for l=l′, we have:

α
N∑
n=1

(δlnkxn − δlnkulk) + (1− α)
N∑
n=1

(δnkxn − δnk(ũk − ρ̃lkũlk + ρ̃lku
l
k)) = 0 (2.10)
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Then, by rearranging the components, we have:

ulk =
α
∑N

n=1 δ
l
nkxn + (1− α)

∑N
n=1 δnk

(
xn − ũk + ρ̃lkũ

l
k

)
α
∑N

n=1 δ
l
nk + (1− α)ρ̃lk

∑N
n=1 δnk

(2.11)

Equation (2.11) has a straightforward interpretation. If we have α = 1, then only

supervised information is considered. On the other hand, if α = 0 then the resulting clusters

correspond to the unsupervised solution provided by the traditional K-Means algorithm.

We summarize our procedure in Algorithm 3.

Algorithm 3 Labeled K-Means Algorithm
1: Initialize K initial means randomly.
2: Associate each data instance with its nearest mean and consider its class.
3: Compute supervised means ulk using Equation (2.11).
4: Compute unsupervised means uk using Equation (2.5).
5: Compute indicatrices δlnk considering Equation (2.6).
6: Compute the cost J using Equation (2.3).
7: Repeat 3 to 6 until there is no change in the cost evaluation (or cost change is below a

threshold).

In terms of convergence, the assignment-step given by Equation (2.6) can only de-

crease the value of the relevant cost function in Equation (2.3). Similarly, the update step

provides new parameter values that also decrease this cost function. Furthermore, given

that set of possible assignments of training instances to clusters is finite, the procedure in

Algorithm 3 can not decrease forever. As a consequence, it is possible to guarantee that the

proposed algorithm will converge to a local or global optimum of the relevant cost function.

In our model, we do not consider specific strategies to deal with noisy or missing data.

However, standard preprocessing strategies do exist to deal with these problems, and they

can be used to complement our technique (Jiawei, 2005).

2.4. Experiments and Results

2.4.1. Experiments in general datasets

In this Section, we test the performance of LK-Means using diverse datasets. In par-

ticular, we use 8 real data sets from the UCI Machine Learning Repository (Asuncion &
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Newman, 2007): Iris, Heart, Glass, Diabetes, Silhouttes, Segment, Ionosphere, and Sonar.

Table 2.1 shows the main details for these datasets. We normalize all these datasets to the

range [0, 1]. Following the regular implementation of K-means, we use Euclidean distance

as the similarity metric. All experiments are performed on a PC with 2.0 Ghz Pentium IV

processor with 2GB of RAM memory.

TABLE 2.1. Datasets details.

Dataset name # objects # dimensions # classes
Iris 150 4 3
Heart 270 13 2
Glass 214 9 6
Diabetes 768 8 2
Silhouttes 846 18 4
Segment 2310 19 7
Ionosphere 351 33 2
Sonar 208 60 4

We compare our algorithm against classical K-Means and SRIDHCR. SRIDHCR is a

K-Medoids algorithm based on a discriminative metric with random re-initialization if it

detects a local minimum. We choose SRIDHCR because it shows good performance in

relation to other supervised clustering methods (Eick et al., 2004). We compare these algo-

rithms in terms of clustering quality and computational time. In particular, Meilǎ (Meilǎ.,

2005) shows that there is not a single best metric to compare the outputs of clustering al-

gorithms. There are alternative metrics for evaluating clustering quality, such as F-measure

(Manning, Raghavan, & Schütze, 2008), Jaccard index (Rajaraman & Ullman, 2012), or

Fowlkes Mallows index (Fowlkes & Mallows, 1983), however, we follow the metrics sug-

gested in (Meilǎ., 2005). Consequently, we assess clustering quality using 4 different met-

rics commonly used to validate clustering results (Meilǎ., 2005): Adjusted Mutual Informa-

tion (AMI) (Vinh, Epps, & Bailey, 2009), Adjusted Variation of Information (AVI) (Vinh et

al., 2009), Mirkin distance (MD) (Mirkin., 1996), and Adjusted Rand Index (ARI) (Hubert

& Arabie, 1985). AMI and AVI are variations of mutual information (MI), while MD and

ARI are variations of Rand Index (RI). All these metrics do not make any assumption about
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the form of the clusters. Also, they are in the range [0, 1], where higher values indicate a

better clustering, except in the case of MD where small values indicate better results.

In our experiments, we use cross-validation with ten folds (10-CV) to validate the re-

sults of each algorithm. In terms of selecting a suitable number of clusters K, it is possible

to use previous strategies proposed in the context of the K-Means algorithm (Mardia, Kent,

& Bibby, 1979). Also, it is possible to relate the selection of K to the number of known

classes. Here, we do not focus in proposing new strategies to choose this value, and we run

our experiments testing different numbers of clusters. For each dataset, we select values for

K equally spaced according to 4 intervals beginning from the number of classes L to the

upper bound
⌈√

number of records/2
⌉

. This upper bound is obtained from the t’t’rule of

thumb” of clustering (Mardia et al., 1979). For example, in the case of Heart dataset, as it

has 2 classes and 270 instances, we test K ∈ {2, 5, 8, 11, 14}.

For each of the 4 clustering metrics considered here, we test the performance of LK-

Means using parameter α with values {0.8, 0.9, 1.0}, and for each of the tests considered

here, we report the average performance for these 3 values. In the case of SRIDHCR,

we choose the best parameter β (see (Eick et al., 2004) for details) according to 3-CV

in a grid with 11 values: 0 to 2.0 with a step of 0.2. K-Means does not require more

parameters than the number of clusters. It is important to note that to be fair with K-

Means, we do not optimize the value of parameter α in LK-Means. This is because when

α approaches zero LK-Means behaves exactly like K-Means, therefore, by optimizing α,

LK-Means can always at least match the performance of K-Means. Consequently, in all

tests, we just consider high values of α to stress the relevance of the supervised information.

To check if our results are statistically significant, in each case we use a paired Student’s

t-test (Behrens-Fisher problem (Rice, 1994)) to compare the results of LK-Means against

the performance of each of the alternative techniques.

Table 2.2 shows our results using AMI metric. Considering the average AMI results for

all values of K under test, our method outperforms K-Means and SRIDHCR in most of the

cases, with the exceptions of the Silhouttes and Ionosphere datasets where K-Means shows
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better performance. Considering only cases with confidence ≥ 75%, a paired t-Student

test shows that for Iris, Heart, Glass, Segment, and Sonar datasets, LK-Means has better

AMI than the nearest competitor with 84%, 100%, 88%, 91%, and 75% of confidence,

respectively. On the other hand, K-Means shows the best performance in Ionosphere and

Silhouttes datasets with 95% and 84% confidence, respectively.

Table 2.3 shows our results using AVI metric. By considering all datasets, we can

observe that, on average, again LK-Means outperforms the other algorithms in most of the

cases. Similarly to the results with AMI metric, the worst relative results for LK-Means

is given for the case of the Ionosphere dataset. Considering only cases with confidence ≥

75%, a paired t-Student test finds that LK-Means in Iris, Heat, Glass, Segment, and Sonar

datasets has greater AVI than the nearest competitor with 87%, 100%, 94%, 75% and 80%

of confidence, respectively. On the other hand, K-Means shows the best performance in

Ionosphere and Silhouttes datasets with 96% and 95% confidence, respectively.

Table 2.4 shows results using MD metric. In terms of average results, in half of the 8

datasets LK-Means is the winner, while K-Means shows best performance in the rest of the

datasets. In general, we notice that under MD metric there is not a clear winner between

LK-Means and K-Means, and results depend on the type of dataset. Considering only cases

with confidence ≥ 75%, a paired t-Student test shows that LK-Means in Heart, Diabetes,

and Sonar datasets has lower MD than the nearest competitor with 100%, 92% and 87% of

confidence, respectively. On the other hand, K-Means shows the best performance in Glass,

Silhouttes, and Ionosphere datasets with 97%, 98%, and 95% of confidence, respectively.

Table 2.5 summarizes results using ARI metric. In average LK-Means is the winner in

5 of the 8 datasets. while K-Means shows best performance in 2 datasets, and SRIDCHR in

one. Considering only cases with confidence ≥ 75%, a paired t-Student test finds that LK-

Means in Iris, Heart, Glass, Segment, and Sonar datasets has better ARI than the nearest

competitor with 75%, 100%, 95%, 98% and 93% of confidence, respectively. On the other

hand, K-Means shows the best performance in Ionosphere dataset with 99% confidence.
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TABLE 2.2. Adjusted Mutual Information results for real datasets using 10-CV. In
average, LK-Means usually outperforms K-Means and SRIDHCR with variable
confidence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.765 0.515 0.359 0.385 0.242 0.453
SRIDHCR 0.196 0.260 0.204 0.236 0.241 0.227
LK-Means 0.655 0.538 0.497 0.451 0.387 0.505
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.273 0.145 0.087 0.079 0.045 0.126
SRIDHCR 0.011 0.082 0.078 0.104 0.097 0.074
LK-Means 0.293 0.212 0.137 0.134 0.104 0.176
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.168 0.166 0.145 0.136 0.126 0.148
SRIDHCR 0.093 0.132 0.138 0.092 0.106 0.112
LK-Means 0.148 0.159 0.156 0.132 0.149 0.156
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.050 0.059 0.050 0.046 0.045 0.049
SRIDHCR 0.113 0.049 0.044 0.043 0.041 0.058
LK-Means 0.086 0.068 0.047 0.040 0.043 0.060
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.120 0.125 0.137 0.124 0.114 0.124
SRIDHCR 0.076 0.107 0.132 0.141 0.116 0.114
LK-Means 0.112 0.129 0.128 0.118 0.117 0.120
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.578 0.505 0.465 0.411 0.374 0.467
SRIDHCR 0.446 0.522 0.469 0.428 0.392 0.451
LK-Means 0.548 0.551 0.492 0.439 0.411 0.488
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.169 0.181 0.140 0.179 0.124 0.159
SRIDHCR 0.053 0.112 0.069 0.082 0.075 0.078
LK-Means 0.174 0.177 0.125 0.156 0.108 0.148
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.001 0.022 0.051 0.032 0.019 0.025
SRIDHCR 0.012 0.001 0.050 0.019 0.020 0.020
LK-Means 0.094 0.036 0.017 0.039 0.058 0.049

Considering the different metrics and datasets used to evaluate clustering quality, the

previous results indicate that in general LK-Means outperforms the alternative techniques

under consideration. However, the superior performance of LK-Means depends on the type
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TABLE 2.3. Adjusted Variation of Information results for real datasets using 10-
CV. In average, LK-Means usually outperforms competitors with variable confi-
dence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.781 0.612 0.454 0.511 0.352 0.542
SRIDHCR 0.224 0.286 0.221 0.261 0.280 0.254
LK-Means 0.715 0.613 0.591 0.560 0.485 0.592
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.275 0.207 0.131 0.126 0.075 0.163
SRIDHCR 0.011 0.112 0.115 0.163 0.159 0.112
LK-Means 0.300 0.271 0.188 0.201 0.164 0.225
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.193 0.188 0.168 0.155 0.150 0.170
SRIDHCR 0.100 0.149 0.150 0.109 0.128 0.127
LK-Means 0.216 0.183 0.187 0.154 0.179 0.184
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.045 0.087 0.080 0.077 0.078 0.073
SRIDHCR 0.117 0.071 0.068 0.068 0.068 0.078
LK-Means 0.105 0.092 0.069 0.065 0.069 0.080
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.122 0.151 0.182 0.174 0.166 0.159
SRIDHCR 0.076 0.107 0.132 0.141 0.116 0.114
LK-Means 0.121 0.149 0.164 0.157 0.163 0.151
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.601 0.575 0.578 0.538 0.511 0.561
SRIDHCR 0.561 0.583 0.568 0.544 0.513 0.554
LK-Means 0.570 0.615 0.580 0.549 0.531 0.569
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.173 0.238 0.201 0.258 0.195 0.213
SRIDHCR 0.059 0.132 0.084 0.106 0.106 0.097
LK-Means 0.182 0.225 0.173 0.212 0.160 0.190
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.001 0.029 0.076 0.050 0.031 0.037
SRIDHCR 0.012 0.001 0.065 0.028 0.033 0.028
LK-Means 0.099 0.048 0.026 0.056 0.075 0.061

of dataset and the validation metric under consideration. In terms of the different datasets,

in general LK-Means shows superior performance in most of them with the exception of

Silhouttes and Ionosphere, where the unsupervised clustering strategy of K-Means leads to
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TABLE 2.4. Mirkin distance (MD) results for real datasets using 10-CV. In half of
cases, LK-Means usually outperforms K-Means and SRIDHCR with variable con-
fidence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.098 0.126 0.171 0.148 0.179 0.144
SRIDHCR 0.393 0.349 0.352 0.333 0.328 0.351
LK-Means 0.158 0.158 0.148 0.147 0.158 0.154
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.354 0.406 0.433 0.428 0.455 0.415
SRIDHCR 0.491 0.450 0.451 0.445 0.450 0.457
LK-Means 0.347 0.361 0.402 0.403 0.419 0.386
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.287 0.303 0.266 0.269 0.268 0.279
SRIDHCR 0.325 0.302 0.309 0.298 0.286 0.304
LK-Means 0.324 0.314 0.317 0.291 0.267 0.302
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.448 0.473 0.494 0.505 0.513 0.487
SRIDHCR 0.406 0.493 0.493 0.506 0.512 0.482
LK-Means 0.419 0.471 0.492 0.504 0.503 0.478
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.341 0.274 0.250 0.242 0.237 0.269
SRIDHCR 0.391 0.319 0.281 0.264 0.262 0.303
LK-Means 0.381 0.287 0.261 0.258 0.246 0.287
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.142 0.115 0.107 0.110 0.114 0.118
SRIDHCR 0.149 0.111 0.112 0.120 0.124 0.123
LK-Means 0.154 0.104 0.107 0.109 0.111 0.117
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.401 0.393 0.432 0.408 0.438 0.414
SRIDHCR 0.429 0.420 0.450 0.445 0.474 0.444
LK-Means 0.398 0.403 0.440 0.411 0.444 0.419
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.523 0.469 0.447 0.449 0.457 0.469
SRIDHCR 0.479 0.506 0.474 0.503 0.480 0.488
LK-Means 0.455 0.460 0.458 0.444 0.440 0.451

better clusters. We believe that, in general, the performance of LK-Means is closely related

to the pertinence of our hypothesis that homogeneity in class information leads to more

informative clusters. Clearly, the validity of this hypothesis depends of the application
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TABLE 2.5. Adjusted Rand Index (ARI) results for real datasets using 10-CV. In
average, LK-Means usually outperforms K-Means and SRIDHCR with variable
confidence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.754 0.592 0.424 0.477 0.322 0.513
SRIDHCR 0.190 0.259 0.196 0.221 0.233 0.220
LK-Means 0.644 0.568 0.552 0.527 0.457 0.550
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.293 0.155 0.093 0.097 0.038 0.135
SRIDHCR 0.019 0.110 0.099 0.111 0.099 0.088
LK-Means 0.315 0.257 0.164 0.155 0.119 0.202
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.151 0.124 0.131 0.124 0.106 0.127
SRIDHCR 0.074 0.092 0.104 0.079 0.091 0.088
LK-Means 0.168 0.134 0.143 0.119 0.137 0.140
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.094 0.093 0.062 0.045 0.033 0.654
SRIDHCR 0.182 0.059 0.068 0.048 0.041 0.796
LK-Means 0.150 0.089 0.060 0.043 0.045 0.774
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.084 0.098 0.109 0.103 0.101 0.099
SRIDHCR 0.051 0.082 0.109 0.110 0.088 0.088
LK-Means 0.082 0.103 0.108 0.098 0.100 0.098
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.460 0.426 0.396 0.346 0.294 0.384
SRIDHCR 0.446 0.483 0.410 0.326 0.278 0.389
LK-Means 0.447 0.502 0.444 0.388 0.357 0.428
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.198 0.219 0.147 0.197 0.139 0.180
SRIDHCR 0.115 0.163 0.112 0.120 0.080 0.118
LK-Means 0.196 0.199 0.130 0.189 0.124 0.168
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.001 0.016 0.050 0.032 0.016 0.023
SRIDHCR 0.042 0.001 0.048 0.018 0.025 0.027
LK-Means 0.103 0.044 0.034 0.052 0.059 0.058

under consideration, particularly, the semantic of the data labels under consideration. In

terms of the 4 metrics used to evaluate clustering quality, LK-Means outperforms clearly

the alternative algorithms in the case of AMI and AVI metrics, and to a lesser degree in the

29



case of ARI metric. In the case of MD metric, for the values of α under consideration, LK-

Means is unable to improve the results of K-Means. Following the observations in (Vinh,

Epps, & Bailey, 2010), MD metric and, to a lesser extend, ARI metric are affected by

cluster size, therefore, they have a bias that affect their performance. As recommended in

(Vinh et al., 2010), AMI and AVI produce more stable and suitable results. Coincidentally,

in our case AMI and AVI produce similar results and they provide stronger support to the

superiority of LK-Means with respect to the alternative techniques.

Additionally, we test the sensibility of performance respect to α by measuring adjusted

mutual information (AMI). We consider values of α in the interval: 0.1 to 1.0 with a step

of 0.1. In order to facilitate the analysis of results, we consider two representative datasets.

Specifically, we choose Diabetes and Glass datasets because in our experiments they rep-

resent cases where, under the AMI metric, LK-Means and K-Means alternate the best per-

formance for different values of K. In both cases, we use a fixed number of clusters. We

choose the number of clusters using the classical silhouette method (Rousseeuw, 1987),

where the cardinality of the set of clusters is selected to maximize the average silhouette of

the clusters.

Figure 2.3(a) shows the relationship between α and AMI for Diabetes dataset. The best

result for LK-Means is obtained when α=0.9 with a corresponding value of AMI = 0.092.

The worst result is for alpha= 0.1 with a corresponding value of AMI = 0.051. For this

dataset, K-Means obtains a value of AMI = 0.050, therefore, there is a big advantage in

favor of LK-Means. On the other hand, Figure 2.3(b) shows the relationship between α

and AMI for dataset Glass. In this case, the best results are obtained with low values of

α (0.1 and 0.2). In particular, the best result for LK-Means is obtained when α=0.1 with

a corresponding values of AMI = 0.171. For this dataset, K-Means obtains a value of

AMI = 0.168. Consequently, both algorithms show a similar behavior. This is expected

because, according to Equation (2.3), for values of α near zero LK-Means behaves like

K-Means.
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TABLE 2.6. Speed in seconds for real datasets using 10-CV. LK-Means is consid-
erably faster than SRIDHCR. Even though K-Means is faster than LK-Means, the
difference is not very high and is compensated by an increase in clusters quality.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11
K-Means 0.004 0.009 0.009 0.010 0.011
SRIDHCR 35.502 54.315 72.967 90.713 108.689
LK-Means 0.047 0.095 0.074 0.068 0.087
Heart k=2 k=5 k=8 k=11 k=14
K-Means 0.008 0.012 0.016 0.017 0.020
SRIDHCR 45.232 95.696 146.066 195.522 247.243
LK-Means 0.044 0.096 0.141 0.190 0.169
Glass k=6 k=7 k=8 k=9 k=10
K-Means 0.010 0.018 0.014 0.015 0.030
SRIDHCR 88.823 102.429 115.432 128.478 154.635
LK-Means 0.400 0.356 0.516 0.565 0.548
Diabetes k=2 k=7 k=12 k=17 k=22
K-Means 0.023 0.101 0.125 0.110 0.113
SRIDHCR 124.984 356.097 585.961 815.086 1063.223
LK-Means 0.230 1.556 2.686 3.997 4.339
Silhouttes k=4 k=8 k=12 k=16 k=20
K-Means 0.123 0.098 0.093 0.106 0.137
SRIDHCR 251.755 464.094 715.121 887.593 1311.306
LK-Means 1.492 3.398 4.775 5.937 9.384
Segment k=7 k=14 k=21 k=28 k=35
K-Means 0.245 0.307 0.394 0.494 0.622
SRIDHCR 1105.172 2108.405 3173.733 4086.154 4972.139
LK-Means 13.272 11.170 37.325 40.543 7.154
Ionosphere k=2 k=5 k=8 k=11 k=14
K-Means 0.009 0.030 0.027 0.029 0.031
SRIDHCR 61.963 139.254 212.244 263.724 329.487
LK-Means 0.118 0.337 0.441 0.605 0.923
Sonar k=2 k=4 k=6 k=8 k=10
K-Means 0.008 0.013 0.014 0.016 0.017
SRIDHCR 39.390 68.486 97.831 127.679 165.534
LK-Means 0.058 0.106 0.118 0.279 0.332

The processing time for the different algorithms is summarized in Table 2.6. As

expected, K-Means is faster than the other methods, however, it is relevant to see that

LK-Means is visibly faster than SRIDHCR. For example, for 12 clusters in the Silhouttes
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dataset, K-Means, LK-Means and SRIDHCR use approximately 0.1, 5, and 715 seconds,

respectively. The reason for the slowness of SRIDHCR is that K-Medoids requires a dis-

tance matrix to be calculated between all the records, while K-Means and LK-Means only

require the distance measures from the means to all records. Considering the good results

of the AMI score, we can see that LK-Means is capable of combining the speed of K-Means

and the semantic gain to incorporate data labels during the clustering process.

2.4.2. Experiments in object datasets

In this Section we apply LK-Means to the task of codebook generation for a visual

recognition task. Currently, the Bag-of-Visual-Words (BoVW) scheme is one of the most

popular approaches for visual object recognition (Sivic & Zisserman, 2003b). Under this

approach, the generation of a suitable codebook plays a key role. In general, most BoVW

approaches build the codebook using a clustering algorithm, mainly K-Means. Interest-

ingly, although class labels are usually available, these are not considered during the code-

book generation. This suggests a suitable scenario to test the advantages that a supervised

clustering technique, such as LK-Means, can offer to provide more discriminative code-

books.

Following the previous intuition, we compare the performance of LK-Means against

K-Means for the task of codebook generation in object recognition applications. As a

testbed, we select 4 object recognition datasets that are commonly used to benchmark

object recognition techniques. These datasets are: UIUC, DARMSTADT, VEH-CALT,

and OUTDOOR. UIUC contains 2 object classes: cars and backgorund. DARMSTADT

contains 3 object classes: motorbike, cow, and cars (Leibe, Leonardis, & Schiele, 2004).

VEH-CALTECH is a subset of CALTECH-101 (VEH-CALT) dataset (Fei-Fei, Fergus, &

Perona, 2004), including 4 object classes: airplane, car, helicopter, and motorbike. Finally,

OUTDOOR contains images of 8 types of outdoor scenes (Oliva & Torralba, 2001). Table

2.7 shows relevant details for all these datasets. Following a standard implementation of

K-means, we use Euclidean distance as the main similarity metric for all our test.
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TABLE 2.7. Details of real object datasets.

Dataset name # objects # classes
UIUC 1050 2
DARMSTADT 327 3
VEH-CALT 1801 4
OUTDOOR 2600 8

Following standard procedures for BoVW schemes (Sivic & Zisserman, 2003b), we

use Histogram of Gradients (HoG) as a basic visual feature (Dalal & Triggs, 2005). In

particular, we obtain the HoG descriptors using patches of 32x32 pixels. These patches are

selected using a sliding window process over a fix grid on each input image. In particu-

lar, we use the variant UOCTTI of HoG proposed by Felzenswalb et al. (Felzenszwalb,

Girshick, McAllester, & Ramanan, 2010). UOCTTI considers a compressed representa-

tion of HoG given by 31 dimensions. For each dataset, we use the HoG descriptors of a

set of training patches to build codebooks using K-Means and LK-Means. In the case of

LK-Means, we assign to each patch the label of the object class that generates the patch.

We evaluate the discriminative properties of the resulting codebooks using them to train a

category-object classifier. As a classifier, we use the popular linear Support Vector Machine

(SVM), as in (Dalal & Triggs, 2005). In relation to the training process, we use 15 random

images for training and 15 images for testing. In order to evaluate the sensibility of our

results in terms of the number of clusters, we consider the following number of codewords:

K = {50, 100, 150, 200, 250}.

Table 2.8 shows the average accuracy achieved by the resulting classifier. These results

are obtained using a 20-hold-out scheme and a fixed value of α = 0.8. We select this value

of α extrapolating the results of the previous Section, and as a good compromise between

the supervised and unsupervised terms in Equation (2.3). In Table 2.8, we can observe that

LK-Means outperforms K-Means in almost all cases; and in the few cases where K-Means

shows superior performance the difference in accuracies is less than 1.0%. Furthermore,

we observe that the positive difference in favor of LK-Means increases with the number of

clusters, indicating that LK-Means benefits more that K-Means from a greater flexibility in

the search for relevant patterns.
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TABLE 2.8. Accuracy for real object datasets using 20-HoldOut. In average, LK-
Means overcomes K-Means in almost all datasets and all configurations. The ad-
vantage of LK-Means is more clear for larger number of codewords (K>150).

Method Number of clusters
UIUC 50 100 150 200 250
K-Means 79.33 78.17 81.17 77.33 77.50
LK-Means 78.50 80.83 82.17 81.33 83.00
DARMSTADT 50 100 150 200 250
K-Means 86.33 86.78 86.44 86.89 89.33
LK-Means 86.33 89.00 87.89 87.67 91.67
VEH-CALT 50 100 150 200 250
K-Means 71.83 79.08 78.16 79.33 81.03
LK-Means 74.75 80.83 79.75 81.00 82.75
OUTDOOR 50 100 150 200 250
K-Means 50.79 57.00 55.50 57.88 57.46
LK-Means 52.13 55.71 57.58 58.50 60.38

Figure 2.4 shows the confusion matrix for each dataset by considering 250 codewords.

The whiteness of each bin in grid represents the frecuency of each combination of classes.

The improving in UIUC dataset is given in the case of car object. In case of DARMSTADT

dataset, the best results is highlighted in car class. In case of VEH-CALT dataset, the im-

provement is notorious in airplane class. In OUTDOOR dataset the improving is variable,

however, the diagonal of confusion matrix reveals that a better average accuracy is obtained

by LK-Means. All these results confirm visually the improvements given by our approach.

Finally, Figure 2.5 shows some visual codewords resulting from the VEH-CALT dataset.

We present the top-six most discriminative words according to the Fisher discriminant score

(Bishop, 2007); and considering K = 200 for both algorithm. In Figure 2.5, each visual

codeword is represented by its four nearest patches. In Figure 2.5, it is possible to ob-

serve in each row that, in general, LK-Means provides more discriminative codewords than

K-Means.

2.5. Conclusions

In this chapter we proposed LK-Means, an extension of the classical K-Means algo-

rithm to the case of supervised clustering. As a main search strategy, LK-Means optimizes
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a convex combination of class dependent and non-class dependent cost functions. Experi-

ments using a set of standard benchmark datasets and 4 different metrics to assess clustering

quality, show that, on average, LK-Means outperforms classical K-Means and SRIDCHR

algorithms. In the cases of AMI and AVI metrics, in most of our tests LK-Means outper-

forms the alternative algorithms by a large margin. In the case of ARI metric, on average,

LK-Means also outperforms K-Means and SRIDCHR but by a narrower margin. In the case

of MD metric, LK-Means and K-Means present mixed results. As it has been noticed in

previous works, MD is negatively affected by clustering size, and it is in general less robust

than metrics such as AMI and AVI. Additionally, we show an application of LK-Means

as a codebook generator for object recognition applications. We consider several common

benchmark datasets, and in all cases LK-Means outperforms K-Means, demonstrating the

relevance of considering class information to find meaningful clusters.

Interestingly, our results indicate that the advantages of LK-Means over K-Means de-

pends on the type of dataset. This is closely related to our hypothesis that homogeneity

in class information leads to more informative clusters, which depend on the semantic of

the data labels. For example, in the case of the object recognition application, where one

expects a high correlation between clusters of visual features and object categories, the ad-

vantages of using LK-Means instead of regular K-Means are more clear. This observation

offers a “rule of thumb” to set the value of the parameter α. For a dataset where it is ex-

pected a high correlation between class information and cluster composition α should be

close to 1, increasing the relevance of class information.

In relation to time, our experiments show that LK-Means presents an attractive com-

putational performance, being considerably faster than the alternative supervised clustering

method considered in this work. In relation to future work, we plan to increase the relia-

bility of the model by modifying the cost function of LK-Means to accommodate cluster

shape. We also plan to extend this work to manage fuzzy labels inside of our model. Finally,

we also plan to extend the idea behind LK-Means to the case of subspace clustering, which

can provide a suitable extended search space to find relevant class-dependent clusters.
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(a) Diabetes dataset(with 2 clusters)
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(b) Glass dataset (with 11 clusters)

FIGURE 2.3. Comparison of sensibility of adjusted mutual information (AMI) re-
spect to parameter α. Figure 2.3(a) shows that the best result for Diabetes dataset
is obtained with α equal to 0.9, AMI=0.092, which is almost the double than the
result with K-Means, AMI=0.050. On contrast, Figure 2.3(b) shows that in case of
Glass dataset, the best result is obtained with α equal to 0.1, AMI=0.171, which is
slightly greater than performance with K-Means, AMI=0.168. These results show
that the discriminativity of clustering is dependant of data and parameter α.
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FIGURE 2.4. Confusion Matrices for object datasets. For space reasons, the al-
gorithms K-Means and LK-Means are called in the figure as KM and LKM, re-
spectively. The diagonal of matrices reveals the average improvement made by
L-KMeans in comparison to K-Means.
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 (a) Top six codebooks obtained with K-
Means.

 

(b) Top six codebooks obtained with LK-
Means.

FIGURE 2.5. Top six more discriminative codewords for K-Means and LK-Means.
Each codeword is represented by the four nearest patches to each one. In general,
LK-Means appears to obtain visually more discriminative codewords than K-Means
as we can see in the third codeword. Although a powerful clasiffier algorithm could
be able to separate the classes, the quality of codeworks can help to the classifier.
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3. EMBEDDED LOCAL FEATURE SELECTION WITHIN MIXTURE OF EX-

PERTS

3.1. Introduction

Performing classification in scenarios with large and complex intra and inter-class vari-

ation is a challenging task for most classification methods. In these cases, different subsets

of instances might respond to different patterns and, even more, these patterns might arise

in different subsets of dimensions. As an example, in visual recognition, changes in illu-

mination or pose conditions usually produce drastic variations in the visual appearance of

relevant objects, affecting the discriminative properties of different visual features (Pinto,

Cox, & DiCarlo, 2008). As a further example, in gene function prediction, the expression

level of particular genes can change substantially under different experimental conditions,

affecting the discriminative properties of different co-expression patterns that usually arise

on subsets of experiments (Guyon, Weston, Barnhill, & Vapnik, 2002).

A useful strategy to deal with complex classification scenarios is the “divide and con-

quer” approach. Under this strategy, a complex problem is divided into multiple simpler

problems. Decision trees (DTs) are one of the oldest and most widely used classification

techniques based on this strategy (Quinlan, 1993). This technique consists of building a

tree using a partitioning scheme that recursively divides the input space and adjusts local

classifiers within each partition. Interestingly, each branch of the resulting tree is in charge

of classifying a different subset of instances. Furthermore, classification in each branch is

performed using a particular subset of dimensions. We believe that this double “divide and

conquer” strategy, that adaptively adjusts each branch of the tree to deal with a selected

subsets of instances and dimensions, is one of the main reasons to explain the good per-

formance shown by DTs and their later extensions based on ensemble strategies (Breiman,

2001). Unfortunately, the representational space and usual learning strategies used by DTs

impose relevant limitations that affect their abilities to deal with complex classification

scenarios. In particular, a DT embeds a hypothesis space given by a disjunction of con-

junctions of constraints. These constraints are usually based on single (Quinlan, 1993) or
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low dimensional (Murthy, Kasif, & Salzberg, 1994) partitions of the input space. Further-

more, common training strategies are based on greedy schemes that can lead to suboptimal

solutions. As an example, the greedy decision at the root node of the tree constrains the

conjunctions embedded by all the branches of the tree.

A probabilistic approach to the “divide and conquer” strategy is the mixture of ex-

perts (MoE) technique (Jacobs, Jordan, Nowlan, & Hinton, 1991). In contrast to DTs, this

technique uses a probabilistic framework that is advantageous in managing the intrinsic

uncertainty in the data. MoE divides the data into multiple regions where each region has

its own classifier or expert (Jacobs et al., 1991). Each expert is specified by a probability

distribution that is conditioned on class values. In the mixture, predictions of experts are

weighed using a global model known as gate function. This function adaptively estimates

the relevance or weight assigned to each expert for the classification of each input instance.

Both, DTs and MoE, use a “divide and conquer” strategy that divides the input space

to perform classification, using a hard partitioning in the case of a DT and a probabilistic,

or soft, partitioning in the case of MoE. A relevant difference arises in terms of how each

technique handle the dimensionality of each instance: while a DT incorporates an embed-

ded feature selection scheme, MoE does not. We believe that a suitable embedded feature

selection scheme can be a useful tool to boost the performance of the MoE technique. In

particular, in our experiments for the case of high dimensional datasets we notice that the

traditional MoE technique has serious difficulties to learn adequate models. Also, as the

number of parameters increases with the number of dimensions, the resulting MoE models

become complex usually leading to overfitting problems.

This work contributes with a MoE model that incorporates embedded local feature

selection using L1 regularization. Our main intuition is that particular subsets of dimen-

sions, or subspaces, are usually more appropriate to classify certain input instances. Con-

sequently, we expect to improve the accuracy of traditional MoE models by introducing a

technique that adaptively selects subsets of dimensions to train each expert in the mixture.
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This chapter is organized as follows. Section 3.2 presents background information

about feature selection methods, in particular L1 regularization. Section 3.3 describes rele-

vant previous works. Section 3.4 presents the proposed approach. Section 3.5 presents and

discusses the results of our experiments. Finally, Section 3.6 presents our main conclusions

and future avenues of research.

3.2. Background

3.2.1. Feature selection

In classification problems, the goal corresponds to learn a mapping from an input vec-

tor x to an output value y, where x is a vector with D dimensions and y takes categorical

values. If vector x is high-dimensional, one can usually improve classification accuracy

by discarding irrelevant and redundant features (Kohavi & John, 1997; Guyon & Elisseeff,

2003). This process is known as feature or variable selection. In general, there are three

main methods for feature selection:

• Filter methods rank each input feature xj in relation to predicting y using a met-

ric of goodness, such as mutual information (Battiti, 1994), Pearson correlation

(Hall, 1999), Fisher score (Duda, Hart, & Stork, 2001), and chi-square statis-

tic (Liu & Setiono, 1995), among others (Guyon & Elisseeff, 2003). Next, the

features are selected according to ranking results. These methods can be incor-

porated in a sequential forward selection in order to find a subset of discriminant

dimensions (Hall, 1999). Generally, the chosen metric is independent of the final

classification model (Guyon & Elisseeff, 2003). Filter methods are usually fast

and simple, in comparison to alternative techniques.

• Wrapper methods search the feature space looking for possible subsets that im-

prove performance. For each subset, these methods execute the classification

model and evaluate its resulting predictive power (Kohavi & John, 1997), usually

using accuracy or F-measure (Van-Rijsbergen, 1979). Then, the subset of fea-

tures with greatest predictive power is chosen. Main issues associated with these
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methods are difficulties defining the best metric to measure predictive power, as

well as the computational complexity associated to the evaluation of a large num-

ber of subsets of features, 2D − 1 subsets in the worst case (exhaustive search).

• Embedded methods combine feature selection and model fitting into a single

optimization problem. DT (Quinlan, 1993) and Adaboost (Freund & Schapire,

1995) can be considered embedded techniques, although an explicit criterium

for feature minimization is not included during the training process. Two popu-

lar techniques to embed feature selection inside a classification algorithm are L1-

regularization (Tibshirani, 1996) and automatic relevancy determination (MacKay,

1995).

This chapter concentrates on embedded models, specifically L1-regularization, due to

their computational tractability and formal soundness. Although filter methods are faster

than alternative techniques, they are usually less effective, as they use a metric that is

independent of the final classification scheme. On the other hand, wrapper methods are

generally more reliable, as they can take advantage of robust classification algorithms.

Nevertheless, these methods are slow due to the usually large number of subsets to explore,

and the complexity associated to repeatedly training a robust classifier (Kohavi & John,

1997). Embedded models are attractive because they use a reliable measure of goodness,

similar to wrapper methods, but they avoid retraining a predictor for each feature subset

explored.

3.2.2. L1 regularization

Consider the context of linear models given by the expression y = wTx + b, where

x ∈ <D is the input vector, y ∈ < is the output value, w ∈ <D is the vector of coefficients,

and b ∈ < is the bias (Bishop, 2007). Selecting features by means of regularization fits

a vector w of parameters, and at the same time maximizes the number of coefficients wi

of w that takes value equal to zero. . As a consequence, for each coefficient wi = 0, the

associated dimension xi of x can be ignored.
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The details of L1 regularization are derived in the context of probabilistic models

(Tibshirani, 1996). Specifically, the optimization for simultaneous fitting and regularization

of the likelihood function of a probabilistic model can be expressed as:

L̂0 = L(w) + λ ‖w‖0 , (3.1)

where L is the likelihood function that depends on the parameter w. In this case, ‖w‖0 =∑D
j=1 I(|wj| > 0) counts the number of nonzero elements of vector w. λ > 0 is a trade-off

constant

that balances between model fitting and regularization. The direct maximization of

Equation (3.1) is in general unfeasible due to the discrete nature of I(|wj|). Considering a

relaxation of the previous objective function, one has:

L̂1 = L(w) + λ ‖w‖1 , (3.2)

where ‖w‖1 =
∑d

j=1 |wj|. This results in a sparse weight vector w, which means that

many of its elements are zero. The nonzero elements correspond to relevant features. This

method is known in the statistics community as Lasso (least absolute shrinkage and se-

lection operator), or L1 regularization (Tibshirani, 1996). Equation (3.2) can be rewritten

as:

ŵ = arg max
w

L(w)

subject to ||w||1 ≤ t,

where t is an upper bound on the L1 norm of weights. More precisely, a tight bound t is

equivalent to a heavy regularization λ, whereas a loose bound t corresponds to a small value

of λ. Lasso can be interpreted similarly to a quadratic cost function with linear constraints
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and is thus a convex quadratic problem, which has efficient algorithms to solve it (Boyd &

Vandenberghe, 2004).

3.3. Related work

In a seminal work, Jacobs et al. (Jacobs et al., 1991) introduce the MoE technique.

They divide the space of data into several separate models, where each model has its own

supervised classifier. Then, they use a gradient approach to learn parameters which, in

this case, is a vector of weights. Finally, they apply this model to multi-speaker vocal

recognition. They base their work on Hampshire et al. (Hampshire & Waibel, 1992), who

combine the outputs of local experts but without considering localization.

Jordan and Jacobs (Jordan & Jacobs, 1994) extend the MoE formulation to a hierar-

chical case. They treat this model as a conditional mixture model where the distribution of

outputs is given by a mixture of component distributions referred as experts. These experts

and mixing coefficients are conditioned on input features. Also, the mixing coefficients are

controlled by gating distributions. They use the EM algorithm (Dempster, Laird, & Rubin,

1977) to learn model parameters through a maximum likelihood scheme. They experiment

with a robot dynamic problem where they obtain results that are comparable to a neural

network trained with the Backpropagation algorithm, but with greater speed. A compari-

son of MoE with other ensemble methods is given by Vogdrup (J.Vogdrup, 2010), where a

variant of MoE outperforms Adaboost, Bagging, and hierarchical MoE techniques in terms

of classification performance.

Titsias and Likas (Titsias & Likas, 2002) present a three-level hierarchical mixture

model for classification where each mixture component has an independent class-conditional

mixture. The model estimates the posterior probability of class membership using a similar

scheme to the MoE classifier. Model parameters are learned using maximum likelihood.

Their results indicate that the final model improves classification with respect to the case

where class-conditional information is not considered in each mixture component.

50



Bishop and Svensén (Bishop & Svensén, 2003) propose a full Bayesian treatment of

the hierarchical mixture of experts combining local and global variational methods. For

doing this, they establish a lower bound on the marginal probability of data under the

model. The greatest difficulty with this Bayesian approach comes from the resulting gating

distribution that do not admit a conjugate prior. They use a variational approximation for

the logistic function and approximate the joint distribution of the model parameters by a

factorized distribution. They apply this method to a kinematics problem, outperforming the

results of a hierarchical MoE.

In the context of nonparametric Bayesian models, Rasmussen and Ghahramani (Rasmussen

& Ghahramani, 2001) present a nonparametric extension to MoE models, where they use

Gaussian processes to model the experts. Also, they use an input-dependent adaptation

of the Dirichlet Process to implement a gating network for an infinite number of experts.

Inference is performed using Gibbs sampling. This model adjusts the covariance function

according to inputs. Simulations show the viability of their approach, however, this model

is complex, as it depends on many hyperparameters where interpretability is not natural.

Meeds and Osindero propose an alternative infinite mixture of experts where each ex-

pert comprises a multivariate Gaussian distribution to model its inputs, and a Gaussian

Process to model its outputs (Meeds & Osindero, 2005). They use a full generative model

over input and output spaces. This approach presents some advantages related to condi-

tional models due to its capability to deal with incomplete data, however, as in (Rasmussen

& Ghahramani, 2001), this work requires fitting a large number of hyperparameters.

Additionally, some variations in the form of gating and expert functions have been

proposed. Xu et al. (Xu, Jordan, & Hinton, 1994) suggest to replace the usual multinomial

logit model with Gaussian basis functions, where each expert is modeled by a Gaussian

function. This idea adds flexibility to model the local covariance of the data. Nguyen et al.

(Nguyen, Abbass, & McKay, 2006) propose a variation to the classical MoE by using an

evolutionary algorithm to learn the model. The overall model is an ensemble, where each

component is a mixture of experts. In the context of regression, Lima et al. (Lima, Coelho,
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& Zuben, 2007) combine MoE with support vector machines in a probabilistic framework,

where the gate functions are represented by a normalized kernel function and the experts

correspond to support vector machines.

On the other hand, there have been recently some interesting applications of MoE.

Saragih et al. (Saragih, Lucey, & Cohn, 2009) apply MoE to a deformable model fitting

problem. Ebrahimpour and Jafarlou (Ebrahimpour & Jafarlou, 2010) apply a hierarchical

MoE to view-independent face recognition. They use principal component analysis to find

a suitable representation of the data and neural networks to model experts and the gate

function.

Closely related to our approach, in terms of embedded local feature selection in a

mixture model, Pan and Shen (Pan & Shen, 2007) propose the use of L1 regularization for

selecting features in the unsupervised case of model-based clustering. In experiments with

real datasets, as they state, they do not attain good results for the case of classification, most

likely due to a mismatch between true labels and resulting clusters. Wang and Zhu (S. Wang

& Zhu, 2008) also apply regularization over clustering but using L∞ norm. They propose

to use quadratic programming to solve equations related to a constrained optimization.

As it can be seen from the our review, a common issue among previous works on

MoE for classification is the fact that they do not consider an explicit feature selection

scheme. Notable exceptions are (Pan & Shen, 2007) and (S. Wang & Zhu, 2008) where an

embedded feature selection step is applied, but in the context of clustering and not of classi-

fication. Also, in the context of regression and closely related to our work, Khalili (Khalili,

2010) presents a MoE model that includes an embedded feature selection approach based

on a regularization scheme and Gaussian models. Similarly, we propose a regularization

scheme to add feature selection to the MoE model, however, we formulate our model in the

context of classification using multinomial logit functions. As a consequence, our domain

of applications, mathematical formulation, and optimization solution are highly different

from the one proposed in (Khalili, 2010). In particular, we use an iterative optimization
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scheme similar to the one used in (Lee, Lee, Abbeel, & Ng, 2006), while (Khalili, 2010)

uses a local quadratic approximation for the regularization term.

In the context of alternative techniques to MoE, there are also interesting works on

approaches to combine classifiers, and to perform embedded feature selection. Xiao et al.

(Xiao, He, Jiang, & Liu, 2010) propose to combine classifiers by jointly maximizing accu-

racy and ensemble diversity using a neural network architecture. Ulas et al. (Ulas, Taner, &

Alpaydin, 2012) combine classifiers by employing the most informative components of the

eigenvectors corresponding to the correlation matrix among classifier outputs. Ñanculef et

al. (Nanculef, Valle, Allende, & Moraga, 2012) propose to learn an ensemble of regres-

sors using a sequential scheme and a score minimizing classification error and ensemble

diversity. All these works do not include an embedded feature selection mechanism.

In terms of classification schemes that include an embedded feature selection process.

Wu et al. (Wu, Yuan, & Zhuang, 2010) propose to select groups of features for image

classification arguing that, usually, subsets of visual features are related to specific group

of instances. Consequently, they incorporate a group Lasso regularizer inside a logistic

regression classifier, solving the resulting optimization problem using a co-ordinate descent

method. In the context of object recognition, Yang et al. (Yang, Wang, Hua, Yan, &

Zhang, 2011) boost a standard object classifier based on parts, by adding supplementary

parts. These additional parts are selected using a classification scheme that includes Lasso

regularization over the selected parts. Maldonado et al. (Maldonado, Weber, & Basak,

2011) perform feature selection inside a support vector machine considering a penalization

score over the features used by the kernel functions. In contrast to our approach, (Wu et

al., 2010) and (Maldonado et al., 2011) consider a global feature selection and (Yang et

al., 2011) performs a global part selection scheme, while our work considers local feature

selection for each expert classifier.

The idea of adding a regularizer over weights that are used to integrate multiple mod-

els has been explored in previous works. Hua et al. (M. Wang et al., 2009) propose a

framework to annotate videos considering different aspects such as low level features and
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temporal consistency, where each aspect is represented by multiple instance graphs. In

particular, they develop a procedure to find a weight for each graph by jointly optimizing

all graphs and a regularization score over the weights. Geng et al. (Geng, Tao, T.Xu, Yang,

& Hua, 2012) develop a method to learn the intrinsic ensemble of manifolds for unlabeled

data in a semi-supervised scenario. Their method begins with a guess for initial manifolds,

iterating then to find suitable weights that increase the smoothing and discriminative power

of the manifolds. Wang et al. (M. Wang, Li, Tao, Lu, & Wu, 2012) also present a model

that learns the weights of a graph ensemble. In particular, their method re-ranks web im-

ages, constrained to be near the outputs of a textual search. A relevance score for each

graph is learned jointly with the weight of each graph by constraining that visually similar

images should have similar relevance scores. In this way, these previous works regularize

the parameters of the respective models in order to smooth the labels of a graph (M. Wang

et al., 2009)(Geng et al., 2012), increase discrimination (Geng et al., 2012)(M. Wang et al.,

2012), or construct a suitable similarity metric between pairs of instances (M. Wang et al.,

2012). Our work can be considered complementary to these previous works, in the sense

that it focuses on sparsely selecting the features used by the local models of a MoE scheme.

3.4. Proposed Approach

In this section we present our main contribution, RMoE, a regularized version of MoE

technique that incorporates a local feature selection scheme inside each expert and gate

function. Our main intuition is that, in the context of classification, different partitions of

the input data can be best represented by specific subsets of features. This is particularly

relevant in the case of high dimensional spaces, where the common presence of noisy or

irrelevant features might obscure the detection of particular class patterns. Specifically,

our approach takes advantage of the linear nature of each local expert and gate function

in the classical MoE formulation (Jacobs et al., 1991), meaning that L1 regularization can

be directly applied. Below, we first briefly describe the classical MoE formulation for

classification. Afterwards, we discuss the proposed modification to the MoE model that

provides embedded feature selection.
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3.4.1. Mixture of Experts

In the context of supervised classification, there is available a set of N training ex-

amples, or instance-label pairs (xn, yn), representative of the domain data (x, y), where

xn ∈ <D and yn ∈ C. Here C is a discrete set of Q class labels {c1, ..., cQ}. The goal

is to use training data to find a function f that minimizes a loss function which scores the

capacity of f to predict the true underlying relation between x and y. From a probabilistic

point of view (Bishop, 2007), a useful approach to find f is to use a conditional probability

formulation:

f(x) = arg max
ci∈C

p(y = ci|x).

In the general case of complex relations between x and y, a useful strategy consists

of approximating f through a mixture of local functions. This is similar to the case of

modeling a mixture distribution (Scott & Sain, 2004) and it leads to the MoE model.

We decompose the conditional likelihood p(y|x) as:

p(y|x) =
K∑
i=1

p(y,mi|x) =
K∑
i=1

p(y|mi, x) p(mi|x), (3.3)

where Equation (3.3) represents a MoE model with K experts mi. Figure 3.1 shows a

schematic diagram of the MoE approach. The main idea is to obtain local models in such a

way that they are specialized in a particular region of the data. In Figure 3.1, x corresponds

to the input instance, p(y|mi, x) is the expert function, p(mi|x) is the gating function, and

p(y|x) is the weighted sum of experts. Note that the output of each expert model is weighed

by the gating function. This weight can be interpreted as the relevance of expert mi for the

classification of input instance x. Also note that the gate function has K outputs, one for

each expert. There are K expert functions that have Q components, one for each class.

The traditional MoE technique uses multinomial logit models, also known as soft-

max functions (Bishop, 2007), to represent the gate and expert functions. An important
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FIGURE 3.1. Mixture of experts scheme.

characteristic of this model is that it forces competition among its components. In MoE,

such components are expert functions for the gates and class-conditional functions for the

experts. The competition in soft-max functions enforces the especialization of experts in

different areas of the input space (Yuille & Geiger, 1998).

Using multinomial logit models, a gate function is defined as:

p(mi|x) =
exp(νTi x)∑K
j=1 exp(ν

T
j x)

(3.4)

where i ∈ {1, . . . , K} indexes expert i and νi ∈ <D is a vector of model parameters.

Component νij of vector νi models the relation between the gate and dimension j of input

instance x.

Similarly, an expert function is defined as:

p(y = cl|x,mi) =
exp(ωTlix)∑M
j=1 exp(ω

T
jix)

(3.5)

where ωli depends on class label cl and expert i. In this way, there are a total of Q × K

vectors ωli. Component ωlij of vector ωli models the relation between expert function i and

dimension j of input instance x.
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There are several methods to find the value of the hidden parameters νij and ωlij

(Moerland, 1997). An attractive alternative is to use the EM algorithm. In the case of

MoE, the EM formulation augments the model by introducing a set of latent variables, or

responsibilities, indicating the expert that generates each instance. Accordingly, EM iter-

ations consider an expectation step that estimates expected values for responsibilities, and

a maximization step that updates the values of parameters νij and ωlij . Specifically, the

posterior probability of the responsibility Rin assigned by the gate function to expert mi

for an instance xn is given by (Moerland, 1997):

Rin = p(mi|xn, yn) (3.6)

=
p(yn|xn,mi) p(mi|xn)∑K
j=1 p(yn|xn,mj) p(mj|xn)

Considering these responsibilities and Equation (3.3), the expected complete log-likelihood

〈Lc〉 used in EM iterations is (Moerland, 1997):

〈Lc〉 =
N∑
n=1

K∑
i=1

Rin [log p(yn|xn,mi) + log p(mi|xn)] (3.7)

3.4.2. Regularized Mixture of Experts (RMoE)

To embed a feature selection process in the MoE approach, we use the fact that in

Equations (3.4) and (3.5), the multinomial logit models for gate and experts functions con-

tain linear relations in the relevant parameters. This linearity can be straightforwardly used

in feature selection by considering that a null parameter component νij or ωlij implies that

dimension j is irrelevant for gate function p(mi|x), or expert model p(y|mi, x), respec-

tively. Consequently, we propose to penalize complex models using L1 regularization. A

similar consideration is used in (Pan & Shen, 2007), but in the context of unsupervised

learning. The idea is to maximize the likelihood of the data while simultaneously minimiz-

ing the number of non-null parameter components νij and ωlij . Considering that there are
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Q classes, K experts, and D dimensions, the expected L1 regularized log-likelihood
〈
LRc
〉

is given by:

〈
LRc
〉

= 〈Lc〉 − λν
K∑
i=1

D∑
j=1

|νij| − λω
Q∑
l=1

K∑
i=1

D∑
j=1

|ωlij| . (3.8)

To maximize Equation (3.8) with respect to model parameters, we first use the stan-

dard fact that the likelihood function in Equation (3.7) can be decomposed in terms of

independent expressions for gate and expert models (Moerland, 1997). In this way, the

maximization step of the EM based solution can be performed independently for gate and

expert parameters (Moerland, 1997). In our problem, each of these optimizations has an

additional term given by the respective regularization term in Equation (3.8). To handle

this case, we observe that each of these optimizations is equivalent to a regularized logistic

regression (Lee et al., 2006). As shown in (Lee et al., 2006), this problem can be solved

by using a coordinate ascent optimization strategy (Tseng, 2001) given by a sequential

two-step approach that first models the problem as an unregularized logistic regression and

afterwards incorporates the regularization constraints.

In summary, we handle Equation (3.8) by using an EM based strategy that, at each step,

solves the maximization with respect to model parameters by decomposing the problem in

terms of gate and expert parameters. Each of these problems is, in turn, solved using the

strategy proposed in (Lee et al., 2006). Next, we provide details of this procedure.

Optimization of the unregularized log-likelihood

In this case, we solve the unconstrained maximization of the log-likelihood given by

Equation (3.7). First, we optimize the log-likelihood with respect to vector ωli. The max-

imization of the expected log-likelihood 〈Lc〉 implies differentiating Equation (3.7) with

respect to ωli:
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N∑
n=1

K∑
i=1

Rin [log p(yn|xn,mi) ]ωli = 0 (3.9)

which is equivalent to:

−
N∑
n=1

Rin (p(yn|xn,mi)− yn)xn = 0. (3.10)

In this case, the classical technique of least-squares cannot be directly applied because

of the soft-max function in p(yn|xn,mi). Fortunately, as described in (Jordan & Jacobs,

1994) and later in (Moerland, 1997), Equation (3.10) can be approximated by using a trans-

formation that implies inverting the soft-max function. Using this transformation, Equation

(3.10) is equivalent to an optimization problem that can be solved using a weighted least

squares technique (Bishop, 2007):

min
ωli

∑N
n=1Rin

(
ωTlixn − log yn

)2 (3.11)

A similar derivation can be performed with respect to vectors νi. Again differentiating

Equation (3.7), in this case with respect to parameters νij and applying the transformation

suggested in (Jordan & Jacobs, 1994), we obtain:

min
νi

∑N
n=1

(
νTi xn − logRin

)2 (3.12)

Optimization of the regularized likelihood

Following the procedure in (Lee et al., 2006), we add the regularization term to the

optimization problem given by Equation (3.11), obtaining an expression that can be solved

by any standard algorithm for Lasso resolution (Tibshirani, 1996):
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min
ωli

∑N
n=1Rin

(
log yn − ωTlixn

)2
subject to: ||ωli||1 ≤ λω (3.13)

Similarly, we can also obtain a standard Lasso optimization problem to find parameters

νij :

min
νi

∑N
n=1

(
logRin − νTi xn

)2
subject: to ||νi||1 ≤ λν (3.14)

Specifically, in the case of T iterations, there are a total of T ∗K ∗ (Q+ 1) Lasso opti-

mization problems related to the maximization step of the EM algorithm. To further reduce

this computational load, we slightly modify this maximization by applying the following

two-steps scheme:

• Step-1: SolveK Lasso optimization problems to find gate parameters νij assum-

ing that each expert uses all the available dimensions. In this case, there are T−1

iterations.

• Step-2: SolveK ∗(Q+1) Lasso optimization problems to find expert parameters

ωlij applying the feature selection process. In this case, there is a single iteration.

Using the previous scheme we reduce from T ∗K ∗(Q+1) toK ∗(T−1)+K ∗(Q+1)

the number of Lasso optimization problems that we need to solve in the maximization step

of the EM algorithm. In our experiments, we do not notice a drop in performance by using

this simplification, but we are able to increase processing speed in one order of magnitude.

In summary, starting by assigning random values to the relevant parameters νij and

ωlij , our EM implementation consists of iterating the following two steps:
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• Expectation: estimating responsabilities for each expert using Equation (3.6),

and then estimating the outputs of gate and experts using Equations (3.4) and

(3.5).

• Maximization: updating the values of parameters νij and ωlij in Equations (3.13)

and (3.14) by solving K ∗ (T − 1) +K ∗ (Q+ 1) Lasso optimization problems

according to the approximation described above in Step-1 and Step-2.

3.5. Experiments

In this section, we use synthetic and real datasets to analyze the performance of RMoE.

In particular, we compare its performance against the traditional MoE technique. Further-

more, we analyze RMoE in terms of classification accuracy and dimensionality reduction

under different parameter configurations. RMoE is oriented to classification tasks, there-

fore, it requires categorical class variables. Finally, we compare the performance of RMoE

against three popular classification algorithms that also consider embedded feature selec-

tion: Random Subspace (RS) (Kam, 1998), Decision Trees (DT) (Quinlan, 1993), and Ad-

aboost (AB) (Freund & Schapire, 1995). In the case of Adaboost, we use decision stumps

as weak classifiers.

All results reported in this section are obtained by averaging performances on 30 hold-

out folds. In each case, classification performance is measured by using an independent

test set that is not used in the determination of any of the parameters associated to each

method. For each case, the estimation of parameters is performed by using training sets

corresponding to 50% of the available data. In particular, in the case of RMoE, we first

use the training set to apply a 3-fold cross-validation procedure to obtain suitable values

for the regularization parameters λν and λω. Specifically, we test a total of 24 combi-

nations of parameter values for λν and λω. For parameter λω we test the set of values:

{20, 10, 5, 2, 1, 0.5, 0.2, 0.1} and, for each of these cases, we select the corresponding λν

by multiplying λω by the factors in: {2, 1, 0.5}. We choose the combination of λν and λω

with highest accuracy, according to the 3-fold cross validation. After the values of λν and

λω are selected, we use the complete training set to estimate parameters for experts and gate
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function. For the cases of Random Subspace, Decision Trees, and Adaboost, main param-

eters are the number of trees in the forest, the minimum number of records in leaf nodes,

and the number of decision stumps (weak classifiers), respectively. These parameters are

obtained from the best model according to 2-fold cross-validation inside the training set of

each hold-out fold. For Random Subspace, we experiment using from 5 to 50 trees in the

forest with a step size of 5. For Decision Trees, we test using from 1 to 10 records in leaf

nodes with a step size of 1. For Adaboost, we test using from 10 to 100 decision stumps

with a step size of 10.

3.5.1. Synthetic datasets

We generate 6 synthetic datasets, each consisting of two equiprobable classes. We

define relevant patterns for each class using a subset of the total number of dimensions.

Specifically, relevant dimensions for each class are represented by a multivariate Gaussian

distribution using a randomly selected subset consisting of 4 to 6 dimensions. For each

training instance the remaining dimensions are filled using samples from an Uniform dis-

tribution. As shown in Table 3.1, we vary the total number of dimensions in the datasets

from 200 to 1200 dimensions. In terms of parameters, Gaussian distributions are selected

in such a way that their central parts do not overlap. Means vectors are randomly selected

within the range [0, 20], while covariance matrices are diagonal with non-zero values ran-

domly selected within the range [0, 1]. In case of Uniform distributions, they are defined

within the range [0, 20].

TABLE 3.1. Synthetic datasets used for experiments.

Dataset name #Instances #Dimensions #Relevant dimensions
{class-1,class-2}

Dataset 1 400 200 {4, 4}
Dataset 2 400 400 {4, 4}
Dataset 3 500 600 {5, 5}
Dataset 4 500 800 {5, 5}
Dataset 5 600 1000 {6, 6}
Dataset 6 600 1200 {6, 6}
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TABLE 3.2. Accuracy on synthetic datasets using 30 hold-out partitions.
RMoE(λ∗ν ,λ∗ω) indicates average (std. deviation) classification accuracy for best
parameters configuration. The pair (λ

′
ν ,λ
′
ω) show the median of the best parameters

obtained by 3-fold cross-validation inside the training set of each hold-out partition
(see main text for details).

Dataset name MoE RMoE(λ′ν ,λ′ω) (λ∗ν ,λ∗ω)
Dataset 1 52.9(4.6) 93.1(2.0) (5,10)
Dataset 2 54.4(4.0) 98.3(1.3) (10,10)
Dataset 3 53.4(2.9) 97.0(1.2) (5,5)
Dataset 4 51.7(3.0) 96.4(1.1) (10,10)
Dataset 5 52.6(4.0) 97.4(1.0) (7.5,10)
Dataset 6 51.9(2.8) 98.2(0.9) (10,5)

Table 3.2 shows that in terms of classification accuracy, RMoE outperforms MoE tech-

nique in all the tested datasets. We can observe that the level of improvement of RMoE with

respect to MoE fluctuates among the datasets. For example, in Dataset 1 RMoE improves

the performance of MoE by 40%, while in Dataset 8 the improvement is 46%.

Table 3.3 compares RMoE and MoE in terms of parameter dimensionality for the clas-

sification results shown in Table 3.2. The main observation is that, as expected, for these

types of high dimensional datasets RMoE provides sparse models.

TABLE 3.3. Average parameter dimensionality for results shown in Table 3.2.

Dataset name MoE RMoE(λ∗ν ,λ∗ω) Feature reduction
Dataset 1 200 33 83.5%
Dataset 2 400 23 94.2%
Dataset 3 600 38 93.7%
Dataset 4 800 22 97.2%
Dataset 5 1000 30 97.0%
Dataset 6 1200 39 96.7%

Finally, we evaluate the performance of the feature selection step included in RMoE. In

this case, we use the fact that for the synthetic datasets we know the true dimensions used

to generate the class pattern behind each instance. Specifically, we define the following

score that quantifies the relevance assigned by RMoE to dimension j for the classification

of input instance x:
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ϕ(j;x) =
K∑
i=1

p(mi|x) ∗ |ωy∗ij|, (3.15)

where K is the number of experts, y∗ is the class label provided by RMoE to input instance

x, ωy∗ij is the parameter associated to dimension j when expert i is applied to class y∗, and

p(mi|x) is the posterior probability assigned by the gate to expert i given input x. This

score evaluates the relevance of each data dimension considering both: the weight assigned

to the data dimension by each expert and the weight assigned by the gate to the respective

expert. Equation (3.15) considers absolute values for parameters ωy∗ij because, according

to the regularization, only values near zero imply that the corresponding feature is irrelevant

for the mixture.

Given scores ϕ(j;x) for each instance x, we construct a feature relevance ranking by

sorting these scores in descending order. Afterwards, we analyze the positions reached in

the ranking by the true dimensions used to build each data instance. Table 3.4 indicates

the position in the ranking under which, in average, it is possible to find a given percentage

of the relevant dimensions. We use average percentage because each data instance has a

different ranking of relevance. As an example, Table 3.4 shows that in Dataset 3, according

to the ranking, on average 90% of the relevant features are among the first 10 dimensions

with highest score.

In general results are variable, for example, for Dataset 2 all relevant dimensions ap-

pear among the first 18 positions of the ranking, while for Dataset 1 all relevant dimensions

appear among the first 75 dimensions of the ranking. These positions correspond to approx-

imately 4.5% and 37.5% of the total number of dimensions, respectively. The presence of

irrelevant features at the top of rankings can be related to the work of (Guyon & Elisseeff,

2003) that unexpectedly shows how redundant features can improve classification.
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TABLE 3.4. Relative relevance assigned by RMoE to features used to generate
class patterns in synthetic datasets using the score in Equation (3.15). Each cell
indicates the position in the ranking where, in average, it is possible to find a given
percentage of the relevant dimensions (header of the respective column).

Dataset name 60% 70% 80% 90% 100% Total Dimensions
Dataset 1 15 72 73 74 75 200
Dataset 2 12 13 16 17 18 400
Dataset 3 7 8 9 10 46 600
Dataset 4 10 25 30 31 33 800
Dataset 5 8 9 15 16 17 1000
Dataset 6 6 8 50 51 52 1200

3.5.2. Real datasets

We test the performance of RMoE using 13 real datasets. Table 3.5 describes the

main characteristics of each of these datasets. Arrhythmia, Ionosphere, Musk-1, Secom,

Semeion, Spectf, and Sonar datasets are taken from UCI Machine Learning Repository

(Asuncion & Newman, 2007). Leukemia, Lymphoma, Colon, and Dataset-C are biolog-

ical datasets taken from (Aguilar, 2008). BrainTumor is a biological dataset taken from

(Statnikov, Tsamardinos, Dosbayev, & Aliferis, 2011). PIE10P is a face recognition dataset

taken from (Liu, 2012). In the case of PIE10P and Leukemia datasets, we select the top

1000 and 1500 features, respectively, according to the Fisher score filter (Duda et al., 2001).

We reduce the number of features in these two datasets to obtain a pool of datasets with a

highly diverse number of features, as shown in Figure 3.2. Finally, in all cases we removed

the variables with variance equal to zero.

We test RMoE using the same combinations of parameter values for λν and λω consid-

ered in the case of the synthetic datasets. Table 3.6 shows the accuracy of the best RMoE

model obtained for each dataset (RMoE(λ∗ν ,λ∗ω)).

Regarding results in Table 3.6, RMoE outperforms the traditional MoE technique in all

the tested datasets. The increase in performance is variable and depends on each particular

dataset. As expected, the advantages of RMoE with respect to MoE increases with the di-

mensionality of the dataset. This is the case of datasets such as Secom, PIE10P, Leukemia,

Lymphoma, Colon, BrainTumor, and Dataset-C.
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TABLE 3.5. Real datasets used for experiments.

Dataset name #Objects #Dimensions #Classes
Ionosphere 351 33 2
Spectf 267 44 2
Sonar 208 61 2
Musk-1 486 168 2
Semeion 1593 256 10
Arrhythmia 452 279 16
Secom 1567 471 2
PIE10P 210 1000 10
Leukemia 75 1500 2
Colon 62 2001 2
Lymphoma 45 4027 2
BrainTumor 90 5921 5
Dataset-C 60 7130 2

TABLE 3.6. Accuracy on real datasets using 30 hold-out partitions. RMoE(λ∗ν ,λ∗ω)
indicates average (std. deviation) classification accuracy for best parameters con-
figuration. The pair (λ

′
ν ,λ
′
ω) show the median of the best parameters obtained by

3-fold cross-validation inside the training set of each hold-out partition (see main
text for details).

Dataset name MoE RMoE(λ∗ν ,λ∗ω) (λ′ν ,λ′ω) RS DT AB
Ionosphere 82.7(3.0) 84.1(2.6) (0.25,0.5) 93.0 (1.6) 87.8 (2.2) 91.3 (1.7)
Spectf 70.1(3.7) 76.6(3.4) (10,20) 80.2(1.5) 74.7(3.9) 79.5(2.6)
Sonar 64.1(5.6) 74.1(4.2) (2.25,2) 79.1(4.0) 70.8(4.9) 79.1(3.6)
Musk-1 67.2(4.9) 80.0(2.0) (1,0.75) 85.5(2.4) 75.3(3.4) 82.1(2.7)
Semeion 66.1(2.3) 85.1(1.5) (2.5,2) 91.7(0.9) 66.6(1.9) 60.9(2.4)
Arrhythmia 45.0(10.9) 66.0(2.2) (1,2) 69.8(1.9) 65.2(3.2) 82.1(2.7)
Secom 59.4(7.3) 73.1(1.6) (10,10) 74.6(1.3) 66.3(4.0) 71.9(2.4)
PIE10P 32.9(11.0) 99.4(1.1) (4,2) 95.2(1.8) 78.8(5.1) 76.5(6.5)
Leukemia 59.0(13.1) 93.1(5.6) (0.5,1) 95.9(3.1) 90.5(4.3) 80.8(16.3)
Colon 54.7(11.8) 82.0(5.2) (1.5,1.5) 59.7(4.9) 57.7(8.2) 60.0(9.3)
Lymphoma 53.3(10.0) 88.8(4.7) (3.25,3.5) 85.1(7.1) 72.2(9.5) 68.3(19.9)
BrainTumor 36.9(7.1) 83.8(4.1) (1.5,2) 79.3(3.3) 65.7(5.2) 74.5(6.1)
Dataset-C 51.2(8.3) 62.7(9.0) (1,1) 59.7(4.9) 57.7(8.2) 60.0(9.3)

To check if these results are statistically significant, we run a paired Student’s t-test

(Behrens-Fisher problem (Rice, 1994)) to compare the results of RMoE against the re-

sults of each of the alternative techniques. When comparing RMoE with respect to MoE,

RMoE has greater accuracy than MoE with over 95% of confidence in all but one of the
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datasets where the confidence is just 93% (Ionosphere). In terms of the rest of the alter-

native techniques and the six high-dimensional datasets under evaluation (over 500 dimen-

sions), RMoE also shows superior performance with over 95% of confidence. Exceptions

are for the case of Random Subspace (RS) technique where in the cases of Lymphoma and

Dataset-C datasets, RMoE has better accuracy with a 83% and 82% of confidence, respec-

tively, and in the case of Leukemia dataset, where RMoE is defeated by RS with 96% of

confidence.

Figure 3.2 shows the accuracy achieved by the different methods considered in this

work in function of the dimensionality of the dataset. We can observe that for datasets with

low dimensionality ( < 500 dimensions) the performance of RMoE is slightly lower than

classifiers such as Random Forest and Adaboost. However, in the case of datasets with high

dimensionality, RMoE shows comparable and in most cases superior performance that the

alternative techniques under evaluation. This confirms our intuition about the relevance

of a suitable embedded feature selection scheme for the case of high dimensional data. A

complementary advantage of our method is that it provides a sound probabilistic framework

for classification.
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FIGURE 3.2. Average accuracy on real datasets for all tested algorithms with re-
spect to the number of dimensions of the datasets.

Table 3.7 shows average parameter dimensionality as well as the percentage of feature

reduction provided by RMoE with respect to MoE. As in the case of synthetic datasets,

Table 3.7 shows that RMoE favors sparse solutions with a competitive or superior accuracy
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than traditional MoE technique. In general, results are variable in terms of sparsity. For

example, for datasets Colon, Lymphoma, BrainTumor, and Dataset-C, the best models

provided by RMoE use less than 1% of the available dimensions. On the other hand, for

the dataset Ionosphere, RMoE uses 78.1% of all dimensions. In general, when the dataset

has few dimensions, the difference with MoE is less noticeable. Therefore, as expected,

feature selection tends to be more useful when datasets have more dimensions.

TABLE 3.7. Average dimensionality of parameters in real datasets.

Dataset name MoE RMoE(λ∗ν ,λ∗ω) Features reduction
Ionosphere 32 25 21.9%
Spectf 43 5 88.4%
Sonar 60 17 71.7%
Musk-1 167 34 79.6%
Semeion 256 77 70.0%
Arrhythmia 279 18 93.5%
Secom 471 12 97.5%
PIE10P 1000 20 98.0%
Leukemia 1500 23 98.5%
Colon 2000 19 99.1%
Lymphoma 4026 13 99.7%
BrainTumor 5921 24 99.6%
Dataset-C 7129 14 99.8%

Now, we analyze execution times of MoE and RMoE. By considering n records and d

dimensions with d > n, in the case of MoE each parameter (ν, ω) are found by weighted

least squares optimization that usually is dominated by complexityO(d3), while in the case

of RMoE such step depends of the method for solving Lasso optimization problem. In the

case of RMoE, we use the iterative solution proposed by (Bradley, Kyrola, Bickson, &

Guestrin, 2011). Using λν = λω = 1, Table 3.8 shows that RMoE is usually slower than

MoE in the case of few dimensions, however, in high dimensional cases RMoE is able to

run faster than MoE by taking advantage of the sparsity given by the Lasso optimization.

Finally we apply our technique to an object recognition problem. In particular, we use

PASCAL dataset with 10 random categories. We apply dense SIFT method for obtaining

a suitable representation of images which is used in the same way for all algorithms. We
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TABLE 3.8. Average execution time (in miliseconds) of mixture-of-experts and
regularized mixture-of-experts for different datasets using in each case 100 inde-
pendent executions.

Dataset name MoE RMoE
Ionosphere 80 110
Spectf 40 310
Sonar 40 450
Musk-1 170 850
Semeion 2270 5130
Arrhythmia 920 2110
Secom 430 1550
PIE10P 1220 2700
Leukemia 3160 420
Colon 5160 2260
Lymphoma 2.6E4 0.1E4
BrainTumor 43.2E4 1.8E4
Dataset-C 13.5E4 0.4E4

compare our method against Support Machine Vector with linear kernel (SVM), Random

Forest (RF), Nearest Neighbor (NN) and MoE. The parameters for RMoE were selected

using cross-validation over training set. We obtain the results given in Table 3.9. In this

experiment, RMoE shows better performance than its competitors. This confirms our intu-

ition about the relevance of a suitable embedded feature selection scheme for the case of

complex data, which is the case of object dataset.

TABLE 3.9. Average accuracy in subset of Pascal-2007 dataset. The methods com-
pared with RMoE are standard classification algorithms: MoE, SVM, Random For-
est and 1NN

Method name Average accuracy (std)
RMoE 83.7%
MoE 82.9%
SVM 78.0%
RF 77.9%
1NN 75.0%
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3.6. Conclusions

This chapter proposed RMoE, a regularized variant of mixture of experts, where local

feature selection is performed on experts and gate function using L1 regularization. Our

experiments provide evidence that the proposed technique improves classical mixture of

experts in terms of accuracy and sparseness of the solution. In particular, using a diverse

set of synthetic and real datasets, RMoE is able to find classification models that provide

not only greater accuracy but also use less than 5% of the available features. In this respect,

as expected, the proposed technique has demonstrated greater utility when the datasets

have a large number of dimensions. In the case of data with few dimensions, there is no

significant difference in comparison to classical MoE models. In terms of goodness of

feature selection, in the case of synthetic datasets, where there is ground truth information

about the process used to generate the data, the proposed method is able to recover most

of the true relevant dimensions. In terms of the performance of RMoE with respect to

popular alternative techniques that also uses embedded feature selection, we also observe

that RMoE shows a superior performance for the case of datasets with a high number

of dimensions. As future work, we believe that an important constraint of RMoE is the

assumption that the conditional distributions by each expert has to be modeled by a logistic

regressor. We plan to explore alternative and more flexible expressions to model gate and

expert functions. Another avenue of future research is to explore the incorporation of an

embedded feature selection scheme for the case of hierarchical mixture of experts.
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4. ADAPTIVE HIERARCHICAL CONTEXTS FOR OBJECT RECOGNITION

WITH CONDITIONAL MIXTURE OF TREES

4.1. Introduction

Lately, the synergistic combination of computer vision and machine learning tech-

niques have been successfully applied to the problem of automatic visual recognition (Viola

& Jones, 2001) (Fergus, Perona, & Zisserman, 2003) (Fei-Fei, 2005) (Felzenszwalb, McAllester,

& Ramanan, 2008). In particular, contextual information has emerged as an attractive op-

tion to boost the performance of single object detectors (Galleguillos & Belongie, 2010)(Choi,

Lim, Torralba, & Willsky, 2010)(Desai, Ramanan, & Fowlkes, 2011).

Context based methods can be divided into two groups: global and local context meth-

ods (Galleguillos & Belongie, 2010). Regarding global or holistic context methods, most

works exploit whole scene statistics to perform recognition. In (Ulrich & Nourbakhsh,

2000), Ulrich and Nourbakhsh introduce color histograms as the holistic representation of

an image that is used by a K-nearest neighbors scheme to classify scenes. In (Torralba,

2003), Torralba proposes an image representation based on global features that represent

dimensions in a space that they call spatial envelope. In (Chang, Goh, Sychay, & Wu,

2003), Chang et al. use low-level global features that are used to estimate a belief or confi-

dence function over scene labels.

Regarding local context techniques, contextual information is derived from specific

blocks or localized areas around object positions. Sinha and Torralba (Sinha & Torralba,

2002) improve face detection using local contextual regions. Torralba et al. (Torralba, Mur-

phy, & Freeman, 2005) introduce a Boosting approach in combination with a Conditional

Random Field (CRF) to recognize objects. They apply their method to recognize objects

and structures in office and street scenes. Shotton et al. (Shotton, Winn, Rother, & Crimin-

isi, 2007) combine layouts of textures and context to recognize objects. They use a CRF to

learn a model of objects and a boosting algorithm to combine the texture information and

the object model. Galleguillos et al. (Galleguillos & Belongie, 2010) present a critical re-

view of different contextual cues and machine learning models commonly used to improve
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FIGURE 4.1. An example of the results of our method with respect to a state-of-
the-art model (Choi et al.,2010). We show the top six most confident detections for
each model using the same underlying single object detector (Felzenszwalb et al,
2008). In the case of 4.1(b), the model uses fixed contextual relations that do not
detect the car object and produce a wrong detection of a mountain object. In con-
trast, our model 4.1(c) uses global scene information to adaptively select a suitable
component of a mixture of trees that embeds particular contextual relations that
provide a correct detection of the car object and do not detect a phantom mountain
object.

object categorization. Rabinovich et al. (Rabinovich, Vedaldi, Galleguillos, Wiewiora, &

Belongie, 2007) show that textual data from the web is a useful source to estimate co-

ocurrence between objects. Choi et al. (Choi et al., 2010) presents an efficient scheme to

model inter-object relations using a tree-structured Bayesian network. Recently, (Desai et

al., 2011) shows a technique that is able to model contextual cueing, spatial co-ocurrence,
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and inhibitory intra-class constraints among objects using a max-margin approach. In all

these cases, contextual relations among objects are fixed and do not depend of the type of

scene being analyzed.

We believe that using an adaptive scheme to model contextual relations among objects

can boost the performance of current object recognition techniques. We can illustrate this

idea by the following example. Consider the case of the contextual relation between the

presence of a person and a dog objects. Under a park scene, person and dog objects co-

occur frequently, but in an office scene, they hardly co-occur, therefore modeling such

relation with a fixed contextual constraint limits the flexibility of the model to fit real data.

Moreover, in terms of a probabilistic graphical model (PGM) representation for object

relations, such as (Choi et al., 2010), the relevance of the information provided by each

type of object can change dramatically for different types of scenes. For example, in an

office scene a computer monitor is commonly a highly informative object, therefore under

a suitable PGM representation it should have strongly related children objects. In contrast,

in situations like a living room scene, a monitor is usually not very informative, therefore

under a suitable PGM representation its related children structure is not very relevant.

In the previous cases, the flexibility of a mixture model able to provide adaptive contex-

tual relations among objects can be a useful tool to boost object recognition performance.

Consequently, in this work, we present AH-MoT, a method that learns adaptive conditional

relationships among objects according to the scene information. In particular, we achieve

this by introducing a PGM based on a conditional mixture of trees (Meila & Jordan, 2001).

Next, we provide first background information relevant to our model. Afterwards, we

describe the details of our approach. Finally, we present the results of our experiments

showing the advantages of our approach.

4.2. Hierarchical context

In this section, we summarize the work by Choi et al. (Choi et al., 2010) that is the

baseline algorithm considered in our work. The model in (Choi et al., 2010) is composed
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of a prior and a measurement model. Next we provide details about prior and measurement

models. Note that we use bi to refer to a specific object class i, while we use B to refer to

a generic object class.

4.2.1. Prior Model

The prior model uses a binary tree structured PGM to represent co-ocurrence and spa-

tial relationships among object categories. Nodes in this tree are given by variables indi-

cating object presence, as well as, its location and scale (see (Choi et al., 2010) for details).

Specifically:

(i) Object presence: bi ∈ {0, 1} corresponds to the presence of an object of class i.

(ii) Object location and scale: Li corresponds to the location and scale of object in-

stance bi. L = {Li, . . . , LN} resumes all object classes. L is modelled as depen-

dant of the presence of objects b: p(L|b) = p(Lroot|broot)
∏

i p(Li|Lpa(i), bi, bpa(i)),

where Li is the median of the location and scale for all instances of object i and

is composed by (Liy, logLiz). Liy is the median of vertical positions for object

i and Liz is the median of scales for object i. Medians are computed using all

training images. The use of a logarithm for scales and the omission of horizontal

positions is justified in (Choi et al., 2010).

4.2.2. Measurement Model

The measurement model predicts the presence of an object category bi in an image by

using global gist features and outputs of object detectors. Figure 4.2(a) shows the PGM

that relates the variables considered in the measurement model. Specifically:

(i) Correct detections: cik ∈ {0, 1} represents the k-th detection of instances of ob-

ject category i, being 1 if the detection is a true positive and 0 otherwise. Correct

detections depend on object presence, where p(cik = 1|bi = 1) corresponds to

the frequency of correct detections in the training set and p(cik = 1|bi = 0) = 0.
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(ii) Classifier scores: sik ∈ < represents classifiers scores, which according to

Figure 1 depends on correct detections cik. Using Bayes rule, p(sik|cik) =

p(cik|sik)p(sik)/p(cik). Here a logistic regression is used to model p(cik|sik).

(iii) Detection window location: wik = (Liky , logLikz ) represents the location of a de-

tection window, where Liky and Likz are vertical location and scale of the window

corresponding to the k-th detection of an instance of object category i. Location

is modeled as a Gaussian distribution and it depends on cik and the median lo-

cation Li of instances of object class i. If a window is a correct detection then

wik is modeled as p(wik|cik = 1, Li) = Gaussian(wik;Li,Λi), where Λi is the

covariance around the predicted location. If a window is a false positive then wik

does not depend on Li and it is modeled with a uniform distribution.

(iv) Gist: Gist features gL (Torralba, 2003) are used to related global image features

to object presence by estimating (gL|bi. To deal with the high dimensionality of

the gist vector gL, a logistic regression is used to estimate p(bi|g), then likeli-

hoods p(gL|bi) are estimated indirectly using p(g|bi) = p(bi|g)p(g)/p(bi).

Following the notation in (Choi et al., 2010), from here on we use variables

without subindexes to denote the set of variables related to individual object

class detections in a image. For example, b = {b1, . . . , bN} denotes the binary

values of all variables related to the detection of the D possible object classes.

In the same way, W resumes all candidate detection windows variables wik in a

given image.

4.3. Adaptive Hierarchical Mixture of Trees (AH-MoT)

As mentioned earlier, an important limitation of the method by Choi et al. (Choi et

al., 2010) is that it assumes a fixed contextual relationship among objects. In this work,

we avoid this limitation by incorporating in the model adaptive contextual relationships

between objects that depend on a estimation of the current scene type. Our main intuition

is that contextual object-to-object co-occurrences strongly depend on the underlying scene,

as shown in the person and dog example mentioned before. In particular, we propose to
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modify the fixed single tree co-occurrence model by Choi et al., using a model based on a

mixture of trees that we call AH-MoT. This mixture of trees incorporates scene information

to adaptively represent different possible contextual relations between objects. In terms of

the original PGM considered (Choi et al., 2010), our main modification is the incorporation

of a latent variable representing the underlying scene type. This latent variable depends on

the output of a Gist feature (Torralba, 2003). Figure 4.2(b) shows the resulting modified

PGM after adding the new latent variable. Also global features xG are added to the PGM,

as observation to infer the scene type.

Our mixture of trees context model, AH-MoT, is built by a conditional mixture of tree-

structured Bayesian networks, each of which is an expert in some partition of the set of

images. These networks have a weight that depends on the global scene information (given

by the Gist feature). The model can be seen as a mixture of experts where the gate function

is given by a function of the global representation, and each expert function is given by an

individual Bayesian networks. We stress that our main contribution is the joint modeling

of the dependence between the ensemble of trees and a global representation of the image

data. Next, we provide details of the proposed conditional mixture of trees model and how

we conduct estimation and inference with this model.

4.3.1. Conditional mixture of trees

In order to incorporate global scene information in AH-MoT, we model object presence

as dependent on scene type. In our current implementation, we infer scene type using a Gist

feature vector xG. In this sense, in our PGM xG = gL, however, other global features can

be used to estimate scene type, therefore we consider xG and gL as separate variables in the

PGM shown in Figure 4.2(b).

For a training set of N images, we can construct N instance-label pairs (xG, b), where,

as stated before, b ∈ {0, 1}D represents the potential presence of the D possible object

categories in a given image. Our goal is to use instances (xG, b) to include in our model

different types of contextual relations between object classes. We achieve this goal by

introducing latent variable z which simplifies the analysis of the model. We refer to this
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(b) Adaptive hierachical mixture of trees (AH-MoT)

FIGURE 4.2. Modification of contextual objects relationships: (a) The model by
Choi et al. (b) Proposed model, AH-MoT, that incorporates global scene informa-
tion as a root element that influences object-to-object relationships.

latent variable as the context variable. We assume that there are K possible values for z,

i.e., we assume the existence of K contexts for object classes. This is similar to a mixture

of experts model with the exception that in our case b is conditionally independent of xG

given z. The context variable is assumed as a winner-take-all variable, i.e., each object

class detection occurs under a specific contextual scenario.

Considering K contexts and using a Gaussian Kernel for the weighting of experts, we

can model the conditional density p(b|xG) (Xu, Jordan, & Hinton, 1994) as:

p(b|xG) =
K∑
i=1

p(b, zi|xG) =
K∑
i=1

p(b|zi, xG) p(zi|xG) =
K∑
i=1

p(b|zi) p(zi|xG) (4.1)

Here, we have K contexts represented by zi, with i = {1, ..., K}, where each context

has its own class-conditional probability function.

We specify the two components of the mixture model given by Equation 4.1 as follows:
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• Context gate: given by p(zi|xG), represents the influence of each local context.

It represents an estimate of the likelihood of selecting each of the K experts for

the input xG. The gate function has K components, one for each expert.

• Tree experts: given by p(b|zi) represents the class-conditional local models. It

represents an estimate of the probability of appearances b given the expert zi

for input xG. There are K context functions. In this case, we use a Bayesian

Network model following Choi et al (Choi et al., 2010).

The proposed model is similar to the mixture of trees model presented by Meila and

Jordan (Meila & Jordan, 2001). A mixture of trees model represents the distribution of a

convex sum of K tree components over a random variable x as: Q (x) =
∑K

k=1 λkT
k(x)

with λk ≥ 0 and
∑K

k=1 λk = 1. Tree distributions T k(x) are the mixture components and

coefficients λk are the mixture proportions. This model can be viewed as containing a latent

variable z that with probability λk selects mixture component k. Therefore, conditioned on

the value of z, the distribution of mixtureQ is represented by a single tree. An advantage of

this model is its flexibility because the trees may have different structures and parameters.

Nonetheless, the main difference with our work is that while in (Meila & Jordan, 2001)

they assume the weight of each component as fixed, we model these weights as variable.

In particular, in the proposed model these weights depends on the global representation of

a given image using the context gates.

Regarding context gate function, we use normalized Gaussian Kernels (Xu et al.,

1994). This function can be interpreted as a simple mixture model. In this case, p(zi|x) =

αiPi(x)∑
j αjPj(x)

, where each Pi is a Gaussian probability density functions with weights αi,∑
j αj = 1 and αi ≥ 0.

In the case of the tree expert function, we use a Bayesian Network function similar to

Meila and Jordan (Meila & Jordan, 2001). Following their work, we parameterize a tree

with a graph G = (V ;E), where V is the vertex set and E is the set of edges. Assuming

a set of K trees, Vi represents the vertex set of tree i, where i ∈ {1, . . . , K}. In the case

of our adaptive contextual model, the probability distribution of variable b conditioned on
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the context variable zi, p(b|zi), is represented by T i(b). Each tree models this component

as T i(b) =
∏

v∈V i Tv|pa(v)(bv|bpa(v)), where Tv|pa(v)(bv|bpa(v)) is an arbitrary conditional

distribution. Variable pa(v) represents the parents of variable v inside the tree.

In order to find optimal parameter values for tree experts and the gate function, we

use the Expectation Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). To

obtain a one-pass solution for the gating function, instead of the conditional log-likelihood

for the complete data, we use the joint log-likelihood (Xu et al., 1994). Assuming that the

posterior probabilities of context gates or responsabilitiesRin for each expert i and training

instance n are known, we can apply the EM algorithm over the expected log-likelihood:

〈Lc〉 =
N∑
n=1

K∑
i=1

Rin log ( p(bn|zi) Pi(xn) αi) (4.2)

The expectation step of EM is given by the calculation of the posterior probability of

context gate i, which is given by:

Rin = p(zi|xn, bn) =
p(bn|zi) p(zi|xn)∑K
j=1 p(bn|zj) p(zj|xn)

(4.3)

The maximization step of EM is given by the maximization with respect to each pa-

rameter. We can observe two decoupled components in the expected log-likelihood:

Eexpert =
N∑
n=1

K∑
i=1

Rin

[
log T i(bn)

]
, Egate =

N∑
n=1

K∑
i=1

Rin [log (αiPi(xn))] (4.4)

In the case of the tree expert component, we must minimize the negative cross-entropy

between R and T . Following the work of Meila and Jordan (Meila & Jordan, 2001), this

problem is solved using a weighted version of the Chow-Liu algorithm. This component

requires K runs of the Chow-Liu algorithm, where Rin is the normalized posterior proba-

bility obtained in the E-step.
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In order to find the parameters of the gating function, αi, µi and σi (being µi and σi the

parameters of the Gaussian representation), we use Equation 4.2, obtaining:

αi =
1

N

N∑
n=1

Rin, µi =
∑N

n=1Rin xn∑N
n=1Rin

, σi =
1

d

∑N
n=1Rin ‖xn − µi‖2∑N

n=1Rin

(4.5)

Algorithm 4 Conditional Mixture of Context Trees
while Not convergence do

Compute responsabilities R according to Equation 4.3
for i = 1→ K do

Estimate α,µ and σ according to Equation 4.5 and T with a weighted Chow Liu
algorithm according to (Meila & Jordan, 2001).

end for
end while

The operation of the EM algorithm for a conditional mixture of trees is summarized

in Algorithm 4. We initialize the gates using a variant of the K-means algorithm that

clusters variables b over the training set using Hamming distance. The resulting conditional

mixture of context model follows the intuition that general context is naturally divided into

many component contexts, thus, we can make inference on each tree and then combine the

outputs using the gating function.

4.3.2. Inference

Inference in AH-MoT is straightforward, as we separate each tree in its own parti-

tion. Similarly to (Choi et al., 2010), we make inference using message passing algorithms

for each tree (p(b, c, L/g,W, s, z)) (Pearl, 1982). Afterwards, similarly to (Meila & Jor-

dan, 2001), we obtain the final score by combining the scores of each component with its

respective parameters.

b̂, ĉ, L̂ = argmaxb,c,L
∑
z

p(z) ∗ p(b, c, L/g,W, s, z) (4.6)
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Following Choi et al. (Choi et al., 2010), we use an iterative procedure. First, we

make inference without considering the locations (b̂0, ĉ0 ∝ p(b, c|g, s)), then we infer the

locations (L̂ ∝ argmaxLp(L|b̂0, ĉ0,W )), and finally we infer the object presence (b̂, ĉ ∝

p(b, c|s, g, L̂,W )) considering the previous inferred location. The last step is equivalent to

sampling from a binary tree with node and edge potentials modified by p(L̂,W/b, c).

4.4. Experiments

In this section, we perform an empirical evaluation of the proposed approach consid-

ering two real datasets: (i) OUTDOOR dataset created by Oliva and Torralba (Oliva &

Torralba, 2001), and (ii) SUN09 dataset created by Choi (Choi et al., 2010). OUTDOOR

dataset has 2600 images and includes 8 outdoor scene categories, such as coast, mountain,

forest, etc. We randomly divide the dataset into two sets of approximately equal size, one

for training and one for testing. Similarly to Choi et al. (Choi et al., 2010), we prune object

categories by considering only those that have at least 3 true detections in the training set.

As a result, for OUTDOOR dataset we have 21 object categories with equal-sized training

and test sets. In the case of SUN09 dataset, as in (Choi et al., 2010), we prune the dataset

considering only object categories with at least 4 true detections in the training dataset. As

a result, for SUN09 dataset we have 111 object categories, 4367 training images, and 4317

test images.

In general, in both datasets object detections are highly challenging, including a va-

riety of poses, scales, rotations, and scene types. We use the object detector proposed by

Felzenszwalb et al. (Felzenszwalb et al., 2008), which is based on the mixture of multi-

scale deformable parts model and a latent SVM approach. We use the same object detector

models for both datasets. In average, this detector outputs approximately 5 detections per

category in each image. In both datasets, for each image we consider the top 10 detections.

We use the average precision-recall (APR) (Davis & M.Goadrich, 2006) as a performance

metric for our model. This metric corresponds to the area under the precision-recall curve.
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Table 4.1 shows APR for both datasets: OUTDOOR and SUN09. We show the result-

ing APR for: i) Direct object detections provided by the underlying object class detector

(Felzenszwalb et al., 2008) (Object detector), ii) Choi et al. (Choi et al., 2010) method

based on hierarchical context (Single Tree), iii) AH-MoT using different number of trees

(AH-MoT(X), where X is the number of used trees). Relative improvement in APR with

respect to Choi et al. is shown in parenthesis.

Method OUTDOOR SUN09
Object detector 14.02 (-6.5%) 6.82 (-13.2%)
Single Tree 15.00 (0.0%) 7.87 (0.0%)
AH-MoT(2) 15.07 (0.5%) 7.98 (1.5%)
AH-MoT(3) 14.87 (-0.9%) 8.09 (2.9%)
AH-MoT(4) 15.12 (0.8%) 8.06 (2.5%)
AH-MoT(5) 15.25 (1.7%) 8.03 (2.2%)
AH-MoT(6) 15.83 (5.5%) 8.31 (5.7%)
AH-MoT(7) 14.84 (-1.1%) 7.88 (0.3%)

TABLE 4.1. APR for OUTDOOR and SUN09 databases provided by the tested
methods. Relative improvement with respect to Choi et al. is shown in parenthesis.

Analyzing Table 4.1, in OUTDOOR database we note that performance of AH-MoT

increases as the number of trees grows up to 6. After that, APR decays. In general, results

improve the performance of Choi et al.(Choi et al., 2010). Considering the best number of

trees in this dataset (six), relative improvement is 5.5%. In the case of SUN09 database,

the improvement with respect to Choi et al. in terms of APR is 5.7% for the best number

of trees (also six). It is important to note that in this case adding additional trees does not

necessarily improve performance. In terms of individual classes, we found for the case of

six trees that in OUTDOOR and SUN09 dataset, the APR increases for 10 and 53 object

classes and decreases for 6 and 34 classes objects, respectively.

Figure 4.3 shows example detections of the top six most confident detectors from our

model and Choi et al.(Choi et al., 2010). For example in Figure 4.3(b) AH-MoT correctly

detect a sea object that is not detected by the single tree model in Figure 4.3(a). In Figure

4.3(d) a car object is recovered and a streetlight object is discarded in relation to Figure

4.3(c).
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Figure 4.4 presents examples of resulting trees of AH-MoT for OUTDOOR database.

The value over each edge represents the strength of dependency relation between each pair

of object classes. Following (Choi et al., 2010), these dependencies are calculated using

the magnitude of the mutual information between each pair of object classes, while the

sign is positive if p(bi = 1, bj = 1 > p(bi = 1)p(bj = 1). This scheme is used in (Choi

et al., 2010). Tree A shows relationships mainly for mountain and rural highways scenes,

while tree B shows relationships associated to street scenes. As an example of variable

relationships between objects, we observe the correlation between the objects road and

sign. Both objects are connected in both trees A and B, however, in tree B the dependence

of both variables (0.71) is considerably higher than in tree A (0.01). This reflects the fact

that these two objects relationship are more important in streets scenes than in other cases.

Figure 4.5 shows in a grid the dependences between objects for the single tree model

and for two trees of AH-MoT with six trees. In order to facilitate the analysis of dependence

between objects, we only show the values related to the eleven most frequent objects. For

example, we can evaluate an image of rural highway scene. If we inspect the tree of the

single tree model 4.5(a), we see that the objects tree and road are weakly correlated. On

contrast, in tree A of the conditional mixture tree model 4.5(b), both objects appear as

strongly correlated.

4.5. Conclusions

In this chapter, we proposed AH-MoT, an adaptive context model that uses a condi-

tional mixture of trees to overcome relevant limitations of a fixed tree context model. Our

experiments using standard object datasets indicate that the proposed model improves ob-

ject recognition performance with respect to a single tree model, as it considers underlying

scene information that influences object-to-object relationships. As future work, we plan to

enhance our model using more powerful features for the gating function. Finally, we also

plan to include adaptive policies to control the execution of object classifiers, similar to the

method proposed in (Espinace, Kollar, Soto, & Roy, 2010).
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FIGURE 4.3. Some detections considering a single tree model (Choi et al., 2010)
and AH-MoT. Our model, AH-MoT, usually provides better detections than a single
tree model.
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FIGURE 4.4. Examples of component trees for AH-MoT with six trees in the OUT-
DOOR dataset. Positive and negative correlations are indicated respectively with
blue and red lines.
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(b) Tree A of Mixture of 6 Trees
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FIGURE 4.5. Dependence of the top 11 more frequent objects. Figure 4.5(a) shows
the relationships for a single tree. Figures 4.5(b) and 4.5(c) show two relationships
in AH-MoT with 6 trees.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1. Conclusions

This thesis presents three different methods oriented to improve specific stages of ob-

ject recognition process. These methods exploit information of labeled data in codebook

generation, selecting relevant features for local classifiers, and adapting contextual cues

according to scene type.

First, a supervised clustering algorithm, LK-Means, is presented. In this thesis is

mainly used to build codebooks for category-based object recognition tasks, but it can

also be used in other situation as a generic supervised clustering technique. LK-Means

is a variant of the classical K-Means clustering algorithm but it considers the information

of labels using a convex combination of a class dependent and a non-class dependent cost

function. By jointly using unsupervised and supervised information, LK-Means is able to

outperform standard methods for codebook generation in the majority of tested real datasets

considering adjusted mutual information. Assuming the number of classes as constant, the

complexity of LK-Means is similar to K-Means.

Afterwards, a variant of mixture-of-experts with embedded local feature selection,

RMoE, is introduced and it is applied to several datasets. RMoE is based on the classi-

cal mixture-of-experts technique, but it also includes a L1 norm penalty term in order to

select relevant features. The training is based on an Expectation-Maximization scheme. By

selecting local relevant features, our method is able to outperform standard machine learn-

ing algorithms in terms of accuracy when the datasets have high dimensionality. It also

has the advantage of proving sparse solution which can facilitate the understanding of the

classifiers. We also show that by embedding a local feature selection scheme we can obtain

a notable increment in performance with respect to classical mixture-of-experts. Assum-

ing a constant number of iterations in Lasso optimization, the computational complexity of

RMoE is similar to MoE.
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Finally, AH-MoT, a context-based object recognition method based on the exploita-

tion of latent dependence between scene and inter-object co-occurrence is presented. In

particular, AH-MoT uses a conditional mixture of trees for modeling contextual relations

among objects according to scene type. The training of this model is performed using an

Expectation-Maximization algorithm. Tests using real object datasets show that AH-MoT

is able to outperform a state-of-the-art technique for context-based object recognition. As-

suming a constant number of trees, the computational complexity of AH-Mot is similar to

the method based on a fixed tree.

The three methods presented in this thesis provide useful insights about key steps of

the typical object recognition pipeline. The first insight is that the use of supervised infor-

mation can lead to the generation of more suitable codebooks to support object recognition

tasks, as we observe in our experiments using LK-Means. Another relevant observation

is that adaptability is useful to deal with complex object recognition cases. In particular,

RMoE adaptively selects features according to available data using a gate function and a

set of conditional mixture of trees. We also show that adaptability is also a key element

when using contextual information, as it is shown by AH-MoT which is able to outperform

current technique for object recognition based on fixed contextual schemes.

In summary, we have shown several advantages of the proposed methods with respect

to alternative state-of-the-art approaches. In particular, we have shown that flexible adap-

tive models can improve key stages of the typical object recognition pipeline. Each of the

proposed methods can be improved and, therefore, they open several avenues of further

research.

5.2. Future Research Topics

Each chapter includes some avenues of future research for the techniques presented in

this thesis. Most relevant future work is focused on increasing the quality, robustness, and

efficiency of each particular method.
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In the case of the first method, we plan to explore the incorporation of feature selection

schemes, similarly to subspace clustering techniques. Also, we plan to add a covariance

term for modeling more complex codeword representations.

In the case of the second method, we will investigate another functions inside the local

expert functions. The logistic regressor used in our current implementation is a suitable

general classifier, however, it is also worth to test alternative techniques such a maximum

margin classifiers. We pretend to experiment with this type of technique inside our model.

Finally, in terms of the third method, we plan to face computational issues related to the

number of object classes available for inference. Currently, our method has the drawback

that it needs the score of all object detectors. Unfortunately, this strategy does not scale

properly in terms of the number of possible object classes. An alternative strategy is to

use our mixture of trees framework to adaptively select only the most informative object

detectors. We plan to explore this issue as part of our future work.
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Meilǎ., M. (2005). Comparing clusterings: An axiomatic view. In International

Conference on Machine Learning (pp. 577–584).

Mirkin., B. (1996). Mathematical classification and clustering. Kluwer Academic

Press.

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Moerland, P. (1997). Some methods for training mixtures of experts (Tech. Rep.).

IDIAP Research Institute.

Moosmann, F., Triggs, B., & Jurie, F. (2007). Fast discriminative visual codebooks

using randomized clustering forests. , 985–992.

Murthy, S., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique

decision trees. Journal of Artificial Intelligence Research, 1–32.

105



Nanculef, R. ., Valle, C., Allende, H., & Moraga, C. (2012). Training regression

ensembles by sequential target correction and resampling. Information Sciences, 195,

154–174.

Nguyen, M., Abbass, H., & McKay, R. (2006). A novel mixture of experts model

based on cooperative coevolution. Neurocomputing, 155–163.

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (1999). Text classification from

labeled and unlabeled documents using em. , 103–134.

Nowak, E., Jurie, F., & Triggs, B. (2006). Sampling strategies for bag-of-features

image classification. In European Conference on Computer Vision.

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic rep-

resentation of the spatial envelope. International Journal on Computer Vision, 145–

175.

Pan, W., & Shen, X. (2007). Penalized model-based clustering with application to

variable selection. Journal of Machine Learning Research, 1145–1164.

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical

approach. In American Association of Artificial Intelligence National Conference on

AI (pp. 133–136).

Perronnin, F. (2008). Universal and adapted vocabularies for generic visual catego-

rization. Pattern Analysis and Machine Intelligence, 1243–1256.

Pinto, N., Cox, D. D., & DiCarlo, J. (2008). Why is real-world visual object recog-

nition hard? PLoS Computational Biology, 151-156.

Quinlan, J. (1993). C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc.

106



Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., & Belongie, S. (2007).

Objects in context. In International Conference on Computer Vision (p. 1-8).

Rajaraman, A., & Ullman, J. (2012). Mining of massive datasets. Cambridge Uni-

versity Press.

Rasmussen, C., & Ghahramani, Z. (2001). Infinite mixtures of gaussian process

experts. In Advances in Neural Information Processing Systems (pp. 881–888).

Rice, J. (1994). Mathematical statistics and data analysis, 2nd ed. Duxbury Press.

Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and valida-

tion of cluster analysis. Journal of Computational and Applied Mathematics, 20(1),

53–65.

Saragih, J., Lucey, S., & Cohn, J. (2009). Deformable model fitting with a mixture

of local experts. International Conference on Computer Vision, 2248–2255.

Scott, D., & Sain, S. (2004). Multidimensional density estimation. In Handbook of

statistics (pp. 229–263). Elsevier.

Shanmugasundaram, R., & Sukumaran, S. (2010). Enhancing k-means algorithm

with semi-unsupervised centroid selection method. International Journal of Com-

puter Science and Information Security, 337–343.

Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2007). Textonboost for image

understanding: Multi-class object recognition and segmentation by jointly modeling

texture, layout, and context. International Journal of Computer Vision, 2–23.

Sinha, P., & Torralba, A. (2002). Detecting faces in impoverished images. Journal

of Vision.

107



Sinnkkonen, J., Kaski, S., & Nikkila, J. (2002). Discriminative clustering: Optimal

contingency tables by learning metrics. In European Conference on Machine Learn-

ing (pp. 418–430).

Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to object

matching in videos. In International Conference on Computer Vision (pp. 1470–

1477).

Statnikov, A., Tsamardinos, I., Dosbayev, Y., & Aliferis, C. (2011). Gems: A sys-

tem for automated cancer diagnosis and biomarker discovery from microarray gene

expression data. International Journal of Medical Informatics, 491–503.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of

the Royal Statistical Society (Series B), 267–288.

Tishby, N., Pereira, F., & Bialek, W. (1999). The information bottleneck method. In

Allerton Conference on Communications and Computation (p. 368Ű-377).
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