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The canonical commutation relations of quantum mechanics are generalized to the
case where appropriate dynamical variables are angular-momentum, rotation-angle,
and rotation-axis observables. To this end,(3Us “quantized” on the compact
group manifold, according to the standard procedure of non-Abelian quantum ki-
nematics. Quantum-kinematic invariant operators are introduced, and their commu-
tation relations with the rotation variables are found in an explicit manner. The
guantum-kinematic invariants yield superselection rules in the form of eigenvalue
equations of an isotopic structufehich one should solve in the applications, in
order to get multiplets that carry the irreducible representations of the underlying
guantum kinematic modelsA wide range of applicability of S(2) quantum ki-
nematics is suggested. @®998 American Institute of Physics.
[S0022-248808)03111-9

I. INTRODUCTION

The problem of extending the canonical commutation relations to non-Cartesian dynamical
variables is a long-standing question in the general setting of quantum mechk&tiss attempts
to solve this problem have been focused on the search of new quantization methods for obtaining
generalized minimum-uncertainty states of systems which are primarily described by non-Abelian
dynamical variable$.However, important as it is, this particular purpose may be too narrow a
motivation for such an ambitious endeavdndeed, it is quite conceivable that some unknown
general constraints should be taken into account for extending the converttiendfieisenbery
commutation relations to the appropriate ones. Kinematic constraints follow, for instance, from the
superselection rules due to the symmetry group that characterizes a $yst@wise, the search
for generalized coherent states would be unable by itself to disclose such constraints. Other
important motivations for having generalized canonical commutation relations in quantum me-
chanics appear in the current literature, as Wk a matter of fact, this question has been already
so amply discussed in the literature, for so many years, that it seems unnecessary to repeat here the
sound physical motivation behind this isSU€his paper addresses this fundamental problem for
the particular case of rotation configuration variables and angular momenta. Let us here remark
that this is a problem in quantum kinematics.

Much progress has been achieved during the last several years on the subject of group-
quantizationand non-Abelian quantum kinematics as used in this paptere we shall follow a
new group-theoretic approach to quantum kinematics which is quite consistent with the formalism
of unitary symmetries used in ordinary quantum mechahitee new formalism, however, is
enhanced by quantizing the parameters of the gfofibelow). In this way, quantum kinematics
appears as a self-contained theory which can yield interesting models evolving on the arena of the
group manifold. These abstract models can be projected on the configuration states of a physical
system(on which the quantized group acts as a symmetry graum thus a quantal model of the
system ariseffor details, see Ref.)8Quantum kinematic theory yields a self-contained formalism
of quantum mechanics, for it relinquished the use of “prequantized” classical analogs, and ev-
erything stems from the assumed symmetry group. Therefore, quantum kinematic models become
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interesting in themselves if the quantized group is a physically relevant symmetry ‘§rbup.

The analysis of rotational symmetry, and the behavior of physical quantities under rotations,
is one of the most common problems in the study of the symmetries of physical systems. In
addition, the theory of angular momentum is the prototype of continuous symmetry groups of
many types now found useful in the classification of the internal symmetries of elementary particle
physics. So it was an important contribution of Wigtféo note that S(P) is the group that enters
quantum physics. Of course, the main consequences of this fact are well known and have been
studied in the literature for a long tinté.Nevertheless, some $2) quantal features will be
considered here under the wide perspective offered by quantum kinematics. In fact, the main point
dealt with in this paper is to obtaigeneralized Heisenberg commutation relatidas angular-
momentaand rotation-angle operators.(As far as we know, all the fundamental commutation
relations presented in this paper are neto this end, we use the Euler—Rodrigues paramEters
for describing the elements of the group, we then introduce the regular representation and we
quantize SW2) on the group manifold. This means that we replace the rotation-angle and the
rotation-axis parametefsvhich arec-numbers that label the elements of the groloyppa complete
set of commuting Hermitian operators, acting generalizedposition operators of the group
manifold, which admit the parameters for spectra. In this approach, the generators of the repre-
sentation afford thgeneralizednomentum operator@.e., angular momenjaf the modef* [The
angular momenta and rotation variables mentioned here need not be taken literally, but may be
understood in a wide sense. However, it will do just as well if the intuitive example ¢8)SO
acting in ordinary space, is kept in mindAs we shall see, according to this formalism one is in
a position to introduce a generalized @V Weyl-Heisenberg algebra, and one obtains three
quantum-kinematic invariant operatdfsi.e., superselection rules follow, which reduce the
model.

We wish to emphasize that this paper has only an introductory character, since the quantum
kinematic theory of S(2) discussed in the space allotted here is by no means complete. Given the
relevance of this group, the endeavor of(8lguantum kinematics is so conspicuous, that each of
its main features deserves a separate study by itself. Physical applications(f dgldntum
kinematic theory are manySome applications will be given in some forthcoming papéfsr
more comments, cf. Sec. IV, belowFor instance, in the current literatufeoncerning ordinary
rotations in quantum mechanjcthe Euler-angle parametrization is predominantly used for de-
scribing the elements of S0), of which SU?2) is the universal covering group. Thus, in particu-
lar, we wish to remark that the introduction of @Pquantum kinematicén terms of fundamental
commutation relations for Euler-angle versus angular-momentum operéodmwvs from the
theory presented in this paper, sin@d course the Euler-angles are related with the Euler—
Rodrigues parameters in a well-defined wagtrictly speaking, however, this subject belongs to
the applications of the present theory, and thus it will be considered elsewhere. Here we are
interested exclusively in the &) quantum kinematic theory, for which the discussion in terms of
the Euler—Rodrigues variables is the simplest bhe.

The plan of the paper is the following. Section Il deals with group quantization. For quantiz-
ing SU2) we use an embedding approach that describes the group manifold as the Syrfdice
the unit sphere it,, in which SU?2) appears as a subgroup of the four-dimensional group of real
quaternions3 [With this aim, in this paper we adopt the Euler—Rodrigues parametersich are
best suited to this endcf. Appendix A.] We then deduce the associated quantum kinematic
commutation relations within the left regular representation, which is the basic working frame
adopted in this articld.For the sake of completeness, bdift and righy regular representations
of SU(2) are briefly dealt with in Appendix B.Section Ill contains an overview of quantum
kinematic invariant operators, which play a central role in this theory. Thus, in Secs. Il and Ill, our
discussion will be focused on the most general kinematic features @2)$juantized-group
models(although we do not solve for any concrete model in the present pdgnally, Sec. IV
contains our concluding remarks and some perspectives for future work.

II. QUANTUM KINEMATIC COMMUTATION RELATIONS

We begin our work by introducing generalized position operators in the group masiatl
SU(2). Here, S; denotes the three-dimensional surface of the unit sphere in four-dimensional
Euclidean spac€,, defined byg#q“=1. The four Cartesian variableg*=(q,q*)  £,, when
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TABLE |. Synopsis of the left regular representation formalism&n within the carrier Hilbert spacé( SU(2)]. (For
details, see Appendix B.

(1.1)
(q'|oy=po L(@) 8% (0’ —q), 3§du(q>|q><q|=l
S3

(1.2)
u@@)lay=1lg(a’;a)), U(a)= fﬁ du(a)lg(a;a"))a’l
S3

U(@)U(@) =UI(g(a’ )], UT(@)=Ua)=U@) 0.3
i (1.4

Ule+s)=1-+ &L, Ul@LU@=ALaL,

Lilay=izX;(a)|a), [Lj.L]=—2ifej, L, (1.5)

restricted tag e S3C&,4, play the role of the Euler—Rodrigues parameters which label the elements
of the group in a faithful way?® (See Appendix A for some useful detajl§Ve then focus our
attention on the regular representatfdrsince this is the paramount structure in the kinematic
guantization method.The regular representation of 8) is reviewed in Appendix B.

Now, given the resolution of the identity stated in Egl) (cf. Table ), we define a set of
operatorQ* by means of the following spectral integrals:

Qr= jg du(a)|ayaql, (2.1
Sz

wheredu(q) denotes the Hurwitz invariant measure &ndefined in Eq(A17). This is elemen-

tary, but fundamental. In general, this means that in Lie group theory one can consider integrals
over the group manifold, lik€2.1), as a basic geometric definition of quantization. One borrows
this definition from standard quantum mechanics. As we will see through the chosen example, in
this way one achieves a consistent and fruitful generalized setting for quantum theofy'stdre
generalized position operators on the group manildsince they satisfy the following demands

for such qualification:

Q“'=Q*, [Q*Q"]1=0, Q*|lg)=g"|q). (2.2

In particular, we observe that these operators satisfy the required constraint:

QHQH=]. 2.3

So we quantize the group.

In this article we adopt the left-regular representation as the working frame for developing the
theory (cf. Appendix B; namely, we here consider exclusively the left unitary group-operators
U(q) defined in Eq(B7). (See also Table).

We next show that th€)'s are interesting mathematical objects. We first look for the kine-
matic law[under SU2) transformationkobeyed by the position operators of the group. According
to their definition, it turns out that the position operators defined in (Bdl) obey the same
quaternion kinematic lawA2) that characterizes the parameters of the grouf25bh Ss:

U'(9)Q*U(q)=g*(q;Q) = d*,q" Q. (2.9

U(q) denotes the group operatdcd. Table I, Eq.(1.2)], and the group coefficients!, are those

used in Eq.(A2). It must be borne in mind that, in the present theory, Efj4) is not an
assumption. As a matter of fact, this analytic identity is a general result of group-theoretic quan-
tum kinematic$, whose proof does not demand an explicit realization of the operators involved.
One proves Eqg(2.4) in a few lines. Since one adopts the regular representation of the quantized
group as the working frame of the formalism, from definiti@l), using Egs(l.2a) and(l.3b) of

Table I, and recalling thadw.(q) is an invariant SB) measure orS;, it follows:
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UT(@)Q*U(a)= ffs du(a’)UT(a)|a’)a'*(a’'[U(q)
= 3€s du(q)lg(a;a’))a’~g(a;q")|

3
B i dufg(a;a")119")g*(a:9")(q"|

3

= jgs du(a”)a”)g*(a;9"){q"|=9*(q;Q), (2.5
3

which according tdA2) is precisely Eq(2.4). This is one of the most important results provided
by the Lie group quantization technique.

If we now consider the infinitesimal transformatior(e+ 6q) Q“U (e+ 8q), Eq.(1.4) (Table
I) and Eq.(2.4) lead us immediately to a set of generalized Heisenberg commutation relations for
the position operators afi; with the non-Abelian momenta represented by théZ\denerators.
Indeed, a typical group-theoretic calculation yields the desired commutation rules, which read

Q4 Q3 _Q2 _Ql
[QXL1=iARMQ)=ifiotQ =ik —Q* Q' Q' —Q?|. (2.6)
Q2 _Ql QZ _QS

Here we have writteh; (j=1,2,3) to denote the generators of the left regular represen{atien
Appendix B, Eqs(B10) and(B11)]. The entriesR¥*(q) of the right transport matrix are given in
Eqg. (A4.1). It is important to note that the-coefficients satisfy

v 14 —
o100~ 0k, 0+ 2€),0%,=0, 2.7

for these imply that the commutation relatiofZs6) are consistent with the Lie algeb(B11), in
the sense of the Jacobi identity. Furthermore, B46) is also consistent with the constraint
Q*QH=1, because oib; one hasoy,q*q"=0. (These features are not trivial at all.

This is the point where the quantum principle begins to emerge from the traditional
classical theory of SU2). Notice that, sinceu=1,2,3,4 andj=1,2,3, the generalized closed
commutation relations shown in E€R.6) do not correspond to a quantized symplectic structure,
as do the canonical commutation relatigimsthe traditional Heisenberg fopmof ordinary quan-
tum mechanics. In this sense, considering future applications, let us here remark that it not
necessary to redefine E@®.6) in order to get some more conventionak 3 matrix forms, instead
of the 3x4 matrix form obtained here, becauak four operatorQ* stand on a same footing
(see, below and satisfy the constrail®“Q#=1. Indeed, as we have discussed in our previous
work, non-Abelian quantum kinematics leads us beyond the traditional canonical quantization
method< Much of what follows is a consequence of the generalized commutation reléBidhs

We now have the kinematic model. Let us proceed to examineQthemore closely. In
general, we define functions of the commuting position operators by means of their spectral
integrals:

F(Q)= ﬁs du(Q)|g)F () gl 28

(see Table)l Then it is worth noting that Eq2.6) yields the general commutation rule

[F(Q).Lj]=12R(Q)F .(Q)=i2X;(Q)F(Q), (2.9

whereF, ,(q) is a vector field inf,, defined byF, ,(q) =(4/d9*)F(q), and whereX;(q) denotes
Lie’s right vector fields onS; [defined in Eq.(A10)]. [Certainly, the fact that the's are not
independent variables &% does not preclude the existencerof,(q) whenge S;CE&,. See also
the discussion in Appendix A, concerning E¢811) and (A12).]
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Equation(2.9) is a very useful expression. For instance, let us define the rotation axis as
follows: F}(q) =g!/sin =qi/1—(q*)?=0l. In quantum kinematics, the rotation axidecomes
a self-adjoint operatoN: n—N. Using Eq.(2.9, we easily find the generalized commutation
relations obeyed by the Cartesian compon@titsf the rotation-axis-operator with the generators
L;, which read

[NI,L J=iA[cot ®(5,—NINK) — ¢ ,N]. (2.10

[In fact, one has(,(q)F!(q) = cot ¢(s,—A")— ek/n/ If one defines instea®!(q) = q!/\/g*q¥
=nl (say one obtains the same resi.10). Indeed Eq.2.10 does not depend on how one
defines the unit vectan in terms of theq's. For the operator cab, see Eq(2.12, below] The
constraint\N/Ni = | follows, since the rotation-axis opera’dtht(Nl N2 3) is a bounded operator
given by

N= o $_ 46,7 ,7)i(6,, (212

so thatN|¢,R)=f| $,A) holds.[Concerning the¢,R) notation, see Appendix B
In the same manner, we define two bounded operatordcasd sind on S;:

cosd =, fﬁ (2.12a
S3

sin®= 358 dQ(¢,R)|¢-n)sin ¢ .0, (2.120
3

which satisfy the rather natural constraint tdst sir ®=1 and do not cause difficulties related to
periodicity. As the reader can prove, for these operators we obtain the following commutation
relations with thel's:

[cos®,L;]=—iAN} sin®, [sin®,L;]=i%Nl cos®, (2.13

which have a very suggestive forfiSee also Eq(2.17), below] Similar commutation relations
are well known for the(trivial) case of W1) Abelian quantum kinematics? Indeed, from Eq.
(2.13 one obtains

[cosd,L]=—iA sind, [sin®,L]=i% cosP, (2.149

where the Hermitian operatok=3(N-L+L-N) may be interpreted as the () angular-
momentum generator in the direction lf [Compare with Ref. 1, and with the references given
in Ref. 2] Equation(2.14 is quite familiar. However, to our best knowledge, E¢&.10 and
(2.13 do not figure in the literature, because in order to obtain thephbsition operatorgd,N)
one has to quantize the group.

If now one considers the Euler—Rodrigues operators, i.e.,

Qi=Nisin®, Q*=cos® (2.15

(cf. Appendix A), recalling the definition of ther-coefficients, one can use E@.6) directly to
obtain other basic commutation relations. For example, in this way, the commutators

[N sin ®,L,]=i%(5) cosd— e, N sind), (2.16
follow immediately from(2.6). [Of course, these commutators are consistent with €g%0 and
(2.13.]

Of particular interest are the following commutation relations:

[cos 2b,J;]=—2i#NI sin 2b, [sin 20,J;]=2i#AN! cos 2b, (2.17
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where we have written =L ;. [The reader will have no difficulty verifying Eq2.17), after a
short calculation]. These commutation relations are called on to play an important role in the
quantum kinematic theory of proper rotations, since the operdtoese the standard angular-
momentum operators in ordinary space, adel i the S@3) rotation-angle operator about the
axis-operatoiN. [See also Eq(A9).]

All required generalized commutation relations can be obtained in this fashion, one way or
another, from Eqs(2.6) and (2.9). We have been unable to find such generalized Heisenberg
commutation relations in the extensive literature devoted t@5U

lll. QUANTUM KINEMATIC INVARIANT OPERATORS

We next take advantage of this technique, from a very general point of view. Let us first
introduce the following matrix-operatdcf. Eq. (A7)]:

A(Q)=Q*Q, 8y +2Q1Q - 2Q%, Q" 3.9

which will be referred to as the antiadjoint operator. Sitt€q)F(Q)U(q)=F[g(q;Q)] holds
in general, from the discussion presented in Appendix A we conclude that the antiadjoint operator
obeys the kinematic law given by the unitary transformation

U (@) A(QU(A) =A; (Q)A(q). (3.2

Hence a closed algebra follows immediately:

[Ai(Q),L, 1=~ 26 mAim(Q)- 3.3

Equation(3.3), together with the Lie algebrd@11) and the facf A (Q),A,(Q)1=0, define the
generalized Weyl-Heisenberg algebra of(3guantum kinematics, which is analogous to the
Weyl—-Heisenberg algebra of the canonical commutation relations of ordinary quantum mechanics.
This algebra is interesting, because it produces new invariant operators of the theory, as we shall
see presently.

The main reason for introducing the antiadjoint operator of a Lie group, in general, is that it
allows the definition of the following operatot$:

Ri(Q:L)=Aj(Q)Ly
=(cog ® —sir® ®)L;+2 sir? ONINKL, + 2 cosd sin @eik/NkL/, (3.9
for which Eq.(3.2) together with(B12) imply the SU?2) invariant property:

UT(a)R(Q;L)U(q)=Ry(Q;L). (3.5

Thus one has

for j,k=1,2,3. Moreover, a rather lengthy but straightforward calculation, using the antiadjoint
representation, yieldx,(q)A(q) =0, which means that the invariant operators define(Bid)
are Hermitian:R]T(Q;L)zRj(Q;L), notwithstanding the fact that th@s and thel’'s do not
commute. Hence, in the kinematic theory of @} besides the familiar Casimir operatof, the
group acquires three basic Hermitian invariant opera®ysR,,R3, which stem from the group-
quantization procedurt.

Furthermore, using well-known properties of the adjoint representation, one proves that the
basic invariant operator8.4) satisfy the right S) Lie algebra:

[R{(Q;L),R(Q;L)]=2i% e, RAQ;L) 3.7
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TABLE Il. Synopsis of the right regular representation formalism&n within the carrier Hilbert space([ SU(2)].

(I1.1)
(@'9y=po "R(@&*(q’' —q), fﬁdu(q)lq><q|=l
S3

(1.2)
V(g)la)=lg(a:a")), V(a)= 3§ du(a’)lg(a’;a)){q’l
S3

V(@)V(@) =Vig(@a)], V'(a) =V~ X(a)= V(@) (13
i — (1.4)

Viera)=1-3 50R, V(QRV(@=AaR,

Rilay=izY;(a)la), [R;,R]=2itiej R, (1.5)

[see Table II, Eq(Il.5)]. For the Casimir operator one had=R?. Therefore, we identify the
operatorsR;(Q;L) as the generators of the right regular representation acting as invariant opera-
tors within the left representation of the grotfifSee also, Eq(A15).]

To end up this brief study, we consider the following commutation rules:

[F(Q),Rj]=iAL{(Q)F, (Q)=iAY(Q)F(Q), 3.8

whereY;(q) denotes Lie’s left vector fields of; [defined in Eq.(A10)]. These rules yield, for
instance,

[NJ sin®,R]=i%(8} cos®+ ej,N sin @), (3.9
[cos<I>,Rj]:—iﬁNj sin®, [sin®,R;]=i%N; cos®. (3.10

Indeed, the kinematic calculus of generalized Heisenberg commutation relations(2rcab be
applied easily to the kinematic invariant operators.

We here omit the calculations leading to these results. It is important to note, however, that
one does not arrive at these results if one does not quantize the group.

IV. CONCLUDING REMARKS AND PERSPECTIVES

In our opinion, the quantum-kinematic operator calculus obtained in this paper bears a great
potential value for physics, in general, because it stems from a standard procedure for handling
symmetries in quantum theory. In our previous work, a group-quantization program has been
developed for the case of noncompact non-Abelian Lie grdopsRef. 8 and references quoted
therein. The attained formalism has been applied to some models for which théd8ujeo
equation, as well as the corresponding propagation kernel, have been deduced on a strict group-
theoretic fashiort®'11"18t is rather clear, however, that further progress in quantum kinematics
requires the consideration of symmetries described by compact Lie groups.

In particular, SW2) symmetry must be examined upon this new perspective, as we have done
in this introductory paper. Quantization of this fundamental symmetry is needed, for instance, for
the development of the quantum kinematic theory of the complete Kepler grecgntly intro-
duced in the literatur®), of the Poincargroup and the Galileo group in four-dimensional space—
time, and of many other relevant Lie groups which contaif2@ds a proper subgroup. Work is
in progress concerning a companion paper to the present one, devoted to the quantum kinematic
theory of the three-dimensional isotropic harmonic oscillator, in whick2sguantum kinematics
(as introduced hejeplays a central role. In fact, the piece of work presented in this paper is ripe
for many physical applications.

In light of the previous results, the first point we want to note is that several uncertainty
correlationqof the mean-square deviations between rotation observables and angular momentum
which appear in quantum kinematics, are worthy of a detailed study in every applicatio(2)f SU
in quantum theory. Maybe there are problems in which new physical predictions can be found by
considering SR) quantum kinematic models in this sense.
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We also have to remark that £) quantum kinematics is quite different from the quantum
theory of rotation angles of Barnett and P&gais we have shown, the group-quantization ap-
proach goes much further into the very roots of the problem set by angle observables in quantum
mechanics, than any other attempt considered previously.

We are now in position to use a maximal set of superselection rule operators, as given for
instance by{R? R}, in order to obtain full reductiofi.e., maximal diagonalizatigrof the regular
representation. In other words, we can diagonalize the incoherent Hilbert $f)&t#2)] into
invariant subspacel ;[ SU(2)], each carrying an irreducible representation of the group, which
corresponds to a S elementary systert. To this end, one must search for a complete orthogo-
nal basis{|JMN)} within the left regular representation, associated with the complete set of com-
muting operator§R?,Rs,L3}. That is, one looks for vectors satisfying the basic conditions

<‘]MN|‘],M,N’>:5\]J’5MM’5NN'1 (41:])
0 J J
> > > |[IMNYIMN|=I, (4.1.2
J=0 M=—-J N=-1]

where the multiplet§JMN) are solutions to the following system of simultaneous eigenvalue
equations:

R2IMN)=£23(J+2)|IMN). (4.2.)
Rs| IMN)=%M|IMN), (4.2.2
L3]IMN)=7%N|IMN). (4.2.3

Here:J=0,1,2,... andM,N=—J,—J+2,...J—2J. This problem will be examined in a forthcom-
ing paper.

Here we wish to remark only that, if one considers(3Ui.e., the universal covering group
of SO(3)] acting as an external symmetry group of a system, then @dsl) and(4.2.2 define
automatically an isotopic angular momentum problem for that system, because%mtdR; are
invariant operators of S@@). (N is not a good quantum number becalsgeis not an invariant
operaton. This result is peculiar to quantum kinematics. It is a very reassuring feature, for it means
that quantum kinematics brings into the fore an isotopic structure as a necessary theoretical
construct, in a rather natural way indeed.
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APPENDIX A: THE REAL-QUATERNION GROUP

It is well known that there is a one-to-one relation between points on the three-dimensional
surfaceS; (of the unit sphere in four-dimensional Euclidean spégeand elements of S@):
S35 q—u(q) e SU(2), which is preserved by the group law;briefly, the group manifold of
SU(2) is the unit spherical surfacg;. Since this is the basic framework adopted in this paper, a
compact geometric notation for handling @&Jon S5 will be introduced in this appendix, which
is a very useful tool for quantum kinematics.

For simplicity and definiteness we label the group elements by means of the Euler—Rodrigues
parameter$® g=n sin ¢ and g*=cos¢, with 0<¢=<m andn-n=1. Thus we write the X2
matrices

u(@)=u(q,q%) =q*o4+ig s =€ e Su2), (A1)
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which meaning is clear. One obtains the group law fof&ZUrom the so-called quaternionic
composition rulé? which can be written in a compact manner as follows:

q"“=g"(a’;a)=01\q""q", (A2)

One defines the group coefficients, using well-known properties of the Pauli matrices. Thus
one setsio|, = — €y, o4, =ah,=5,, and crfwz N,v, Where the matrixy,,=diag(———+)
denotes the Minkowski metric. Using this notation, the inversion law for the Euler—Rodrigues
parameters ready"= 7,=1,,4", since the identity point is at the “north pole;” i.ee/= 5}
=(0,0,0,1)e S5.

Useful relations obeyed by the group-coefficients follow from the group property. Especially,
we note a remarkable feature of the quaternionic composition law:

a"“q"*=(q""q'") (g q"), (A3)

from which the implication §’;q) € S;X S;=q" € S; follows. The Euler—Rodrigues variables are

not essential parameters of the group, to be sure, for they do not correspond to independent
variables. They are faithful parameters, however, becgus@,q*) = (1 sin ¢,cos¢) covers the

whole group manifoldS; in a strictly one-to-one waySo we see that there is indeed a one-to-one
relation between points afi; and elements of S@), which is preserved by the group law.

By means of the same group-coefficient§ one defines another four-dimensional Lie group
in &. With this aim, all one needs to modify is the inversion law of the parameters, togread
=p7277#,,q", wherep=+/g*g*, and one identifies the points=G> ando«=0. This group is the
real-quaternion group® we denote it by2(4). The noncompact group(4) is isomorphic toR,
®SU(2), has thavhole Euclidean spacg&, for group manifold, and corresponds to the analytic
continuation of SW2) along the radius & p<«. In fact, in this construct, S(2) appears simply
as that subgroup which arises from restricting the action of the quaternion Jfduo the locus
S3C 54.

Since 3(4) is a noncompactconnected and simply connecjeddie group, right and left
transport matrices are defined in the usual manmé(q)=Ilimy _.(d/dq'")g*(q’;q) and
Lo(g)=limg _(d/99"")g*(q;q"), respectively. Expressions for these transport matrice§, in
are then obtained as follows:

8q*+ e, q” —q

Rﬁ(q)=oﬁqu=[‘ qk‘k/ q4}, (A4.1)
59~ € 9" — 0

Lé(a)=ot,q' = qk’k/ 0 | (A4.2)

By the same token, one gets the corresponding inverse transport matrib@g,afhich are given
by p~2R%(q) andp~2L%(q), where

— 5q* €’ g
R’J(q)=0’5@=[ : —qjk ot/ (A5.1)
_ 5kq4+ €: q/ qJ
LA =at,g*=| _qu/ o (A5.2)

[Here, the superscripig:) label the columns, and the subscrifts label the rows. One checks
these matrices against the required propeRy(q)Ry(a)=L}(q)Ly(a)=p?s},, for all qe &, .
Also R(q)=de[R‘;(q)]zL(q)=de[L‘V‘(q)]=(q"q")2=p4 can be shown rather easily. Moreover, a
detailed analysis shows that,dfe S;, these matrices transport vectors which are tangeto
into tangent vectors t&;. Therefore, fixingg#g*=1, Egs.(A4) and (A5) yield precisely the
transport matrices of S@) on S;.
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The transport matrices are affine connections on the group manifold. Furthermore, for the
noncompact Lie grouf(4) it follows that the mixed transport matrix given ly 2R:(q)L%(q)
carries theadjoint representatiomf the group:* Hence, in the present instance, using Hés..1)
and(A5.2), for the action of S(R) on S3 we get

A¢<q>={A"ko(q) ﬂ (A6)
The 3x 3 matrix Aj(q) in Eg. (A6), has entries given by
Aj(d) =00, 85+ 20"+ 2q% €5, 97, (A7)
and carries the adjoint representation of(3UIn fact, one easily finds
u'(a)oju(a) =Ax(a) oy, (A8)

and therefore thé\'s satisfy the group lawA; (q")A «(d) =A;[9(q’;q)]. We can further ana-
lyze this construct recalling that proper rotations in ordinary sgacare characterized by an
angle of rotationd(0=<9<2=) about an axis of rotation(n-n=1), and are represented by the
group S@3) of real orthogonal matrices of the form:

Rjk(9,0) = &) cos ¥ +NAK(1—cosd)+ e, N7 sin 9. (A9)

One identifies =9 and one obtainsA;(q) = R,—k(f},ﬁ) e SO(3). Also, definingx=x¥o,, the
unitary transformationx’ =u'(q)xu(q) yields x’J=x"Rjk(1f},ﬁ). Hence, the double covering of
SU(2) onto SA3) becomes manifestThese things are, of course, well know.

We next define right and left vector fields f&8K4) in £, by means of the transport matrices,
as usualX,(q)=R;(q)d,=o},0"d,, andY ,(a)=L}(q)d,= o} ,q"d,. Writing them more ex-
plicitly, one sees that these operators correspond t@Slight and left generators acting di,
which in the Euler—Rodrigues parametrization read:

Xj(@) =00~ a'ds— e, a9, Y@=~ ds+ex, 99, , (A10)

respectively, as well as to the dilation generatoB() acting along the radiug in &,, which is
given by X,(a) =Y4(a)=9*3d,=p(dldp). A

Using (6,¢,¢) as the independent variables of the (2JUtheory[wheren is a unit 3-vector
corresponding ta=(#6,¢)], given any functiony(q) defined onS;, the displacement— (q
+dq) e S3 produces the differential

% nl cos¢— % sin ¢>)d¢, (A11)

X1/ "
dy(q)= prl sin ¢pdn' +

with di = (ah!/36)d6+ (on/d¢p)de. On the other hand, defininggt = R“(q)dg", a straight-
forward calculation shows that(q) = 5q{qu(q)w(q) is given by

~i J N 0 ., 0
dy(q)= 6¢n’R( cos ¢ %—sin ¢n! a—(;ﬁ— sin ¢ejk/nk %) (A12)

Hence, consistency demandp! = 54k anddil = Spej,, Mg [which follow from the trans-
port formuladg”=R%(q) 5qg], as the reader can prove in a few lines. Furthermore, one also
proves thatX,(q) #(q) =0 follows if ge S3. (We left this as an exercise for the reagén. this
fashion we conclude that the action of the four operafeither X ,(q) or Y ,(q)], on functions
#(q) defined on the three-dimensional surfatg is consistent with the three degrees of freedom
of the group SWR2).

As operators irt,, the generators ak(4) satisfy the following Lie algebra:

[Xj(a), X(a)]=2€5,XA(q),  [Yj(q),Yi(a)]=—2€4, Y (), (A13)
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[Xj(a),Xa(@)]=0, [Y;(q),Y4(q)]=0, (A14)

and moreover

[X,(9),Y,(q)]=0. (A15)

Equation(A13) corresponds to th&ight and lefy realizations of the S(2) Lie algebra, whereas
Eq. (Al4) assures a consistent res(ftir our purposes heyeEquation(Al15) is of fundamental
importance in quantum kinemati€ke., see Eq(3.6)].

Finally, since(4) is a noncompact Lie group, an invariant measuré rfollows immedi-
ately:

sin 6 sirf ¢ dp .
du(a)=pop* dg' dg® dg® dq*=pw, —, dpdode dp=po —-dO(4.N),

(A16)

whereu, denotes an arbitrary normalization constant dél{ ¢,n) is the element of solid angle
in & . The direct-product structure of the quaternion grau@)~ R X ® SU(2) means thdif we
fix p=1) we obtain an invariant measure 8g as well, which is given by

du(q)=pug sin 8 sir? ¢ do de dép=pug dQ(H,N). (A17)

This well-known measure is indedédght and lefy SU(2)-invariant.

APPENDIX B: SU (2) REGULAR REPRESENTATION REVISITED

We here append a brief description of the regular representation @) 88 it follows from
the embedding schen®& C &, presented in Appendix A. Henceforth we use a shorthand notation
for handling the Euler—Rodrigues parametgrs(q,q?) in terms of the angle parameteié,n).
Thus we setg= (N sin ¢,cos¢)=(¢,n) € S;.

As one knows, the regular representatfoof SU(2) is carried by functionss(q) = (¢,n),
which have a finite norm with respect to the invariant measurépdefined in Eq(A17):

()= o § 0]t )< ®D
3

To proceed, one introduces a Hilbert spadeSU(2)] such thaf i) e H[ SU(2)]< (] ) <. In
order to have a one-to-one mapping between wave functifgy and vectorgy), one considers
the associated rigged Hilbert spakgSU(2)], which is spanned by continuous basic vectops
satisfying the one-to-one correspondeittes g« |q) e H[SU(2)]. The basic vectors obey the
orthogonal relation:

Lo 08 )80~ 0)5(¢" @)
(¢ [h.R)=po " S & Sin : (B2)

and yield the following resolution of the identity:

ko §_ 406 (=1. (83)

Wave functions are then defined on the group manifold in the usual manner; namely, one writes
() =(al)=y(b.N)=(b.n[4), whenevery) e H[SU(2)] andq=(¢,n) € S3.
Using this notation, the quaternion group l&2) can be cast in terms of the angle variables
(¢,n). In fact, (A2) corresponds to the well-known combination formutas:
n” sin ¢"=n’ sin ¢’ cos ¢+ N sin ¢ cos¢d’ —NXn sin ¢’ sin ¢, (B4a)

cos¢"=cos ¢’ cos¢—n-n sin ¢’ sin ¢. (B4b)
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At times it is useful to write this law in a compact symbolic way:
(¢",N")=(¢",n")o($,N). (B5)

For instance, if we consider a poit=(¢,n) e S; which is left-transported by means ef
+ 69’ =(8¢,n") € S5, Eq. (B4) allows us to express Lie’s left-differentials as follows:

S.(Nn sin ¢)=8¢p(N’ cosp—N' XN sin ¢), J.(CoSp)=— 5PN’ -n sin ¢, (B6)

where n” sin ¢"=n sin ¢+ (N sin ¢) and cosy’=cos¢+ 8 (cos¢) give us the angle coordi-
nates of the image point, i.e.¢(,N)=(5¢,N")°(H,N).

A sensible definition of the unitary group-operatatéq)=U(¢,n), of the left regular rep-
resentation, can then be given in the following manner:

Ui=e =g [ Tdgr si g § 0o R(eANSA] (BT)
0 S,

L denotes the generators of this representation(L,,L,,L3). In fact, a straightforward calcu-
lation yields the unitary representation property obeyed by these operators:

U(e',AHU(¢,M)=U[(¢'.A")e(¢,A)], UT(#,A)=U""(s,M), (B8)

as well as

U(¢".n)].n)=[(".n")e(¢,N)), (B9)

As we see, the operato(B7) realize the left regular representation of @WJon S;. The infini-
tesimal operators are given bi( 5¢,n)=1—(i/%) 5¢n-L. Therefore, using EA10), we obtain

Lil¢,ny=i#X;(q)|a)=i%(cos ¢d;—sin ¢pild,—sin pe;, N 3,)|¢,0), (B10)

for q=(¢,N) € S;, as consistency demands. This expression yields the familiar Lie Algebra in
terms of the left-regular representation’s generafofs Eq. (A13)]:

[LJ,LK]Z_ZihGJ‘k/L/. (Bll)

[Notice that the generatots; equal twice the standard physical operators of angular momentum
J;. See, for instance, E¢2.17). The reader can change to the conventional scale if he Jikes.

Within the left regular representation, the adjoint representation is obtained from
UT(¢,n)U(S8¢4,0")U(¢,N). This yields[see Eq(A7)]

UT(¢,ML;U(¢,n)=[(cog ¢—sir? ¢)35j+2 sir? pnIn*+2 cose sin e, N L
(B12)

[which leads also to the Lie Algebf@11)].
To end up this brief revision, let us finally observe tha{q) #* (q) = (#|X4(q)|q)=0 holds
for all |y> e H[SU(2)] andge S;. So we have

qe S3=X4(aq)|q)=0. (B13)

In fact, the dilation operatoX,(q) =Y,(q) is the sole generator of the embedding quaternion
group (4) not represented in S@) quantum kinematics.

Table | summarizes these features. One introduces the right regular representatidg)oh SU
a similar manner, defining appropriate group-operat(g), which act “from the right” in the
following senseV(q’)|q)=|g(d;q’)). For the sake of completeness, Table Il presents a synoptic
setting of the right regular representation. Let us here recall that in the left quantum kinematic
formalism, as considered in this article, the right generaRjyrgresented in Table Il play an
important role, because they correspond to the basic invariant operators of the(tie@gc. Il)).
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