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SU„2… quantum kinematics: Rotation-observable versus
angular-momentum generalized commutation
relations

J. Krausea)

Facultad de Fı´sica, Pontificia Universidad Cato´lica de Chile,
Casilla 306, Santiago 22, Chile

~Received 21 January 1998; accepted for publication 27 July 1998!

The canonical commutation relations of quantum mechanics are generalized to the
case where appropriate dynamical variables are angular-momentum, rotation-angle,
and rotation-axis observables. To this end, SU~2! is ‘‘quantized’’ on the compact
group manifold, according to the standard procedure of non-Abelian quantum ki-
nematics. Quantum-kinematic invariant operators are introduced, and their commu-
tation relations with the rotation variables are found in an explicit manner. The
quantum-kinematic invariants yield superselection rules in the form of eigenvalue
equations of an isotopic structure~which one should solve in the applications, in
order to get multiplets that carry the irreducible representations of the underlying
quantum kinematic models!. A wide range of applicability of SU~2! quantum ki-
nematics is suggested. ©1998 American Institute of Physics.
@S0022-2488~98!03111-9#

I. INTRODUCTION

The problem of extending the canonical commutation relations to non-Cartesian dynamical
variables is a long-standing question in the general setting of quantum mechanics.1 Most attempts
to solve this problem have been focused on the search of new quantization methods for obtaining
generalized minimum-uncertainty states of systems which are primarily described by non-Abelian
dynamical variables.2 However, important as it is, this particular purpose may be too narrow a
motivation for such an ambitious endeavor.3 Indeed, it is quite conceivable that some unknown
general constraints should be taken into account for extending the conventional~i.e., Heisenberg!
commutation relations to the appropriate ones. Kinematic constraints follow, for instance, from the
superselection rules due to the symmetry group that characterizes a system.4 Likewise, the search
for generalized coherent states would be unable by itself to disclose such constraints. Other
important motivations for having generalized canonical commutation relations in quantum me-
chanics appear in the current literature, as well.5 As a matter of fact, this question has been already
so amply discussed in the literature, for so many years, that it seems unnecessary to repeat here the
sound physical motivation behind this issue.6 This paper addresses this fundamental problem for
the particular case of rotation configuration variables and angular momenta. Let us here remark
that this is a problem in quantum kinematics.7

Much progress has been achieved during the last several years on the subject of group-
quantizationand non-Abelian quantum kinematics as used in this paper.8 Here we shall follow a
new group-theoretic approach to quantum kinematics which is quite consistent with the formalism
of unitary symmetries used in ordinary quantum mechanics.9 The new formalism, however, is
enhanced by quantizing the parameters of the group~cf. below!. In this way, quantum kinematics
appears as a self-contained theory which can yield interesting models evolving on the arena of the
group manifold. These abstract models can be projected on the configuration states of a physical
system~on which the quantized group acts as a symmetry group!, and thus a quantal model of the
system arises~for details, see Ref. 8!. Quantum kinematic theory yields a self-contained formalism
of quantum mechanics, for it relinquished the use of ‘‘prequantized’’ classical analogs, and ev-
erything stems from the assumed symmetry group. Therefore, quantum kinematic models become
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interesting in themselves if the quantized group is a physically relevant symmetry group.10,11

The analysis of rotational symmetry, and the behavior of physical quantities under rotations,
is one of the most common problems in the study of the symmetries of physical systems. In
addition, the theory of angular momentum is the prototype of continuous symmetry groups of
many types now found useful in the classification of the internal symmetries of elementary particle
physics. So it was an important contribution of Wigner12 to note that SU~2! is the group that enters
quantum physics. Of course, the main consequences of this fact are well known and have been
studied in the literature for a long time.13 Nevertheless, some SU~2! quantal features will be
considered here under the wide perspective offered by quantum kinematics. In fact, the main point
dealt with in this paper is to obtaingeneralized Heisenberg commutation relationsfor angular-
momentaand rotation-angleoperators.~As far as we know, all the fundamental commutation
relations presented in this paper are new.! To this end, we use the Euler–Rodrigues parameters13

for describing the elements of the group, we then introduce the regular representation and we
quantize SU~2! on the group manifold. This means that we replace the rotation-angle and the
rotation-axis parameters~which arec-numbers that label the elements of the group! by a complete
set of commuting Hermitian operators, acting asgeneralizedposition operators of the group
manifold, which admit the parameters for spectra. In this approach, the generators of the repre-
sentation afford thegeneralizedmomentum operators~i.e., angular momenta! of the model.4 @The
angular momenta and rotation variables mentioned here need not be taken literally, but may be
understood in a wide sense. However, it will do just as well if the intuitive example of SO~3!,
acting in ordinary space, is kept in mind.# As we shall see, according to this formalism one is in
a position to introduce a generalized SU~2! Weyl–Heisenberg algebra, and one obtains three
quantum-kinematic invariant operators;14 i.e., superselection rules follow, which reduce the
model.

We wish to emphasize that this paper has only an introductory character, since the quantum
kinematic theory of SU~2! discussed in the space allotted here is by no means complete. Given the
relevance of this group, the endeavor of SU~2! quantum kinematics is so conspicuous, that each of
its main features deserves a separate study by itself. Physical applications of SU~2! quantum
kinematic theory are many.@Some applications will be given in some forthcoming papers.~For
more comments, cf. Sec. IV, below.!# For instance, in the current literature~concerning ordinary
rotations in quantum mechanics! the Euler-angle parametrization is predominantly used for de-
scribing the elements of SO~3!, of which SU~2! is the universal covering group. Thus, in particu-
lar, we wish to remark that the introduction of SO~3! quantum kinematics~in terms of fundamental
commutation relations for Euler-angle versus angular-momentum operators! follows from the
theory presented in this paper, since~of course! the Euler-angles are related with the Euler–
Rodrigues parameters in a well-defined way.13 Strictly speaking, however, this subject belongs to
the applications of the present theory, and thus it will be considered elsewhere. Here we are
interested exclusively in the SU~2! quantum kinematic theory, for which the discussion in terms of
the Euler–Rodrigues variables is the simplest one.13

The plan of the paper is the following. Section II deals with group quantization. For quantiz-
ing SU~2! we use an embedding approach that describes the group manifold as the surfaceS3 of
the unit sphere inE4 , in which SU~2! appears as a subgroup of the four-dimensional group of real
quaternions.13 @With this aim, in this paper we adopt the Euler–Rodrigues parameters,13 which are
best suited to this end~cf. Appendix A!.# We then deduce the associated quantum kinematic
commutation relations within the left regular representation, which is the basic working frame
adopted in this article.@For the sake of completeness, both~left and right! regular representations
of SU~2! are briefly dealt with in Appendix B.# Section III contains an overview of quantum
kinematic invariant operators, which play a central role in this theory. Thus, in Secs. II and III, our
discussion will be focused on the most general kinematic features of SU~2!-quantized-group
models~although we do not solve for any concrete model in the present paper!. Finally, Sec. IV
contains our concluding remarks and some perspectives for future work.

II. QUANTUM KINEMATIC COMMUTATION RELATIONS

We begin our work by introducing generalized position operators in the group manifoldS3 of
SU~2!. Here,S3 denotes the three-dimensional surface of the unit sphere in four-dimensional
Euclidean spaceE4 , defined byqmqm51. The four Cartesian variablesqm5(q,q4)PE4 , when
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restricted toqPS3,E4 , play the role of the Euler–Rodrigues parameters which label the elements
of the group in a faithful way.13 ~See Appendix A for some useful details.! We then focus our
attention on the regular representation,15 since this is the paramount structure in the kinematic
quantization method.@The regular representation of SU~2! is reviewed in Appendix B.#

Now, given the resolution of the identity stated in Eq.~I.1! ~cf. Table I!, we define a set of
operatorsQm by means of the following spectral integrals:

Qm5 R
S3

dm~q!uq&qm^qu, ~2.1!

wheredm(q) denotes the Hurwitz invariant measure onS3 defined in Eq.~A17!. This is elemen-
tary, but fundamental. In general, this means that in Lie group theory one can consider integrals
over the group manifold, like~2.1!, as a basic geometric definition of quantization. One borrows
this definition from standard quantum mechanics. As we will see through the chosen example, in
this way one achieves a consistent and fruitful generalized setting for quantum theory. TheQ’s are
generalized position operators on the group manifoldS3 , since they satisfy the following demands
for such qualification:

Qm†5Qm, @Qm,Qn#50, Qmuq&5qmuq&. ~2.2!

In particular, we observe that these operators satisfy the required constraint:

QmQm5I . ~2.3!

So we quantize the group.
In this article we adopt the left-regular representation as the working frame for developing the

theory ~cf. Appendix B!; namely, we here consider exclusively the left unitary group-operators
U(q) defined in Eq.~B7!. ~See also Table I.!

We next show that theQ’s are interesting mathematical objects. We first look for the kine-
matic law@under SU~2! transformations# obeyed by the position operators of the group. According
to their definition, it turns out that the position operators defined in Eq.~2.1! obey the same
quaternion kinematic law~A2! that characterizes the parameters of the group SU~2! on S3 :

U†~q!QmU~q!5gm~q;Q!5snl
m qnQl. ~2.4!

U(q) denotes the group operators@cf. Table I, Eq.~I.2!#, and the group coefficientssnl
m are those

used in Eq.~A2!. It must be borne in mind that, in the present theory, Eq.~2.4! is not an
assumption. As a matter of fact, this analytic identity is a general result of group-theoretic quan-
tum kinematics,6 whose proof does not demand an explicit realization of the operators involved.
One proves Eq.~2.4! in a few lines. Since one adopts the regular representation of the quantized
group as the working frame of the formalism, from definition~2.1!, using Eqs.~I.2a! and~I.3b! of
Table I, and recalling thatdm(q) is an invariant SU~2! measure onS3 , it follows:

TABLE I. Synopsis of the left regular representation formalism onS3 , within the carrier Hilbert spaceH@SU(2)#. ~For
details, see Appendix B.!

^q8uq&5m0
2L~q!d~3!~q82q!, R

S3

dm~q!uq&^qu5I
~I.1!

U~q8!uq&5ug~q8;q!&, U~q!5 R
S3

dm~q8!ug~q;q8!&^q8u
~I.2!

U(q8)U(q)5U@(g(q8;q)#, U†(q)5U21(q)5U(q̄) ~I.3!

U~e1dq!5I2
i

h
dqjLj , U†~q!LjU~q!5Ajk~q!Lk

~I.4!

L j uq&5 i\Xj (q)uq&, @L j ,Lk#522i\e jkl L l ~I.5!
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U†~q!QmU~q!5 R
S3

dm~q8!U†~q!uq8&q8m^q8uU~q!

5 R
S3

dm~q8!ug~ q̄;q8!&q8m^g~ q̄;q8!u

5 R
S3

dm@g~q;q9!#uq9&gm~q;q9!^q9u

5 R
S3

dm~q9!uq9&gm~q;q9!^q9u5gm~q;Q!, ~2.5!

which according to~A2! is precisely Eq.~2.4!. This is one of the most important results provided
by the Lie group quantization technique.

If we now consider the infinitesimal transformationU†(e1dq)QmU(e1dq), Eq.~I.4! ~Table
I! and Eq.~2.4! lead us immediately to a set of generalized Heisenberg commutation relations for
the position operators onS3 with the non-Abelian momenta represented by the SU~2! generators.
Indeed, a typical group-theoretic calculation yields the desired commutation rules, which read

@Qm,L j #5 i\Rj
m~Q!5 i\s j n

m Qn5 i\F Q4 Q3 2Q2 2Q1

2Q3 Q4 Q1 2Q2

Q2 2Q1 Q2 2Q3
G . ~2.6!

Here we have writtenL j ( j 51,2,3) to denote the generators of the left regular representation@see
Appendix B, Eqs.~B10! and~B11!#. The entriesRj

m(q) of the right transport matrix are given in
Eq. ~A4.1!. It is important to note that thes-coefficients satisfy

s j n
m skl

n 2skn
m s j l

n 12e jkl s l l
m 50, ~2.7!

for these imply that the commutation relations~2.6! are consistent with the Lie algebra~B11!, in
the sense of the Jacobi identity. Furthermore, Eq.~2.6! is also consistent with the constraint
QmQm5I , because onS3 one has:s j n

m qmqn50. ~These features are not trivial at all.!
This is the point where the quantum principle begins to emerge from the traditional~i.e.,

classical! theory of SU~2!. Notice that, sincem51,2,3,4 andj 51,2,3, the generalized closed
commutation relations shown in Eq.~2.6! do not correspond to a quantized symplectic structure,
as do the canonical commutation relations~in the traditional Heisenberg form! of ordinary quan-
tum mechanics. In this sense, considering future applications, let us here remark that it not
necessary to redefine Eq.~2.6! in order to get some more conventional 333 matrix forms, instead
of the 334 matrix form obtained here, becauseall four operatorsQm stand on a same footing
~see, below! and satisfy the constraintQmQm5I . Indeed, as we have discussed in our previous
work, non-Abelian quantum kinematics leads us beyond the traditional canonical quantization
methods.8 Much of what follows is a consequence of the generalized commutation relations~2.6!.

We now have the kinematic model. Let us proceed to examine theQ’s more closely. In
general, we define functions of the commuting position operators by means of their spectral
integrals:

F~Q!5 R
S3

dm~q!uq&F~q!^qu ~2.8!

~see Table I!. Then it is worth noting that Eq.~2.6! yields the general commutation rule

@F~Q!,L j #5 i\Rj
m~Q!F ,m~Q!5 i\Xj~Q!F~Q!, ~2.9!

whereF,m(q) is a vector field inE4 , defined byF,m(q)5(]/]qm)F(q), and whereXj (q) denotes
Lie’s right vector fields onS3 @defined in Eq.~A10!#. @Certainly, the fact that theq’s are not
independent variables onS3 does not preclude the existence ofF,m(q) whenqPS3,E4 . See also
the discussion in Appendix A, concerning Eqs.~A11! and ~A12!.#
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Equation~2.9! is a very useful expression. For instance, let us define the rotation axis as
follows: F j (q)5qj /sinf5qj/A12(q4)2[n̂ j . In quantum kinematics, the rotation axisn̂ becomes
a self-adjoint operatorN̂: n̂→N̂. Using Eq.~2.9!, we easily find the generalized commutation
relations obeyed by the Cartesian componentsN̂j of the rotation-axis-operator with the generators
L j , which read

@N̂j ,Lk#5 i\@cot F~dk
j 2N̂j N̂k!2e jkl N̂l #. ~2.10!

@In fact, one hasXk(q)F j (q)5cotf(d k
j 2n̂jn̂k)2ejkl n̂l . If one defines insteadGj (q)5qj /Aqkqk

[n̂ j ~say! one obtains the same result~2.10!. Indeed, Eq.~2.10! does not depend on how one
defines the unit vectorn̂ in terms of theq’s. For the operator cotF, see Eq.~2.12!, below.# The
constraintN̂j N̂j5I follows, since the rotation-axis operatorN̂5(N̂1,N̂2,N̂3) is a bounded operator
given by

N̂5m0 R
S3

dV~f,n̂!uf,n̂&n̂^f,n̂u, ~2.11!

so thatN̂uf,n̂&5n̂uf,n̂& holds.@Concerning the~f,n̂! notation, see Appendix B#.
In the same manner, we define two bounded operators cosF and sinF on S3 :

cosF5m0 R
S3

dV~f,n̂!uf,n̂&cosf^f,n̂u, ~2.12a!

sin F5m0 R
S3

dV~f,n̂!uf–n̂&sin f^f,n̂u, ~2.12b!

which satisfy the rather natural constraint cos2 F1sin2 F5I and do not cause difficulties related to
periodicity. As the reader can prove, for these operators we obtain the following commutation
relations with theL’s:

@cosF,L j #52 i\N̂j sin F, @sin F,L j #5 i\N̂j cosF, ~2.13!

which have a very suggestive form.@See also Eq.~2.17!, below.# Similar commutation relations
are well known for the~trivial! case of U~1! Abelian quantum kinematics.1,2 Indeed, from Eq.
~2.13! one obtains

@cosF,L#52 i\ sin F, @sin F,L#5 i\ cosF, ~2.14!

where the Hermitian operatorL5 1
2(N̂–L1L–N̂) may be interpreted as the U~1! angular-

momentum generator in the direction ofN̂. @Compare with Ref. 1, and with the references given
in Ref. 2.# Equation~2.14! is quite familiar. However, to our best knowledge, Eqs.~2.10! and
~2.13! do not figure in the literature, because in order to obtain the SU~2! position operators~F,N̂!
one has to quantize the group.

If now one considers the Euler–Rodrigues operators, i.e.,

Qj5N̂j sin F, Q45cosF ~2.15!

~cf. Appendix A!, recalling the definition of thes-coefficients, one can use Eq.~2.6! directly to
obtain other basic commutation relations. For example, in this way, the commutators

@N̂j sin F,Lk#5 i\~d k
j cosF2e jkl N̂l sin F!, ~2.16!

follow immediately from~2.6!. @Of course, these commutators are consistent with Eqs.~2.10! and
~2.13!.#

Of particular interest are the following commutation relations:

@cos 2F,Jj #522i\N̂j sin 2F, @sin 2F,Jj #52i\N̂j cos 2F, ~2.17!

5802 J. Math. Phys., Vol. 39, No. 11, November 1998 J. Krause



where we have written 2Jj5L j . @The reader will have no difficulty verifying Eq.~2.17!, after a
short calculation.# These commutation relations are called on to play an important role in the
quantum kinematic theory of proper rotations, since the operatorsJj are the standard angular-
momentum operators in ordinary space, and 2F is the SO~3! rotation-angle operator about the
axis-operatorN̂. @See also Eq.~A9!.#

All required generalized commutation relations can be obtained in this fashion, one way or
another, from Eqs.~2.6! and ~2.9!. We have been unable to find such generalized Heisenberg
commutation relations in the extensive literature devoted to SU~2!.

III. QUANTUM KINEMATIC INVARIANT OPERATORS

We next take advantage of this technique, from a very general point of view. Let us first
introduce the following matrix-operator@cf. Eq. ~A7!#:

Ajk~Q!5QmQmd jk12QjQk22Q4e jkl Ql , ~3.1!

which will be referred to as the antiadjoint operator. SinceU†(q)F(Q)U(q)5F@g(q;Q)# holds
in general, from the discussion presented in Appendix A we conclude that the antiadjoint operator
obeys the kinematic law given by the unitary transformation

U†~q!Ājk~Q!U~q!5Āj l ~Q!Āl k~q!. ~3.2!

Hence a closed algebra follows immediately:

@Ājk~Q!,L l #522i\ekl mĀjm~Q!. ~3.3!

Equation~3.3!, together with the Lie algebra~B11! and the fact@Ājk(Q),Āl m(Q)#50, define the
generalized Weyl–Heisenberg algebra of SU~2! quantum kinematics, which is analogous to the
Weyl–Heisenberg algebra of the canonical commutation relations of ordinary quantum mechanics.
This algebra is interesting, because it produces new invariant operators of the theory, as we shall
see presently.

The main reason for introducing the antiadjoint operator of a Lie group, in general, is that it
allows the definition of the following operators:14

Rj~Q;L !5Ājk~Q!Lk

5~cos2 F2sin2 F!L j12 sin2 FN̂j N̂kLk12 cosF sin Fe jkl N̂kL l , ~3.4!

for which Eq.~3.2! together with~B12! imply the SU~2! invariant property:

U†~q!Rj~Q;L !U~q!5Rj~Q;L !. ~3.5!

Thus one has

@Rj~Q;L !,Lk#50, ~3.6!

for j ,k51,2,3. Moreover, a rather lengthy but straightforward calculation, using the antiadjoint
representation, yieldsXk(q)Ājk(q)50, which means that the invariant operators defined in~3.4!
are Hermitian:Rj

†(Q;L)5Rj (Q;L), notwithstanding the fact that theQ’s and theL’s do not
commute. Hence, in the kinematic theory of SU~2!, besides the familiar Casimir operatorL2, the
group acquires three basic Hermitian invariant operators:R1 ,R2 ,R3 , which stem from the group-
quantization procedure.16

Furthermore, using well-known properties of the adjoint representation, one proves that the
basic invariant operators~3.4! satisfy the right SU~2! Lie algebra:

@Rj~Q;L !,Rk~Q;L !#52i\e jkl Rl ~Q;L ! ~3.7!
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@see Table II, Eq.~II.5!#. For the Casimir operator one hasL25R2. Therefore, we identify the
operatorsRj (Q;L) as the generators of the right regular representation acting as invariant opera-
tors within the left representation of the group.14 @See also, Eq.~A15!.#

To end up this brief study, we consider the following commutation rules:

@F~Q!,Rj #5 i\L j
m~Q!F,m~Q!5 i\Yj~Q!F~Q!, ~3.8!

whereYj (q) denotes Lie’s left vector fields onS3 @defined in Eq.~A10!#. These rules yield, for
instance,

@Nj sin F,Rk#5 i\~dk
j cosF1e jkl Nl sin F!, ~3.9!

@cosF,Rj #52 i\Nj sin F, @sin F,Rj #5 i\Nj cosF. ~3.10!

Indeed, the kinematic calculus of generalized Heisenberg commutation relations for SU~2! can be
applied easily to the kinematic invariant operators.

We here omit the calculations leading to these results. It is important to note, however, that
one does not arrive at these results if one does not quantize the group.

IV. CONCLUDING REMARKS AND PERSPECTIVES

In our opinion, the quantum-kinematic operator calculus obtained in this paper bears a great
potential value for physics, in general, because it stems from a standard procedure for handling
symmetries in quantum theory. In our previous work, a group-quantization program has been
developed for the case of noncompact non-Abelian Lie groups~cf. Ref. 8 and references quoted
therein!. The attained formalism has been applied to some models for which the Schro¨dinger
equation, as well as the corresponding propagation kernel, have been deduced on a strict group-
theoretic fashion.10,11,17,18It is rather clear, however, that further progress in quantum kinematics
requires the consideration of symmetries described by compact Lie groups.

In particular, SU~2! symmetry must be examined upon this new perspective, as we have done
in this introductory paper. Quantization of this fundamental symmetry is needed, for instance, for
the development of the quantum kinematic theory of the complete Kepler group~recently intro-
duced in the literature19!, of the Poincare´ group and the Galileo group in four-dimensional space–
time, and of many other relevant Lie groups which contain SU~2! as a proper subgroup. Work is
in progress concerning a companion paper to the present one, devoted to the quantum kinematic
theory of the three-dimensional isotropic harmonic oscillator, in which SU~2! quantum kinematics
~as introduced here! plays a central role. In fact, the piece of work presented in this paper is ripe
for many physical applications.

In light of the previous results, the first point we want to note is that several uncertainty
correlations~of the mean-square deviations between rotation observables and angular momentum!,
which appear in quantum kinematics, are worthy of a detailed study in every application of SU~2!
in quantum theory. Maybe there are problems in which new physical predictions can be found by
considering SU~2! quantum kinematic models in this sense.

TABLE II. Synopsis of the right regular representation formalism onS3 , within the carrier Hilbert spaceH@SU(2)#.

^q8uq&5m0
21R~q!d~3!~q82q!, R

S3

dm~q!uq&^qu5I
~II.1!

V~q8!uq&5ug~q;q8!&, V~q!5 R
S3

dm~q8!ug~q8;q!&^q8u
~II.2!

V(q8)V(q)5V@g(q;q8)#, V†(q)5V21(q)5V(q̄) ~II.3!

V~e1dq!5I2
i

\
d qjRj , V†~q!RjV~q!5Ājk~q!Rk

~II.4!

Rj uq&5 i\Yj (q)uq&, @Rj ,Rk#52i\e jkl Rl ~II.5!
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We also have to remark that SU~2! quantum kinematics is quite different from the quantum
theory of rotation angles of Barnett and Pegg.20 As we have shown, the group-quantization ap-
proach goes much further into the very roots of the problem set by angle observables in quantum
mechanics, than any other attempt considered previously.

We are now in position to use a maximal set of superselection rule operators, as given for
instance by$R2,R3%, in order to obtain full reduction~i.e., maximal diagonalization! of the regular
representation. In other words, we can diagonalize the incoherent Hilbert spaceH@SU~2!# into
invariant subspacesHJM@SU(2)#, each carrying an irreducible representation of the group, which
corresponds to a SU~2! elementary system.21 To this end, one must search for a complete orthogo-
nal basis$uJMN&% within the left regular representation, associated with the complete set of com-
muting operators$R2,R3 ,L3%. That is, one looks for vectors satisfying the basic conditions

^JMNuJ8M 8N8&5dJJ8dMM8dNN8 , ~4.1.1!

(
J50

`

(
M52J

J

(
N52J

J

uJMN&^JMNu5I , ~4.1.2!

where the multipletsuJMN& are solutions to the following system of simultaneous eigenvalue
equations:

R2uJMN&5\2J~J12!uJMN&. ~4.2.1!

R3uJMN&5\M uJMN&, ~4.2.2!

L3uJMN&5\NuJMN&. ~4.2.3!

Here:J50,1,2,... andM ,N52J,2J12,...,J22,J. This problem will be examined in a forthcom-
ing paper.

Here we wish to remark only that, if one considers SU~2! @i.e., the universal covering group
of SO~3!# acting as an external symmetry group of a system, then Eqs.~4.2.1! and ~4.2.2! define
automatically an isotopic angular momentum problem for that system, because bothR2 andR3 are
invariant operators of SU~2!. ~N is not a good quantum number becauseL3 is not an invariant
operator.! This result is peculiar to quantum kinematics. It is a very reassuring feature, for it means
that quantum kinematics brings into the fore an isotopic structure as a necessary theoretical
construct, in a rather natural way indeed.
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APPENDIX A: THE REAL-QUATERNION GROUP

It is well known that there is a one-to-one relation between points on the three-dimensional
surfaceS3 ~of the unit sphere in four-dimensional Euclidean spaceE4) and elements of SU~2!:
S3{q↔u(q)PSU(2), which is preserved by the group law;13 briefly, the group manifold of
SU~2! is the unit spherical surfaceS3 . Since this is the basic framework adopted in this paper, a
compact geometric notation for handling SU~2! on S3 will be introduced in this appendix, which
is a very useful tool for quantum kinematics.

For simplicity and definiteness we label the group elements by means of the Euler–Rodrigues
parameters:13 q5n̂ sinf and q45cosf, with 0<f<p and n̂–n̂51. Thus we write the 232
matrices

u~q!5u~q,q4!5q4s41 iqksk5eifn̂•sPSU~2!, ~A1!
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which meaning is clear. One obtains the group law for SU~2! from the so-called quaternionic
composition rule,13 which can be written in a compact manner as follows:

q9m5gm~q8;q!5snl
m q8nql. ~A2!

One defines the group coefficientssnl
m using well-known properties of the Pauli matrices. Thus

one sets:skl
j 52e jkl , s4n

m 5sn4
m 5dn

m , and smn
4 5hmn , where the matrixhmn5diag(2221)

denotes the Minkowski metric. Using this notation, the inversion law for the Euler–Rodrigues
parameters readsq̄m5hm5hmnqn, since the identity point is at the ‘‘north pole;’’ i.e.,em5d4

m

5(0,0,0,1)PS3 .
Useful relations obeyed by the group-coefficients follow from the group property. Especially,

we note a remarkable feature of the quaternionic composition law:

q9mq9m5~q8nq8n!~qlql!, ~A3!

from which the implication (q8;q)PS33S3⇒q9PS3 follows. The Euler–Rodrigues variables are
not essential parameters of the group, to be sure, for they do not correspond to independent
variables. They are faithful parameters, however, becauseq5(q,q4)5(n̂ sinf,cosf) covers the
whole group manifoldS3 in a strictly one-to-one way.@So we see that there is indeed a one-to-one
relation between points onS3 and elements of SU~2!, which is preserved by the group law.#

By means of the same group-coefficientssnl
m one defines another four-dimensional Lie group

in E4 . With this aim, all one needs to modify is the inversion law of the parameters, to readq̄m

5r22hmnqn, wherer5Aqmqm, and one identifies the points 05̄` and `̄50. This group is the
real-quaternion group;13 we denote it byS~4!. The noncompact groupS~4! is isomorphic toRx

^ SU(2), has thewhole Euclidean spaceE4 for group manifold, and corresponds to the analytic
continuation of SU~2! along the radius 0,p,`. In fact, in this construct, SU~2! appears simply
as that subgroup which arises from restricting the action of the quaternion groupS~4! to the locus
S3,E4 .

Since S~4! is a noncompact~connected and simply connected! Lie group, right and left
transport matrices are defined in the usual manner:Rn

m(q)5 limq8→e(]/]q8n)gm(q8;q) and
Ln

m(q)5 limq8→e(]/]q8n)gm(q;q8), respectively. Expressions for these transport matrices inE4

are then obtained as follows:

Rn
m~q!5snl

m ql5Fd j
kq41e jkl ql 2qj

qk q4 G , ~A4.1!

Ln
m~q!5sln

m ql5Fd j
kq42e jkl ql 2qj

qk q4 G . ~A4.2!

By the same token, one gets the corresponding inverse transport matrices ofS~4!, which are given
by r22R̄n

m(q) andr22L̄n
m(q), where

R̄n
m~q!5snl

m q̄l5Fd j
kq42e jkl ql qj

2qk q4G , ~A5.1!

L̄n
m~q!5sln

m q̄l5Fd j
kq41e jkl ql qj

2qk q4G . ~A5.2!

@Here, the superscripts~m! label the columns, and the subscripts~n! label the rows.# One checks
these matrices against the required property:Rm

l (q)R̄l
n(q)5Lm

l (q)L̄l
n(q)5r2dm

n , for all qPE4 .
Also R(q)5det@Rn

m(q)#5L(q)5det@Ln
m(q)#5(qmqm)25r4 can be shown rather easily. Moreover, a

detailed analysis shows that, ifqPS3 , these matrices transport vectors which are tangent toS3

into tangent vectors toS3 . Therefore, fixingqmqm51, Eqs.~A4! and ~A5! yield precisely the
transport matrices of SU~2! on S3 .
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The transport matrices are affine connections on the group manifold. Furthermore, for the
noncompact Lie groupS~4! it follows that the mixed transport matrix given byr22Rn

l(q)L̄l
m(q)

carries theadjoint representationof the group.14 Hence, in the present instance, using Eqs.~A4.1!
and ~A5.2!, for the action of SU~2! on S3 we get

An
m~q!5FAjk~q! 0

0 1G . ~A6!

The 333 matrix Ajk(q) in Eq. ~A6!, has entries given by

Ajk~q!5qmqmd jk12qjqk12q4e jkl ql , ~A7!

and carries the adjoint representation of SU~2!. In fact, one easily finds

u†~q!s ju~q!5Ajk~q!sk , ~A8!

and therefore theA’s satisfy the group lawAj l (q8)Al k(q)5Ajk@g(q8;q)#. We can further ana-
lyze this construct recalling that proper rotations in ordinary spaceE3 are characterized by an
angle of rotationq(0<q<2p) about an axis of rotationn̂(n̂–n̂51), and are represented by the
group SO~3! of real orthogonal matrices of the form:

Rjk~q,n̂!5d jk cosq1n̂ j n̂k~12cosq!1e jkl n̂l sin q. ~A9!

One identifies 2f5q and one obtains:Ajk(q)5Rjk(q,n̂)PSO(3). Also, definingx5xksk , the
unitary transformationx85u†(q)xu(q) yields x8 j5xkRjk(q,n̂). Hence, the double covering of
SU~2! onto SO~3! becomes manifest.~These things are, of course, well known.13!

We next define right and left vector fields forS~4! in E4 by means of the transport matrices,
as usual:Xm(q)5Rm

n (q)]n5sml
n ql]n , andYm(q)5Lm

n (q)]n5slm
n ql]n . Writing them more ex-

plicitly, one sees that these operators correspond to SU~2! right and left generators acting onS3 ,
which in the Euler–Rodrigues parametrization read:

Xj~q!5q4] j2qj]42e jkl qk] l , Yj~q!5q4] j2qj]41e jkl qk] l , ~A10!

respectively, as well as to the dilation generator ofS~4! acting along the radiusr in E4 , which is
given byX4(q)5Y4(q)5qm]m5r(]/]r).

Using ~u,w,f! as the independent variables of the SU~2! theory @where n̂ is a unit 3-vector
corresponding ton̂5(u,w)#, given any functionc(q) defined onS3 , the displacementq→(q
1dq)PS3 produces the differential

dc~q!5
]c

]qj sin fdn̂j1S ]c

]qj n̂j cosf2
]c

]q4 sin f Ddf, ~A11!

with dn̂j5(]n̂ j /]u)du1(]n̂ j /]w)dw. On the other hand, definingdqR
m5R̄n

m(q)dqn, a straight-
forward calculation shows thatdc(q)5dqR

j Xj (q)c(q) is given by

dc~q!5dfn̂R
j S cosf

]c

]qj2sin fn̂ j
]c

]q42sin fe jkl n̂k
]c

]ql D . ~A12!

Hence, consistency demands:dfn̂ j5dfn̂R
j anddn̂j5dfe jkl n̂kn̂R

l @which follow from the trans-
port formula dqm5Rn

m(q)dqR
n #, as the reader can prove in a few lines. Furthermore, one also

proves thatX4(q)c(q)50 follows if qPS3 . ~We left this as an exercise for the reader.! In this
fashion we conclude that the action of the four operators@eitherXm(q) or Ym(q)#, on functions
c(q) defined on the three-dimensional surfaceS3 , is consistent with the three degrees of freedom
of the group SU~2!.

As operators inE4 , the generators ofS~4! satisfy the following Lie algebra:

@Xj~q!,Xk~q!#52e jkl Xl ~q!, @Yj~q!,Yk~q!#522e jkl Yl ~q!, ~A13!
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@Xj~q!,X4~q!#50, @Yj~q!,Y4~q!#50, ~A14!

and moreover

@Xm~q!,Yn~q!#50. ~A15!

Equation~A13! corresponds to the~right and left! realizations of the SU~2! Lie algebra, whereas
Eq. ~A14! assures a consistent result~for our purposes here!. Equation~A15! is of fundamental
importance in quantum kinematics@i.e., see Eq.~3.6!#.

Finally, sinceS~4! is a noncompact Lie group, an invariant measure inE4 follows immedi-
ately:

dm~q!5m0r24 dq1 dq2 dq3 dq45m0

sin u sin2 f

r
dr du dw df5m0

dr

r
dV~f,n̂!,

~A16!

wherem0 denotes an arbitrary normalization constant anddV(f,n̂) is the element of solid angle
in E4 . The direct-product structure of the quaternion groupS(4);R3 ^ SU(2) means that~if we
fix r51) we obtain an invariant measure onS3 as well, which is given by

dm~q!5m0 sin u sin2 f du dw df5m0 dV~f,n̂!. ~A17!

This well-known measure is indeed~right and left! SU~2!-invariant.

APPENDIX B: SU „2… REGULAR REPRESENTATION REVISITED

We here append a brief description of the regular representation of SU~2! as it follows from
the embedding schemeS3,E4 presented in Appendix A. Henceforth we use a shorthand notation
for handling the Euler–Rodrigues parametersq5(q,q4) in terms of the angle parameters~f,n̂!.
Thus we set:q5(n̂ sinf,cosf)[(f,n̂)PS3 .

As one knows, the regular representation15 of SU~2! is carried by functionsc(q)5c(f,n̂),
which have a finite norm with respect to the invariant measure onS3 defined in Eq.~A17!:

^cuc&5m0 R
S3

dV~f,n̂!uc~f,n̂!u2,`. ~B1!

To proceed, one introduces a Hilbert spaceH@SU(2)# such thatuc&PH@SU(2)#⇔^cuc&,`. In
order to have a one-to-one mapping between wave functionsc(q) and vectorsuc&, one considers
the associated rigged Hilbert spaceH̃@SU(2)#, which is spanned by continuous basic vectorsuq&
satisfying the one-to-one correspondenceS3{q↔uq&PH̃@SU(2)#. The basic vectors obey the
orthogonal relation:

^f8,n̂8uf,n̂&5m0
21 d~f82f!d~u82u!d~w82w!

sin2 f sin u
, ~B2!

and yield the following resolution of the identity:

m0 R
S3

dV~f,n̂!uf,n̂&^f,n̂u5I . ~B3!

Wave functions are then defined on the group manifold in the usual manner; namely, one writes
c(q)5^quc&[c(f,n̂)5^f,n̂uc&, wheneveruc&PH@SU(2)# andq5(f,n̂)PS3 .

Using this notation, the quaternion group law~A2! can be cast in terms of the angle variables
~f,n̂!. In fact, ~A2! corresponds to the well-known combination formulas:13

n̂9 sin f95n̂8 sin f8 cosf1n̂ sin f cosf82n̂3n̂ sin f8 sin f, ~B4a!

cosf95cosf8 cosf2n̂–n̂ sin f8 sin f. ~B4b!
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At times it is useful to write this law in a compact symbolic way:

~f9,n̂9!5~f8,n̂8!+~f,n̂!. ~B5!

For instance, if we consider a pointq5(f,n̂)PS3 which is left-transported by means ofe
1dq85(df,n̂8)PS3 , Eq. ~B4! allows us to express Lie’s left-differentials as follows:

dL~ n̂ sin f!5df~ n̂8 cosf2n̂83n̂ sin f!, dL~cosf!52dfn̂8–n̂ sin f, ~B6!

where n̂9 sinf95n̂ sinf1dL(n̂ sinf) and cosf95cosf1dL(cosf) give us the angle coordi-
nates of the image point, i.e., (f9,n̂)5(df,n̂8)+(f,n̂).

A sensible definition of the unitary group-operatorsU(q)[U(f,n̂), of the left regular rep-
resentation, can then be given in the following manner:

U~f,n̂!5e2~ i /\!fn̂–L5m0E
0

p

df8 sin2 f8 R
S2

dV~ n̂8!u~f,n̂!+~f8,n̂8!&^f8,n̂8u. ~B7!

L denotes the generators of this representation:L5(L1 ,L2 ,L3). In fact, a straightforward calcu-
lation yields the unitary representation property obeyed by these operators:

U~f8,n̂8!U~f,n̂!5U@~f8,n̂8!+~f,n̂!#, U†~f,n̂!5U21~f,n̂!, ~B8!

as well as

U~f8,n̂8!uf,n̂&5u~f8,n̂8!+~f,n̂!&, ~B9!

As we see, the operators~B7! realize the left regular representation of SU~2! on S3 . The infini-
tesimal operators are given byU(df,n̂)5I 2( i /\)dfn̂–L . Therefore, using Eq.~A10!, we obtain

L j uf,n̂&5 i\Xj~q!uq&5 i\~cosf] j2sin fn̂ j]42sin fe jkl n̂k] l !uf,n̂&, ~B10!

for q5(f,n̂)PS3 , as consistency demands. This expression yields the familiar Lie Algebra in
terms of the left-regular representation’s generators@cf., Eq. ~A13!#:

@L j ,Lk#522i\e jkl L l . ~B11!

@Notice that the generatorsL j equal twice the standard physical operators of angular momentum
Jj . See, for instance, Eq.~2.17!. The reader can change to the conventional scale if he likes.#

Within the left regular representation, the adjoint representation is obtained from
U†(f,n̂)U(df,n̂8)U(f,n̂). This yields@see Eq.~A7!#

U†~f,n̂!L jU~f,n̂!5@~cos2 f2sin2 f!d jk12 sin2 fn̂ j n̂k12 cosf sin fe jkl n̂l #Lk
~B12!

@which leads also to the Lie Algebra~B11!#.
To end up this brief revision, let us finally observe thatX4(q)c* (q)5^cuX4(q)uq&50 holds

for all uc.PH@SU(2)# andqPS3 . So we have

qPS3⇒X4~q!uq&50. ~B13!

In fact, the dilation operatorX4(q)5Y4(q) is the sole generator of the embedding quaternion
groupS~4! not represented in SU~2! quantum kinematics.

Table I summarizes these features. One introduces the right regular representation of SU~2! in
a similar manner, defining appropriate group-operatorsV(q), which act ‘‘from the right’’ in the
following senseV(q8)uq&5ug(q;q8)&. For the sake of completeness, Table II presents a synoptic
setting of the right regular representation. Let us here recall that in the left quantum kinematic
formalism, as considered in this article, the right generatorsRj presented in Table II play an
important role, because they correspond to the basic invariant operators of the theory~cf., Sec. III!.
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