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ABSTRACT

The Earth’s crust is subjected to a state of stress, as a result of gravitational, tectonic,

and other forces. When removing material from rock masses, stresses are redistributed,

which is especially important in mining, since high stress concentration areas could arise

in mining excavations, resulting in undesired events such as rock-falls or slides. Therefore,

there is a need for determining, in a reliable way, the state of stress generated in rock masses

by mining activities, which constitutes a complex problem. The aim of this work is thus

to propose an accurate mathematical methodology to compute such stresses and show its

performance in a simplified case. The main strength of the proposed methodology is the

effective and efficient numerical treatment of the unbounded medium that surrounds the

excavation, when compared with the customary approach used by standard commercial

software for the same purpose, which results in a considerable reduction of the required

computational resources. The methodology is developed in two stages. In the first stage,

we consider a simplified problem where the excavation is assumed to be a hemispherical

pit, placed on the surface of an elastic semi-infinite domain subjected to gravity. This

problem is solved by using two semi-analytical methods, where the second method is an

improvement of the first one. In the second stage, we deal with an excavation of arbitrary

axisymmetric geometry by means of a coupling technique, which employs the second semi-

analytical method to compute an approximation of the Dirichlet-to-Neumann map (DtN) on

an artificial semi-spherical boundary. The DtN map provides the exact boundary conditions

that complete the mathematical problem posed in the computational domain lying between

the excavation and the artificial boundary, which is then solved by the finite element method

(FEM). Numerical results are provided to demonstrate the effectiveness and accuracy of the

proposed methodology.

Keywords: Numerical-analytical method, mining excavation, stress, elasticity, semi-

infinite domain, finite elements, Dirichlet-to-Neumann map
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RESUMEN

La corteza terrestre se encuentra sometida a un estado de esfuerzos o tensiones debido a

fuerzas de origen gravitacional y tectónico, entre otros. Al extraer material desde un macizo

rocoso, los esfuerzos se redistribuyen, lo cual es especialmente importante en minerı́a, de-

bido a que pueden aparecer áreas de alta concentración de esfuerzos en excavaciones min-

eras, produciendo eventos no deseados como caı́das de roca o deslizamientos. Por lo tanto,

hay una necesidad por determinar, de manera fehaciente, el estado de esfuerzos inducido en

un macizo rocoso por la actividad minera, lo cual constituye un problema complejo. El ob-

jetivo de este trabajo es entonces proponer una metodologı́a matemática certera para calcu-

lar estos esfuerzos y mostrar su desempeño en un caso simplificado. La principal fortaleza

de esta metodologı́a es el tratamiento numérico eficiente y eficaz del medio no acotado

que rodea la excavación, comparado con el enfoque habitual usado por software comercial

estándar para el mismo propósito, lo que conlleva una considerable reducción del recurso

computacional requerido. El desarrollo de la metodologı́a se divide en dos etapas. En la

primera etapa se considera un problema simplificado donde se asume que la excavación

es un pit semiesférico situado sobre la superficie de un dominio elástico semi-infinito y

sometido a gravedad. Este problema es resuelto usando dos métodos semianalı́ticos, donde

el segundo método es una mejora del primero. En la segunda etapa, se trata el caso de una

excavación de geometrı́a axisimétrica arbitraria mediante una técnica de acoplamiento, la

cual emplea el segundo método semi-analı́tico para calcular una aproximación del operador

Dirichlet-to-Neumann (DtN) sobre una frontera artificial semi-esférica. El operador DtN

provee las condiciones de borde exactas que completan el problema matemático planteado

en el dominio computacional existente entre la excavación y la frontera artificial, el cual es

entonces resuelto mediante el método de los elementos finitos (FEM). Se presentan resul-

tados numéricos para demostrar la eficiencia y precisión de la metodologı́a propuesta.

xii
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1. INTRODUCTION

Many productive activities involve large scale excavation works. Typical examples

are the exploitation of mineral resources, hydrocarbons, or the construction of civil works.

From an operational point of view, the stability of excavations represents a crucial issue.

If an excavation has not been properly designed, particular zones may become unstable,

resulting in undesired events such as rock-falls or slides, which could put at risk the safety

of workers, equipment, infrastructure, or cause economic losses. Hence the need for pre-

dictive tools capable of determining those areas of the excavation that may be in risk of

collapse, in order to take the necessary measures in advance. Previous to any excavation

work, the geological structure of the rock mass is subjected to an initial state of stress of

gravitational, tectonic, hydraulic or residual origin. When a large scale excavation takes

place, the initial state of stress is modified, both on the new surfaces created by the exca-

vation and in the surrounding area. The new state of stress may give rise to instabilities,

particularly if certain areas of the excavation undergo high-stress concentration. A dis-

placement field is also generated in the excavation as a consequence of the modified state

of stress. Therefore, reliable and opportune information about stresses and displacements

in an excavation would make possible to detect beforehand the areas in potential risk of

failure.

Numerical methods are a common and powerful tool to compute the stresses and dis-

placements around structures in a rock mass, such an excavation. Among them, one of

the most widely used is the finite element method (FEM), mainly due to its advantages

in treating complex geometries and material properties. Nevertheless, the FEM applied to

problems in geomechanics presents a computational drawback that needs to be overcome.

As the whole rock mass around an excavation is of infinitely large size, it is not possible

in practice to cover the entire region with a finite element mesh. This drawback is often

remedied by performing the finite element analysis only within a finite region of rock mass

near the structure under study. This region is bounded by artificial boundaries, which nor-

mally consist of line segments or planes, depending on whether the study is two or three
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dimensional, respectively. Some authors that have adopted this approach in underground

mining are (Kulhawy, 1974), (Huttelmaier & Glockner, 1985) and (Ou, Chiou, & Wu,

1996). It has also been applied by (Griffiths & Lane, 1999) to slope stability in open pits.

However, this approach is not exempt from limitations. As it was established in (Kulhawy,

1974), the artificial boundaries need to be located far away enough from the structure in

order to achieve an acceptable accuracy. Hence, it is necessary to consider a sufficiently

large computational domain, which will require a large number of points in order to be

discretized, leading to an increasing amount in the required computational resources. This

is a essential point, because the chosen boundary conditions strongly affect the numerical

solution obtained. Nevertheless, it often receives little attention in related literature. What

is usually done is to assume that either all displacements are zero, or tangent stresses and

normal displacements are zero (cf. (Ou et al., 1996; Griffiths & Lane, 1999)). Other ap-

proximations suppose spring-like behaviours at boundaries (cf. (Huttelmaier & Glockner,

1985)). However, no mathematical justification of these boundary conditions is given.

In this thesis, we propose an accurate and efficient methodology to compute stresses

and displacements around an excavation, whose main strength is the effective and efficient

numerical treatment of the unbounded surrounding medium, when compared with the usual

approach considered by standard commercial software to perform the same calculations.

The methodology uses exact artificial boundary conditions in semi-infinite domains, which

allow us to considerably minimize the size of the computational domain to be meshed

and at the same time, to avoid the need of using spurious boundary conditions, resulting

in an important reduction of the required computational resources. In order to demon-

strate the efficiency and effectiveness of the proposed methodology, a simplified problem

is considered, where the unbounded rock mass is assumed to be an elastic, isotropic and

homogeneous semi-infinite medium, and the excavation shape is supposed axisymmetric.

By using spherical coordinates, the partial differential equations of elastostatics are ana-

lytically solved and exact boundary conditions are determined in order to be prescribed

on an artificial half-spherical boundary. Then a finite element analysis of stresses can be

performed inside the computational domain lying between the structure and the artificial
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boundary, where more complex characterizations of the rock mass could be assumed. As a

first stage of this study, we consider a hemispherical pit in the surface of an elastic, homo-

geneous and isotropic half-space subject to gravitational stress. Both the infinite flat surface

of the half-space and the pit are assumed to be traction-free boundaries. The complete so-

lution of this problem is obtained in a semi-analytical way. Analogous problems have been

approached for several authors in contexts different from geomechanics or mining. The first

of them was (R. Eubanks, 1953), who studied analytically the stresses and displacements

of an elastic half-space with a free boundary and a hemispherical cavity, induced due to a

constant pressure, parallel to the flat surface of the solid. Subsequently, (Fujita, Sadayasu,

Tsuchida, & Nakahara, 1978) improved some of the expressions given by Eubanks and pro-

vided a complete analytical solution. In a later work, (Fujita, Tsuchida, & Nakahara, 1982)

treated the case when the external force is no longer a homogeneous pressure, but a di-

rected force (simulating the traction or compression to which a metallic piece is subjected).

The same problem was solved by (Ovsyannikov & Starikov, 1987), who proposed some

variations based on singular solutions, in order to increase the efficiency of the solution

method. In more recent works, most of the attention has been concentrated on stresses on

hemispherical cavities when in addition there is corrosion in the metal (see (Cerit, Genel,

& Eksi, 2009; Turnbull, Horner, & Connolly, 2009)). All of these articles do not deal with

the volume forces due to the weight of the solid medium, which are essential in an elastic

model of the infinite rock mass. Eubanks employs the so-called Boussinesq potentials to

obtain an analytical solution as infinite series satisfying traction-free boundary conditions

on the plane surface and decaying conditions at infinity. However, imposing boundary con-

ditions on the surface of the pit leads to an infinite set of simultaneous linear equations for

the coefficients of the series, which cannot be solved exactly. After some unwieldy alge-

braic manipulation, these equations are solved numerically, yielding approximate values

for a finite number of coefficients. Hence, the solution given in (R. A. Eubanks, 1954) is

actually not fully analytical but semi-analytical, and similar phenomena occur in (Fujita et

al., 1978, 1982) and (Givoli & Vigdergauz, 1993). In addition, the numerical evaluation

of the solution in (R. A. Eubanks, 1954) involves computing the sum of double series that
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show a slow convergence at the surface of the pit, which is computationally expensive and

further complicates obtaining explicitly the solution.

In the second stage of this study we deal with an excavation of arbitrary axisymmetric

geometry placed on the surface of a half-space, assumed again elastic, isotropic and homo-

geneous. The boundary-value problem (BVP) that describes the stresses and displacements

around the excavation is formulated on an unbounded domain. Different mathematical and

numerical approaches have been devised to solve BVPs in unbounded domains. According

to (Givoli, 1992, 1999b), they are classified into four main categories: boundary integral

methods, infinite element methods, absorbing layer methods, and artificial boundary con-

dition (ABC) methods. The advantages and limitations of each one of them are discussed

in (Givoli, 1992). The present work is concerned with the latter category, also referred to

as artificial boundary method (H. D. Han & Wu, 2013b, 2013a).

In the standard ABC method, the original unbounded domain is truncated by introduc-

ing an artificial boundary enclosing the particular area of interest, thus defining a bounded

computational domain, where standard numerical methods may be used to solve the BVP.

This is possible on the condition that suitable boundary conditions are set on the artificial

boundary (the ABCs), which are supposed to properly represent the unbounded residual

domain that was eliminated. In general, many different choices of ABCs are possible.

We focus herein on ABCs based on the Dirichlet-to-Neumann (DtN) map and their use in

combination with finite elements, which results in the Dirichlet-to-Neumann finite element

method (DtN FEM) (Givoli, 1999b, 1999a). The main advantage of this approach is that the

DtN map provides exact ABCs, in such a way that the resulting BVP in the computational

domain is mathematically equivalent to the original unbounded BVP. Therefore, the use of

the FEM to solve the former results in highly accurate and robust numerical schemes.

The DtN FEM method has been mainly developed for BVPs formulated in exterior do-

mains, i.e. the complement of a compact set. It is customary to assume a circular or spher-

ical artificial boundary, in order to be able to apply the method of separation of variables to

solve the resulting BVP in the residual domain. Thus, an analytical solution in series form
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is obtained, with coefficients that are computed exactly. From it, an explicit closed-form

expression for the DtN map is deduced, given as an exact nonlocal relation between the

solution and its normal derivative on the artificial boundary, which is used as a boundary

condition that completes the mathematical formulation of the BVP in the computational

domain, making it available for numerical solution by finite elements. This procedure

has been extensively used to solve wave BVPs, namely the Helmholtz equation (Keller &

Givoli, 1989), (Grote & Keller, 1995b), (Deakin & Rasmussen, 2001), the time-dependent

wave equation (Grote & Keller, 1995a, 1996; Aladl, Deakin, & Rasmussen, 2002), and

the elastodynamic equation, both in frequency domain (Givoli & Keller, 1990; Harari &

Shohet, 1998) and time domain (Grote & Keller, 2000; Grote, 2000; Gächter & Grote,

2003). In this context, ABCs are also called non-reflecting boundary conditions, since they

are aimed at preventing any spurious reflection of waves from the artificial boundary. The

DtN FEM method has also been successfully applied to linear elliptic BVPs in exterior do-

mains, mainly the Laplace equation and linear elastostatics (H. D. Han & Wu, 1985; Givoli

& Keller, 1989; H. D. Han & Wu, 1992; H. D. Han & Zheng, 2005).

A particularly important field of application of unbounded BVPs is geophysics, where

the ground is usually modelled as an unbounded elastic domain. A typical example is

the problem of determining deformations and stresses around structures of interest in the

ground, such as an excavation in mining or civil engineering. Even though an exterior

domain may be used as a model of the ground in a first approximation, a more realistic

model needs to take into account the ground surface, which is customarily assumed, for

simplicity, to be a plane boundary that extends to infinity, where a traction-free (Neumann)

boundary condition holds. The resulting unbounded domain is called semi-infinite. To

apply a DtN FEM approach to such a domain, a natural approach would be to consider

as artificial boundary a semi-circle or semi-sphere surrounding the structure of interest, in

analogy to the exterior case. This procedure works properly for some standard 2D scalar

BVPs, such as the Laplace equation (Givoli, 1992) and the Helmholtz equation (Givoli &

Vigdergauz, 1993) with Dirichlet or Neumann boundary conditions holding on the infinite

plane boundary, since in these cases the BVP in the residual semi-infinite domain can be



6

solved by separation of variables. However, the same procedure cannot be directly applied

to linear elastostatics in semi-infinite domains, since in this case the method of separation

of variables fails in solving the BVP in the residual domain in a fully analytical way, and

thus it is not possible to get an explicit closed-form expression for the DtN map. Givoli and

Vigdergauz (Givoli & Vigdergauz, 1993) proposed an alternative to deal with this draw-

back in the 2D case. They considered a semi-circular artificial boundary and solved the

BVP in the semi-infinite residual domain using complex analysis techniques, resulting in a

solution in series form, whose coefficients can only be computed in an approximated way.

A different approach was used by Han, Bao and Wang (H. Han, Bao, & Wang, 1997), who

employed the direct method of lines with semi-discretisation to solve the BVP in the resid-

ual domain, obtaining an approximation of the DtN map. No previous work on DtN FEM

procedures for 3D elastostatics in semi-infinite domains was found in the literature.

In the last chapter, we present a DtN FEM for a semi-infinite elastic domain in 3D. A

geometrical perturbation on the plane surface representing the structure of interest is con-

sidered, which is assumed to be axisymmetric about the vertical axis. Assuming further

that the elastic domain is only under axisymmetric loading, the whole problem is treated

as a BVP of axisymmetric elastostatics. The semi-infinite domain is truncated by intro-

ducing a semi-spherical artificial boundary surrounding the perturbation. Then a standard

FEM discretisation in the resulting computational domain with exact ABCs in the artificial

boundary is established at a theoretical level. As it is not possible to obtain a fully explicit

closed-form expression for the DtN map, we proceed in a similar way to (Givoli & Vigder-

gauz, 1993), solving the BVP in the residual domain just for particular Dirichlet data on

the artificial boundary, in order to approximate those boundary integral terms involving the

DtN map that occur in the finite element formulation. The BVP in the residual domain for

each required case is solved by a semi-analytical method, analogous to that presented in

Chapter IV. By applying separation of variables, a general analytical solution is calculated,

expressed as a series with unknown coefficients, which are approximated by minimising

a quadratic energy functional appropriately chosen. The minimisation yields a symmetric

and positive definite linear system of equations for a finite number of coefficients, which is
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efficiently solved by exploiting its particular block structure, in such a way that the coeffi-

cients are computed by mere forward and backward substitutions. This procedure allows

an approximate but effective coupling of the exact nonlocal ABCs provided by the DtN

map with the FEM scheme. The method is validated by solving a model problem whose

exact solution is available. The relative error between the numerical and the exact solution

is analysed for different mesh sizes.
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2. GENERAL MODEL

In this chapter, the mathematical model describing the elastic deformations and stresses

in a half-space with a hemispherical pit is formulated.

2.1. Mathematical Model

Let us consider the lower half-space with a geometrical perturbation on its plane sur-

face which is local, i.e. it is restricted to a bounded region. This type of domain is often-

times referred to as a locally perturbed half-space. In addition, the perturbation is assumed

to be rotationally symmetric about a vertical axis, in such a way that the whole semi-infinite

domain is actually an axisymmetric solid (or solid of revolution). Therefore, its geometry

is completely described by its generating cross section, which consists in a 2D domain

that we denote by Ω. The boundary of Ω consists of three parts: A vertical boundary of

axisymmetry coinciding with the axis of revolution, denoted by Γs, a horizontal unper-

turbed boundary coinciding with the infinite plane surface of the half-space, denoted by

Γ∞, and a perturbed bounded boundary which is assumed piecewise smooth, denoted by

Γh (see Figure 2.1). The domain Ω will be described with the aid of axisymmetric cylindri-

cal coordinates (ρ, z) or spherical coordinates (r, φ) as appropriate, with the origin placed

at the point of intersection between the axis of revolution and the plane boundary of the

unperturbed half-space. Variables ρ, z, r and φ are linked by the relations

r2 = ρ2 + z2, φ = arctan
z

ρ
, ρ = r sinφ, z = r cosφ.

The unit vectors associated with variables ρ, z, r and φ are denoted respectively by ρ̂, ẑ, r̂

and φ̂. They are linked by the relations

ρ̂ = r̂ sinφ+ φ̂ cosφ, ẑ = r̂ cosφ− φ̂ sinφ, (2.1a)

r̂ = ρ̂ sinφ+ ẑ cosφ, φ̂ = ρ̂ cosφ− ẑ sinφ. (2.1b)

Thus an arbitrary position in Ω is expressed either as (ρ, z) or (r, φ), depending on the

chosen system of coordinates. Moreover, we denote by θ the azimuthal angle, which is not
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necessary to describe geometrically the 2D domain Ω, but it is required in the axisymmetric

elastostatic model.

We assume that Ω is occupied by an isotropic, homogeneous, linear elastic medium.

Under the condition that the 3D axisymmetric domain is only subject to axisymmetric load-

ing, the resulting elastic deformations will keep the axisymmetric nature of the problem.

A generic displacement field defined in Ω is denoted by u and its associated stress tensor

is denoted by σ = σ(u). By virtue of the axisymmetry, u has only components uρ and

uz (resp. ur and uφ), whereas σ has normal components σρ and σz (resp. σr and σφ), a

shear component σρz (resp. σrφ), and an additional non-vanishing normal component σθ

(see (Sadd, 2005) for details). It is assumed that σ is given in terms of u by the isotropic

Hooke’s law, that is,

σ(u) = λ (∇ · u) I + µ(∇u+∇uT ), (2.2)

where λ, µ > 0 are the Lamé constants of the elastic solid and I is the 3×3 identity matrix.

We assume the downward gravitational force to be the only body force acting on the solid

medium. The elastic equilibrium is thus governed by Navier’s equation:

−∇ · σ(u) = %gẑ, (2.3)

or written in terms of the displacements

(λ+ µ)∇(∇ · u) + µ∆u = −%gẑ, (2.4)

where g denotes the acceleration of gravity and ẑ stands for the unit vector in the direction

of positive z-axis. The right-hand side of (2.3) takes into account the effect of the gravity

force per unit volume of solid. It has constant magnitude %g and acts in the direction of

−ẑ everywhere in R3
−. As the half-space is unbounded in both horizontal directions x

and y, the displacement field due to the gravity force, which we shall call ug, must be in

the direction of −ẑ. On the other hand, it is assumed that the infinite plane surface of

the half-space, defined by z = 0, is traction-free, which is mathematically expressed by
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homogeneous Neumann boundary conditions:

σ(u)ẑ = 0. (2.5)

x

y

z

Γ∞

Γh

Ω

h

φ
Γ∞

Γh

Ω

x

z

r

r ≥ h
π
2 ≤ φ ≤ π

0 ≤ θ ≤ 2π

Γs

Figure 2.1. Geometrical model of the elastoestatic problem.

hemispherical boundary, by Γ∞ its infinite horizontal boundary, and by Γs its vertical

boundary. These sets are defined in terms of (r, φ) as follows:

Ω = {(r, φ) : h < r <∞, π/2 < φ < π}, (2.6a)

Γh = {(r, φ) : r = h, π/2 < φ < π}, (2.6b)

Γ∞ = {(r, φ) : r ≥ h, φ = π/2}, (2.6c)

Γs = {(r, φ) : r ≥ h, φ = π}. (2.6d)

The stress (see Figure 2.2) and the displacements are related through the Hooke’s law,

which in this isotropic case is σij = λ∇ · uδij + 2µεij .The Hooke’s law (2.2) is written by

components as

σρ(u) = (λ+ 2µ)
∂uρ
∂ρ

+ λ
uρ
ρ

+ λ
∂uz
∂z

, (2.7a)

σθ(u) = λ
∂uρ
∂ρ

+ (λ+ 2µ)
uρ
ρ

+ λ
∂uz
∂z

, (2.7b)

σz(u) = λ
∂uρ
∂ρ

+ λ
uρ
ρ

+ (λ+ 2µ)
∂uz
∂z

, (2.7c)
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σ

r

θ

φ

r

σrθ

σrφ

σφσφθ

σθ

x

y

z

Figure 2.2. Stress components in spherical coordinates.

σρz(u) = µ
(∂uρ
∂z

+
∂uz
∂ρ

)
, (2.7d)

in cylindrical coordinates and as

σr(u) = (λ+ 2µ)
∂ur
∂r

+ 2λ
ur
r

+
λ

r

(∂uφ
∂φ

+ cotφuφ

)
, (2.8a)

σφ(u) = λ
∂ur
∂r

+ 2(λ+ µ)
ur
r

+
1

r

(
(λ+ 2µ)

∂uφ
∂φ

+ λ cotφuφ

)
, (2.8b)

σθ(u) = λ
∂ur
∂r

+ 2(λ+ µ)
ur
r

+
1

r

(
λ
∂uφ
∂φ

+ (λ+ 2µ) cotφuφ

)
, (2.8c)

σrφ(u) = µ
(1

r

∂ur
∂φ

+
∂uφ
∂r
− uφ

r

)
, (2.8d)

in spherical coordinates (see (Sadd, 2005) for details).
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The elastic equilibrium of the perturbed domain Ω subject to gravity is governed by

Navier’s equation, given in (2.3). On the other hand, Γ∞ and Γh are both assumed to be

traction-free, which means that homogeneous Neumann boundary conditions as those given

in (2.5) hold on both boundaries, with ẑ substituted by −r̂ in the latter case. In addition,

the vertical boundary Γs is assumed to be free of shear traction and constrained against

normal displacement (otherwise the axisymmetry would be destroyed). Furthermore, from

physical intuition it is reasonable to assume that the effect of the hemispherical pit on

the displacement field in Ω is essentially local, that is, at large distances from the origin

the elastic half-space deforms as if there is no geometrical perturbation. We thus assume

that, as the distance from the pit tends to infinity, the displacement field u approaches

asymptotically ug, i.e., the displacement field in absence of perturbation. An important

related issue is the rate at which this asymptotic approach at infinity takes place, which

is not a simple matter. It rather concerns questions of existence and uniqueness, which

are beyond the scope of this work. We simply assume that when r tends to infinity, the

difference in norm between u and ug decays to zero as O(1/r), which is sufficient for our

purposes. Taking into account all these assumptions, u is obtained as a solution of the

boundary-value problem: Find u : Ω→ R2 such that

∇ · σ(u) = −ρgẑ in Ω, (2.9a)

σ(u)ẑ = 0 on Γ∞, (2.9b)

σ(u)r̂ = 0 on Γh, (2.9c)

σ(u)φ̂ · r̂ = u · φ̂ = 0 on Γs, (2.9d)

|u− ug| = O
(1

r

)
as r →∞, (2.9e)

where |·| stands for the Euclidean norm. We make the change of variables v = u− %gz2

2(λ+2µ)
ẑ

in order to achieve a homogeneous equation. The displacement field u is then

u = ug + v, ug(x, y, z) = − %gz2

2(λ+ 2µ)
ẑ. (2.10)
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The Navier equation in this new displacement field v is

(λ+ µ)∇(∇ · v) + µ∆v = 0. (2.11)

The problem is then: Find v : Ω→ R2 such that

∇ · σ(v) = 0 in Ω, (2.12a)

σ(v)ẑ = 0 on Γ∞, (2.12b)

σ(v)r̂ = f on Γh, (2.12c)

σ(v)φ̂ · r̂ = v · φ̂ = 0 on Γs, (2.12d)

|v| = O
(1

r

)
as r →∞, (2.12e)

where f : Γh → R2 is a vector function defined by its components in r and φ as

f(φ) = fr(φ) r̂ + fφ(φ) φ̂,
π

2
≤ φ ≤ π, (2.13)

with

fr(φ) = %gh

(
ν + (1− 2ν) cos2φ

)
cosφ

1− ν , (2.14a)

fφ(φ) = −%gh (1− 2ν) cos2φ sinφ

1− ν , (2.14b)

The boundary-value problem (2.12) has certain advantages over the original problem, such

as a homogeneous Navier’s equation (2.12a) and a solution decaying to zero at infinity

(2.12e). Hence, in order to determine the displacement field u, we first solve (2.12) to

obtain the displacement field v and then we calculate u from (2.10), given that an explicit

expression for ug is available.

2.1.1. Papkovich-Neuber’s decomposition

It should be noted that only two independent elastic constants are needed to describe

the behaviour of isotropic materials. The relationships between elastic constants E, λ, µ

and ν are provided in Table 2.1.
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Table 2.1. Relationship between the different constants that characterise a
material.

(λ, µ) (E, µ) (λ, ν) (µ, ν) (E, ν)

E µ
3λ+ 2µ

λ+ µ
E

λ(1 + ν)(1− 2ν)

ν
2µ(1 + ν) E

λ λ µ
E − 2µ

3µ− E λ
2µν

1− 2ν

Eν

(1 + ν)(1− 2ν)

µ µ µ λ
1− 2ν

2ν
µ

E

2(1 + ν)

ν
λ

2(λ+ µ)

E

2µ
− 1 ν ν ν

We can use the Helmholtz decomposition, which states that any sufficiently continuous

vector field can be represented as the sum of the gradient of a scalar potential ϕ and the curl

of a vector potential φ, that is, u = ∇ϕ+∇×φ. The gradient term in the decomposition

has a zero curl and is referred to as the irrotational part, while the curl term has a zero

divergence and is called solenoidal. Note that this representation specifies three displace-

ment components in terms of four potential components, and furthermore the divergence

of φ is arbitrary. In order to address these problems, it is common to choose φ with zero

divergence, i.e.,∇ · φ = 0.

Based on the Helmholtz’s decomposition, we can define ϕ such that∇ · u = ∆ϕ, so

∆u+
1

(1− 2ν)
∇(∆ϕ) = −F

µ
, (2.15)
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and arranging in a suitable way,

∆

(
u+

1

(1− 2ν)
∇ϕ
)

= −F
µ
. (2.16)

We define the vectorial potential such that A =

(
2µu+

2µ

(1− 2ν)
∇ϕ
)

, so for A =

[Ar Aθ Az]
T we have the following relations

∆A = −2F and ∇ ·A =
4µ(1− ν)

(1− 2ν)
∆ϕ. (2.17)

The second relation follows from∇ · ∇ϕ = ∆ϕ, and by definition∇ · u = ∆ϕ.

From vectorial calculus we know that for any vectorial field F (·) and a constant vector

R the following relation holds,

∆(R · F ) = R ·∆F + 2(∇ · F ).

In particular we have,

∆(R ·A) = R ·∆A+ 2(∇ ·A), (2.18)

which is the same as,

∇ ·A =
1

2
(∆(R ·A) + 2(R · f)) , (2.19)

and this is equivalent to

4µ(1− ν)

(1− 2ν)
∆ϕ =

1

2
(∆(R ·A) + 2(R · F )) , (2.20)

which implies

∆

(
4µ(1− ν)

(1− 2ν)
ϕ− 1

2
(R ·A)

)
= R · F . (2.21)

We introduce the scalar potential B =

(
2µ

(1− 2ν)
ϕ− (R ·A)

4(1− ν)

)
in sustitution of ϕ,

which satisfies

∆B =
R · F

2(1− ν)
,

in our case we have F = 0, which means the potentials satisfy

∆A = 0, ∆B = 0. (2.22)
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Moreover, in this axisymmetric case Ar = Aθ = 0, Az = Az(r, z) and B = B(r, z), where

Az, B are commonly called the Boussinesq potentials. If we take the definitions ofA y B,

it holds that

2µu = A−∇
(
B +

R ·A
4(1− ν)

)
. (2.23)

If we use the decomposition of Papkovich-Neuber, we can find the solution of (2.4) through

the scalar potentials B(r, φ) and Az(r, φ), which are related with v by means of the expres-

sion

2µv = ∇(B + zAz)− 4(1− ν)Azẑ, (2.24)

where both potentials are harmonic functions, i.e., ∆B = ∆Az = 0, and v must satisfy the

boundary conditions. The completeness of this representation was shown by (R. Eubanks

& Sternberg, 1956), and thus all elasticity solutions are representable by this scheme. The

solution to Navier’s equation in Ω is sought with the aid of the so-called Boussinesq po-

tentials, which are a particular case of the more general Papkovich-Neuber (or Boussinesq-

Papkovich) representation (cf. (Amenzade, 1979; Sadd, 2005)). According to (R. A. Eu-

banks, 1954), v is defined through the following relation

2µv = ∇(Φ + zΨ)− 4(1− ν)Ψ k̂, (2.25)

where Φ and Ψ are the Boussinesq potentials, which are harmonic functions thanks to the

fact that Navier’s equation (2.12a) is homogeneous. Otherwise, Φ and Ψ would satisfy the

Poisson equation, with nonzero right-hand sides. Expressing (2.25) by its components in r

and φ yields

2µvr(r, φ) =
∂Φ

∂r
(r, φ) + r cosφ

∂Ψ

∂r
(r, φ)− (3− 4ν) cosφΨ(r, φ), (2.26a)

2µvφ(r, φ) =
1

r

∂Φ

∂φ
(r, φ) + cosφ

∂Ψ

∂φ
(r, φ) + (3− 4ν) sinφΨ(r, φ). (2.26b)

In order to calculate a solution of (2.12a), it becomes necessary to solve the Laplace equa-

tion in Ω for Φ and Ψ. Prior to this, we analyse in more detail the decaying condition at

infinity for v. By replacing (2.25) in (2.12e), we infer that Φ and Ψ have to satisfy certain

asymptotic behaviours when r tends to infinity. Specifically, Ψ has to decay to zero as
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O(1/r). It is also required that the term∇(zΨ) appearing in (2.25) decreases to zero at the

same rate. We also need that ∇Φ decays to zero as O(1/r), which is a weaker condition

than the one required for Ψ. Therefore, Ψ is sought as a solution of

∆Ψ = 0 in Ω, (2.27a)

Ψ = O
(1

r

)
as r →∞, (2.27b)

and Φ is sought as a solution of

∆Φ = 0 in Ω, (2.28a)

|∇Φ| = O
(1

r

)
as r →∞, (2.28b)

where ∆ stands for the Laplacian. Let us first determine Ψ. Expressing Ψ = Ψ(r, φ), the

Laplace equation in axisymmetric spherical coordinates is given by

∆Ψ(r, φ) =
1

r2

∂

∂r

(
r2∂Ψ(r, φ)

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂Ψ(r, φ)

∂φ

)
= 0. (2.29)

If we apply standard separation of variables in r and φ to (2.29) (cf. (Arfken & Weber,

2001)), and we discard those solutions that are unbounded in Ω, we obtain that for each

integer n ≥ 0, the function Ψn defined as

Ψn(r, φ) =
Pn(cosφ)

rn+1
, (2.30)

is a solution of (2.27a), where Pn(·) denotes the Legendre polynomial of order n (see

Appendix 6.1). The general solution of (2.27a) is then expressed as an infinite linear com-

bination of functions Ψn. By virtue of (2.30) it is immediate that

Ψn(r, φ) = O
( 1

rn+1

)
as r →∞,

which means that when r increases, the first term of the infinite linear combination (the one

for n = 0) dominates over the rest of the terms, and as this term behaves asymptotically as

O(1/r), the linear combination of all terms behaves asymptotically the same way. There-

fore, the obtained general solution of (2.27a) also fulfils the decaying condition (2.27b). In
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addition, if we compute the terms∇(zΨn) for each n ≥ 0, we verify that

|∇(zΨn(r, φ))| = O
( 1

rn+1

)
as r →∞,

and an analogous reasoning allows us to state that when r tends to infinity, the term∇(zΨ)

decreases asymptotically in norm asO(1/r). Hence, this term does not affect the fulfilment

of (2.12e). Let us now determine Φ. Proceeding analogously as for Ψ, we obtain that the

functions Φn defined by

Φn(r, φ) =
Pn(cosφ)

rn+1
, (2.31)

satisfy (2.28a) for each integer n ≥ 0. As done in (R. A. Eubanks, 1954), it seems rea-

sonable to propose an infinite linear combination of functions Φn as the general solution of

(2.28a), in analogy to the solution established for (2.27a). Nevertheless, according to the

authors’ opinion such a solution is not general enough, owing to the decaying condition at

infinity (2.28b) imposed on Φ, which differs from that imposed on Ψ. If we calculate the

gradients of functions Φn defined in (2.31) and we take their norms, it is easy to see that

|∇Φn(r, φ)| = O
( 1

rn+2

)
as r →∞.

Consequently, if we express Φ as a linear combination of functions Φn defined in (2.31),

and if we study the asymptotic behaviour of |∇Φ| as r increases, we obtain that the first

term, which is again the dominating one, behaves asymptotically as O(1/r2). Thus, when

r tends to infinity |∇Φ| decreases to zero as O(1/r2). This means that the solution Φ, just

expressed as a linear combination of functions Φn, satisfies a more restrictive condition

than (2.28b), so it is not general enough to be the sought solution of (2.28). In order to

achieve the required generality in Φ, we add a new component to the set of functions Φn,

which gives rise to an asymptotic behaviour of order O(1/r) in |∇Φ| as r tends to infinity.

This component, associated for convenience with the index n = −1, corresponds to the

following logarithmic potential

Φ−1(r, φ) = ln(r − r cosφ). (2.32)
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This potential arises when solving the Boussinesq’s problem, i.e., the one of a concentrated

force acting normal to the free surface of an elastic half-space (cf. (Sadd, 2005)). It is also

known as the Boussinesq’s elementary solution of the second kind (cf. (Amenzade, 1979)).

It is straightforward to verify that Φ−1 is a solution of (2.29). In addition, the singularity of

the logarithm at zero in (2.32) does not cause problems of unboundedness, since all those

points such that cosφ = 1 (i.e. φ = 0) are not contained in the domain Ω. Moreover, if we

compute the gradient of Φ−1 and we take its norm, we arrive at

|∇Φ−1(r, φ)| = O
(1

r

)
as r →∞.

Hence, the sought solution to (2.28) corresponds to an infinite linear combination of func-

tions Φn including the case n = −1, since such a solution satisfies the right decaying

condition at infinity (2.28b).
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3. A SIMPLE SEMI-INFINITE GEOMETRY

In this chapter we want to find the displacements and the stresses in a semi-infinite

region. In order to do so, we use the Papkovich-Neuber decomposition technique and by

imposing different boundary conditions in the perturbation of the domain, we can obtain

an expression that allows us to evaluate the displacements and the stresses in any point of

our domain.

3.1. Series’s solution

In order to find the solution to (2.25) we note that Laplace’s equation in spherical

coordinates is

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin2 φ

∂2f

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂f

∂φ

)
. (3.1)

Let us consider the problem of finding solutions of the form f(r, φ) = g(r)h(φ). By

separation of variables, two differential equations result by imposing Laplace’s equation.

We use then g(r) = rn. Furthermore, the change of variables x = cosφ transforms this

equation into the Legendre differential equation

(1− x2)
∂2h(x)

∂x2
− 2x

∂h(x)

∂x
+ n(n+ 1)h(x) = 0, (3.2)

whose bounded solutions are the Legendre polynomials. We assume a bounded perturba-

tion, so at infinity, the expression for Az must decay, while the gradient for B must tend to

zero. Hence, we write in general the solutions in the form

Az(r, φ) =
∞∑
n=0

anr
−(n+1)Pn(cosφ),

B(r, φ) = b̃ ln(r − r cosφ) +
∞∑
n=0

bnr
−(n+1)Pn(cosφ). (3.3)
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In order to solve the problem, we replace (3.3) in (2.25). For the sake of convenience,

we omit henceforth the argument of the Legendre polynomials, since all of them are eval-

uated at cosφ unless otherwise is indicated. We thus obtain the following expressions for

the displacements

2µvr =
1

r
b̃+

∞∑
n=0

(
−(n+ 4− 4ν) cosφPn

rn+1
an −

(n+ 1)

rn+2
Pnbn

)
, (3.4)

2µvφ =
sinφ

r(1− cosφ)
b̃+

∞∑
n=0

(
sinφ((3− 4ν)Pn − cosφP ′n)

rn+1
an −

sinφP ′n
rn+2

bn

)
. (3.5)

We make the linear combination An = (2n + 1)an − (n + 4 − 4ν)bn−1 valid for

n = 0, 1, . . ., in order to simplify the calculation. In this axisymmetric model, it holds that

σφθ = σrθ = 0. The remaining stresses are

σr =
2(2(1− ν) + (2− ν) cosφ)

r2
A0 −

1

r2
b̃

+
∞∑
n=0

(
(n+ 1)((n+ 1)(n+ 4)− 2ν)Pn+1

rn+2
An +

(n+ 1)(n+ 2)

rn+3
Pnbn

)
, (3.6)

σφ =
(3− 2ν + (1− 2ν) cosφ) cosφ

(1− cosφ)r2
A0 −

cosφ

r2(1− cosφ)
b̃

+
∞∑
n=0

(
−(n+ 1)(n2 − n+ 1− 2ν)Pn+1 − (n− 3 + 4ν)P ′n

rn+2
An

+
P ′n+1 − (n+ 1)(n+ 2)Pn

rn+3
bn

)
, (3.7)

σθ = −4(1− ν) + (1− 2ν)(1− cosφ) cosφ

(1− cosφ)r2
A0 +

1

r2(1− cosφ)
b̃

+
∞∑
n=0

(−(1 + 2ν)(n+ 1)(2n+ 1)Pn+1 − (n− 3 + 4ν)P ′n
rn+2

An −
Pn+1

rn+3
bn

)
, (3.8)

σrφ =
(3− 2ν + (1− 2ν) cosφ)

(1− cosφ)r2
sinφA0 −

sinφ

r2(1− cosφ)
b̃

+
∞∑
n=0

(
(n2 + 2n− 1 + 2ν)P ′n+1

rn+2
sinφAn +

(n+ 2) sinφP ′n
rn+3

bn

)
. (3.9)
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3.2. First set of boundary conditions: free surface boundary condition on the surface

of the plane.

We know that any picewise continuous function can be written in the base of {P2n}∞n=0

in the range [−1, 0], and also we can make a descomposition in terms of the basis {sinφP ′2n}∞n=0

in the same range (see (Brown & Churchill, 2006)), where the orthonormalization constants

are

F (φ) =
∞∑
n=0

F2nP2n(cosφ), (3.10)

F2n = (4n+ 1)

∫ π

π/2

F (φ) sinφP2n(cosφ)dφ, (3.11)

G(φ) =
∞∑
n=0

G2n sinφP ′2n(cosφ), (3.12)

G2n =
(4n+ 1)

2n(2n+ 1)

∫ π

π/2

G(φ) sin2 φP ′2n(cosφ)dφ. (3.13)

In particular, Legendre’s polynomials of odd degree are expressed in terms of this basis,

for −1 ≤ x < 0 and k = 0, 1, . . ., as follows (see Appendix A)

P2k+1(x)=−(2k + 1)P2k(0)
∞∑
n=0

ω
(n)
k P2n(x), (3.14)

P ′2k+1(x)=−(2k + 1)P2k(0)
∞∑
n=0

ω
(n)
k P ′2n(x), (3.15)

ω
(n)
k =

(4n+ 1)P2n(0)

(2k + 1− 2n)(2k + 2 + 2n)
. (3.16)

In addition, by using the recurrence relations for Legendre polynomials, we find that

P ′2k+1(0) = (2k + 1)P2k(0), (3.17)

P2k+2(0) = −(2k + 1)

(2k + 2)
P2k(0), (3.18)

P2k(0) = (−1)k
(2k)!

22k(k!)2
. (3.19)
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In the specific case of F (x) = ln(1− x) we find that F0 = 2 ln 2− 1 and Fn = − P2n(0)
2n(2n+1)

.

Next, we impose the free surface boundary condition on the surface of the plane Γ∞

(r > h, φ = π/2), whose components are σφ(v) = σrφ(v) = 0. We use for this purpose

the relations P2n+1(0) = P ′2n(0) = 0 for all n, and define the coefficients αn = (n+ 1)2 −
2 + 2ν and βn = (n + 2)(n + 5)− 2ν. This yields the following contributions, which are

arranged according to the parity of the coefficients

A0 ⇒ σφ = 0, σrφ = 3−2ν
r2
,

A2n+1 ⇒ σφ = (2n+1)α2n

r2n+3 P2n(0), σrφ = 0,

A2n+2 ⇒ σφ = 0, σrφ = − (2n+1)(2n+3)α2n+2

(2n+2)r2n+4 P2n(0),

b̃ ⇒ σφ = 0, σrφ = − 1
r2
,

b2n ⇒ σφ = − (2n+1)2

r2n+3 P2n(0), σrφ = 0,

b2n+1 ⇒ σφ = 0, σrφ = (2n+1)(2n+3)
r2n+4 P2n(0).

(3.20)

It should be observed that the contributions to σφ are given by the odd terms of An

and the even terms of bn, while for σrφ the opposite happens. Motivated by this fact, we

take linear combinations of the coefficients, in order to continue fulfilling the boundary

conditions and to simplify further calculations. In particular, the displacements are

2µvr(r, φ) =

(−1 + 2ν

r
P0 −

4(1− ν)

r
P1

)
B̃

−
∞∑
n=0

(
(2n+ 1)(2n+ 2)(2n+ 5− 4ν)P2n+2

r2n+2
Ãn +

(2n+ 1)α2nP2n

r2n+2
Ãn

+
(2n+ 2)α2n+2P2n+1

r2n+3
B̃n +

(2n+2)(2n+3)(2n+6−4ν)P2n+3

r2n+3
B̃n

)
, (3.21)

2µvφ(r, φ) =
sinφ

r

(
2(1− ν)

(1− cosφ)
− (3− 4ν) cosφ

(1− cosφ)

)
B̃

− sinφ
∞∑
n=0

(
(2n+ 1)(2n− 2 + 4ν)P ′2n+2

r2n+2
Ãn +

α2nP
′
2n

r2n+2
Ãn

+
α2n+2P

′
2n+1

r2n+3
B̃n +

(2n+ 2)(2n− 1 + 4ν)P ′2n+3

r2n+3
B̃n

)
. (3.22)
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The stresses are

σr =

(
1− 2ν

r2
P0 +

2(2− ν)

r2
P1

)
B̃

+
∞∑
n=0

[
(2n+ 1)(2n+ 2)

r2n+3
(α2nP2n + β2nP2n+2) Ãn (3.23)

+
(2n+ 2)(2n+ 3)

r2n+4
(α2n+2P2n+1 + β2n+1P2n+3) B̃n

]
,

σφ =
(1− 2ν) cos2 φ

(1− cosφ)r2
B̃

+
∞∑
n=0

[
− 2(2n+ 1)

(
(n+ 1)α2n

r2n+3
P2n +

(n+ 1)(4n2 + 2n+ 1− 2ν)

r2n+3
P2n+2

+
(4n+ 3)(2n+ 2ν − 1)

r2n+3
P ′2n+1

)
Ãn

+

(
(5 + 4n)(2n+ 1 + 2ν)

r2n+4
P ′2n+2

−(2n+ 3)(2n+ 2)
α2n+2P2n+1 + (4n2 + 6n+ 3− 2ν)P2n+3

r2n+4

)
B̃n

]
, (3.24)

σθ =
(1− 2ν)(cos2 φ− cosφ− 1)

(1− cosφ)r2
B̃

+
∞∑
n=0

[
− (4n+ 3)

(
(1− 2ν)(2n+ 1)(2n+ 2)P2n+2

r2n+3
+

(2n− 1 + 2ν)P ′2n+1

r2n+3

)
Ãn

− (4n+ 5)

(
(1− 2ν)(2n+ 2)(2n+ 3)P2n+3

r2n+4
+

(2n+ 1 + 2ν)P ′2n+2

r2n+4

)
B̃n

]
, (3.25)

σrφ =
(1− 2ν) sinφ cosφ

(1− cosφ)r2
B̃

+
∞∑
n=0

[
sinφ

r2n+3
((2n+ 2)α2nP

′
2n + (2n+ 1)α2n+1P

′
2n+2)Ãn (3.26)

+
sinφ

r2n+4
α2n+2((2n+ 2)P ′2n+3 + (2n+ 3)P ′2n+1)B̃n

]
.
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3.3. Second set of boundary conditions: boundary conditions on the surface of the

semiesphere

Until now we have the solution for the following model

(P )



Find v(r, φ) =

 vr(r, φ)

vφ(r, φ)

 such that:

(λ+ µ)∇(∇ · v) + µ∆v = 0 in Ω, (3.27)

σφ(v) = σrφ(v) = 0 on Γ∞, (3.28)

v → 0 r →∞. (3.29)

We still have to impose the second set of boundary conditions on the boundary Γh (the

surface of the semiesphere). To achieve this we use various options (with respect to the

boundary conditions) in the following sections.

3.3.1. Traction-free boundary

In this case we set σr(u) = σrφ(u) = 0. We make a change of variables (which we

already use in (2.10)), and combining with (3.14) we get

σr(v) = %gh cosφ

(
ν + (1− 2ν) cos2 φ

1− ν

)
=

%gh

1− ν

(
1

5
(3− ν)P1 +

2

5
(1− 2ν)P3

)
= − %gh

5(1− ν)

∞∑
n=0

(
(3− ν)ω

(n)
0 − 3(1− 2ν)ω

(n)
1

)
P2n, (3.30)

σrφ(v) = −%gh cos2 φ sinφ

(
1− 2ν

1− ν

)
= −%gh sinφ

(
1− 2ν

1− ν

)
1

15

(
3P ′1 + 2P ′3

)
= −1

5
%gh

(
1− 2ν

1− ν

) ∞∑
n=0

(
ω

(n)
1 − ω(n)

0

)
sinφP ′2n. (3.31)
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We replace (3.23) in (3.30). Rearranging the terms appropiately and introducing a

Kronecker delta gives

∞∑
n=0

([
%gh

5(1− ν)

(
(3− ν)ω

(n)
0 − 3(1− 2ν)ω

(n)
1

)
+ α2n

(2n+ 1)(2n+ 2)

h2n+3
Ãn

+

(
1− 2ν

h2
δ

(n)
0 −

2(2− ν)

h2
ω

(n)
0

)
B̃

−
∞∑
k=0

(2k+1)(2k+3)P2k(0)

h2k+4

(
(2k+2)α2k+2ω

(n)
k − (2k+3)β2k+1ω

(n)
k+1

)
B̃k

]
P2n

+β2n
(2n+1)(2n+2)

h2n+3
ÃnP2n+2

)
=0. (3.32)

Defining the coefficients C̃ = B̃ and Ck = (2k + 1)(2k + 3)P2k(0)B̃k, the first boundary

condition at Γh becomes

α2n
(2n+ 1)(2n+ 2)

h2n+3
Ãn + β2n−2

2n(2n− 1)

h2n+1
Ãn−1 +

(
1− 2ν

h2
δ

(n)
0 −

2(2− ν)

h2
ω

(n)
0

)
C̃

+
∞∑
k=0

Ck
h2k+4

(
−(2k + 2)α2k+2ω

(n)
k + (2k + 3)β2k+1ω

(n)
k+1

)
+

%gh

5(1− ν)

(
(3− ν)ω

(n)
0 − 3(1− 2ν)ω

(n)
1

)
= 0. (3.33)

In the same way as we proceeded before, we substitute (3.26) in (3.31)

∞∑
n=0

([
%gh

1− 2ν

5(1− ν)

(
ω

(n)
1 − ω(n)

0

)
+

(1− 2ν)

h2

(
ω

(n)
0 +

(4n+ 1)

2n(2n+ 1)
P2n(0)

)
B̃

+
α2n(2n+ 2)

h2n+3
Ãn +

(2n+ 1)α2n+1

h2n+3
P ′2n+2Ãn

+
∞∑
k=0

(2k + 1)(2k + 3)α2k+2P2k(0)

h2k+4

(
ω

(n)
k+1− ω

(n)
k

)
B̃k

]
P ′2n

)
= 0. (3.34)
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The second boundary condition is

α2n
2n+ 2

h2n+3
Ãn + α2n−1

2n− 1

h2n+1
Ãn−1 +

1− 2ν

h2

(
ω

(n)
0 +

(4n+ 1)

2n(2n+ 1)
P2n(0)

)
C̃

+
∞∑
k=0

α2k+2

h2k+4

(
ω

(n)
k+1 − ω

(n)
k

)
Ck + %gh

1− 2ν

5(1− ν)

(
ω

(n)
1 − ω(n)

0

)
= 0. (3.35)

Resolution by a system of equations: Defining the coefficients A′n = Ãn

%gh2n+4 and

C ′n = Cn

%gh2n+5 , we can express the problem as the following system of equations α2n(2n+ 1)(2n+ 2)A′n + β2n−22n(2n− 1)A′n−1 = D1
n,

α2n(2n+ 2)A′n + α2n−1(2n− 1)A′n−1 = D2
n,

(3.36)

where

D1
n = C̃

(
2(2− ν)ω

(n)
0 − (1− 2ν)δ

(n)
0

)
+
∞∑
k=0

C ′k

(
(2k + 2)α2k+2ω

(n)
k

−(2k + 3)β2k+1ω
(n)
k+1

)
− (3− ν)ω

(n)
0 − 3(1− 2ν)ω

(n)
1

5(1− ν)
, (3.37)

D2
n = C̃(1− 2ν)

(
− (4n+ 1)

2n(2n+ 1)
P2n(0)− ω(n)

0

)
+
∞∑
k=0

C ′kα2k+2

(
ω

(n)
k − ω

(n)
k+1

)
− (1− 2ν)

5(1− ν)

(
ω

(n)
1 − ω(n)

0

)
. (3.38)

This is equivalent to the matrix system 2n(2n− 1)β2n−2 (2n+ 1)(2n+ 2)α2n

(2n− 1)α2n−1 (2n+ 2)α2n

 A′n−1

A′n

 =

 D1
n

D2
n

 , (3.39)
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whose determinant is ∆n = (2n−1)(2n+2)α2n(2nβ2n−2− (2n+1)α2n−1). The solutions

(A′n and A′n−1) for this system of equations are

A′n−1 =
(2n+ 2)α2n

∆n

(
− (2n+ 4− (4n+ 3)ν)ω

(n)
0

5(1− ν)
+

(1− 2ν)(2n+ 4)ω
(n)
1

5(1− ν)

+

[
(2n+ 5− 4ν(n+ 1))ω

(n)
0 + (1− 2ν)

(4n+ 1)

2n
P2n(0)

]
C̃

+
∞∑
k=0

[
α2k+2(2k−2n+1)ω

(n)
k +

(
α2k+2(2n+1)− β2k+1(2k + 3)

)
ω

(n)
k+1

]
C ′k

)
, (3.40)

A′n =
(2n−1)

∆n

((
(1−2ν)2nβ2n−2 + (3− ν)α2n−1

)
ω

(n)
0

5(1− ν)
− (1− 2ν)(2nβ2n−2+ 3α2n−1)ω

(n)
1

5(1− ν)

+

[
α2n−1

(
(1− 2ν)δ

(n)
0 − 2(2− ν)ω

(n)
0

)
−2nβ2n−2(1−2ν)

(
ω

(n)
0 +

(4n+ 1)

2n(2n+1)
P2n(0)

)]
C̃ ′

+
∞∑
k=0

[
α2k+2

(
2nβ2n−2 − (2k + 2)α2n−1

)
ω

(n)
k

+
(
(2k + 3)α2n−1β2k+1 − 2nβ2n−2α2k+2

)
ω

(n)
k+1

]
C ′k

)
. (3.41)
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By evaluating (3.40) at (n+ 1) and combining with (3.41), we obtain[
∆n(2n+ 4)α2n+2

(
(2n+ 7− 4ν(n+ 2))ω

(n+1)
0 + (1− 2ν)

(4n+ 5)

(2n+ 2)
P2n+2(0)

)
−∆n+1(2n− 1)

(
α2n−1

(
(1− 2ν)δ

(n)
0 − 2(2− ν)ω

(n)
0

)
−2nβ2n−2(1− 2ν)

(
ω

(n)
0 +

(4n+ 1)

2n(2n+ 1)
P2n(0)

))]
C̃ ′

+
∞∑
k=0

[
∆n(2n+ 4)α2n+2

[
α2k+2(2k − 2n− 1)ω

(n+1)
k

+
(
(2n+ 3)α2k+2 − (2k + 3)β2k+1

)
ω

(n+1)
k+1

]
−∆n+1(2n− 1)

[
α2k+2

(
2nβ2n−2 − (2k + 2)α2n−1

)
ω

(n)
k

+
(
(2k + 3)α2n−1β2k+1 − 2nα2k+2β2n−2

)
ω

(n)
k+1

] ]
C ′k

=
−1

5(1−ν)

[
(2n+ 4)α2n+2∆n

(
(1− 2ν)(2n+ 6)ω

(n+1)
1 − (2n+ 6− (4n+ 7)ν)ω

(n+1)
0

)
− (2n− 1)∆n+1

(
(1− 2ν)(2nβ2n−2+ 3α2n−1)ω

(n)
1

−((1− 2ν)2nβ2n−2 + (3− ν)α2n−1)ω
(n)
0

)]
. (3.42)

By truncating the infinite series in (3.42) at a finite order N , we get a linear system of

equations for coefficients C̃ ′, C ′0, C
′
1, . . . , C

′
N . Once we have solved this system, we can

obtain the solution to the displacements and stresses with the expressions (3.21) to (3.26).

3.3.2. Loaded boundary

In this case we take σr(v) = g1(cosφ) and σrφ(v) = g2(cosφ). We decompose these

functions in terms of the basis of Legendre polynomials, and call the associated coefficients

l2n and m2n, in the case that the basis is {P2n}∞n=0 or {sinφP ′2n}∞n=0.
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In the case of the first boundary condition (which involves g1), we have that(
1− 2ν

h2
P0 +

2(2− ν)

h2
P1

)
B̃ +

∞∑
n=0

{
(2n+ 1)(2n+ 2)

h2n+3
[α2nP2n + β2nP2n+2]Ãn

+
∞∑
k=0

(2k + 1)(2k + 3)P2k(0)

h2k+4

[
−α2k+2(2k + 2)ω

(n)
k + β2k+1(2k + 3)ω

(n)
k+1

]
P2nB̃k

}

=
∞∑
n=0

l2nP2n. (3.43)

Rearranging the terms appropiately, introducing a Kronecker delta, and defining the coef-

ficients C̃ = B̃ and Ck = (2k + 1)(2k + 3)P2k(0)B̃k, gives us

2n(2n− 1)

h2n+1
β2n−2Ãn−1 +

(2n+ 1)(2n+ 2)

h2n+3
α2nÃn +

1− 2ν

h2
δ

(n)
0 C̃ − 2(2− ν)ω0(n)

h2
C̃

+
∞∑
k=0

1

h2k+4

[
−α2k+2(2k + 2)ω

(n)
k + β2k+1(2k + 3)ω

(n)
k+1

]
Ck − l2n = 0 (3.44)

If we proceed in the same way as before, then the second boundary condition is

(2n−1)α2n−1

h2n+1
Ãn−1+

(2n+ 2)α2n

h2n+3
Ãn+

(1−2ν)

h2

(
ω

(n)
0 +

(4n+ 1)

2n(2n+ 1)
P2n(0)

)
C̃

+
∞∑
k=0

α2k+2

h2k+4

(
ω

(n)
k+1−ω

(n)
k

)
Ck −m2n = 0. (3.45)

Resolution by a system of equations We make the change of variables A′n = Ãn

h2n+3 ,

C ′n = Cn

h2n+4 and C̃ ′ = C̃
h2

. In order to find the stresses, we must solve the system of

equations generated by (3.44) and (3.45) α2n(2n+ 1)(2n+ 2)A′n + β2n−22n(2n− 1)A′n−1 = D1
n,

α2n(2n+ 2)A′n + α2n−1(2n− 1)A′n−1 = D2
n,

(3.46)
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where

D1
n = l2n − (1− 2ν)δ

(n)
0 C̃ ′ + 2(2− ν)ω

(n)
0 C̃ ′

+
∞∑
k=0

[
α2k+2(2k + 2)ω

(n)
k − β2k+1(2k + 3)ω

(n)
k+1

]
C ′k, (3.47)

D2
n = m2n − (1− 2ν)

(
ω

(n)
0 +

(4n+ 1)

2n(2n+ 1)
P2n

)
C̃ ′ −

∞∑
k=0

α2k+2

(
ω

(n)
k+1 − ω

(n)
k

)
C ′k.

(3.48)

Using matrix notation, this becomes 2n(2n− 1)β2n−2 (2n+ 1)(2n+ 2)α2n

(2n− 1)α2n−1 (2n+ 2)α2n

 A′n−1

A′n

 =

 D1
n

D2
n

 (3.49)

where the determinant is ∆n = (2n − 1)(2n + 2)α2n(2nβ2n−2 − (2n + 1)α2n−1). Using

this we can find the solutions A′n and A′n−1, which are given by

An−1 =
(2n+ 2)α2n

∆n

(
D1
n − (2n+ 1)D2

n

)
,

An =
(2n− 1)

∆n

(
−α2n−1D

1
n + 2nβ2n−2D

2
n

)
. (3.50)
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This is equivalent to

A′n−1 =
(2n+ 2)α2n

∆n

[
l2n − (2n+ 1)m2n

+

[
(2n+ 5− 4ν(n+ 1))ω

(n)
0 + (1− 2ν)

(4n+ 1)

2n
P2n(0)

]
C̃ ′

+
∞∑
k=0

[
α2k+2(2k− 2n+1)ω

(n)
k +

(
α2k+2(2n+1)−β2k+1(2k+3)

)
ω

(n)
k+1

]
C ′k

]
,

(3.51)

A′n =
(2n− 1)

∆n

[
− l2nα2n−1 + 2nm2nβ2n−2

+
[
α2n−1

(
(1− 2ν)δ

(n)
0 − 2(2− ν)ω

(n)
0

)
−2nβ2n−2(1− 2ν)

(
ω

(n)
0 +

(4n+ 1)

2n(2n+ 1)
P2n(0)

)]
C̃ ′

+
∞∑
k=0

[
α2k+2

(
2nβ2n−2 − (2k + 2)α2n−1

)
ω

(n)
k

+
(
(2k + 3)α2n−1β2k+1 − 2nα2k+2β2n−2

)
ω

(n)
k+1

]
C ′k

]
. (3.52)

Evaluating (3.51) at (n+ 1), we find that[
∆n

2n− 1
α2n+2

(
(2n+ 7− 4ν(n+ 2))ω

(n+1)
0 + (1− 2ν)

(4n+ 5)

(2n+ 2)
P2n+2(0)

)
− ∆n+1

2n+ 4

(
α2n−1

(
(1−2ν)δ

(n)
0 −2(2−ν)ω

(n)
0

)
−2nβ2n−2(1−2ν)

(
ω

(n)
0 +

(4n+ 1)

2n(2n+1)
P2n

))]
C̃ ′

+
∞∑
k=0

[
∆n

2n− 1
α2n+2

[
α2k+2(2k− 2n−1)ω

(n+1)
k +

(
(2n+3)α2k+2−(2k+3)β2k+1

)
ω

(n+1)
k+1

]

−∆n+1

2n+4

[
α2k+2

(
2nβ2n−2−(2k+2)α2n−1

)
ω

(n)
k +

(
(2k+3)α2n−1β2k+1−2nα2k+2β2n−2

)
ω

(n)
k+1

]]
C ′k

= − ∆n

2n− 1
α2n+2

(
l2n+2 − (2n+ 3)m2n+2

)
+

∆n+1

2n+ 4

(
l2nα2n−1 − 2nm2nβ2n−2

)
. (3.53)

By truncating the infinite series in (3.53) at a finite order N , we get a linear system of

equations for coefficients C̃ ′, C ′0, C
′
1, . . . , C

′
N . Once we have solved this system, we can

obtain the solution to the displacements and stresses with the expressions (3.21) to (3.26).
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3.3.3. Zero displacement

If we take u = 0, then the change of variables given in (2.10), becomes

2µvr(r, φ) = −
(

1− 2ν

2− 2ν

)
%gh2 cos3 φ,

2µvφ(r, φ) =

(
1− 2ν

2− 2ν

)
%gh2 sinφ cos2 φ. (3.54)

Due to linearity, it is natural to replace the boundary conditions on Γh by the simpler ones

2µvr = − cos3 φ and 2µvφ = sinφ cos2 φ, and once the problem is solved, the resulting

solution must be multiplied by the constant
(

1−2ν
2−2ν

)
%gh2. If we write these conditions in

terms of the Legendre basis, we obtain that

2µvr(r, φ) = −1

5
(3P1 + 2P3)

=
3

5

∞∑
n=0

(
ω

(n)
0 − ω(n)

1

)
P2n, (3.55)

2µvφ(r, φ) = sinφ
d

dφ

cos3 φ

3
= sinφ

d

dφ

(
1

5
(3P1 + 2P3)

)
= −sinφ

5

∞∑
n=0

(
ω

(n)
0 − ω(n)

1

)
P ′2n. (3.56)

Substituting (3.21) in (3.55),exchanging the summations, collecting the terms accord-

ing to the order of Legendre polynomials and introducing a Kronecker delta, we arrive

at

∞∑
n=0

([
3

5

(
ω

(n)
0 − ω(n)

1

)
+ α2n

(2n+ 1)

h2n+2
Ãn +

(
1− 2ν

h
δ

(n)
0 −

4(1− ν)

h
ω

(n)
0

)
B̃

−
∞∑
k=0

(2k + 1)P2k(0)

h2k+3

(
(2k + 2)α2k+2ω

(n)
k − (2k + 3)2(2k + 6− 4ν)ω

(n)
k+1

)
B̃k

]
P2n

+
(2n+ 1)(2n+ 2)(2n+ 5− 4ν)

h2n+2
ÃnP2n+2

)
= 0. (3.57)
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By using the orthogonality of the basis {P2n}∞n=0 in the range [−1, 0], this condition be-

comes

α2n
(2n+ 1)

h2n+2
Ãn+

2n(2n− 1)(2n+ 3− 4ν)

h2n
Ãn−1

−
∞∑
k=0

(2k + 1)P2k(0)

h2k+3

(
(2k + 2)α2k+2ω

(n)
k − (2k + 3)2(2k + 6− 4ν)ω

(n)
k+1

)
B̃k

+

(
1− 2ν

h
δ

(n)
0 −

4(1− ν)

h
ω

(n)
0

)
B̃ +

3

5

(
ω

(n)
0 − ω(n)

1

)
= 0. (3.58)

In the same way as we did before, we substitute (3.56) in (3.22), yielding

∞∑
n=1

([
α2n

h2n+2
Ãn +

(
(3− 4ν)

h
ω

(n)
0 −

(1− 2ν)(4n+ 1)P2n(0)

2n(2n+ 1)h

)
B̃

+
∞∑
k=0

(2k + 1)P2k(0)

h2k+3

(
(2k + 3)(2k − 1 + 4ν)ω

(n)
k+1 − α2k+2ω

(n)
k

)
B̃k

−1

5

(
ω

(n)
0 − ω(n)

1

)]
sinφP ′2n +

(2n+ 1)(2n− 2 + 4ν)

h2n+2
Ãn sinφP ′2n+2

)
= 0. (3.59)

By using the orthogonality of the basis {sinφP ′2n}∞n=1 in the range [−1, 0], the second

boundary condition becomes

α2n

h2n+2
Ãn +

(
(3− 4ν)

h
ω

(n)
0 −

(1− 2ν)(4n+ 1)P2n(0)

2n(2n+ 1)h

)
B̃

+
∞∑
k=0

(2k + 1)P2k(0)

h2k+3

(
(2k + 3)(2k − 1 + 4ν)ω

(n)
k+1 − α2k+2ω

(n)
k

)
B̃k

−1

5

(
ω

(n)
0 − ω(n)

1

)
+

(2n− 1)(2n− 4 + 4ν)

h2n
Ãn−1 = 0. (3.60)

Resolution by a system of equations: If we make the change of variablesA′n = Ãn

h2n+2 ,

C ′n = (2n+1)P2n(0)B̃n

h2n+3 and C̃ ′ = B̃
h

, then the system we must solve is α2n(2n+ 1)Ã′n + 2n(2n− 1)(2n+ 3− 4ν)Ã′n−1 = D1
n,

α2nÃ
′
n + (2n− 1)(2n− 4 + 4ν)Ã′n−1 = D2

n,
(3.61)
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where

D1
n =

(
4(1− ν)ω

(n)
0 − (1− 2ν)δ

(n)
0

)
C̃ ′ +

∞∑
k=0

(
(2k + 2)α2k+2ω

(n)
k

−(2k + 3)2(2k + 6− 4ν)ω
(n)
k+1

)
C ′k −

3

5

(
ω

(n)
0 − ω(n)

1

)
, (3.62)

D2
n = −

(
(3− 4ν)ω

(n)
0 − (1− 2ν)

(4n+ 1)

2n(2n+ 1)
P2n(0)

)
C̃ ′ +

∞∑
k=0

(
α2k+2ω

(n)
k

−(2k + 3)(2k − 1 + 4ν)ω
(n)
k+1

)
C ′k +

1

5

(
ω

(n)
0 − ω(n)

1

)
. (3.63)

Using matrix notation, this becomes 2n(2n− 1)(2n+ 3− 4ν) (2n+ 1)α2n

(2n− 1)(2n− 4 + 4ν) α2n

 A′n−1

A′n

 =

 D1
n

D2
n

 , (3.64)

where the determinant is ∆n = 4α2n(2n − 1)((3 − 4ν)n + 1 − ν). The solutions A′n and

A′n−1 are

A′n−1 =
α2n

∆n

(
2(n+ 2)

5

(
ω

(n)
1 − ω(n)

0

)
+
[
(2(3− 4ν)n+ 7− 8ν)ω

(n)
0

+(1− 2ν)
(4n+ 1)

2n
P2n(0)

]
C̃ ′ +

∞∑
k=0

[
(2k − 2n+ 1)α2k+2ω

(n)
k

+(2k+3)
(
(2n+ 1)(2k − 1 + 4ν)− (2k + 3)(2k + 6− 4ν)

)
ω

(n)
k+1

]
C ′k

)
, (3.65)
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A′n = −(2n− 1)

∆n

(
4

5
(n(n+ 3− 2ν)− 3(1− ν))

(
ω

(n)
1 − ω(n)

0

)
−
[
(1− 2ν)

(
(2n− 4 + 4ν)δ

(n)
0 + (2n+ 3− 4ν)

(4n+ 1)

(2n+ 1)
P2n(0)

)
−2(2n− 1)

(
(3− 4ν)n+ 8(1− ν)2)ω

(n)
0

]
C̃ ′

+
∞∑
k=0

[
−
(
2n(2n− 2k + 1− 4ν) + 8(k + 1)(1− ν)

)
α2k+2ω

(n)
k

+2(2n−2k−3)(2k+3)
(
n(2k−1+4ν)− 4(k+ 3− 2ν)(1− ν)

)
ω

(n)
k+1

]
C ′k

)
. (3.66)

We evaluate (3.65) at (n+ 1) and obtain

α2n+2∆n

(
2(n+ 3)

5

(
ω

(n+1)
1 − ω(n+1)

0

)
+
[
(2(3− 4ν)(n+ 1) + 7− 8ν)ω

(n+1)
0

+(1− 2ν)
(4n+ 5)

(2n+ 2)
P2n+2(0)

]
C̃ ′ +

∞∑
k=0

[
(2k − 2n− 1)α2k+2ω

(n+1)
k

+(2k + 3)
(
(2n+ 3)(2k − 1 + 4ν)− (2k + 3)(2k + 6− 4ν)

)
ω

(n+1)
k+1

]
C ′k

)

+ (2n− 1)∆n+1

(
4

5
(n(n+ 3− 2ν)− 3(1− ν))

(
ω

(n)
1 − ω(n)

0

)
−
[
(1− 2ν)

(
(2n− 4 + 4ν)δ

(n)
0 + (2n+ 3− 4ν)

(4n+ 1)

(2n+ 1)
P2n(0)

)
−2(2n− 1)

(
(3− 4ν)n+ 8(1− ν)2)ω

(n)
0

]
C̃ ′

+
∞∑
k=0

[
2(2n− 2k − 3)(2k + 3)

(
n(2k−1 + 4ν)− 4(k+ 3− 2ν)(1− ν)

)
ω

(n)
k+1

−
(
2n(2n− 2k + 1− 4ν) + 8(k + 1)(1− ν)

)
α2k+2ω

(n)
k

]
C ′k

)
= 0. (3.67)

By truncating the infinite series in (3.67) at a finite order N , we get a linear system of

equations for coefficients C̃ ′, C ′0, C
′
1, . . . , C

′
N . Once we have solved this system, we can

obtain the solution to the displacements and stresses with the expressions (3.21) to (3.26).
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3.3.4. Prescribed displacements

In this case we use as boundary conditions 2µvr = g1(cosφ) and 2µvφ = g2(cosφ).

We decompose these functions in terms of the basis of Legendre polynomials as we did

before in Section 3.3.2. Then, the first boundary condition is given by

∞∑
n=0

([
l2n + α2n

(2n+ 1)

h2n+2
Ãn +

(
1− 2ν

h
δ

(n)
0 −

4(1− ν)

h
ω

(n)
0

)
B̃

−
∞∑
k=0

(2k + 1)P2k(0)

h2k+3

(
(2k + 2)α2k+2ω

(n)
k − (2k + 3)2(2k + 6− 4ν)ω

(n)
k+1

)
B̃k

]
P2n

+
(2n+ 1)(2n+ 2)(2n+ 5− 4ν)

h2n+2
ÃnP2n+2

)
= 0. (3.68)

The use of the orthogonality of the basis {P2n}∞n=0 in the range [−1, 0], turns this condition

in

l2n+

(
1− 2ν

h
δ

(n)
0 −

4(1− ν)

h
ω

(n)
0

)
B̃ +

2n(2n− 1)(2n+ 3− 4ν)

h2n
Ãn−1 +

(2n+1)α2n

h2n+2
Ãn

+
∞∑
k=0

(
(2k+ 3)2(2k+6−4ν)ω

(n)
k+1−(2k+2)α2k+2ω

(n)
k

)(2k+1)

h2k+3
P2k(0)B̃k= 0. (3.69)

Now we use the condition for vφ, which gives us

∞∑
n=1

([
m2n +

α2n

h2n+2
Ãn +

(
(3− 4ν)

h
ω

(n)
0 −

(1− 2ν)(4n+ 1)P2n(0)

2n(2n+ 1)h

)
B̃

+
∞∑
k=0

(
(2k + 1)P2k(0)

h2k+3

(
(2k + 3)(2k − 1 + 4ν)ω

(n)
k+1 − α2k+2ω

(n)
k

)
B̃k

)]
sinφP ′2n

+
(2n+ 1)(2n− 2 + 4ν)

h2n+2
Ãn sinφP ′2n+2

)
= 0. (3.70)
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Using the orthogonality of the basis {sinφP ′2n(cosφ)}∞n=0 in [−1, 0], gives us

α2n

h2n+2
Ãn +

(2n−1)(2n− 4 + 4ν)

h2n
Ãn−1 +

(
(3− 4ν)

h
ω

(n)
0 −

(1− 2ν)(4n+ 1)P2n(0)

2n(2n+ 1)h

)
B̃

+
∞∑
k=0

(
(2k + 1)P2k(0)

h2k+3

(
(2k + 3)(2k − 1 + 4ν)ω

(n)
k+1 − α2k+2ω

(n)
k

)
B̃k +m2n

)
=0.

(3.71)

Resolution by a system of equations: We make the change of variables A′n = Ãn

h2n+2 ,

C ′n = (2n+1)P2n(0)B̃n

h2n+3 and C̃ ′ = B̃
h

, which gives us α2n(2n+ 1)Ã′n + 2n(2n− 1)(2n+ 3− 4ν)Ã′n−1 = D1
n,

α2nÃ
′
n + (2n− 1)(2n− 4 + 4ν)Ã′n−1 = D2

n,
(3.72)

where

D1
n =

(
4(1− ν)ω

(n)
0 − (1− 2ν)δ

(n)
0

)
C̃ ′ − l2n

−
∞∑
k=0

(
(2k+ 3)2(2k+6−4ν)ω

(n)
k+1−(2k+2)α2k+2ω

(n)
k

)
C̃ ′k, (3.73)

D2
n = −

(
(3− 4ν)ω

(n)
0 − (1− 2ν)

(4n+ 1)

2n(2n+ 1)
P2n(0)

)
C̃ ′ −m2n

+
∞∑
k=0

(
α2k+2ω

(n)
k − (2k+3)(2k−1+4ν)ω

(n)
k+1

)
C̃ ′k. (3.74)

By writing this in matrix form, we have 2n(2n− 1)(2n+ 3− 4ν) (2n+ 1)α2n

(2n− 1)(2n− 4 + 4ν) α2n

 A′n−1

A′n

 =

 D1
n

D2
n

 , (3.75)



39

where the determinant is ∆n = 4α2n(2n− 1)((3− 4ν)n + 1− ν). Using this we find the

solutions A′n and A′n−1, which are given by

A′n−1 =
α2n

∆n

(
(2n+ 1)m2n − l2n

+

[
(2(3− 4ν)n+ 7− 8ν)ω

(n)
0 − (1− 2ν)

(4n+ 1)

2n
P2n(0)

]
C̃ ′

+
∞∑
k=0

[
(2k−2n+1)α2k+2ω

(n)
k

+ (2k+3)
(
(2n+ 1)(2k−1+4ν)− (2k+3)(2k + 6− 4ν)

)
ω

(n)
k+1

]
C ′k

)
, (3.76)

A′n = −(2n− 1)

∆n

(
2n(2n+ 3− 4ν)m2n − 2(n+ 2ν − 2)l2n

−
[
(1− 2ν)

(
(2n− 4 + 4ν)δ

(n)
0 + (2n+ 3− 4ν)

(4n+ 1)

(2n+ 1)
P2n(0)

)
−2(2n− 1)

(
(3− 4ν)n+ 8(1− ν)2)ω

(n)
0

]
C̃ ′

+
∞∑
k=0

[
−
(
2n(2n− 2k + 1− 4ν) + 8(k + 1)(1− ν)

)
α2k+2ω

(n)
k

+2(2n− 2k− 3)(2k+3)
(
n(2k−1 + 4ν)− 4(k+ 3− 2ν)(1− ν)

)
ω

(n)
k+1

]
C ′k

)
. (3.77)
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Finally, we evaluate (3.76) at (n+ 1) and obtain

α2n+2∆n

(
(2n+ 3)m2n+2 − l2n+2 +

[
(2(3− 4ν)(n+ 1) + 7− 8ν)ω

(n+1)
0

−(1− 2ν)
(4n+ 5)

(2n+ 2)
P2n+2(0)

]
C̃ ′ +

∞∑
k=0

[
(2k − 2n− 1)α2k+2ω

(n+1)
k

+(2k + 3)
(
(2n+ 3)(2k − 1 + 4ν)− (2k + 3)(2k + 6− 4ν)

)
ω

(n+1)
k+1

]
C ′k

)

+ (2n− 1)∆n+1

(
− 2(n+ 2ν − 2)l2n + 2n(2n+ 3− 4ν)m2n

−
[
(1− 2ν)

(
(2n− 4 + 4ν)δ

(n)
0 + (2n+ 3− 4ν)

(4n+ 1)

(2n+ 1)
P2n(0)

)
−2(2n− 1)

(
(3− 4ν)n+ 8(1− ν)2)ω

(n)
0

]
C̃ ′

+
∞∑
k=0

[
2(2n− 2k − 3)(2k + 3)

(
n(2k−1 + 4ν)− 4(k+ 3− 2ν)(1− ν)

)
ω

(n)
k+1

−
(
2n(2n− 2k + 1− 4ν) + 8(k + 1)(1− ν)

)
α2k+2ω

(n)
k

]
C ′k

)
= 0. (3.78)

By truncating the infinite series in (3.78) at a finite order N , we get a linear system of

equations for coefficients C̃ ′, C ′0, C
′
1, . . . , C

′
N . Once we have solved this system, we can

obtain the solution to the displacements and stresses with the expressions (3.21) to (3.26).

3.4. Accelerating the convergence of series

In each of the above cases (for the stresses see (3.42), (3.53) and for the displacements

see (3.67), (3.78)), after we have truncated the series at a finite order N , we get a system

of N + 2 equations and N + 2 unknows for the coefficients C ′k, which can be solved by

some standard procedure to that purpose. To determine the stress values (and the displace-

ment values), it is necessary to find the values of coefficients A′n, but these series have

a slow convergence. To overcome this difficulty, we use the technique of transformation

of Kummer for series (see (Abramowitz & Stegun, 1965)), i.e., we obtain and calculate
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numerically the dominant asymptotic term for (3.40) (respectively for (3.51), (3.65) and

(3.76)). The values of these key terms are used to estimate the value of the series for A′n,

by subtracting the asymptotic term in order to accelerate convergence, and once we have

the value of the series, we must add the value of the asymptotic term. To do this, we write

the term An−1 in the following way

An−1 = Fn +
∞∑

k=−1

G(k)
n Ck, (3.79)

where Fn and G(k)
n will depend on the case under consideration. We define s to be the

contribution to the general solution given by the terms that multiply the coefficients An,

that is,

s =
∞∑
n=1

An−1sn−1. (3.80)

Using the decomposition of An−1, we can isolate the three contributions

s =
∞∑
n=1

[
Fn +

∞∑
k=−1

G(k)
n Ck

]
sn−1

=
∞∑
n=1

Fnsn−1 +
∞∑

k=−1

∞∑
n=1

[
G(k)
n sn−1

]
Ck

=
∞∑
n=1

Fnsn−1 +
∞∑
n=1

[
G(−1)
n sn−1

]
C̃ ′ +

∞∑
k=0

∞∑
n=1

[
G(k)
n sn−1

]
Ck

= F +Q−1 +
∞∑
k=0

Qk, (3.81)

where the terms sn−1 depend on the stresses (or displacements) that we are considering.

We review the terms of the stresses given in (3.21)-(3.26) and evaluated in n = n − 1.

For the sake of convenience we use the dimensionless parameter h/r instead 1/r in these

equations. Thus we have

sn−1(vr) = (2n− 1)

(
h

r

)2n (
− ((2n− 1)2 − 2 + 2ν)P2n−2 − 2n(2n+ 3− 4ν)P2n

)
, (3.82)
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sn−1(vφ) = − sinφ

(
h

r

)2n (
((2n− 1)2 − 2 + 2ν)P ′2n−2 + (2n− 1)(2n− 4 + 4ν)P ′2n

)
,

(3.83)

sn−1(σr) = 2n(2n− 1)

(
h

r

)2n+1 (
((2n− 1)2 − 2 + 2ν)P2n−2 + (2n(2n+ 3)− 2ν)P2n

)
,

(3.84)

sn−1(σφ) =

(
h

r

)2n+1 (
(4n− 1)(2n+ 2ν − 3)P ′2n−1

− 2n(2n− 1)(((2n− 1)2 − 2 + 2ν)P2n−2 + (4n2 − 6n+ 3− 2ν)P2n)
)
, (3.85)

sn−1(σθ) = −(4n− 1)

(
h

r

)2n+1 (
2n(2n− 1)(1− 2ν)P2n + (2n− 3 + 2ν)P ′2n−1

)
, (3.86)

sn−1(σrφ) = sinφ

(
h

r

)2n+1(
2n((2n− 1)2 − 2 + 2ν)P ′2n−2 + (2n− 1)(2n(2n+ 3)− 2ν)P ′2n

)
.

(3.87)

3.4.1. Asymptotic behaviour of Legendre’s polynomials

For large n, the following asymptotic behaviour holds (see (Abramowitz & Stegun,

1965))

Pn(cosφ) =
Γ(n+ 1)

Γ
(
n+ 3

2

) (1

2
π sinφ

)− 1
2

cos

[(
n+

1

2

)
φ− π

4

]
. (3.88)

We use one of the classical properties for the gamma function, namely

Γ

(
n+

3

2

)
= Γ

((
n+

1

2

)
+ 1

)
=

(
n+

1

2

)
Γ

(
n+

1

2

)
=

(
n+

1

2

) √
π

22n−1

(2n)!

n!
.

(3.89)

With this, (3.88) becomes

Pn(cosφ) =
22n−1(n!)2(

n+ 1
2

)√
π(2n)!

(
1

2
π sinφ

)− 1
2

cos

[(
n+

1

2

)
φ− π

4

]
. (3.90)

We use the Stirling formula, in order to approximate the factorials of high order, this gives

us

(n!)2

(2n)!
=

(√
2πn

(
n
e

)n)2 (
1 + 1

12n

)2

√
4πn

(
2n
e

)2n (
1 + 1

24n

) =
√
πn2−2n

(
1 +

1

8n
+

1

576n2
− . . .

)
. (3.91)
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If we only keep the dominant term, then we have for a larger n the following expression

Pn(cosφ) ≈
√

2

nπ sinφ
cos

[(
n+

1

2

)
φ− π

4

]
. (3.92)

If we calculate dPn(x)/dx in (3.92), then we obtain for the derivatives of the Legendre

polynomials the following expression

P ′n(cosφ) =
cosφ

sin2 φ
√

2nπ sinφ
cos

[(
n+

1

2

)
φ− π

4

]
+

√
2

nπ sinφ

(
n+

1

2

)
1

sinφ
sin

[(
n+

1

2

)
φ− π

4

]
. (3.93)

Then, for large n we arrive at

P ′n(cosφ) ≈
√

2n

π sinφ

1

sinφ
cos

[(
n+

1

2

)
φ− 3π

4

]
. (3.94)

Using again Stirling’s formula, it is easy to see that for larger n we have

P2n(0) = (−1)n
1√
πn

. (3.95)

In the case we need to consider the approximation to second order for the Legendre poly-

nomials, we use

Pn(cosφ) ≈
√

2

nπ sinφ

[(
1− 3

8n

)
cos

[(
n+

1

2

)
φ− π

4

]
+

1

8n

1

sinφ
cos

[(
n+

3

2

)
φ− 3π

4

]]
, (3.96)
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P ′n(cosφ) ≈
√

2

nπ sin3 φ

[
− n cos

[(
n+

1

2

)
φ+

π

4

]
− 1

8
cos

[(
n+

1

2

)
φ+

π

4

]
+

1

8 sinφ
cos

[(
n+

3

2

)
φ− π

4

]
+

1

2

cosφ

sinφ
cos

[(
n+

1

2

)
φ− π

4

]
+

1

n

(
3

16
cos

[(
n+

1

2

)
φ+

π

4

]
− 1

8

cosφ

sin2 φ
cos

[(
n+

3

2

)
φ+

π

4

]

− 3

16

1

sinφ
cos

[(
n+

3

2

)
φ− π

4

])

− 1

16

cosφ

n sinφ

(
3 cos

[(
n+

1

2

)
φ− π

4

]
+

1

sinφ
cos

[(
n+

3

2

)
φ+

π

4

])]
. (3.97)

This second order approximation in the case φ = π/2 gives us

P2n(0) ≈ (−1)n√
nπ

(
1− 1

8n

)
. (3.98)

These approximations are valid for φ 6= π. In the case φ = π, we have that

Pn(cos π) = (−1)n, y P ′n(cos π) = −(−1)n

2
n(n+ 1). (3.99)

Using (3.92) and (3.94), we obtain the following asymptotic behaviour of the terms sn−1 in

each case of interest

sn−1(vr) = − (2n)3

√
nπ sinφ

(
h

r

)2n[
cos

((
2n− 3

2

)
φ−π

4

)
+cos

((
2n+

1

2

)
φ−π

4

)]
=

(2n)3

√
nπ sinφ

(
h

r

)2n

Re

(
i− 1√

2

(
e−

3
2
iφ + e

i
2
φ
)
e2inφ

)
, (3.100)

sn−1(vφ) =
(2n)3

√
nπ sinφ

(
h

r

)2n[
cos

((
2n− 3

2

)
φ+

π

4

)
+cos

((
2n+

1

2

)
φ+

π

4

)]
=

(2n)3

√
nπ sinφ

(
h

r

)2n

Re

(
1 + i√

2

(
e−

3
2
iφ + e

i
2
φ
)
e2inφ

)
, (3.101)

sn−1(σr) =
(2n)4

√
nπ sinφ

(
h

r

)2n+1[
cos

((
2n− 3

2

)
φ−π

4

)
+cos

((
2n+

1

2

)
φ−π

4

)]
=

(2n)4

√
nπ sinφ

(
h

r

)2n+1

Re

(
1− i√

2

(
e−

3
2
iφ + e

i
2
φ
)
e2inφ

)
, (3.102)
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sn−1(σφ) =
−(2n)4

√
nπ sinφ

(
h

r

)2n+1[
cos

((
2n− 3

2

)
φ−π

4

)
+cos

((
2n+

1

2

)
φ−π

4

)]
=

(2n)4

√
nπ sinφ

(
h

r

)2n+1

Re

(
i− 1√

2

(
e−

3
2
iφ + e

i
2
φ
)
e2inφ

)
, (3.103)

sn−1(σθ) =
−2(2n)3

√
nπ sinφ

(
h

r

)2n+1[
(1− 2ν) cos

((
2n+

1

2

)
φ−π

4

)
+

1

sinφ
cos

((
2n+

1

2

)
φ− 3π

4

)]
, (3.104)

sn−1(σrφ) =
(2n)4

√
nπ sinφ

(
h

r

)2n+1[
cos

((
2n− 3

2

)
φ− 3π

4

)
+cos

((
2n+

1

2

)
φ− 3π

4

)]
=

(2n)4

√
nπ sinφ

(
h

r

)2n+1

Re

(
−1 + i√

2

(
e−

3
2
iφ + e

i
2
φ
)
e2inφ

)
. (3.105)

In the case of φ = π, this becomes

sn−1(vr) = −16n3

(
h

r

)2n

, (3.106)

sn−1(vφ) = 0, (3.107)

sn−1(σr) = 32n4

(
h

r

)2n+1

, (3.108)

sn−1(σφ) = −(2n)4

(
h

r

)2n+1

, (3.109)

sn−1(σθ) = −(2n)4

(
h

r

)2n+1

, (3.110)

sn−1(σrφ) = 0. (3.111)

We just need to find the value of Fn and G(k)
n to calculate the value of the coefficients.

3.4.2. Traction-free boundary and loaded boundary

We write the term An−1 from the equation (3.40) and (3.51) in the following way:

An−1 = Fn +
∞∑

k=−1

G(k)
n Ck, (3.112)
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where we have two possible expressions for Fn depending on whether it is free or loaded

boundary

Fn =
(2n+ 2)α2n

∆n

[
(2n+ 4− (4n+ 3)ν)ω

(n)
0

5(1− ν)
− (1− 2ν)(2n+ 4)ω

(n)
1

5(1− ν)

]
, (3.113)

or Fn =
(2n+ 2)α2n

∆n

[l2n − (2n+ 1)m2n] , (3.114)

G(−1)
n =

(2n+2)α2n

∆n

[
(2n+ 5− 4ν(n+ 1))ω

(n)
0 + (1− 2ν)

(4n+ 1)

2n
P2n(0)

]
, (3.115)

G(k)
n =

(2n+2)α2n

∆n

[
(2k−2n+1)α2k+2ω

(n)
k

+
(
(2n+ 1)α2k+2 − (2k + 3)β2k+1

)
ω

(n)
k+1

]
. (3.116)

Then we have to calculate three different sums in the case of traction-free boundary, the

first one involves the free term (Fn) and the other two (which we also use in the case of

loaded boundary) are

Q−1 =
∞∑
n=1

[
G(−1)
n sn−1

]
C̃ and Qk =

∞∑
n=1

G(k)
n sn−1Ck k = 0, 1, . . . (3.117)

We need to find the asymptotic behaviour of the series, so we must find the dominant term

in each case, i.e.,

Fn ≈
−ν

(1− ν)

1

16n4

(−1)n√
πn

, (3.118)

G(−1)
n ≈ −1

8

(2− ν)

n4

(−1)n√
πn

, (3.119)

G(k)
n ≈

1

8

(4k + 5)(2k + 4− ν)

n4

(−1)n√
πn

. (3.120)
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We use the following sums

∞∑
n=1

(−1)nn

(
h

r

)2n+1

e2inφ = −
(
h

r

)3

e2iφ 1(
1 +

(
h
r

)2
e2iφ
)2 , (3.121)

∞∑
n=1

(−1)n
(
h

r

)2n+1

e2inφ = −
(
h

r

)3

e2iφ 1

1 +
(
h
r

)2
e2iφ

, (3.122)

∞∑
n=1

(−1)n

n

(
h

r

)2n+1

e2inφ = −
(
h

r

)
ln

(
1 +

(
h

r

)2

e2iφ

)
. (3.123)

Then, the terms that we need include in the sums φ < π are

F (σr) = Re

(
ν

(1− ν)

1

π
√

sinφ

(1− i)√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1 +

(
h

r

)2

e2iφ

))
C̃ ′,

(3.124)

F (σφ) = Re

(
ν

(1− ν)

1

π
√

sinφ

(i− 1)√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1 +

(
h

r

)2

e2iφ

))
C̃ ′,

(3.125)

F (σrφ) = Re

(
−ν

(1− ν)

1

π
√

sinφ

(i+ 1)√
2

(
h

r

)(
e−

3
2
iφ+e

i
2
φ
)

ln

(
1 +

(
h

r

)2

e2iφ

))
C̃ ′,

(3.126)

Q−1(σr) = Re

(
(2− ν)

π
√

sinφ
(1− i)

√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1 +

(
h

r

)2

e2iφ

))
C̃ ′,

(3.127)

Q−1(σφ) = Re

(
(2− ν)

π
√

sinφ
(i− 1)

√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1 +

(
h

r

)2

e2iφ

))
C̃ ′,

(3.128)

Q−1(σrφ) = Re

(
− (2− ν)

π
√

sinφ
(i+ 1)

√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1 +

(
h

r

)2

e2iφ

))
C̃ ′,

(3.129)
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Qk(σr)

= Re

(
(4k+5)(2k−ν+4)

π
√

sinφ
(i−1)

√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1+

(
h

r

)2

e2iφ

))
C ′k, (3.130)

Qk(σφ)

= Re

(
(4k+5)(2k−ν+4)

π
√

sinφ
(1−i)

√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1+

(
h

r

)2

e2iφ

))
C ′k, (3.131)

Qk(σrφ)

= Re

(
(4k+5)(2k−ν+4)

π
√

sinφ
(i+ 1)

√
2

(
h

r

)(
e−

3
2
iφ + e

i
2
φ
)

ln

(
1+

(
h

r

)2

e2iφ

))
C ′k.

(3.132)

We note that the terms related to σθ, vr and vφ grow slowly, therefore, they are not included

in our acceleration technique. In the case of φ = π we have that

Q−1(vr) = 4(2− ν)

ln(2)− ln

1 +

√
1 +

(
h

r

)2
 C̃ ′, (3.133)

Q−1(σr) = 4(2− ν)

(
h

r

)3
1√

1 +
(
h
r

)2
+ 1 +

(
h
r

)2
C̃ ′, (3.134)

Q−1(σφ) = −2(2− ν)

(
h

r

)3
1√

1 +
(
h
r

)2
+ 1 +

(
h
r

)2
C̃ ′, (3.135)

Q−1(σθ) = −2(2− ν)

(
h

r

)3
1√

1 +
(
h
r

)2
+ 1 +

(
h
r

)2
C̃ ′, (3.136)

Qk(vr) = −4(4k + 5)(2k − ν + 4)

ln(2)− ln

1 +

√
1 +

(
h

r

)2
C ′k, (3.137)

Qk(σr) = −4(4k + 5)(2k − ν + 4)

(
h

r

)3
1√

1 +
(
h
r

)2
+ 1 +

(
h
r

)2
C ′k, (3.138)
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Qk(σφ) = 2(4k + 5)(2k − ν + 4)

(
h

r

)3
1√

1 +
(
h
r

)2
+ 1 +

(
h
r

)2
C ′k, (3.139)

Qk(σθ) = 2(4k + 5)(2k − ν + 4)

(
h

r

)3
1√

1 +
(
h
r

)2
+ 1 +

(
h
r

)2
C ′k. (3.140)

3.4.3. Zero displacement and prescribed displacements

The term An−1 from the equation (3.65) gives us the contributions

Fn =
α2n

∆n

[
2(n+ 2)

5

(
ω

(n)
1 − ω(n)

0

)]
, (3.141)

or Fn = 1/4
(4n+ 1)P2n(0)

(1 + n) (2n− 3) (−3n+ 4 ν n− 1 + ν) (2n− 1)2 , (3.142)

G(−1)
n =

α2n

∆n

[
(2(3− 4ν)n+ 7− 8ν)ω

(n)
0 + (1− 2ν)

(4n+ 1)

2n
P2n

]
, (3.143)

G(k)
n =

α2n

∆n

[
(2k + 3)

(
(2n+ 1)(2k − 1 + 4ν)− (2k + 3)(2k + 6− 4ν)

)
ω

(n)
k+1

+(2k − 2n+ 1)α2k+2ω
(n)
k

]
, (3.144)

whose dominant terms are

Fn ≈ −
1

8(3− 4ν)n4
P2n(0), (3.145)

G(−1)
n ≈ −1

2

(1− ν)

(3− 4ν)n2
P2n(0), (3.146)

G(k)
n ≈

1

2

(4k + 5)(1− ν)

(3− 4ν)n2
P2n(0). (3.147)

Using these expressions we can determine the dominant term. For the sake of convenience,

we work in the complex plane, and subsequently we consider just the real part. For exam-

ple, for σr we have

sn−1(σr) = −
√

2

4

√
1

nπ sin3 φ
(1 + i)n3

(
h

r

)2n+1

e2inφ
(
−16ne−5/2iφ + 3e−5/2iφ

+2e−1/2iφ + 16ne3/2iφ − e3/2iφ
)
. (3.148)
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The asymptotic term are

Fnsn−1 =

√
2(1 + i)

32π(−3 + 4ν)

√
1

sinφ

(
h

r

)2n+1 (−1)n

n2

(
1− 1

8n

)
e2inφ

(
e−

5
2
iφ(16n− 3)

−2e−
1
2
iφ − e 3

2
iφ(16n− 1)

)
, (3.149)

G(−1)
n sn−1 = −

√
2(1 + i)

8π(−3 + 4ν)

√
1

sinφ

(
h

r

)2n+1

(−1)n
(

1− 1

8n

)
e2inφ

(
e−

5
2
iφ(16n− 3)

−2e−
1
2
iφ − e 3

2
iφ(16n− 1)

)
, (3.150)

G(k)
n sn−1 = (4k + 5)

√
2(1 + i)

8π(−3 + 4ν)

√
1

sinφ

(
h

r

)2n+1

(−1)n
(

1− 1

8n

)
e2inφ

(
e−

5
2
iφ(16n− 3)

−2e−
1
2
iφ − e 3

2
iφ(16n− 1)

)
. (3.151)

The following sums hold

∞∑
n=1

(
h

r

)2n+1

(−1)ne2inφn = −
(
h

r

)3

e2iφ 1(
1 +

(
h
r

)2
e2iφ
)2 , (3.152)

∞∑
n=1

(
h

r

)2n+1

(−1)ne2inφ = −
(
h

r

)3

e2iφ 1

1 +
(
h
r

)2
e2iφ

, (3.153)

∞∑
n=1

(
h

r

)2n+1

(−1)ne2inφ 1

n
= −

(
h

r

)
ln

(
1 +

(
h

r

)2

e2iφ

)
, (3.154)

∞∑
n=1

(
h

r

)2n+1

(−1)n
e2inφ

n(n+1)
=
e2iφ

(
h
r

)2 −
(

1 +
(
h
r

)2
e2iφ
)

ln
(

1 +
(
h
r

)2
e2iφ
)

(
h
r

) . (3.155)

3.5. Some clues about the programming

Once we have computed all the expressions for the displacements and the stresses, we

face the challenge of putting them in a computer code, in order to evaluate each expression

and plot the results. The way to do so is tricky, so we present next some of the solutions

we have used to solve those problems that every implementation usually has.

One of our biggest concerns was the implementation of the coefficients l2n, m2n from

(3.3.2), (3.3.4), because we need to calculate the integrals for the Legendre polynomials of
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degree from 0 to N , where N could take values up to 500, so we need a suitable method to

compute these integrals.

The first step is to determine the most general form that these integrals could have. We

use the following recurrence relation for the Legendre polynomials,

(1− x2)P ′n(x) = n(Pn−1(x)− xPn(x)), (3.156)

so we can write any of the integrals that will arise in the following way∫ 0

−1

g(x)P2n(x)dx. (3.157)

We use a partition of the interval [−1, 0] defined as x1 = −1 < x2 < . . . < xN+1 = 0, and

we take the Lagrange interpolation functions, that is

φ1(x) =


x2 − φ
x2 − x1

[x1, x2]

0 [x3, xN+1]
(3.158)

φj(x) =


φ− xj−1

xj − xj−1

[xj−1, xj]

xj+1 − φ
xj+1 − xj

[xj, xj+1]
j = 2, . . . , N (3.159)

φN+1(x) =


0 [x1, xN−1]

φ− xN
xN+1 − xN

[xN , xN+1]
(3.160)

With this particular partition, we use the approximation

g(x) ≈
N+1∑
j=1

g(xj)φj(x), (3.161)

∫ 0

−1

g(x)P2n(x)dx ≈
∫ 0

−1

(
N+1∑
j=1

g(xj)φj(x)P2n(x)

)
dx, (3.162)

≈
N+1∑
j=1

g(xj)

∫ 0

−1

(
φj(x)P2n(x)

)
dx. (3.163)
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So, we express the integrals in the following ways∫ xj+1

xj

xP2n(x)dx =
xj+1P2n+1(xj+1)− xjP2n+1(xj)

4n+ 1
− xj+1P2n−1(xj+1)− xjP2n−1(xj)

4n+ 1

− P2n+2(xj+1)− P2n+2(xj)

(4n+ 1)(4n+ 3)
+ 2

P2n(xj+1)− P2n(xj)

(4n− 1)(4n+ 3)

− P2n−2(xj+1)− P2n−2(xj)

(4n− 1)(4n+ 1)
, (3.164)∫ xj+1

xj

P2n(x)dx =
P2n+1(xj+1)− P2n+1(xj)

4n+ 1
− P2n−1(xj+1)− P2n−1(xj)

4n+ 1
. (3.165)

3.6. Numerical results

ΩR

Γs

Γh

Γ∞

ΓR

Figure 3.1. Boundaries.

We need a proper benchmark to test our results. For this purpose we choose the recog-

nized comercial software, COMSOL (see (Multiphysics, 1994)). We first need to evaluate

wheter the results given by COMSOL for our semi-infinite problem are trustable, because

it is necessary to use artificial boundaries in order to limit the domain. We use an axisym-

metric domain, with a hemispherical perturbation of radius h in the presence of the gravity

force. In order to determine a suitable size for the domain, we make the following exper-

iment: We consider domains consisting of squares of different sizes with a hemispherical
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perturbation of radius h = 600 m, and we solve our semi-infinite problem using COMSOL

in each one of these domains. The radii vary from a minimum value of 1000 m to a maxi-

mum value of 13000 m, in increments of 1000 m. The results obtained with the maximum

radius are taken as a reference. Let us call XY the results yielded by Comsol, and xy the

results yielded by our methodology. We use an interpolation between this sets of points in

order to measure the point by point error, this is

Eboundary =

√∑
i(Yi − yi)2√∑

i(Yi)
2

. (3.166)

The results in the important boundaries (see Figure 3.1) for both displacements are shown
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Figure 3.2. Displacement relative error between our method and the re-
sults yielded by COMSOL in a square of size 13000 m.

in 3.2a and 3.2b. According to these results, we choose a square of size 10000 m as bench-

mark.

3.6.1. Traction-free boundary

The Figures 3.3a to 3.4h show the results provided by our method and the benchmark

for the case of traction-free boundary condition on the hemisphere.

The numerical error associated with the traction-free boundary condition on each boundary

(see Figure 3.1) are shown in Table 3.1. These results allow us to validate our methodology.
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(a) Displacement ur m, with traction-
free boundary condition.

(b) Displacement ur m, cal-
culated with COMSOL

(c) Displacement uφ m, with traction-
free boundary condition.

(d) Displacement uφ m, cal-
culated with COMSOL

Figure 3.3. Displacement for traction-free boundary condition with ν = 0.3,
λ = 40.5 GPa, µ = 27 GPa, % = 2725 kg/m3.

3.6.2. Loaded boundary

In this case we can obtain again the results presented in Figures 3.3a to 3.6h if we use

(3.30) and (3.31) as our boundary condition.
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Table 3.1. Comparison of the absolute error between the semi-analytical
solution and the model implemented in COMSOL in a square of side 10000
m.

Boundarie ur uφ
Plane Γ∞ 0.0092 0.0924

Perturbation Γh 0.0314 0.0789
Transparency ΓR 0.0348 0.1485
Axisymmetric Γs 0.0311 0

3.6.3. Zero displacement

The Figures 3.5a to 3.6h show the results provided by our method and the benchmark

in the case of zero displacement on the hemisphere.

Table 3.2. Comparison of the absolute error between the semi-analytical
solution and the model implemented in COMSOL in a square of side 10000
m.

ur uφ
Plane Γ∞ 0.3290 0.1080

Transparency ΓR 0.0114 0.1823
Axisymmetry Γs 0.0065 0

The relative error associated with the zero displacement boundary condition in each

of the boundaries (see 3.1) are shown in Table 3.2. These results allow us to validate our

methodology.

3.6.4. Prescribed displacements

In this case we obtain again the results of Figures 3.5a to 3.6g if we use (3.55) and

(3.56) as our boundary condition.
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(a) Stress σr Pa, with traction-free
boundary condition

(b) Stress σr Pa, calcu-
lated with COMSOL

(c) Stress σφ Pa, with traction-free
boundary condition

(d) Stress σφ Pa, calcu-
lated with COMSOL

Figure 3.4. Stresses for traction-free boundary condition with ν = 0.3, λ =
40.5 GPa, µ = 27 GPa, % = 2725 kg/m3.
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(e) Stress σθ Pa, with traction-free
boundary condition

(f) Stress σθ Pa, calculated
with COMSOL

(g) Stress σrφ Pa, with traction-free
boundary condition

(h) Stress σrφ Pa, calcu-
lated with COMSOL

Figure 3.4. Stresses for traction-free boundary condition with ν = 0.3, λ =
40.5 GPa, µ = 27 GPa, % = 2725 kg/m3.
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(a) Displacement ur m, with zero dis-
placement boundary condition.

(b) Displacement ur m, cal-
culated with COMSOL

(c) Displacement uφ m, with zero dis-
placement boundary condition.

(d) Displacement uφ m, cal-
culated with COMSOL

Figure 3.5. Displacement for zero displacement boundary condition with
ν = 0.3, λ = 40.5 GPa, µ = 27 GPa, % = 2725 kg/m3.
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(a) Stress σr Pa, with zero displace-
ment boundary condition

(b) Stress σr Pa, calcu-
lated with COMSOL

(c) Stress σφ Pa, with zero displace-
ment boundary condition

(d) Stress σφ Pa, calcu-
lated with COMSOL

Figure 3.6. Stresses for zero displacement boundary condition with ν =
0.3, λ = 40.5 GPa, µ = 27 GPa, % = 2725 kg/m3.
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(e) Stress σθ Pa, with zero displace-
ment boundary condition

(f) Stress σθ Pa, calculated
with COMSOL

(g) Stress σrφ Pa, with zero displace-
ment boundary condition

(h) Stress σrφ Pa, calcu-
lated with COMSOL

Figure 3.6. Stresses for zero displacement boundary condition with ν =
0.3, λ = 40.5 GPa, µ = 27 GPa, % = 2725 kg/m3.
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4. AN EFFICIENT SEMI-ANALYTICAL METHOD TO COMPUTE DISPLACE-

MENTS

Throughout this chapter, we consider the same half-space with a hemispherical pit used

in the previous chapter. In what follows, we are going to impose the boundary conditions

on the pit by minimising a quadratic functional which represents the surface elastic energy.

Even though this approach does not eliminate the problem of an infinite number of equa-

tions and coefficients, it provides a systematic method to deal with it. The minimisation

of the functional leads to a linear system of equations for a finite number of coefficients of

the series. The associated matrix is symmetric, positive definite and possesses a particular

block structure that allows us to solve it in an efficient and robust way, thus avoiding to

have to deal with cumbersome equations and slowly convergent double series.

Furthermore, in order to simplify the calculations, we re-define the notation for the

displacements and stresses.

4.1. Series solution

Having already solved (2.27) and (2.28), we now resume the calculation of a solution

to (2.12) in series form. We have obtained potentials Φn, given in (2.31) for n ≥ 0 and in

(2.32) for n = −1, and potentials Ψn, given in (2.30) for n ≥ 0. Both kinds of potentials

may be combined in different ways in (2.25) or (2.26), giving rise to displacement fields v

satisfying (2.12a) and (2.12e). We shall consider two sets of such displacement fields. The

first set will consist of displacement fields v(1)
n , obtained by setting Φ = Φn and Ψ = 0 in

(2.25) for n ≥ −1, that is,

2µv(1)
n = ∇Φn, (4.1)

whereas the second set will consist of displacement fields v(2)
n , obtained by setting Ψ =

(2n+ 1)Ψn and Φ = −(n− 4 + 4ν)Φn−1 in (2.25) for n ≥ 0, that is,

2µv(2)
n = −(n− 4 + 4ν)∇Φn−1 + (2n+ 1)

[
∇(zΨn)− 4(1− ν)Ψnk̂

]
. (4.2)
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The reason for considering this particular combination of potentials Φn and Ψn is that, as

stated in (R. A. Eubanks, 1954), the forthcoming calculations are considerably simplified.

The general solution to Navier’s equation (2.11) corresponds to an infinite linear combina-

tion of displacement fields v(1)
n and v(2)

n , that is,

v(r, φ) =
∞∑

n=−1

a(1)
n v

(1)
n (r, φ) +

∞∑
n=0

a(2)
n v

(2)
n (r, φ), (4.3)

where a(1)
−1, a

(1)
0 , a

(1)
1 , . . . and a(2)

0 , a
(2)
1 , a

(2)
2 , . . . are unknown real coefficients. Displacement

fields v(1)
n and v(2)

n are also expressed in terms of their components in r and φ by employing

(2.26). Substituting these components in the Hooke’s law yields the components of the

stress fields associated with v(1)
n and v(2)

n , which we denote respectively by σ(1)
n and σ(2)

n .

The stress tensor σ associated with v in (4.3) is thus expressed as

σ(r, φ) =
∞∑

n=−1

a(1)
n σ

(1)
n (r, φ) +

∞∑
n=0

a(2)
n σ

(2)
n (r, φ). (4.4)

Making all the necessary substitutions and rearranging the resulting expressions in

each case, we obtain that the displacement fields v(1)
n and v(2)

n , together with their associated

respective stress fields σ(1)
n and σ(2)

n , can be expressed as

v(1)
n (r, φ) =

1

rn+2
w(1)
n (φ), σ(1)

n (r, φ) =
1

rn+3
τ (1)
n (φ), n = −1, 0, 1, . . . (4.5a)

v(2)
n (r, φ) =

1

rn+1
w(2)
n (φ), σ(2)

n (r, φ) =
1

rn+2
τ (2)
n (φ), n = 0, 1, 2, . . . (4.5b)

where w(1)
n , w(2)

n are vector functions, and τ (1)
n , τ (2)

n are tensor functions, all of them de-

pending only on the angle φ. This is a convenient form of expressing the displacement and

stress fields, since it allows us to make explicit the dependence on r, separating it from the

dependence on φ. The components of functions w(1)
n and τ (1)

n for n = −1 are

2µ[w
(1)
−1]r(φ) = 1, (4.6a)

2µ[w
(1)
−1]φ(φ) = q(φ) sinφ, (4.6b)

[τ
(1)
−1 ]r(φ) = −1, (4.6c)
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[τ
(1)
−1 ]φ(φ) = −q(φ) cosφ, (4.6d)

[τ
(1)
−1 ]θ(φ) = q(φ), (4.6e)

[τ
(1)
−1 ]rφ(φ) = −q(φ) sinφ, (4.6f)

where the function q(·) is defined as

q(φ) =
1

1− cosφ
,

π

2
≤ φ ≤ π. (4.7)

The components of functions w(1)
n and τ (1)

n for n ≥ 0 are

2µ[w(1)
n ]r(φ) = −(n+ 1)Pn(cosφ), (4.8a)

2µ[w(1)
n ]φ(φ) = − sinφP ′n(cosφ), (4.8b)

[τ (1)
n ]r(φ) = (n+ 1)(n+ 2)Pn(cosφ), (4.8c)

[τ (1)
n ]φ(φ) = P ′n+1(cosφ)− (n+ 1)(n+ 2)Pn(cosφ), (4.8d)

[τ (1)
n ]θ(φ) = −P ′n+1(cosφ), (4.8e)

[τ (1)
n ]rφ(φ) = (n+ 2) sinφP ′n(cosφ). (4.8f)

The components of functions w(2)
n and τ (2)

n for n = 0 are

2µ[w
(2)
0 ]r(φ) = −4(1− ν)(1 + cosφ), (4.9a)

2µ[w
(2)
0 ]φ(φ) = −

(
4(1− ν)q(φ)− 3 + 4ν

)
sinφ, (4.9b)

[τ
(2)
0 ]r(φ) = 2

(
2− 2ν + (2− ν) cosφ

)
, (4.9c)

[τ
(2)
0 ]φ(φ) = (4(1− ν)q(φ)− 1 + 2ν) cosφ, (4.9d)

[τ
(2)
0 ]θ(φ) = −4(1− ν)q(φ)− (1− 2ν) cosφ, (4.9e)

[τ
(2)
0 ]rφ(φ) =

(
4(1− ν)q(φ)− 1 + 2ν

)
sinφ, (4.9f)

and for n ≥ 1 are

2µ[w(2)
n ]r(φ) = −(n+ 1)(n+ 4− 4ν)Pn+1(cosφ), (4.10a)
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2µ[w(2)
n ]φ(φ) = −(n− 3 + 4ν) sinφP ′n+1(cosφ), (4.10b)

[τ (2)
n ]r(φ) = (n+ 1)

(
(n+ 1)(n+ 4)− 2ν

)
Pn+1(cosφ), (4.10c)

[τ (2)
n ]φ(φ) = −(n+ 1)(n2 − n+ 1− 2ν)Pn+1(cosφ)

+ (n− 3 + 4ν)P ′n(cosφ),
(4.10d)

[τ (2)
n ]θ(φ) = −(1− 2ν)(n+ 1)(2n+ 1)Pn+1(cosφ)

− (n− 3 + 4ν)P ′n(cosφ),
(4.10e)

[τ (2)
n ]rφ(φ) = (n2 + 2n− 1 + 2ν) sinφP ′n+1(cosφ). (4.10f)

Substituting (4.5) in (4.3) and (4.4), and grouping terms with the same power of r, we

obtain that v and σ are also expressed as

v(r, φ) =
∞∑

n=−1

1

rn+2

(
a(1)
n w

(1)
n (φ) + a

(2)
n+1w

(2)
n+1(φ)

)
, (4.11)

σ(r, φ) =
∞∑

n=−1

1

rn+3

(
a(1)
n τ

(1)
n (φ) + a

(2)
n+1τ

(2)
n+1(φ)

)
. (4.12)

4.1.1. Traction-free boundary on Γ∞

As done in the previous chapter, we need to impose the traction-free boundary condi-

tion on the plane boundary (which is σφ(v) = σrφ(v) = 0), that is

σφ(v) =
∞∑

n=−1

1

rn+3

(
a(1)
n [τ (1)

n ]φ

(π
2

)
+ a

(2)
n+1[τ

(2)
n+1]φ

(π
2

))
= 0, (4.13a)

σrφ(v) =
∞∑

n=−1

1

rn+3

(
a(1)
n [τ (1)

n ]rφ

(π
2

)
+ a

(2)
n+1[τ

(2)
n+1]rφ

(π
2

))
= 0. (4.13b)

In order to find out under which conditions (4.13a) and (4.13b) hold, we evaluate (4.6d),

(4.6f), (4.8d), (4.8f), (4.9d), (4.9f), (4.10d) and (4.10f) at φ = π/2. The result varies

depending on whether n is even or odd, so we discriminate between these two cases before
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evaluating the expressions. In the even case, we arrive at

[τ
(1)
2n ]φ

(π
2

)
= −(2n+ 1)2P2n(0) n ≥ 0, (4.14a)

[τ
(1)
2n ]rφ

(π
2

)
= 0 n ≥ 0, (4.14b)

[τ
(2)
2n ]φ

(π
2

)
= 0 n ≥ 0, (4.14c)

[τ
(2)
2n ]rφ

(π
2

)
=

3− 2ν n = 0,

(2n+ 1)α2nP2n(0) n ≥ 1,
(4.14d)

and in the odd case, we obtain

[τ
(1)
2n+1]φ

(π
2

)
= 0 n ≥ −1, (4.15a)

[τ
(1)
2n+1]rφ

(π
2

)
=

−1 n = −1,

(2n+ 1)(2n+ 3)P2n(0) n ≥ 0,
(4.15b)

[τ
(2)
2n+1]φ

(π
2

)
= (2n+ 1)α2nP2n(0) n ≥ 0, (4.15c)

[τ
(2)
2n+1]rφ

(π
2

)
= 0 n ≥ 0, (4.15d)

where

α2n = (2n+ 1)2 − 2(1− ν),

and having combined with the recurrence relations (6.17) as appropriate. It is easy to

verify that by virtue of (4.14) and (4.15), identities (4.13a) and (4.13b) hold, provided that

the coefficients a(1)
n and a(2)

n satisfy the relations

a
(1)
−1 = (3− 2ν)a

(2)
0 , (4.16a)

(2n+ 1)a
(1)
2n = α2n a

(2)
2n+1 n ≥ 0, (4.16b)

(2n+ 2)a
(1)
2n+1 = α2n+2 a

(2)
2n+2 n ≥ 0. (4.16c)
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Thus, separating the infinite sums in (4.11) and (4.12) into even and odd terms, and com-

bining with (4.16), we arrive at the following expressions for v and σ:

v(r, φ) =
a

(2)
0

r

(
(3− 2ν)w

(1)
−1(φ) +w

(2)
0 (φ)

)
+
∞∑
n=0

a
(2)
2n+2

(2n+ 2)r2n+3

(
α2n+2w

(1)
2n+1(φ) + (2n+ 2)w

(2)
2n+2(φ)

)
+
∞∑
n=0

a
(2)
2n+1

(2n+ 1)r2n+2

(
α2nw

(1)
2n (φ) + (2n+ 1)w

(2)
2n+1(φ)

)
,

(4.17a)

σ(r, φ) =
a

(2)
0

r2

(
(3− 2ν)τ

(1)
−1(φ) + τ

(2)
0 (φ)

)
+
∞∑
n=0

a
(2)
2n+2

(2n+ 2)r2n+4

(
α2n+2τ

(1)
2n+1(φ) + (2n+ 2)τ

(2)
2n+2(φ)

)
+
∞∑
n=0

a
(2)
2n+1

(2n+ 1)r2n+3

(
α2nτ

(1)
2n (φ) + (2n+ 1)τ

(2)
2n+1(φ)

)
.

(4.17b)

This solution satisfies (2.12b), as well as (2.12a) and (2.12e). Defining the vector functions

w(A)
n (φ) = α2nw

(1)
2n (φ) + (2n+ 1)w

(2)
2n+1(φ) n ≥ 0, (4.18a)

w(B)
n (φ) =


(3− 2ν)w

(1)
−1(φ) +w

(2)
0 (φ) n = −1,

α2n+2w
(1)
2n+1(φ) + (2n+ 2)w

(2)
2n+2(φ) n ≥ 0,

(4.18b)

and the tensor functions

τ (A)
n (φ) = α2nτ

(1)
2n (φ) + (2n+ 1)τ

(2)
2n+1(φ) n ≥ 0, (4.19a)

τ (B)
n (φ) =


(3− 2ν)τ

(1)
−1(φ) + τ

(2)
0 (φ) n = −1,

α2n+2τ
(1)
2n+1(φ) + (2n+ 2)τ

(2)
2n+2(φ) n ≥ 0,

(4.19b)
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and using the fact that the coefficients a(2)
n are arbitrary, it is possible to reexpress (4.17a)

and (4.17b) as

v(r, φ) =
∞∑
n=0

An

(h
r

)2n+2

w(A)
n (φ) +

∞∑
n=−1

Bn

(h
r

)2n+3

w(B)
n (φ), (4.20a)

σ(r, φ) =
1

h

[ ∞∑
n=0

An

(h
r

)2n+3

τ (A)
n (φ) +

∞∑
n=−1

Bn

(h
r

)2n+4

τ (B)
n (φ)

]
, (4.20b)

where An and Bn are unknown real coefficients. The components of functions w(A)
n , τ

(A)
n

for n = 0, 1, 2, . . . are

2µ[w(A)
n ]r(φ) = −(2n+ 1)

(
α2nP2n(cosφ) + γ2nP2n+2(cosφ)

)
, (4.21a)

2µ[w(A)
n ]φ(φ) = − sinφ

(
α2nP

′
2n(cosφ) + ε2nP

′
2n+2(cosφ)

)
, (4.21b)

[τ (A)
n ]r(φ) = (2n+ 1)(2n+ 2)

(
α2nP2n(cosφ) + β2nP2n+2(cosφ)

)
, (4.21c)

[τ (A)
n ]φ(φ) = (α2n + ε2n)P ′2n+1(cosφ)− (2n+ 1)(2n+ 2)

×
(
α2nP2n(cosφ) + (α2n − 2n+ 2− 4ν)P2n+2(cosφ)

)
,

(4.21d)

[τ (A)
n ]θ(φ) = −(4n+ 3)

(
(2n+ 1)(2n+ 2)(1− 2ν)P2n+2(cosφ)

+ (2n− 1 + 2ν)P ′2n+1(cosφ)
)
,

(4.21e)

[τ (A)
n ]rφ(φ) = sinφ

(
(2n+ 2)α2nP

′
2n(cosφ) + (2n+ 1)α2n+1P

′
2n+2(cosφ)

)
. (4.21f)

In the case n = −1, the components of functions w(B)
n , τ

(B)
n are

2µ[w
(B)
−1 ]r(φ) = −

(
1− 2ν + 4(1− ν) cosφ

)
, (4.22a)

2µ[w
(B)
−1 ]φ(φ) = sinφ

(
3− 4ν − (1− 2ν)q(φ)

)
, (4.22b)

[τ
(B)
−1 ]r(φ) = 1− 2ν + 2(2− ν) cosφ, (4.22c)

[τ
(B)
−1 ]φ(φ) = −(1− 2ν)

(
1 + cosφ− q(φ)

)
, (4.22d)

[τ
(B)
−1 ]θ(φ) = −(1− 2ν)

(
cosφ+ q(φ)

)
, (4.22e)

[τ
(B)
−1 ]rφ(φ) = −(1− 2ν) sinφ

(
1− q(φ)

)
, (4.22f)
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whereas in the case n = 0, 1, 2, . . ., they are

2µ[w(B)
n ]r(φ) = −(2n+ 2)

(
α2n+2P2n+1(cosφ) + γ2n+1P2n+3(cosφ)

)
, (4.23a)

2µ[w(B)
n ]φ(φ) = − sinφ

(
α2n+2P

′
2n+1(cosφ) + ε2n+1P

′
2n+3(cosφ)

)
, (4.23b)

[τ (B)
n ]r(φ) = (2n+ 2)(2n+ 3)

(
α2n+2P2n+1(cosφ) + β2n+1P2n+3(cosφ)

)
, (4.23c)

[τ (B)
n ]φ(φ) =

(
α2n+2 + ε2n+1

)
P ′2n+2(cosφ)− (2n+ 2)(2n+ 3)

×
(
α2n+2P2n+1(cosφ) + (α2n+1 − 2n+ 1− 4ν)P2n+3(cosφ)

)
,

(4.23d)

[τ (B)
n ]θ(φ) = −(4n+ 5)

(
(2n+ 2)(2n+ 3)(1− 2ν)P2n+3(cosφ)

+ (2n+ 1 + 2ν)P ′2n+2(cosφ)
)
,

(4.23e)

[τ (B)
n ]rφ(φ) = sinφα2n+2

(
(2n+ 3)P ′2n+1(cosφ) + (2n+ 2)P ′2n+3(cosφ)

)
, (4.23f)

where the coefficients β2n, γ2n and ε2n are defined as

β2n = (2n+ 2)(2n+ 5)− 2ν,

γ2n = (2n+ 2)(2n+ 5− 4ν),

ε2n = (2n+ 1)(2n− 2 + 4ν).

4.1.2. Axisymmetric boundary conditions

Let us briefly analyse the fulfilment of the axisymmetric boundary conditions on Γs,

given in (2.12d). We have that

σ(v)φ̂ · r̂ = (σrφ(v)r̂ + σφ(v)φ̂) · r̂ = σrφ(v), (4.24)

and

v · φ̂ = vφ, (4.25)

so we need that the component vφ of (4.20a) and the component σrφ of (4.20b) vanish on

Γ∞, that is, for φ = π (cf. (2.6b)). Actually, these conditions are already fulfilled due to the

factor sinφ existing in (4.21b), (4.21f), (4.22b), (4.22f), (4.23b) and (4.23f). Consequently,



69

the analytical solution given in (4.20a)-(4.20b) satisfies also (2.12d). In the next section,

we impose the boundary conditions on Γh, given in (2.12c).

4.2. Numerical enforcement of boundary conditions on the hemispherical pit

Up to now, we have obtained a solution in series form, given in (4.20a)-(4.20b), which

satisfies the elasticity equation (2.12a), the traction-free boundary conditions on the in-

finite plane surface (2.12b), the axisymmetric boundary conditions on the vertical surface

(2.12d), and the decaying condition at infinity (2.12e). It is a fully analytical solution, since

no numerical approximation has been introduced yet. In the present section, we enforce this

solution to satisfy the boundary conditions on the hemispherical surface (2.12c), which is

only possible in numerical form, so the sought solution becomes semi-analytical. This nu-

merical enforcement is done by means of minimising a quadratic functional, as described

below.

4.2.1. Truncation of the series

The fulfilment of the boundary conditions on the pit (2.12c) is directly related to the

coefficients An and Bn in (4.20a)-(4.20b), which have to be chosen in such a way that

(2.12c) is satisfied. However, there is an infinite number of coefficients An and Bn, which

are determined by an infinite set of simultaneous linear equations. Hence, it is not possible

to calculate them exactly, keeping the analytical nature of the solution. This drawback

is overcome by truncating the infinite series in (4.20a)-(4.20b) at a finite order N , which

introduces the first numerical approximation to our procedure and gives rise to a semi-

analytical solution of (2.12). The truncated solution is given by

vN(r, φ) =
N∑
n=0

An

(h
r

)2n+2

w(A)
n (φ) +

N∑
n=−1

Bn

(h
r

)2n+3

w(B)
n (φ), (4.26a)

σN(r, φ) =
1

h

[ N∑
n=0

An

(h
r

)2n+3

τ (A)
n (φ) +

N∑
n=−1

Bn

(h
r

)2n+4

τ (B)
n (φ)

]
. (4.26b)
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This approximation fixes a finite number of coefficientsAn andBn that are to be calculated.

This is done by solving a finite linear system of equations for the coefficients An and Bn,

which is obtained next.

4.2.2. Quadratic functional and its matrix form

The method to determine a linear system of equations satisfied by the coefficients An

and Bn is based upon the minimisation of a quadratic functional, which we define as

J (vN) =
1

2h

∫
Γh

σN r̂ · vN ds− 1

h

∫
Γh

f · vN ds, (4.27)

where vN and σN are given in (4.26a) and (4.26b), respectively, and f is the vector func-

tion that arises at the right-hand side of (2.12c), whose components in r and φ were de-

fined in (2.14a) and (2.14b), respectively. The first term in the right-hand side of (4.27)

is quadratic in vN and represents the surface elastic potential energy on Γh. The minus

sign has been chosen in order to obtain a strictly convex functional. The second term is

linear in vN and is related to the right-hand side vector function f . Although we have

assumed a particular function f , the subsequent analysis is valid for any piecewise con-

tinuous function f : Γh → R2 satisfying fφ(π) = 0. Moreover, vN and σN are regarded

in (4.27) as generic functions depending on the arbitrary coefficients A0, A1, A2, . . . , AN

and B−1, B0, B1, . . . , BN , respectively, which are to be determined in order to minimise

the functional J . Expressing vN , σN f in terms of their respective components in r and φ,

making explicit the integrals and rearranging terms, (4.27) is rewritten as

J (vN) =
h

2

∫ π

π/2

(
[σN ]r(h, φ)[vN ]r(h, φ) + [σN ]rφ(h, φ)[vN ]φ(h, φ)

)
sinφ dφ

−h
∫ π

π/2

(
fr(h, φ)[vN ]r(h, φ) + fφ(h, φ)[vN ]φ(h, φ)

)
sinφ dφ,

(4.28)

and next, the components of vN and σN in (4.26a) and (4.26b) are evaluated at r = h

and substituted in (4.28). Expanding the resulting terms and collecting the products AnAk,
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AnBk, BnAk and BnBk, the functional J is reexpressed as

J (vN) =
1

2

N∑
n=0

N∑
k=0

Q
(AA)
nk AnAk +

1

2

N∑
n=0

N∑
k=−1

Q
(AB)
nk AnBk

+
1

2

N∑
n=−1

N∑
k=0

Q
(BA)
nk BnAk +

1

2

N∑
n=−1

N∑
k=−1

Q
(BB)
nk BnBk

−
N∑
n=0

y(A)
n An −

N∑
n=−1

y(B)
n Bn,

(4.29)

where the terms Q(AA)
nk , Q(AB)

nk , Q(BA)
nk , Q(BB)

nk , y(A)
n and y(B)

n correspond to the entries of

matrices Q(AA) ∈ MN+1(R), Q(AB) ∈ M(N+1)×(N+2)(R), Q(BA) ∈ M(N+2)×(N+1)(R),

Q(BB) ∈ MN+2(R) and vectors y(A) ∈ RN+1 and y(B) ∈ RN+2, respectively. These

entries are defined as the following integrals:

Q
(αβ)
nk = −

∫ π

π/2

(
[w(α)

n ]r(φ)[τ
(β)
k ]r(φ) + [w(α)

n ]φ(φ)[τ
(β)
k ]rφ(φ)

)
sinφ dφ, (4.30a)

y(α)
n = −h

∫ π

π/2

(
[w(α)

n ]r(φ)fr(φ) + [w(α)
n ]φ(φ)fφ(φ)

)
sinφ dφ, (4.30b)

where α, β = A,B. Substituting (2.14a), (2.14b), (4.21a), (4.21b), (4.21c), (4.21f), (4.22a),

(4.22b), (4.22c), (4.22f), (4.23a), (4.23b), (4.23c), (4.23f) in (4.30a) and (4.30b) as appro-

priate leads us to obtain expressions for the quantities Q(αβ)
nk and y(α)

n in terms of explicit

integrals. These expressions are too cumbersome to be reproduced here. However, with

the aid of the integral formulae provided in the Appendix 6.1, all the involved integrals

are calculated exactly, yielding explicit expressions for the entries of matrices Q(αβ) and

vectors y(α) which we reproduce next for α, β = A,B. The entries of the matrix Q(AA)

are computed by using (6.4a) and (6.4d), corresponding to a tridiagonal symmetric matrix

with main diagonal entries

2µQ(AA)
nn =

(2n+ 1)(2n+ 2)(4n+ 3)

(4n+ 5)

×
(
(2n+ 3)(16n3 + 32n2 + 22n+ 8ν2 − 12ν + 9) + 4(1− ν2)

)
,

(4.31a)
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where 0 ≤ n ≤ N , and sub-diagonal and super-diagonal entries

2µQ
(AA)
n,n+1 = Q

(AA)
n+1,n =

(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(4n+ 3)

(4n+ 5)

×
(
(2n+ 2)(2n+ 4)− 1 + 2ν

)
,

(4.31b)

where 0 ≤ n ≤ N − 1. The entries of matrices Q(AB) and Q(BA) are calculated by

using (6.4a), (6.4c), (6.4f) and (6.5a). It is obtained that they correspond to full matrices

satisfyingQ(BA) = [Q(AB)]T . The entries ofQ(AB) in the case k = −1 are given by

2µQ
(AB)
n,−1 = −4(4n+ 3)(2n(2n+ 3)ν(ν − 2)− 3 + 5ν − 4ν2)P2n(0)

(2n− 1)(2n+ 2)(2n+ 4)
, (4.32a)

and in the case 0 ≤ k ≤ N + 1 are given by

2µQ
(AB)
nk =

4(2k + 1)(2k + 3)(4k + 5)(2n+ 1)(4n+ 3)ηnk P2n(0)P2k(0)

(2k+6+2n)(2k+3−2n)(2k+4+2n)(2k−1−2n)(2k+1−2n)
, (4.32b)

where

ηnk = 51 + 58k + 32k2n2 + 188kn+ 138n+ 56k2n+ 72n2 + 16k2 + 104kn2

−
(
(2k − 1− 2n)

(
4n2(2k + 4)− 4k((2k + 5)n+ 2k + 6)− 21

)
− 8k(2k + 2)

)
ν

− (2k + 3− 2n)(2k + 6 + 2n)(2k − 1− 2n)ν2,

and 0 ≤ n ≤ N . The entries of matrix Q(BB) are calculated by using (6.4b), (6.4c),

(6.4e), and (6.5b), together with some elementary primitives of trigonometric functions. It

is obtained thatQ(BB) corresponds to a symmetric matrix that is almost tridiagonal, except

for its first row and its first column, which are full. The entries associated with the first row

and column ofQ(BB) are

2µQ
(BB)
−1,−1 = 2(1− 2ν)2 ln 2 +

2

3
(2 + 5ν − 6ν2), (4.33a)

2µQ
(BB)
n,−1 = Q

(BB)
−1,n = −2(1− 2ν)(4n+ 5)(2n+ 1)

(
(2n+ 4)ν − 1

)
P2n(0)

(2n+ 2)(2n+ 4)

+ 2(7 + 2ν)δn0,

(4.33b)
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where 0 ≤ n ≤ N and δnk stands for the Kronecker delta. The entries associated with the

tridiagonal part ofQ(BB) are the main diagonal entries

2µQ(BB)
nn =

(4n+ 5)(2n+ 2)(2n+ 3)

(4n+ 7)

× (32n4+208n3+492n2+4(125−2ν+4ν2)n+187−20ν+28ν2),

(4.33c)

where 0 ≤ n ≤ N , and the and sub-diagonal and super-diagonal entries

2µQ
(BB)
n+1,n = Q

(BB)
n,n+1 =

(4n+ 5)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)

(4n+ 7)

× ((2n+ 4)(2n+ 6)− 1 + 2ν),

(4.33d)

where 0 ≤ n ≤ N − 1. The entries of vector y(A) are computed by using (6.4c) and (6.4f),

yielding

y(A)
n =

2%gh2(4n+ 3)(2n+ 1)P2n(0)

(1− ν)(2n− 1)(2n+ 2)(2n+ 4)(2n+ 6)

× (4(2n+ 3)− 6ν(3n+ 5) + ν2(2n+ 4)(2n+ 6)),

(4.34)

where 0 ≤ n ≤ N . Fig. 4.1 shows schematically the structure of matrices Q. The entries

of vector y(B) are computed by using (6.4b), (6.4c), (6.4e) and (6.5b). It is obtained that

only the first two entries of y(B) are different from zero. These entries are given by

y
(B)
−1 =

%gh2(26− 47ν + 30ν2)

30(1− ν)
, (4.35a)

y
(B)
0 =

2%gh2(46− 71ν + 70ν2)

21(1− ν)
. (4.35b)

We define also the vectors A ∈ RN+1 and B ∈ RN+2 as those whose entries correspond

to the coefficients An and Bn to be computed. From the above matrices and vectors, we

also define the square matrixQ ∈M2N+3(R) and the vectors x,y ∈ R2N+3 by blocks as

Q =

 Q(AA) Q(AB)

[Q(AB)]T Q(BB)

 , x =

 A
B

 , y =

 y(A)

y(B)

 , (4.36)
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Q(AA) Q(AB)
Q(BB)

N+1 N+2 N+2

N+1 N+2

Figure 4.1. Structure of matrices Q(AA) ,Q(AB) and Q(BB).

which allow us to reexpress the functional J given in (4.29) as the following quadratic

form in x:

J (x) =
1

2
xTQx− xTy. (4.37)

4.2.3. Linear system and method of inversion

A linear system for the coefficients An and Bn is obtained by minimisation of the

functional J . It holds thatQ is a symmetric matrix, due to the properties of its blocksQ(ij),

and it is also positive definite, thanks to the elliptic nature of the elastostatic boundary-value

problem. Therefore, J has a global minimum, which is reached when∇J (x) = Qx−y =

0, or equivalently, when

Qx = y. (4.38)

Eq. (4.38) corresponds to the sought linear system of equations for the coefficients An and

Bn. We take advantage of the symmetry and positive definiteness of Q in solving (4.38).

ExpressingQ, x and y by blocks in (4.38) yields Q(AA) Q(AB)

[Q(AB)]T Q(BB)

 A
B

 =

 y(A)

y(B)

 , (4.39)
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and this system is inverted with the aid of the so-called Schur-Banachiewicz blockwise

inversion formula (cf. (Björck, 1996)), which is given by

A =
(
[Q(AA)]−1 + [Q(AA)]−1Q(AB)[Q̃(BB)]−1[Q(AB)]T [Q(AA)]−1

)
y(A)

− [Q(AA)]−1Q(AB)[Q̃(BB)]−1y(B),
(4.40a)

B = −[Q̃(BB)]−1[Q(AB)]T [Q(AA)]−1y(A) + [Q̃(BB)]−1y(B), (4.40b)

where Q̃(BB) denotes the Schur complement ofQ(BB) inQ, defined as

Q̃(BB) = Q(BB) − [Q(AB)]T [Q(AA)]−1Q(AB). (4.41)

To evaluate (4.40a) and (4.40b), it suffices to inverse the symmetric and positive definite

matrices Q(AA) and Q̃(BB). As Q(AA) is in addition a tridiagonal matrix, it is efficiently

inverted by using the Thomas algorithm for tridiagonal systems (cf. (Golub & Loan, 1996),

Algorithm 4.3.6). To invert Q̃(BB), we employ its Cholesky factorisation, which is quickly

obtained with the aid of a suitable algorithm (cf. (Golub & Loan, 1996), Algorithm 4.2.1).

We thus establish the following algorithm to compute the coefficients An and Bn:

(i) Compute the coefficients for tridiagonal inversion ofQ(AA).

(ii) Use the coefficients to evaluate [Q(AA)]−1y(A) and [Q(AA)]−1Q(AB).

(iii) Calculate the Schur complement Q̃(BB) using (4.41).

(iv) Obtain the Cholesky factorisation of Q̃(BB).

(v) Use the Cholesky factorisation to evaluate [Q̃(BB)]−1y(B) and [Q̃(BB)]−1[Q(AB)]T .

(vi) AssembleA andB as indicated in (4.40a) and (4.40b).

This algorithm yields approximate values for the two series of coefficientsA0, A1, A2, . . . , AN

and B−1, B0, B1, . . . , BN . By substituting these values in (4.26a) and (4.26b), we obtain

the desired semi-analytical solution of the boundary-value problem (2.12) in explicit way.

4.3. Numerical results and validation

In this section, we present numerical results obtained with the semi-analytical method

described throughout Chapter 4. Prior to this, the convergence of the series is numerically
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verified and a convergence criterion is established in order to determine a suitable value

for the truncation parameter N . Furthermore, the procedure is validated by comparing our

semi-analytical solution with results obtained numerically using the commercial software

COMSOL Multiphysics. The unbounded domain Ω is truncated by means of an artificial

square box.

4.3.1. Numerical results

The semi-analytical method described in Chapter 3 and Section 4.2 was implemented

in its entirety, and the obtained solution was numerically evaluated for different values of

N . The considered numerical values of the gravity acceleration g, the radius of the pit h,

the density %, the Young’s modulus E and the Poisson’s ratio ν are shown in Table ??.To

Table 4.1. Numerical values of the physical parameters.

Parameter h g % E ν
Value 600 m 9.81 m/s2 2725 kg/m3 70.2 GPa 0.3

evaluate numerically the semi-analytical solution of (2.12) and analyse its convergence as

the truncation parameterN tends to infinity, we consider a bounded subregion of Ω, defined

in axisymmetric spherical coordinates by the points (r, φ) satisfying h ≤ r ≤ 2000 m and

π/2 ≤ φ ≤ π. The evaluations are performed at the points (ri, φj) of an equispaced

rectangular grid in the (r, φ)-plane, defined as ri = h + i∆r and φj = π/2 + j∆φ, where

i = 0, 1, 2, . . . , 140, ∆r = 10 m, j = 0, 1, 2, . . . , 500, and ∆φ = π/1000. In order to

test numerically the convergence of the series in terms of N , we compute the relative error

between two successive solutions, considering separately the displacement field v and the

stress tensor σ(v). The respective relative errors are defined as

eN(v) =
|vN+1 − vN |
|vN |

, eN(σ) =
|σN+1(vN+1)− σN(vN)|

|σN(vN)| , (4.42)

where in the latter case, | · | corresponds to the matrix Euclidean norm (or Frobenius norm).

Successive values of the truncation parameter up to N = 100 were considered in the anal-

ysis. A semi-logarithmic plot with both relative errors in function of N is presented in

Fig. 4.2, where it is observed that both of them decrease as N increases, exhibiting the
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error associated with the stress tensor a slower decrease. We conclude from this analysis

that the semi-analytical method shows an acceptable convergence. In order to set a value of

N for evaluation of the semi-analytical solution, we have used as a convergence criterion

that both relative errors have to be smaller than a tolerance of 0.001%, yielding the value

N = 40 (see Fig. 4.2), which we assume from now on. Having already calculated the solu-

tion v, the physical displacement field u is obtained by adding the lithostatic displacement

field ug (evaluated at the same rectangular grid), as indicated in (2.10). The physical stress

tensor σ(u) is obtained in a similar way, by adding to σ(v) the lithostatic stress tensor

σ(ug), whose components are explicitly obtained by substituting (2.10) in (2.7). The val-

ues of the displacement components ur and uφ, and the stress components σr(u), σφ(u),

σθ(u) and σrφ(u) are depicted in Fig. 4.3. It is observed from the plots of stress compo-

nents that obtained semi-analytical solution fulfils the boundary conditions (2.9b), (2.9c)

and (2.9d).
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Figure 4.2. Relative error of the solution between two successive iterations in N .
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Figure 4.3. Plots of displacement and stress components obtained in Ω.
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4.3.2. Validation of the procedure

In order to confirm the correctness of the semi-analytical solution, a validation test

was carried out. For this, the axisymmetric boundary-value problem in u (2.9) was numer-

ically solved using the commercial finite element software COMSOL Multiphysics, with

the physical parameters of the problem fixed to the same numerical values indicated in

Table ??. The purpose of this numerical simulation is to compare the results calculated

by such means with those obtained by using the semi-analytical method proposed herein.

As this type of software is only able to deal with bounded regions, the unbounded domain

Ω was truncated by means of an artificial square box of length L, as indicated schemat-

ically in Fig. 4.4. In order to be able to solve (2.9) in the truncated domain (denoted by

Ωtr), the decaying condition at infinity (2.9e) was replaced by artificial Dirichlet boundary

conditions on the right and bottom boundaries, with the displacements set to the lithostatic

displacement ug field given in (2.10). Different values of the length L were considered,

starting from a minimum value of L = 1000 m up to a maximum value of L = 13000 m,

with successive increases of ∆L = 1000 m. For each one of these values, non-uniform tri-

h

L

L

Ωtr

Figure 4.4. Schematic representation of the domain Ω truncated by a
square box of length L.

angular meshes of the domain Ωtr were generated, with the element size varying between a
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minimum value of 2 m and a maximum value of 50 m, and the maximum element growth

rate set to 1.3. To solve numerically the boundary-value problem, standard conforming P1

finite elements in each mesh were used. Common sense indicates that as the domain size

grows, the approximation of the unbounded boundary-value problem (2.9) by a bounded

one becomes more accurate. Therefore, it is expected that the solution calculated numeri-

cally by finite elements approaches the semi-analytical solution as the length L increases.

In order to find out whether this occurs, the displacement components ur and uφ, and the

stress components σφ and σθ obtained by both means were compared on the surface of the

pit Γh. The remaining stress components σr and σrφ were not considered in the compar-

ison, since they are set to zero by the boundary condition prescribed on Γh (2.9c). The

displacement curves obtained by the semi-analytical method, and by finite elements for

some values of L, are presented separately for each displacement component in Fig. 4.5,

where the horizontal axis corresponds to the angle φ. The stress curves for σφ and σθ are

given in analogous way in Fig. 4.6. It is noticed from Figs. 4.5 and 4.6 that, as expected,

the solution obtained by the semi-analytical method is better approximated by the solution

computed numerically as the value of L increases. This behaviour is seen in the displace-

ment as well as the stress curves, being more evident in the latter case. It is also observed

from Fig. 4.5 that the component ur obtained semi-analytically is better approximated than

the component uφ obtained in the same way as the value of L increases. This difference

between both displacement components can be explained by the error introduced in the

numerical solution by the artificial boundary conditions, particularly on the right boundary

of Ωtr, which affects more strongly the displacement uφ near the infinite plane surface. In

order to further verify the already observed tendency as L increases, the relative error of

the semi-analytical solution with respect to the numerical one was evaluated on Γh, for all

the assumed values of L, considering separately the errors associated with the displace-

ment vector u and the stress tensor σ(u). Both relative error curves as functions of L are

presented in a semilogarithmic plot in Fig. 4.7. These curves confirm the behaviour seen

in Figs. 4.5 and 4.6: The relative error between the semi-analytical and the numerical so-

lution decreases as L increases, both for the displacement vector and the stress tensor. In
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Figure 4.5. Comparison of displacement components on Γh.
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Figure 4.6. Comparison of stress components on Γh.

fact, both relative errors show a similar tendency, being the error in stress smaller than the

error in displacement for all values of L. We confirm from this analysis the validity of the

proposed semi-analytical solution.
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5. A DIRICHLET-TO-NEUMANN FINITE ELEMENT METHOD FOR AXISYM-

METRIC ELASTOSTATICS IN A SEMI-INFINITE DOMAIN

We present a DtN FEM procedure for boundary-value problems of elastostatics in

semi-infinite domains with axisymmetry about the vertical axis. A semi-spherical artificial

boundary is used to truncate the semi-infinite domain and to obtain a bounded computa-

tional domain, where a FEM scheme is employed. By using a semi-analytical procedure of

solution in the unbounded residual domain lying outside the artificial boundary, the exact

nonlocal boundary conditions provided by the DtN map are numerically approximated and

efficiently coupled with the FEM scheme. Numerical results are provided to demonstrate

the effectiveness and accuracy of the proposed method.

5.1. Mathematical formulation

5.1.1. Generalities

In this Chapter the boundary of Ω consists of three parts: A vertical boundary of ax-

isymmetry coinciding with the axis of revolution, denoted by Γs, a horizontal unperturbed

boundary coinciding with the infinite plane surface of the half-space, denoted by Γ∞, and

a perturbed bounded boundary which is assumed piecewise smooth, denoted by Γp (see

Figure 5.1).

5.1.2. Axisymmetric elastostatic model

We consider the following elastostatic BVP in Ω: Find u : Ω→ R2 such that

∇ · σ(u) = 0 in Ω, (5.1a)

σ(u)ẑ = 0 on Γ∞, (5.1b)

σ(u)n̂ = f on Γp, (5.1c)

σ(u)ρ̂ · ẑ = u · ρ̂ = 0 on Γs, (5.1d)

|u| = O
(
r−1
)

as r →∞, (5.1e)



84
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Γs

Γp

ρ
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φ

r

Figure 5.1. Axisymmetric semi-infinite domain.

where n̂ denotes the unit outward normal vector on Γp and f : Γp → R2 is a given

piecewise continuous vector function.

5.2. FEM formulation in the computational domain

5.2.1. Equivalent bounded boundary-value problem

In order to apply the DtN FEM to solve (5.1), an artificial boundary is introduced to

truncate Ω, which is chosen to be a quarter circle of radius R, denoted by ΓR (cf. Fig-

ure 5.2). Notice that if Ω is rotated about the axis of revolution to generate the 3D semi-

infinite solid, ΓR gives rise to a hemispherical surface of radius R. The bounded domain

lying inside ΓR is denoted by Ωi, which corresponds to the computational domain. The re-

sulting bounded parts of boundaries Γ∞ and Γs are respectively denoted by Γi
∞ and Γi

s (cf.

Figure 5.2). In order to solve (5.1), we formulate the following mathematically equivalent

BVP in Ωi: Find u : Ωi → R2 such that

∇ · σ(u) = 0 in Ωi, (5.2a)

σ(u)ẑ = 0 on Γi
∞, (5.2b)
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σ(u)n̂ = f on Γp, (5.2c)

σ(u)ρ̂ · ẑ = u · ρ̂ = 0 on Γi
s, (5.2d)

σ(u)r̂ = −Mu on ΓR, (5.2e)

where (5.2e) is the exact ABC on ΓR, expressed in terms of the DtN map M, which

we assume for the moment to be known. The definition of M, as well as its numerical

approximation, will be discussed in detail in the next section. We have assumed that the

Γi
∞

Ωi

Γi
s

Γp

R

ΓR

ρ

z

Figure 5.2. Axisymmetric computational domain.

medium occupying Ω is isotropic, homogeneous, and linear elastic. Nevertheless, the DtN

FEM also applies if more general hypotheses in this regard are assumed, but restricted to

the the computational domain, e.g. the medium in Ωi could be inhomogeneous, anisotropic,

nonlinear, and even inelastic. Moreover, nonzero right-hand sides in (5.2a) or (5.2b) are

allowed as well.

5.2.2. Weak formulation

Throughout this section, we work in axisymmetric cylindrical coordinates (ρ, z). To

state a weak (or variational) formulation of (5.2), we consider a Hilbert space containing
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physically admissible displacement fields in Ωi, defined as

V =
{
v = (vρ, vz) ∈ [H1(Ωi)]2 : vρ = 0 on Γi

s

}
,

where H1(Ωi) is the usual Sobolev space of L2 functions with L2 first derivatives. Notice

that the boundary condition of zero normal displacement in Γs is included in V . The weak

formulation of (5.2) is expressed as: Find u ∈ V such that

a(u,v) + b(u,v) = (f ,v)Γp ∀v ∈ V , (5.3)

where a corresponds to the bilinear form associated with the weak formulation of the elas-

tostatic equation, expressed in axisymmetric cylindrical coordinates (cf. (Szabo & Babuška,

1991)) as

a(u,v) =

∫
Ωi

[
σρ(u)

∂vρ
∂ρ

+σθ(u)
vρ
ρ

+σz(u)
∂vz
∂z

+σρz(u)

(
∂vρ
∂z

+
∂vz
∂ρ

)]
ρ dρ dz, (5.4)

whereas b is a bilinear form involving the DtN map, defined as

b(u,v) =

∫
ΓR

Mu · v dΓR, (5.5)

and the right-hand side of (5.3) is

(f ,v)Γp =

∫
Γp

f · v dΓp.
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By substituting (2.7) in (5.4), expanding terms and rearranging appropriately, a is reex-

pressed as

a(u,v) = (λ+ 2µ)

∫
Ωi

(
∂uρ
∂ρ

∂vρ
∂ρ

+
∂uz
∂z

∂vz
∂z

)
ρ dρ dz

+ λ

∫
Ωi

(
∂uρ
∂ρ

∂vz
∂z

+
∂uz
∂z

∂vρ
∂ρ

)
ρ dρ dz

+ µ

∫
Ωi

(
∂uρ
∂z

+
∂uz
∂ρ

)(
∂vρ
∂z

+
∂vz
∂ρ

)
ρ dρ dz

+ λ

∫
Ωi

[(
∂uρ
∂ρ

+
∂uz
∂z

)
vρ + uρ

(
∂vρ
∂ρ

+
∂vz
∂z

)]
dρ dz

+ (λ+ 2µ)

∫
Ωi

uρvρ
ρ

dρ dz.

(5.6)

The first three integrals in (5.6) are terms analogous to the 2D elastostatic case (except for

the differential element), whereas the last two integrals are additional terms that arise due

to the axisymmetry.

5.2.3. FEM discretisation

In what follows, the weak formulation (5.3) is discretised by using standard conform-

ing P1 finite elements. Let us assume for simplicity that Γp is a polygonal line. We denote

by Th a family of regular triangular meshes of Ωi such that Ωi =
⋃
T∈Th T (the quarter

circle ΓR is approximated by a polygonal line). The indexing parameter h measures the

size of each triangular element T and is defined as h = max{diam T : T ∈ Th}, with

diam T = sup{
√

(ρ2 − ρ1)2 + (z2 − z1)2 : (ρ1, z1), (ρ2, z2) ∈ T}. For each triangular

mesh T h, let Vh be a finite-dimensional vector subspace of V consisting of continuous

piecewise linear vector functions, defined as

Vh =
{
vh ∈ V : vh ∈ [C0(Ωi)]2, vh

∣∣
T
∈ [P1(T )]2 ∀T ∈ T h

}
,

where C0(Ωi) denotes the space of continuous functions in Ωi and P1(T ) stands for the

space of polynomials of degree at most one defined in T . The discrete version of (5.3) is
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expressed as: Find uh ∈ Vh such that

a(uh,vh) + b(uh,vh) = (f ,vh)Γp ∀vh ∈ Vh. (5.7)

Let I be the set of all nodes of the triangular mesh T h. For each i ∈ I, we introduce a

nodal shape (or basis) function ψi ∈ Vh which has unit value at node i and zero value at all

other nodes. Let also Is ⊂ I be the set of nodes lying on Γi
s. A nodal basis of Vh is thus

built by considering vector functions ψiρ̂ for nodes i ∈ I \ Is, to allow for the condition

of zero normal displacement given by (5.2d), and vector functions ψiẑ for all nodes i ∈ I.

Consequently, the solution of (5.7) is expressed as a linear combination of the nodal basis

functions as

uh(ρ, z) =
∑
i∈I\Is

dρi ψi(ρ, z)ρ̂+
∑
i∈I

dzi ψi(ρ, z)ẑ, (5.8)

where dρi and dzi are respectively the unknown nodal values of components uhρ and uhz

of the solution uh. Replacing (5.8) in (5.7) and substituting vh by each one of the nodal

basis functions ψiρ̂ and ψiẑ, we arrive at the finite element matrix form of the problem,

expressed as

Kd = F , (5.9)

with

K = Ka +Kb, Ka =

 Ka
ρρ Ka

ρz

Ka
zρ Ka

zz

 , Kb =

 Kb
ρρ Kb

ρz

Kb
zρ Kb

zz

 ,
and

d =

 dρ
dz

 , F =

 F ρ

F z

 ,
where

[Ka
ρρ]ij = a(ψiρ̂, ψjρ̂), [Ka

ρz]ij = a(ψiρ̂, ψjẑ),

[Ka
zρ]ij = a(ψiẑ, ψjρ̂), [Ka

zz]ij = a(ψiẑ, ψjẑ),
(5.10)
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[Kb
ρρ]ij = b(ψiρ̂, ψjρ̂), [Kb

ρz]ij = b(ψiρ̂, ψjẑ),

[Kb
zρ]ij = b(ψiẑ, ψjρ̂), [Kb

zz]ij = b(ψiẑ, ψjẑ),
(5.11)

[dρ]j = dρj, [dz]j = dzj, (5.12)

[F ρ]i = (f , ψiρ̂)Γp , [F z]i = (f , ψiẑ)Γp . (5.13)

The entries of matrix Ka and vector F are computed by standard numerical integration

techniques. However, this is not possible in the case of matrix Kb. Substituting (5.5) in

(5.11), we reexpress the entries ofKb as

[Kb
ρρ]ij =

∫
ΓR

ψiρ̂ ·Mψjρ̂ dΓR, [Kb
ρz]ij =

∫
ΓR

ψiρ̂ ·Mψjẑ dΓR, (5.14a)

[Kb
zρ]ij =

∫
ΓR

ψiẑ ·Mψjρ̂ dΓR, [Kb
zz]ij =

∫
ΓR

ψiẑ ·Mψjẑ dΓR. (5.14b)

Computing these terms is far from being straightforward, since they involve the DtN map

M, which has to be calculated in an accurate way. Notice that these terms are different

from zero only if i, j ∈ IR, where IR ⊂ I denotes the set of mesh nodes lying on ΓR.

A correct calculation of the nonzero entries of matrix Kb is critical for obtaining an ac-

curate solution of (5.2), since Kb accounts for the contribution from the exact ABCs in

the standard finite element scheme used for numerical discretisation. This crucial issue is

thoroughly treated in the next section.

5.3. Approximation of the exact artificial boundary conditions

5.3.1. Definition of the DtN map

Next, we provide the mathematical definition of the DtN map M introduced in the pre-

vious section. Let us consider the residual semi-infinite domain lying outside the artificial

boundary ΓR, denoted by Ωe. The resulting unbounded parts of boundaries Γ∞ and Γs are

respectively denoted by Γe
∞ and Γe

s (cf. Figure 5.3). Let Hs(ΓR) be the standard Sobolev

space on ΓR of real order s. Given any v ∈ [H1/2(ΓR)]2, we obtain Mv ∈ [H−1/2(ΓR)]2

as

Mv = −σ(u)r̂
∣∣
ΓR
, (5.15)
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where u is the solution of the following BVP in Ωe: Find u : Ωe → R2 such that

∇ · σ(u) = 0 in Ωe, (5.16a)

σ(u)ẑ = 0 on Γe
∞, (5.16b)

u = v on ΓR, (5.16c)

σ(u)ρ̂ · ẑ = u · ρ̂ = 0 on Γe
s, (5.16d)

|u| = O
(
r−1
)

as r →∞. (5.16e)

As already mentioned, unlike most exterior BVPs, in this case the method of separation

of variables fails in obtaining a full analytical closed-form expression for the solution u

of (5.16) in function of a generic Dirichlet datum v on ΓR. This drawback is overcome by

solving (5.16) approximately, just for those v required to compute the nonzero entries of

matrix Kb. By virtue of (5.14), the required right-hand sides in (5.16c) are v = ψjρ̂ and

v = ψjẑ, for every j ∈ IR.

Γe
∞

Ωe

ΓR

Γe
s

R

φ
r

Figure 5.3. Axisymmetric semi-infinite residual domain.



91

5.3.2. Numerical enforcement of exact boundary conditions on the artificial boundary

In order to solve (5.16), we apply the semi-analytical method presented in Chapter 4

with some suitable modifications. Proceeding analogously as in Section 4.1, we obtain

an analytical solution in series form satisfying (5.16a), (5.16b), (5.16b) and (5.16e). This

solution reads exactly as (4.20a)-(4.20b), but with h substituted by R. In the same way

as we did in Section 4.2, this solution is numerically forced to satisfy (5.16c), leading to

determine the coefficients An and Bn associated with a particular right-hand side v. In the

next subsection, this procedure will be applied to the particular right-hand sides v = ψjρ̂

and v = ψjẑ. First, we truncate the series in the aforementioned analytical solution at a

finite order N . The resulting expressions for the displacement vector uN and the stress

tensor σN are

uN(r, φ) =
N∑
n=0

An

(R
r

)2n+2

w(A)
n (φ) +

N∑
n=−1

Bn

(R
r

)2n+3

w(B)
n (φ), (5.17a)

σN(r, φ) =
1

R

[ N∑
n=0

An

(R
r

)2n+3

τ (A)
n (φ) +

N∑
n=−1

Bn

(R
r

)2n+4

τ (B)
n (φ)

]
, (5.17b)

and this time we consider the quadratic energy functional J defined as

J (uN) =
1

2R

∫
ΓR

σN n̂ · uN dΓR −
1

R

∫
ΓR

σN n̂ · v dΓR, (5.18)

where n̂ = −r̂ is the unit normal vector on ΓR, pointing outwards Ωe. The first term in

(5.18) is quadratic in uN and represents the surface elastic potential energy on ΓR, whereas

the second term is linear in uN and is related to the Dirichlet boundary condition assumed

on ΓR. The functional J has been defined in such a way that its minimisation provides nu-

merical values for coefficientsA0, A1, A2, . . . , AN andB−1, B0, B1, . . . , BN so that (5.16c)

holds approximately. By expanding terms in (5.18), replacing n̂ = −r̂ and making explicit



92

the integrals (notice that dΓR = R2 sinφ dφ), we arrive at

J (uN) = −R
2

∫ π

π/2

(
[σN ]r(R, φ) [uN ]r(R, φ) + [σN ]rφ(R, φ) [uN ]φ(R, φ)

)
sinφ dφ

+R

∫ π

π/2

(
[σN ]r(R, φ) vr(R, φ) + [σN ]rφ(R, φ) vφ(R, φ)

)
sinφ dφ.

(5.19)

As we did in Subsection 4.2.2, we define the column vectorsA ∈ RN+1 andB ∈ RN+2 as

those whose entries are the coefficients A0, A1, A2, . . . , AN and B−1, B0, B1, . . . , BN , re-

spectively. By evaluating the corresponding components of uN and σN at r = R in (5.17a)

and (5.17b), substituting in (5.19) and expanding terms appropriately, J is reexpressed as

an explicit function ofA andB as

J (A,B) =
1

2

N∑
n=0

N∑
k=0

Q
(AA)
nk AnAk +

1

2

N∑
n=0

N∑
k=−1

Q
(AB)
nk AnBk +

1

2

N∑
n=−1

N∑
k=0

Q
(BA)
nk BnAk

+
1

2

N∑
n=−1

N∑
k=−1

Q
(BB)
nk BnBk −

N∑
n=0

y(A)
n An −

N∑
n=−1

y(B)
n Bn,

(5.20)

where the coefficients Qαβ
nk are given by (4.31a)-(4.33d) and

y(α)
n = −

∫ π

π/2

(
[τ (α)
n ]r(φ)vr(R, φ) + [τ (α)

n ]rφ(φ)vφ(R, φ)
)

sinφ dφ. (5.21)

where α = A,B. Coefficients y(α)
n depend on the particular right-hand side v assumed

in (5.16c), so their calculation is discussed in the next subsection. Defining matrix Q ∈
M2N+3(R) and vectors x,y ∈ R2N+3 exactly as in Subsection 4.2.2, it is possible to reex-

press J in (5.20) as a quadratic form in x

J (x) =
1

2
xTQx− xTy. (5.22)

whose minimization yields again a linear sistem of equations for the coefficientsA0, A1, . . . , AN

and B−1, B0, B1, . . . , BN stored in the vector x. The procedure and associated algorithm

to solve the system are completely analogous to those presented in Section 4.2.3. This
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algorithm has to be applied repeatedly for each pair of vectors y(A) and y(B) necessary in

the computations. Nevertheless, as matrices Q(αβ) remain unchanged, each one of them,

together with the coefficients for inversion of Q(AA) and Q̃(BB), are computed and stored

only once.

5.3.3. Numerical approximation of integral terms involving the DtN map in the FEM

formulation

In what follows, the numerical procedure described in the previous subsection is ap-

plied to approximate the terms in (5.14). First, coefficients y(α)
n in (5.21) are to be calculated

for v = ψjρ̂ and v = ψjẑ for every j ∈ IR. Combining with (2.1a), we obtain that these

two cases are respectively equivalent to consider

y(A) = Cj
ρ, y(B) = Dj

ρ,

and

y(A) = Cj
z, y(B) = Dj

z,

where Cj
ρ,C

j
z ∈ RN+1 andDj

ρ,D
j
z ∈ RN+2 are the vectors of components

Cj
ρ,n = −

∫ π

π/2

(
[τ (A)
n ]r(φ) sinφ+ [τ (A)

n ]rφ(φ) cosφ
)
ψj(R, φ) sinφ dφ

n = 0, . . . , N, (5.23a)

Cj
z,n = −

∫ π

π/2

(
[τ (A)
n ]r(φ) cosφ− [τ (A)

n ]rφ(φ) sinφ
)
ψj(R, φ) sinφ dφ

n = 0, . . . , N, (5.23b)

Dj
ρ,n = −

∫ π

π/2

(
[τ (B)
n ]r(φ) sinφ+ [τ (B)

n ]rφ(φ) cosφ
)
ψj(R, φ) sinφ dφ

n = 0, . . . , N, (5.23c)

Dj
z,n = −

∫ π

π/2

(
[τ (B)
n ]r(φ) cosφ− [τ (B)

n ]rφ(φ) sinφ
)
ψj(R, φ) sinφ dφ

n = 0, . . . , N, (5.23d)
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respectively. By substituting (4.21c), (4.21f), (4.22c), (4.22f), (4.23c) and (4.23f) in (5.23)

and expanding, components of vectors Cj
ρ,C

j
z,D

j
ρ,D

j
z are rewritten as

Cj
s,n = −(2n+ 1)(2n+ 2)

(
α2n l

j
s,2n + β2n l

j
s,2n+2

)
− (2n+ 2)α2nm

j
s,2n − (2n+ 1)α2n+1m

j
s,2n+2 n = 0, . . . , N, (5.24a)

Dj
s,−1 = −3 ljs,1 − (1− 2ν)qjs, (5.24b)

Dj
s,n = −(2n+ 2)(2n+ 3)

(
α2n+2 l

j
s,2n+1 + β2n+1 l

j
s,2n+3

)
− α2n+2

(
(2n+ 3)mj

s,2n+1 + (2n+ 2)mj
s,2n+3

)
n = 0, . . . , N, (5.24c)

where s = ρ, z and

ljρ,n =

∫ π

π/2

sin2φPn(cosφ)ψj(R, φ)dφ, (5.25a)

ljz,n =

∫ π

π/2

sinφ cosφPn(cosφ)ψj(R, φ)dφ, (5.25b)

mj
ρ,n =

∫ π

π/2

sin2φ cosφP ′n(cosφ)ψj(R, φ)dφ, (5.25c)

mj
z,n = −

∫ π

π/2

sin3φP ′n(cosφ)ψj(R, φ)dφ, (5.25d)

qjρ =

∫ π

π/2

(1 + cosφ)ψj(R, φ)dφ, (5.25e)

qjz = 0. (5.25f)

To compute these integrals, we observe that the mesh Th restricted to ΓR gives rise to a

partition of the quarter circle into segments (usually equispaced). Let J be the number

of these segments. Then the set IR necessarily consists of J + 1 mesh nodes, which we

assume for simplicity to be correlatively numbered, that is, IR = {1, 2, . . . , J, J + 1}. We

associate with each node j ∈ IR an angle φj , in such a way that π/2 = φ1 < φ2 < . . . <

φJ < φJ+1 = π. The P1-nodal shape functions ψj , restricted to ΓR, do not depend on the
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radius R, and have the following explicit expressions

ψ1(φ) = 1[φ1,φ2](φ)

(
φ2 − φ
φ2 − φ1

)
, (5.26a)

ψj(φ) = 1[φj−1,φj ](φ)

(
φ− φj−1

φj − φj−1

)
+ 1[φj ,φj+1](φ)

(
φj+1 − φ
φj+1 − φj

)
j = 2, . . . , J,

(5.26b)

ψJ+1(φ) = 1[φJ ,φJ+1](φ)

(
φ− φJ

φJ+1 − φJ

)
, (5.26c)

where 1[a,b](·) stands for the indicator function of the interval [a, b]. Substituting (5.26) in

(5.25), coefficients lsn,j , m
s
n,j and qρj are decomposed as

l1s,n = l1,+s,n , m1
s,n = m1,+

s,n , q1
ρ,n = q1,+

ρ,n ,

ljs,n = lj,−s,n + lj,+s,n , mj
s,n = mj,−

s,n +mj,+
s,n , qjρ,n = qj,−ρ,n + qj,+ρ,n , j = 2, . . . , J,

lJ+1
s,n = lJ+1,−

s,n , mJ+1
s,n = mJ+1,−

s,n , qJ+1
ρ,n = qJ+1,−

ρ,n ,

where for j = 2, . . . , J + 1,

lj,−ρ,n =

∫ φj

φj−1

sin2φPn(cosφ)

(
φ− φj−1

φj − φj−1

)
dφ, (5.27a)

mj,−
ρ,n =

∫ φj

φj−1

sin2φ cosφP ′n(cosφ)

(
φ− φj−1

φj − φj−1

)
dφ, (5.27b)

qj,−ρ =

∫ φj

φj−1

(1 + cosφ)

(
φ− φj−1

φj − φj−1

)
dφ, (5.27c)

lj,−z,n =

∫ φj

φj−1

sinφ cosφPn(cosφ)

(
φ− φj−1

φj − φj−1

)
dφ, (5.27d)

mj,−
z,n = −

∫ φj

φj−1

sin3φP ′n(cosφ)

(
φ− φj−1

φj − φj−1

)
dφ, (5.27e)

and for j = 1, . . . , J ,

lj,+ρ,n =

∫ φj+1

φj

sin2φPn(cosφ)

(
φj+1 − φ
φj+1 − φj

)
dφ, (5.28a)

mj,+
ρ,n =

∫ φj+1

φj

sin2φ cosφP ′n(cosφ)

(
φj+1 − φ
φj+1 − φj

)
dφ, (5.28b)
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qj,+ρ =

∫ φj+1

φj

(1 + cosφ)

(
φj+1 − φ
φj+1 − φj

)
dφ, (5.28c)

lj,+z,n =

∫ φj+1

φj

sinφ cosφPn(cosφ)

(
φj+1 − φ
φj+1 − φj

)
dφ, (5.28d)

mj,+
z,n = −

∫ φj+1

φj

sin3φP ′n(cosφ)

(
φj+1 − φ
φj+1 − φj

)
dφ. (5.28e)

Explicit expressions for a few coefficients lj,±s,n , mj,±
s,n and qj,±s are given next

lj,−ρ,0 =
φj − φj−1

4
− 1

2
cosφj sinφj −

cos2φj − cos2φj−1

4(φj − φj−1)
,

lj,+ρ,0 =
φj+1 − φj

4
+

1

2
cosφj sinφj +

cos2φj+1 − cos2φj
4(φj+1 − φj)

,

lj,−ρ,1 = mj,−
ρ,1 =

1

3
sin3φj +

(2 + sin2φj) cosφj − (2 + sin2φj−1) cosφj−1

9(φj − φj−1)
,

lj,+ρ,1 = mj,+
ρ,1 = −1

3
sin3φj −

(2 + sin2φj+1) cosφj+1 − (2 + sin2φj) cosφj
9(φj+1 − φj)

,

lj,−ρ,2 = −φj − φj−1

32
− cosφj sinφj(6 cos2φj − 7)

16

− (cos2φj − cos2φj−1)
(
3(cos2φj + cos2φj−1)− 7

)
32(φj − φj−1)

lj,+ρ,2 = −φj+1 − φj
32

+
cosφj sinφj(6 cos2φj − 7)

16

+
(cos2φj+1 − cos2φj)

(
3(cos2φj + cos2φj+1)− 7

)
32(φj+1 − φj)

qj,−ρ =
φj − φj−1

2
+ sinφj +

cosφj − cosφj−1

φj − φj−1

,

qj,+ρ =
φj+1 − φj

2
− sinφj −

cosφj+1 − cosφj
φj+1 − φj

,

lj,−z,0 = −cos2φj − sin2φj
4

+
sinφj cosφj − sinφj−1 cosφj−1

4(φj − φj−1)
,

lj,+z,0 =
cos2φj − sin2φj

4
− sinφj+1 cosφj+1 − sinφj cosφj

4(φj+1 − φj)
,

lj,−z,1 = −1

3
cos3φj +

(2 + cos2φj) sinφj − (2 + cos2φj−1) sinφj−1

9(φj − φj−1)
,
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lj,+z,1 =
1

3
cos3φj −

(2 + cos2φj+1) sinφj+1 − (2 + cos2φj) sinφj
9(φj+1 − φj)

,

mj,−
z,1 =

(2 + sin2φj) cosφj
3

− (6 + sin2φj) sinφj − (6 + sin2φj−1) sinφj−1

9(φj − φj−1)
,

mj,+
z,1 = −(2 + sin2φj) cosφj

3
+

(6 + sin2φj+1) sinφj+1 − (6 + sin2φj) sinφj
9(φj+1 − φj)

,

lj,−z,2 = −8(cos2φj − 1)(3 cos2φj + 1) + 7

64

+
cosφj sinφj(6 cos2φj + 1)− cosφj−1 sinφj−1(6 cos2φj−1 + 1)

64(φj − φj−1)

lj,+z,2 =
8(cos2φj − 1)(3 cos2φj + 1) + 7

64

− cosφj+1 sinφj+1(6 cos2φj+1 + 1)− cosφj sinφj(6 cos2φj + 1)

64(φj+1 − φj)

Integrals in (5.27) and (5.28) are computed analytically with the aid of symbolic com-

putation techniques. The resulting expressions become more and more unwieldy as n

increases, so only a few of them are provided by the way of example. We denote by

Ajs,n and Bj
s,n the coefficients An and Bn obtained by applying the algorithm of the pre-

vious subsection with y(A) = Cj
s and y(B) = Dj

s, respectively. Notice that as for each

j = 1, 2, . . . , J, J + 1 two cases need to be considered (s = ρ and s = z), the algorithm is

to be applied 2(J+1) times in total. Additionally, let us define the vectorsAj
s ∈ RN+1 and

Bj
s ∈ RN+2 as those whose components are the coefficients Ajs,n and Bj

s,n, respectively,

which by virtue of (4.40a) and (4.40b) are given by

Aj
s =

(
[Q(AA)]−1 + [Q(AA)]−1Q(AB)[Q̃(BB)]−1[Q(AB)]T [Q(AA)]−1

)
Cj
s

− [Q(AA)]−1Q(AB)[Q̃(BB)]−1Dj
s,

(5.29a)

Bj
s = −[Q̃(BB)]−1[Q(AB)]T [Q(AA)]−1Cj

s + [Q̃(BB)]−1Dj
s. (5.29b)
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Thus, using the definition of the DtN map (5.15) and combining with (4.26a) and (5.17b)

yields the approximations

Mψjρ̂(φ) ≈ − 1

R

[ N∑
n=0

Ajρ,n

(
[τ (A)
n ]r(φ)r̂ + [τ (A)

n ]rφ(φ)φ̂
)

+
N∑

n=−1

Bj
ρ,n

(
[τ (B)
n ]r(φ)r̂ + [τ (B)

n ]rφ(φ)φ̂
)]
,

Mψjẑ(φ) ≈ − 1

R

[ N∑
n=0

Ajz,n

(
[τ (A)
n ]r(φ)r̂ + [τ (A)

n ]rφ(φ)φ̂
)

+
N∑

n=−1

Bj
z,n

(
[τ (B)
n ]r(φ)r̂ + [τ (B)

n ]rφ(φ)φ̂
)]
.

By replacing these expressions in (5.14), combining with (2.1a) and expanding, we arrive

at

[Kb
ρρ]ij ≈−R

N∑
n=0

Ajρ,n

∫ π

π/2

(
[τ (A)
n ]r(φ) sinφ+ [τ (A)

n ]rφ(φ) cosφ
)
ψi(R, φ) sinφ dφ

−R
N∑

n=−1

Bj
ρ,n

∫ π

π/2

(
[τ (B)
n ]r(φ) sinφ+ [τ (B)

n ]rφ(φ) cosφ
)
ψi(R, φ) sinφ dφ,

[Kb
ρz]ij ≈−R

N∑
n=0

Ajz,n

∫ π

π/2

(
[τ (A)
n ]r(φ) sinφ+ [τ (A)

n ]rφ(φ) cosφ
)
ψi(R, φ) sinφ dφ

−R
N∑

n=−1

Bj
z,n

∫ π

π/2

(
[τ (B)
n ]r(φ) sinφ+ [τ (B)

n ]rφ(φ) cosφ
)
ψi(R, φ) sinφ dφ,

[Kb
zρ]ij ≈−R

N∑
n=0

Ajρ,n

∫ π

π/2

(
[τ (A)
n ]r(φ) cosφ− [τ (A)

n ]rφ(φ) sinφ
)
ψi(R, φ) sinφ dφ

−R
N∑

n=−1

Bj
ρ,n

∫ π

π/2

(
[τ (B)
n ]r(φ) cosφ− [τ (B)

n ]rφ(φ) sinφ
)
ψi(R, φ) sinφ dφ,
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[Kb
zz]ij ≈−R

N∑
n=0

Ajz,n

∫ π

π/2

(
[τ (A)
n ]r(φ) cosφ− [τ (A)

n ]rφ(φ) sinφ
)
ψi(R, φ) sinφ dφ

−R
N∑

n=−1

Bj
z,n

∫ π

π/2

(
[τ (B)
n ]r(φ) cosφ− [τ (B)

n ]rφ(φ) sinφ
)
ψi(R, φ) sinφ dφ,

and combining with (5.23), these terms are conveniently reexpressed as

[Kb
ρρ]ij ≈ R

[ N∑
n=0

Ci
ρ,nA

j
ρ,n +

N∑
n=−1

Di
ρ,nB

j
ρ,n

]
= R

(
Ci
ρ ·Aj

ρ +Di
ρ ·Bj

ρ

)
, (5.30a)

[Kb
ρz]ij ≈ R

[ N∑
n=0

Ci
ρ,nA

j
z,n +

N∑
n=−1

Di
ρ,nB

j
z,n

]
= R

(
Ci
ρ ·Aj

z +Di
ρ ·Bj

z

)
, (5.30b)

[Kb
zρ]ij ≈ R

[ N∑
n=0

Ci
z,nA

j
ρ,n +

N∑
n=−1

Di
z,nB

j
ρ,n

]
= R

(
Ci
z ·Aj

ρ +Di
z ·Bj

ρ

)
, (5.30c)

[Kb
zz]ij ≈ R

[ N∑
n=0

Ci
z,nA

j
z,n +

N∑
n=−1

Di
z,nB

j
z,n

]
= R

(
Ci
z ·Aj

z +Di
z ·Bj

z

)
. (5.30d)

It should be observed that vectorsCi
ρ,C

i
z,D

i
ρ,D

i
z actually do not depend on the radius R,

and so do vectorsAi
ρ,A

i
z,B

i
ρ,B

i
z. Hence, by virtue of (5.30), the entries of matrixKb are

linear in R.

5.4. Numerical experiments

5.4.1. Model problem

Throughout this section we consider a model problem whose exact solution is avail-

able. Let us assume the perturbed boundary Γp to be a quarter circle of radius a > 0. In

this case, it holds in axisymmetric spherical coordinates that

Ω = {(r, φ) : a < r <∞, π/2 < φ < π},

Γp = {(r, φ) : r = a, π/2 < φ < π}.



100

We define the function f = fr r̂ + fφ φ̂ : Γp → R2 as

fr(φ) = 2µc
(
1− 2ν + 2(2− ν) cosφ

)
, (5.31a)

fφ(φ) = 2µc (1− 2ν)

(
cosφ sinφ

1− cosφ

)
, (5.31b)

where c is a scale factor. Then the displacement u = ur r̂ + uφ φ̂ : Ω→ R2, defined as

ur(r, φ) = −c a
2

r

(
1− 2ν + 4(1− ν) cosφ

)
, (5.32a)

uφ(r, φ) =
c a2

r

(
3− 4ν − 1− 2ν

1− cosφ

)
sinφ, (5.32b)

is an exact solution of (5.1) with f given by (5.31). This solution is obtained from (4.20a)

with R replaced by a and setting An = Bn = 0 for all n = 0, 1, 2, . . . and B−1 = 2µc a.

The stress components associated with (5.32) are obtained by setting these same values of

coefficients An and Bn in (4.20b) with R replaced by a, or simply by substituting (5.32) in

(2.8), yielding

σr(r, φ) =
2µc a2

r2

(
1− 2ν + 2(2− ν) cosφ

)
, (5.33a)

σφ(r, φ) =
2µc a2(1− 2ν)

r2

(
cos2φ

1− cosφ

)
, (5.33b)

σθ(r, φ) = −2µc a2(1− 2ν)

r2

(
1 + cosφ− cos2φ

1− cosφ

)
, (5.33c)

σrφ(r, φ) =
2µc a2(1− 2ν)

r2

(
cosφ sinφ

1− cosφ

)
. (5.33d)

In axisymmetric cylindrical coordinates, (5.32) reads u = uρ ρ̂+ uz ẑ, with

uρ(ρ, z) = − c a2ρ

(ρ2 + z2)1/2

(
1− 2ν

(ρ2 + z2)1/2 − z +
z

ρ2 + z2

)
, (5.34a)

uz(ρ, z) = − c a2

(ρ2 + z2)1/2

(
2(1− ν) +

z2

ρ2 + z2

)
, (5.34b)

and associated stress components given by

σρ(ρ, z) =
2µc a2

(ρ2 + z2)1/2

(
1− 2ν

(ρ2 + z2)1/2 − z +
3ρ2z

(ρ2 + z2)2

)
, (5.35a)
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σθ(ρ, z) = −2µc a2(1− 2ν)

(ρ2 + z2)1/2

(
1

(ρ2 + z2)1/2 − z +
z

ρ2 + z2

)
, (5.35b)

σz(ρ, z) =
6µc a2z3

(ρ2 + z2)5/2
, (5.35c)

σρz(ρ, z) =
6µc a2ρz2

(ρ2 + z2)5/2
, (5.35d)

which follow from substituting (5.34) in (2.7). This exact solution will be used as a bench-

mark to test the performance of the DtN FEM approach.

5.4.2. Implementation aspects

To apply the DtN FEM to solve the model problem, the radius of the artificial boundary

R must be, of course, greater than a. The resulting computational domain Ωi is described

in axisymmetric spherical coordinates (r, φ) as

Ωi = {(r, φ) : a < r < R, π/2 < φ < π}.

In general, in any DtN FEM approach, the radiusR is to be chosen large enough so that any

possible irregularity (anisotropy, inhomogeneity) is enclosed by ΓR, but at the same time

small enough to minimise the size of Ωi and thus the number of finite elements considered

(cf. (Givoli & Vigdergauz, 1993)). In our case, for the purpose of solving the model prob-

lem in order to test the accuracy of the DtN FEM, it is reasonable to assume, for instance,

R = (3/2)a. In addition, as we have deduced a linear dependence of the matrix Kb on R,

the accuracy of the method should not be strongly affected by the location of ΓR. Thus,

from now on, R is assumed to be fixed at the same value.

In order to maintain a constant mesh quality, we consider structured triangular meshes

of Ωi generated as follows: We assume equispaced partitions of intervals [a,R] and [π/2, π]

consisting respectively of I and J segments, delimited by nodes satisfying a = r1 < r2 <

. . . < rI < rI+1 = R and π/2 = φ1 < φ2 < . . . < φJ < φJ+1 = π (the latter partition

already introduced in Section 5.3), in such a way that ri = a + (i − 1)(R − a)/I and

φj = (π/2)(1+(j−1)/J). The cartesian product of both partitions gives rise to a structured

quadrilateral mesh of Ωi, which consists of (I + 1)(J + 1) nodes and IJ elements. If each
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quadrilateral element is split by its diagonal, two triangles are created. Then the resulting

triangular mesh consists of (I + 1)(J + 1) nodes and 2IJ elements in total. Given that

we have assumed R = (3/2)a, and in order to ensure relatively good quality triangles, it is

reasonable to set J = 4I . The mesh size h is calculated using relatively simple geometrical

considerations, arriving at the formula

h =
R

3I

(
1 + 6I(3I − 1)

(
1− cos

( π
8I

)))1/2

. (5.36)

To choose an optimal value of the truncation order N for fixed R and h, we use the simple

crude formula first proposed in (Keller & Givoli, 1989) for the Laplace equation, and sub-

sequently modified and used in (Givoli & Keller, 1989) and (Givoli & Vigdergauz, 1993)

for the 2D elasticity equation. According to this formula, the optimal N is estimated as

Nopt =

⌈
− (p+ 1)

ln (h/a)

ln (R/a)

⌉
, (5.37)

where d·e stands for the ceiling function and p is the highest degree of complete polynomial

in Vh (in this case p = 1 since we are considering P1 finite elements). Substituting R =

(3/2)a and approximating ln(3/2) ≈ 2/5, (5.37) becomes

Nopt =

⌈
−
(

2 + 5 ln
( h
R

))⌉
. (5.38)

This formula provides a good estimation of N , as we shall see below.

5.4.3. Results and accuracy

Next, we present numerical results obtained by solving the model problem using our

DtN FEM procedure. We assume a = 600 m and R = (3/2)a = 900 m. Six meshes of

Ωi for different values of I are considered, whose parameters are summarised in Table 5.1.

The optimal series truncation order Nopt is computed from (5.38) and is shown in the last

column of the table. The meshes corresponding to I = 5 and I = 10 are depicted in

Figure 5.4 by the way of example.

We assume an elastic solid with Young’s modulus E = 70 GPa and Poisson’s ratio

ν = 0.3. The Lamé constants are immediate from E and ν through the standard formulae
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Table 5.1. Parameters of the structured triangular meshes considered.

I J No. nodes No. elements h m Nopt

3 12 52 72 149.39679 7
5 20 126 200 90.89000 10

10 40 451 800 45.90566 13
18 72 1387 2592 25.61552 16
32 128 4257 8192 14.44309 19
60 240 14701 28800 7.71394 22

λ = Eν/(1+ν)/(1−2ν) and µ = E/2/(1+ν). In order to get displacements and stresses

of physically realistic magnitudes, we set c = 10−4. Then the model problem is solved

by the DtN FEM in the six triangular meshes described in Table 5.1. For each mesh, the

optimal series truncation order Nopt indicated in the same table is assumed in all the de-

velopment of Section 5.3. The results calculated in the finest mesh (I = 60) are presented

next. Figures 5.5 shows the components of the computed displacement vector uh. The

(a) (b)

Figure 5.4. Two of the considered structured triangular meshes. (a) I = 5.
(b) I = 10.
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associated stress tensor σh is numerically computed from uh by substituting the displace-

ment components in (2.7), with the derivatives calculated numerically in the mesh. The

components of σh are presented in Figure 5.6.

(a) (b)

Figure 5.5. Computed displacement components. (a) uhρ(ρ, z). (b) uhz (ρ, z).

In order to test preliminarily the effectiveness of our DtN FEM, the numerical solu-

tions calculated in each mesh are compared against the exact solution given by (5.34) and

(5.35) at some specific points of the domain. Table 5.2 presents numerical values of some

displacement and stress components evaluated at the extreme points of ΓR. From this table

we see that, as the mesh size decreases, the values of the numerical solution get closer to the

values of the exact one at the considered points. Moreover, in the case of the displacement,

this approximation is faster.

To study more rigorously the accuracy and convergence of the DtN FEM procedure,

we employ the relative error between the numerical and the exact solution, defined as

Eu(h) =
‖uh −Πhu‖0,Ωi

‖Πhu‖0,Ωi

,
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(a) (b)

(c) (d)

Figure 5.6. Computed stress components. (a) σhρ (ρ, z). (b) σhθ (ρ, z). (c)
σhz (ρ, z). (d) σhρz(ρ, z).

where ‖ · ‖0,Ωi is the usual L2-norm in Ωi and Πhu denotes the Lagrange interpolation

of the exact solution u over the mesh of size h. Figure 5.7 presents a log-log plot of Eu

in function of h, where we observe that the relative error decays as mesh size diminishes.

Therefore, the whole numerical solution computed by the DtN FEM converges to the exact

solution as the mesh is refined, which confirms the effectiveness of the method. In fact, the
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Table 5.2. Some components of the solution evaluated at points (0, R) and
(−R, 0).

Solution uρ(0, R) m uz(−R, 0) m σρ(0, R) MPa σρ(−R, 0) MPa σz(−R, 0) MPa
I = 3 -0.01709 -0.09664 0.29365 0.08399 -7.58848
I = 5 -0.01648 -0.09633 0.59049 0.20644 -7.49848
I = 10 -0.01615 -0.09613 0.78277 0.37847 -7.33654
I = 18 -0.01606 -0.09605 0.85841 0.42163 -7.27821
I = 32 -0.01602 -0.09602 0.89876 0.44859 -7.23198
I = 60 -0.01601 -0.09601 0.92393 0.46549 -7.20743
Exact -0.01600 -0.09600 0.95726 0.47863 -7.17949

relative error in the finest mesh is approximately 0.003%. This good agreement between

the numerical and the exact solution is achieved with a relatively low number of terms in

the series of the DtN map (N = 22). In addition, the graph of Eu in the log-log plot is

nearly a straight line, which suggests that the DtN FEM has a constant rate of convergence.

To estimate it, we compute the slope of this line, using for this the relative errors associated

with the two finest meshes, since in these cases the method yields the best approximations.

The computed slope is 2.00257. A slope nearly 2 in the relative error of the solution predicts

that the rate of convergence of the method is 2. Hence, the numerical evidence indicates

that the DtN FEM presented throughout this work has second-order accuracy.
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Figure 5.7. Log-log plot of Eu in function of h.
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6. APPENDIX

6.1. Some properties of Legendre polynomials

The Legendre polynomial Pn(cosφ) as a function of φ is a solution of the Legendre’s

differential equation, given by

1

sinφ

d

dφ

(
sinφ

d

dφ
Pn(cosφ)

)
+ n(n+ 1)Pn(cosφ) = 0. (6.1)

Some useful recurrence relations fulfilled by the Legendre polynomials and their deriva-

tives are (cf. (Andrews, 1985; Bell, 1968)):

(n+ 1)Pn+1(cosφ)− (2n+ 1) cosφPn(cosφ) + nPn−1(cosφ) = 0, (6.2a)

P ′n+1(cosφ)− P ′n−1(cosφ) = (2n+ 1)Pn(cosφ), (6.2b)

sin2φP ′n(cosφ) = (n+ 1)
(

cosφPn(cosφ)− Pn+1(cosφ)
)
, (6.2c)

sin2φP ′n(cosφ) = n
(
Pn−1(cosφ)− cosφPn(cosφ)

)
, (6.2d)

where n ≥ 1. The Legendre polynomials also satisfy the following properties for n ≥ 0:

P2n(0) =
(−1)n(2n)!

22n(n!)2
, (6.3a)

P2n+1(0) = 0, (6.3b)

P2n+2(0) = −2n+ 1

2n+ 2
P2n(0), (6.3c)

P ′2n(0) = 0, (6.3d)

P ′2n+1(0) = (2n+ 1)P2n(0). (6.3e)

Properties (6.3a) and (6.3b) are standard and can be found, for instance, in (Andrews, 1985)

or (Bell, 1968). Property (6.3c) is a consequence of formula (6.2a). Property (6.3d) follows

from (6.2c) and (6.3b). Property (6.3e) is obtained from (6.2d). Moreover, the Legendre

polynomials fulfil the following integral formulae for n ≥ 0 and k ≥ 0:∫ π

π/2

P2n(cosφ)P2k(cosφ) sinφ dφ =
δn,k

4n+ 1
, (6.4a)
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∫ π

π/2

P2n+1(cosφ)P2k+1(cosφ) sinφ dφ =
δn,k

4n+ 3
, (6.4b)∫ π

π/2

P2n(cosφ)P2k+1(cosφ) sinφ dφ = − (2k + 1)P2n(0)P2k(0)

(2k + 1− 2n)(2k + 2 + 2n)
, (6.4c)∫ π

π/2

P ′2n(cosφ)P ′2k(cosφ) sin3φ dφ =
2n(2n+ 1)δn,k

4n+ 1
, (6.4d)∫ π

π/2

P ′2n+1(cosφ)P ′2k+1(cosφ) sin3φ dφ =
(2n+ 1)(2n+ 2)δn,k

4n+ 3
, (6.4e)∫ π

π/2

P ′2n(cosφ)P ′2k+1(cosφ) sin3φ dφ = −2n(2n+ 1)(2k + 1)P2n(0)P2k(0)

(2k + 1− 2n)(2k + 2 + 2n)
. (6.4f)

Formulae (6.4a), (6.4b), and (6.4c) can be deduced from (Gradshteyn & Ryzhik, 2007),

Subsection 7.221. To obtain (6.4c) it is, in addition, necessary to combine with (6.3a).

Formulae (6.4d), (6.4e), and (6.4f) follow from formulae (6.4a), (6.4b), and (6.4c), re-

spectively, together with the Legendre’s differential equation (6.1). The following two

additional integral formulae are also valid∫ π

π/2

P ′2n(cosφ)(1 + cosφ) sinφ dφ = P2n(0), (6.5a)∫ π

π/2

P ′2n+1(cosφ)(1 + cosφ) sinφ dφ =
P2n(0)

2n+ 2
, (6.5b)

which are obtained by integrating by parts and combining with (6.4a) and (6.4c), respec-

tively.

6.1.1. Expansion of the odd terms in pair terms from the Legendre polynomials

We need to show that ∀k = 0, 1, . . . and −1 ≤ x ≤ 0

P2k+1(x) = −(2k + 1)P2k(0)
∞∑
n=0

ω
(n)
k P2n(x), (6.6)

where

ω
(n)
k =

(4n+ 1)P2n(0)

(2k + 1− 2n)(2k + 2 + 2n)
. (6.7)
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The set {P2n(x)}∞n=0 is an orthogonal basis (Brown & Churchill, 2006) in [−1, 0] (and

in [0, 1]) such that ∫ 0

−1

P2n(x)P2m(x)dx =
δnm

4n+ 1
, (6.8)

then we can expand P2k+1(x) in a Legendre series

P2k+1(x) =
∞∑
n=0

(4n+ 1)

∫ 0

−1

P2k+1(t)P2k(t)dtP2n(x). (6.9)

Then, our problem becomes∫ 0

−1

P2k+1(x)P2n(x)dx = − (2k + 1)P2k(0)P2n(0)

(2k + 1− 2n)(2k + 2 + 2n)
∀n, k = 0, 1 . . . (6.10)

which can also be written as∫ 1

0

P2n(x)P2k+1(x)dx =
(2k + 1)P2k(0)P2n(0)

(2k + 1− 2n)(2k + 2 + 2n)
∀n, k = 0, 1 . . . (6.11)

We define

An,k =

∫ 1

0

P2n(x)P2k+1(x)dx. (6.12)

This will be proved by induction. We have the following hypothesis

(i) The statement (6.12) is valid for n = k = 0.

(ii) If the statement holds for some N > 0 for any n, k with n + k = N , then the

statement also holds for any n, k when n+ k = N + 1.

Basis: Show that the statement holds for n = k = 0.

A0,0 =

∫ 1

0

P0(x)P1(x)dx =

∫ 1

0

xdx =
x2

2

∣∣∣∣1
0

=
1

2
.

On the other hand if n = k = 0

(2k + 1)P2k(0)P2n(0)

(2k + 1− 2n)(2k + 2 + 2n)
=

1 · 1 · 1
1 · 2 =

1

2
. (6.13)

The two sides are equal, so the statement is true for n = k = 0. Thus it has been shown

that A0,0 holds.
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Inductive step: Show that if An,k with n+ k = N holds, then also An,k with n+ k =

N + 1 holds, where

An,k =
(2k + 1)P2k(0)P2n(0)

(2k + 1− 2n)(2k + 2 + 2n)
. (6.14)

This only can occur in two cases, (n+ 1, k) and (n, k+ 1). Then we need to prove two

statements

An+1,k =

∫ 1

0

P2n+2(x)P2k+1(x)dx =
(2k + 1)P2k(0)P2n+2(0)

(2k − 1− 2n)(2k + 4 + 2n)
, (6.15)

and

An,k+1 =

∫ 1

0

P2n(x)P2k+3(x)dx =
(2k + 3)P2k+2(0)P2n(0)

(2k + 3− 2n)(2k + 4 + 2n)
. (6.16)

The Legendre polynomials satisfy the recurrence relations

(n+ 1)Pn+1(x)− (2n− 1)xPn(x) + nPn−1(x) = 0,

(1− x2)P ′n(x) = −nxPn(x) + nPn−1(x) = (n+ 1)
(
xPn(x)− Pn+1

)
. (6.17)

Combining this we obtain

P2n+2(x) = P2n(x)− (4n+ 3)

(2n+ 1)(2n+ 2)
(1− x2)P ′2n+1(x), (6.18)

multiplying by P2k+1(x) and integrating between 0 and 1 we have

An+1,k = An,k −
(4n+ 3)

(2n+ 1)(2n+ 2)

∫ 1

0

(1− x2)P ′2n+1(x)P2k+1(x)dx. (6.19)

Using integration by parts we obtain∫ 1

0

(1− x2)P ′2n+1(x)P2k+1(x)dx = −
∫ 1

0

P2n+1(x)
(
(1− x2)P ′2k+1(x)− 2xP2k+1(x)

)
dx.

(6.20)

Using this we obtain

An+1,k = An,k +
(4n+ 3)

(2n+ 1)(2n+ 2)

∫ 1

0

(
(1− x2)P ′2n+1(x)− 2P2n+1(x)

)
P2k+1(x)dx.

(6.21)
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With (6.17), this becomes

An+1,k = An,k +
(4n+ 3)

(2n+ 1)(2n+ 2)

(
(2k + 1)

∫ 1

0

P2n+1(x)P2k(x)dx

−(2k + 3)

∫ 1

0

xP2n+1(x)P2k+1(x)dx

)
(6.22)

Again using the recurrence relations (6.17) multiplying by P2k+1(x) and integration

between 0 and 1, and using the definition of Ak,n we obtain∫ 1

0

xP2n+1(x)P2k+1(x)dx =
(2n+ 1)

(4n+ 3)
An,k +

(2n+ 2)

(4n+ 3)
An+1,k. (6.23)

This yields

An+1,k = An,k +
(4n+ 3)

(2n+ 1)(2n+ 2)

(
(2k + 1)Ak,n −

(2k + 3)(2n+ 1)

(4n+ 3)
An,k

−(2k + 3)(2n+ 2)

(4n+ 3)
An+1,k

)
. (6.24)

Rearranging in a suitable way gives us

An+1,k = −(2n+ 1)(2k + 1− 2n)

(2n+ 2)(2k + 4 + 2n)
An,k +

(4n+ 3)(2k + 1)

(2n+ 2)(2k + 4 + 2n)
Ak,n. (6.25)

Applying (6.14) in this expression and using that (2n+2)P2n+2(0) = −(2n+1)P2n(0)

yields

An+1,k =
(2k + 1)

(2k − 1− 2n)(2k + 4 + 2n)
P2k(0)− (2n+ 1)

(2n+ 2)
P2n(0)

=
(2k + 1)P2k(0)P2n+2(0)

(2k − 1− 2n)(2k + 4 + 2n)
, (6.26)

thereby showing that indeed An+1,k holds. Next we need to show te same for An,k+1, in

order to do that we use (6.17)

P2k+3(x) = P2k+1 −
(4k + 5)

(2k + 2)(2k + 3)
(1− x2)P ′2k+2(x). (6.27)
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Multiplying by P2n(x) and integration between 0 and 1 gives us

An,k+1 = An,k −
(4n+ 5)

(2k + 2)(2k + 3)

∫ 1

0

(1− x2)P ′2k+2(x)P2n(x)dx. (6.28)

Since∫ 1

0

(1− x2)P ′2k+2(x)P2n(x)dx = −P2n(0)P2k+2(x)

−
∫ 1

0

(
(1− x2)P ′2n(x)− 2xP2n(x)

)
P2k+2(x)dx. (6.29)

Hence

An,k+1 = An,k +
(4k + 5)

(2k + 2)(2k + 3)

(
P2n(0)P2k+2(0)

+

∫ 1

0

(1− x2)P ′2n(x)P2k+2(x)dx− 2

∫ 1

0

xP2n(x)P2k+2(x)dx

)
. (6.30)

Using (6.17) yields

An,k+1 = An,k +
(4k + 5)

(2k + 2)(2k + 3)

(
P2n(0)P2k+2(0)

+ (2n− 1)

∫ 1

0

xP2n(x)P2k+2(x)dx− (2n+ 1)

∫ 1

0

P2n+1(x)P2k+2(x)dx

)
.

(6.31)

Again using the recurrence relations (6.17) multiplying by P2n(x) and integration be-

tween 0 and 1, and using the definition of Ak+1,n we obtain∫ 1

0

xP2n(x)P2k+2(x)dx =
(2k + 3)

(4k + 5)
An,k+1 +

(2k + 2)

(4k + 5)
An,k, (6.32)

hence

An,k+1 = An,k +
(4k + 5)

(2k + 2)(2k + 3)

(
P2n(0)P2k+2(0)

+
(2n− 1)(2k + 3)

(4k + 5)
An,k+1 +

(2n− 1)(2k + 2)

(4k + 5)
An,k − (2n+ 1)Ak+1,n

)
. (6.33)



119

Rearranging in a suitable way gives us

An,k+1 =
(2k + 2)(2k + 2 + 2n)

(2k + 3)(2k + 3− 2n)
An,k −

(4k + 5)(2n+ 1)

(2k + 3)(2k + 3− 2n)
Ak+1,n

+
(4k + 5)

(2k + 3)(2k + 3− 2n)
P2n(0)P2k+2(0). (6.34)

If we interchange k by n in (6.25) we obtain

(2k + 2)(2k + 3)(2k + 3− 2n)(2k + 4 + 2n)An,k+1

+ (2k + 1)(4k + 5)(2k − 1− 2n)(2n+ 1)Ak,n

+
(
(4k + 3)(4k + 5)(2n+ 1)2 − (2k + 2)2(2k + 2 + 2n)(2k + 4 + 2n)

)
An,k

= −(2k + 1)(4k + 5)(2k + 4 + 2n)P2n(0)P2k(0). (6.35)

Using (6.14) yields

An,k+1 =
(2k + 3)P2k+2(0)P2n(0)

(2k + 3− 2n)(2k + 4 + 2n)
. (6.36)

End of proof.
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