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RESUMEN 

Entender y predecir el comportamiento de las personas es clave in diferentes áreas, tales 

como políticas públicas y marketing. Los modelos de elección discreta son una de las 

herramientas diseñadas para entender estos comportamientos. El núcleo de estos modelos es 

la heurística de elección; ella representa una forma en que se procesan las alternativas. Su 

correcto entendimiento es crucial para representar adecuadamente los comportamientos. 

Numerosas heurísticas se han propuesto en la literatura. Con el objetivo de categorizarlas y 

entender su relación, hemos creado un marco teórico que las analiza en tres dimensiones: 

evaluación absoluta/relativa, simplificación de alternativas y simplificación de atributos. De 

estas heurísticas, hemos seleccionado cuatro para participar en nuestros experimentos: 

Maximización de la Utilidad Aleatoria (RUM por su nombre en inglés), Minimización del 

Remordimiento Aleatorio (RRM), Eliminación por Aspectos (EBA) y Satisficing. 



 

xxii  

Hemos desarrollado dos contribuciones respecto a Satisficing y EBA. Para Satisficing, 

construimos el modelo Stochastic Satisficing (SS), que es el primer modelo que implementa 

completamente la teoría usando datos típicamente disponibles. Para EBA, proponemos un 

enfoque analítico para acelerar su estimación. 

Entendiendo que en una población pueden coexistir distintas heurísticas, se han propuesto 

modelos con múltiples heurísticas. Lamentablemente, su estimación – que usa clases 

latentes- ha mostrado problemas de identificabilidad. Para entender este problema, hemos 

estudiado analíticamente la identificabilidad, concluyendo que está gobernada por la 

diferencia de comportamiento de las heurísticas en la muestra; finalmente, obtuvimos una 

métrica simple e interpretable para dicha diferencia. 

Habiendo estudiado la identificabilidad teóricamente, comprobamos sus alcances en la 

práctica. Estudiamos el impacto de distintas heurísticas, tamaños muestrales y grados de 

correlación entre los factores que afenta la elección de la heurística y la alternativa. 

Concluimos que, para nuestro contexto, RRM no es identificable de RUM, SS lo es para 

muestras grandes (40.000) y EBA siempre es identificable de RUM. 

Dada la posibilidad de identificar estos modelos, proponemos una metodología que, 

mediante nuestro Modelo de Heurísticas Mixtas (MHM), facilita la búsqueda de las 

heurísticas subyacentes y su formulación. El MHM es un modelo de clases latentes con 

función de pertenencia de clase mixta. Permite encontrar las heurísticas presentes con mayor 
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precisión que el modelo de clases latentes tradicional. Así, sin modelar la función de 

pertenencia de clase, las heurísticas subyacentes pueden ser encontradas y formuladas. 

Una vez que modelos candidatos son encontrados, se debe aplicar algún criterio para 

seleccionar al mejor. Mediante la experimentación con un par de modelos candidatos, 

concluimos que, si el objetivo es entender el fenómeno, entonces criterios sobre la base de 

estimación que penalicen débilmente los parámetros adicionales deberían ser usados. Si el 

objetivo es predecir, entonces se debieran preferir criterios sobre una base de validación.  

En esta tesis hemos mostrado que es factible estimar modelos con múltiples heurísticas. 

También, desarrollamos metodologías para encontrar los modelos más explicativos y 

seleccionar el más útil. Si bien, esta tesis disminuye la dificultad de estimar estos modelos, 

se requiere más investigación para obtener conclusiones generales. 
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Ricardo Hurtubia González 
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ABSTRACT 

Understanding and forecasting the behaviour of individuals is key in different realms of 

society such as public policy and marketing. Discrete choice models are an important 

econometric tool for understanding these behaviours. The kernel of a discrete choice model 

is its choice heuristic, which represents the way individuals process the alternatives. A 

correct representation of their heuristics is key to successfully represent their behaviour. 

Several heuristics have been proposed in the literature. We have created a framework that 

allows to organise them and understand their similarity across three dimensions: 

absolute/relative evaluation, simplification of attributes and simplification of alternatives. 

We have selected four heuristics for our experiments: Random Utility Maximization (RUM), 

Random Regret Minimization (RRM), Elimination by Aspects (EBA), and Satisficing. For 

the last two of these, we made a particular contribution. For Satisficing, we created the 
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Stochastic Satisficing (SS) model, which is the first model that wholly implements 

satisficing theory using normally available data. For EBA, we proposed an analytical 

approach to increase its estimation speed. 

Admitting that not every individual in a population may use the same heuristic, multiple 

heuristics models have been proposed in the literature. Unfortunately, their estimation using 

latent classes has given rise to identifiability issues. We studied the problem analytically 

under a maximum likelihood framework. We concluded that identifiability is closely related 

with the behavioural differences among the heuristics in the data; we obtained a readily and 

interpretable measure of this difference. 

We tested the theoretical findings in a quasi-real transport context. We simulated fictitious 

individuals choosing real alternatives under our three experimental dimensions. We 

concluded that, for our context, RRM was non-identifiable from RUM, SS was identifiable 

from RUM for the larger samples (40.000 individuals), and EBA was always identifiable.  

Given that it is possible to identify multiple heuristics, we proposed a methodology that, by 

using our Mixed Heuristics Model (MHM), facilitates finding the heuristics present in a 

sample and their formulation. The MHM is a latent class model with a mixed class 

membership function that allows to find the most likely used heuristics with higher accuracy 

than a non-random latent class model. This way, without modelling the class membership 

function, the underlying choice heuristics can be found and modelled with a traditional 

approach. 
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Once several models are available, a criterion must be used to select the best one. We tested 

competing pairs of heuristics with different degree of identifiability. We concluded that if 

the objective is understanding the underlying phenomena, in-sample criteria that do not 

penalise heavily additional parameters should be used, promoting more explicative models. 

Conversely, if the objective is forecasting, out-of-sample validation might be the best 

approach to promote more robust models. 

Through our work, we showed that it is feasible to estimate multiple heuristics models. We 

also provide tools that allow finding the most explicative models and, among them, choose 

the most useful one. Therefore, after this thesis, the complexity surrounding the use of 

multiple heuristics models should decrease. Nonetheless, more research is needed to 

understand the degree of identifiability of these models in different contexts, so that general 

conclusions regarding the selection of heuristics can be obtained.  
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Ricardo Hurtubia  

Cristián A. Guevara    

Benjamin G. Heydecker   
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1. INTRODUCTION 

 

Understanding and forecasting the decision of individuals is essential in different realms of 

society. For public policy, for example, it is necessary to value people’s preferences and 

predict their reaction towards policies affecting their behaviour. Alike, but in the private 

sphere, in most markets it is important to understand consumers’ choices for designing new 

products and foresee their reaction towards different companies’ marketing strategies. One 

of the available techniques for studying people’s preferences and forecasting their behaviour 

is the use of econometric models. 

Discrete choice modelling is an econometric tool designed to model the responses of 

decision makers (DMs) when confronting discrete choice sets. In principle, every output 

obtained from a discrete set of possible outcomes may be modelled using this tool. These 

models are particularly useful for representing people’s choices from these sets because of 

their behavioural interpretation of the individual. Thus, discrete choice models have been 

widely used to model people’s preferences in different contexts such as the purchase of items 

(Fader and McAlister, 1990; Adamowicz and Swait, 2013; Beck et al., 2013; Hensher et al., 

2013; Palma et al., 2016), housing and location decisions (Martínez et al., 2009; Greene et 

al., 2017), opinion toward public policy (Araña et al., 2008), and transport mode and route 

choice (Vovsha, 1997; Ortuzar and Willumsen, 2011). 

The kernel of an econometric model is its functional form, which is assumed by the analyst 

to represent the phenomenon. In discrete choice models, the functional form represents a 
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choice heuristic, which is a representation of a plausible way of choosing. Initially, only 

simple behaviours could be correctly modelled –as we detail in Chapter 2– but later, different 

models have been developed to treat increasingly complex phenomena. 

Among the complexities faced, one is how to model populations with behaviours of a 

different nature. Several choice heuristics have been proposed that explains different kind of 

behaviour. These choice heuristics have been materialized, for example, in the random utility 

maximization – RUM – model (Lancaster, 1966; McFadden, 1973), the elimination by 

aspects – EBA – model (Tversky, 1972a, 1972b), and the Satisficing model (Simon, 1955) 

as the most iconic ones.  

Another issue is that within a given choice heuristic some decisions may be more complex 

to model. For example, the popular RUM model’s basic formulation assumes independent 

and homoscedastic errors and cross-sectional data. More complex versions of this model 

enables to work with correlated alternatives, panel data, heteroscedasticity, and taste 

variations (Ortuzar and Willumsen, 2011).  

A final complexity –that is the target of this thesis– is modelling a population where DMs 

may use different choice heuristics. In the presence of multiple choice heuristics, a model 

with a single choice heuristic could misunderstand the phenomenon and fail in prediction. 

Among the several proposed heuristics in the literature, RUM is the most widely used. 

Numerous reasons could explain its popularity such as the concordance with classical 

microeconomic theory, a set of well-developed and desirable properties, and a logical 

representation of DMs. Despite its popularity, in reality, the high psychological burden 
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implied in using RUM in complex decisions could trigger the use of different choice 

heuristics by DMs. Indeed, behavioural decision theory suggests that the way DMs choose 

is shaped by the interaction of their cognitive capabilities, personal goals, decision 

complexities, and the characteristics of the task (Newell and Simon, 1972; Bettman, 1979; 

Peterson et al., 1979; Denstadli et al., 2012). Therefore, the same context may trigger 

different heuristics in different DMs. 

Some attempts have been previously made to model multiple choice heuristics (Araña et al., 

2008; Hess et al., 2012; McNair et al., 2012; Adamowicz and Swait, 2013). When trying to 

characterize the decision of using a choice heuristic, identifiability problems have arisen 

(Leong and Hensher, 2012b; Hess and Stathopoulos, 2013). All studies found in the literature 

have tried to model real data, which has given few sparkles about the reason for the 

non-identifiability problem. This thesis tackles this problem by studying this phenomenon 

theoretically, by first analytically exploring the properties of the main modelling approach 

and then, empirically by using a controlled simulated environment given by the choice 

heuristics, proportions, and variables affecting decisions.  

Among the several edges of the problem, this study aims to identify whether it is possible to 

identify different choice heuristics or the conditions that enable such identification. Once 

identifiability is attained, how to choose the different choice heuristic present in a single 

model from a wide variety of options is analysed. Finally, we address how to choose a model 

among several competing ones under weak and strong identifiability estimations. 
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1.1. Objectives 

 

Our general objective is to study the modelling of a population endowed with multiple choice 

heuristics. As stated previously, the current state of the art has not been able to properly 

characterize DMs’ decision processes nor demonstrate the reasons for such a failure. Thus, 

this thesis intends to give answers to these problems. 

Given the failure of previous authors to identify explicative models for the selection of 

choice heuristic, the first main objective is related to the feasibility of identifying such 

models and may be stated as follows. 

a) Analyse if it is possible to identify the choice heuristics used by a population and 

understand the conditions that enable their identification.  

Given the identification at a population level, several ways to analyse it at an individual level 

may be proposed which are detailed in this thesis. Then the second main objective is to: 

b) Analyse if it is possible to identify –probabilistically— the choice heuristics being 

used by a decision maker.  

If the first and second objective are accomplished, a useful model that interprets DMs’ 

behaviour at the population and individual levels will be obtained. Nonetheless, as 

identifiability issues are frequent, it is possible that several groups of heuristics can interpret 

the choices with similar fit performance. Therefore, our last main objective is to: 

c) Analyse which statistical techniques are useful for selecting the most useful model 

depending of the objective: understand the underlying behaviour or forecast.  
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For the conclusions to be as general as possible, the findings must be analysed with different 

sample sizes, number and proportions of choices heuristics, and responses per decision 

maker. 

1.2. Hypotheses 

 

To study the above main objectives, we will test the following hypotheses: 

a) It is possible to identify the different choice heuristic used by DMs even if these 

consider the same attributes. Therefore, identifiability is accomplished just by the 

different interpretation that heuristics give to alternatives’ attributes. 

b) For finite sample sizes, the probability of using a heuristic will be recovered –

probabilistically and to a reasonable extent—both at the population level and at the 

individual level. This implies, that the model will be able to identify the probability 

that each individual has of using each choice heuristic. 

c) The higher the number of observations per decision maker, the higher the accuracy 

of the estimation of individual probabilities. 

d) When models with several choice heuristics are available, in-sample techniques may 

systematically fail to identify the real underlying model. Conversely, out-of-sample 

techniques will identify correctly the real choice heuristic. 
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1.3. Methodology 

 

Given the objectives of the thesis and the hypotheses considered, most of the analyses in this 

thesis are empirical. Nevertheless, to be able to analyse the results, first a theoretical 

framework is developed. The theoretical findings enable us to better understand the 

dynamics of the model and, therefore, adequately interpret the findings obtained in the 

subsequent empirical experiments. To develop this framework, an analysis of the estimated 

model is made: we study the optimum first order condition in a maximum likelihood context 

and the conditions that enable us to obtain a useful covariance matrix. 

Once the theoretical framework is developed, we test the hypotheses empirically; for this, it 

is required to have control of the choice heuristics. Therefore, we focus mainly in the use of 

synthetic populations. A synthetic population creates a testing environment to understand 

the model’s properties and the impact of the controlled variables in them. Indeed, to test the 

properties of models in finite samples, the use of synthetic populations is frequently used 

(e.g. Godoy and Ortuzar, 2008; Raveau et al., 2010; Daly et al., 2012).  We vary the 

experimental conditions and analyse the results of the estimated models under these changes; 

for example, we consider different sample sizes, choice heuristics and correlation structures. 

To create the synthetic data, first a fictitious population is created, which behaves according 

to the desired rules. The fictitious DMs are represented by a set of parameters and available 

choice heuristics. In each experiment, the set of plausible parameters are based on a real 

dataset, but modified for the intended purpose.  
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Once the synthetic population is created, it is given a realistic choice set from which DMs 

choose. With the objective of having conclusions closely aligned to reality, quasi-real choice 

sets are used (i.e. real choice scenarios but presented to the fictitious DMs). These choice 

sets are obtained through random sampling of complete choice sets from a real dataset. Detail 

about these choice sets are given in Chapter 3. 

Finally, to show the applicability of the developed methodologies and model’s analysis, 

existing real dataset are also used. Here, it is not intended to make a deep analysis of the 

phenomena, but only to show a real application. 

1.4. Scope of the Thesis 

 

The definitions of choice heuristics in the literature do not present important variations, but 

the limits of what split a heuristic into two different ones is blur. Under our interpretation, 

certain phenomena that affect the sensitivity of DMs are considered by certain authors as 

standalone heuristics; we do not differentiate these from the utility maximisation principle 

and these will not be investigated further. Some authors consider hysteresis and habit as 

choice heuristics (Adamowicz and Swait, 2013). Other authors consider the phenomenon in 

which DMs build their preferences along the experiment as a stand-alone heuristic (Hensher 

and Collins, 2011; Balbontin et al., 2017). Similarly, several choice models have been 

developed to specifically account for prospect theory (Kahneman and Tversky, 1979). This 

thesis does not work with prospect theory directly, but makes use of some choice heuristics 

that could indirectly account for it; the same is the case of modelling certain specific effects 
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such as the decoy effect (Fukushi, 2015; Guevara and Fukushi, 2016). In conclusion, all 

these phenomena are considered within a choice heuristic, rather than standalone 

mechanisms. 

Even though we develop several theoretical analyses, this thesis focuses on analysing the 

multiple-choice heuristics’ problem in an empirical way. Therefore, although the empirical 

analysis is done as broad as possible in an attempt to obtain the most general conclusions, 

some of the conclusions attained are not generalizable for every choice dataset. 

We do not intend to characterise the reason or variables affecting the selection of the choice 

heuristics of DMs in real experiments. We rather study the model’s capacity to capture these 

phenomena –if existent at all– and understand the model’s behaviour. 

1.5. Thesis Structure 

 

This thesis starts with an analysis of the literature, which is summarised in the following 

points: 

1. First, we analyse two model estimation methods: maximum likelihood estimation and 

Bayesian estimation. Advantages of these two methods are explored, and both are used 

throughout the thesis. 

2. We analyse different choice heuristics coming from different fields of study such as 

transport engineering, marketing, and psychology; in every case the most representative 

choice heuristics are selected. 



9 

  

3. Techniques for model selection are deeply analysed. We study hypothesis test 

developed in classical statistics, information criteria coming from information theory, 

and we end by analysing out of sample validation techniques. 

4. Finally, we discuss the experience reported in the literature regarding the modelling of 

multiple choice heuristics.  

We use two datasets in this thesis. With the aim of not having to describe them in each 

chapter, we analyse them in Chapter 3. Moreover, we detail there the way the datasets are 

used to create pseudo-synthetic scenarios.  

After the literature analysis, we identified potential contributions regarding two heuristics. 

Therefore, in Chapter 4 we further developed an important contribution regarding the 

Satisficing heuristic (Simon, 1955) and a smaller one in relation to the Elimination by 

Aspects heuristics (Tversky, 1972a, 1972b).  

In Chapter 5, we conduct the theoretical analysis of the multiple heuristics model. First, we 

analyse a binary case that helps to enlighten the underlying phenomena; later we generalise 

it to the multivariate case. In both cases, we start by analysing the optimum first order 

conditions on the likelihood function. Then, we explore the second order conditions and their 

relationship to the covariance matrix. 

In Chapter 6, we start the empirical analysis of multiple heuristics in this thesis. We analyse 

the identifiability of a latent class multiple heuristics model at the population level. Here we 

explore several dimensions that may affect model identifiability. Within a two heuristics 
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model we analyse the type of choice heuristics involved in the model, sample size, number 

of alternatives in the choice set, and the proportion of each heuristic in the sample. We end 

this chapter by analysing a three heuristics case. 

Chapter 7 is based on the findings of the previous chapter. Here, we analyse the 

identifiability of those heuristics where identifiability was more probable at an individual 

level. We finally apply the findings to a real sample. 

In Chapter 8, we attain our last objective: we analyse the case where different pairs of 

heuristics can represent the same in-sample behaviour. We analyse in sample and out of 

sample indicators in cases where weak and strong identifiability is achieved and discuss their 

use. 

Finally, conclusions of this thesis are addressed in Chapter 9. We analyse the main findings 

and its implications for choice modelling. We also discuss the limitations of this study and 

how it may affect the results. We hypothesise about the impact of the variation on the 

imposed experimental conditions. Finally, we end by addressing different avenues that this 

thesis has opened for future research.  
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2. REVIEW AND ANALYSIS OF LITERATURE 

 

In this chapter we analyse three main topics. First, estimation techniques, particularly those 

used in this thesis (maximum likelihood estimation and Bayesian estimation). Then, we 

describe several choice heuristics and organise them in a form suitable for discussion. 

Finally, we study techniques for model selection. 

2.1. Methods for Estimating Discrete Choice Models 

 

In this thesis, we attempt to estimate models of which identification is not guaranteed; 

therefore, the estimation technique chosen must consider this issue. We examine two 

estimation techniques: maximum likelihood estimation, which is the most popular 

alternative in transport engineering, and Bayesian estimation, which is interesting because 

there is no maximization problem involved. Both are explained as follows. 

2.1.1. Maximum likelihood estimation 

 

In maximum likelihood estimation, we assume that the vector of outputs 𝑥 and model 

parameters 𝜃 have a joint density function 𝑓(𝑥, 𝜃) given by (2.1). In it, 𝑓 represents the 

model. 

Pr(𝑥, 𝜃) = 𝑓(𝑥, 𝜃) (2.1) 
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The likelihood function measures the plausibility that the parameter 𝜃 of a model acquires a 

certain value in light of the data (2.2).  

ℒ(𝜃|𝑥) = 𝑓(𝑥|𝜃) = Pr(𝑥|𝜃) (2.2) 

Specifically, the likelihood function describes the probability of occurrence of the observed 

outcome 𝑥 conditional on a model structure and model parameters 𝜃. The maximum 

likelihood estimation tries to find the model parameters that maximise the observed 

outcome (2.2). If all 𝑖 observations are independent, then (2.2) is reduced to (2.3). 

ℒ(𝜃|𝑥) =-Pr(𝑥.|𝜃)
.

 (2.3) 

Given that the multiplied term in (2.3) is a probability –which ∈ 	 [0,1]– and that usually 

many DMs are considered, it is numerically hard to maximise (2.3) due to its small 

magnitude. Then, the expression maximised is the logarithm of the likelihood or 

log-likelihood given by (2.4). 

𝑙(𝜃|𝑥) = 6log(𝑃𝑟(𝑥|𝜃))
.

 (2.4) 

If the model is correctly specified, the model parameters distribute asymptotically 

Normal (Ortuzar and Willumsen, chap. 8, 2011; Train, chap. 8, 2009), as in:  

𝛽= 	
>
→ 	𝑁(𝛽,−𝑯CD) (2.5) 
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In (2.5), 𝑯 represent the hessian matrix of the log-likelihood function as stated in (2.6). The 

negative of H is also called the information matrix (Ortuzar and Willumsen, 2011, chap. 7; 

Train, 2009, chap. 8). When the model is not correctly specified the Hessian matrix in (2.6) 

is replaced by the robust Hessian matrix (Train, 2009, chap. 8). 

𝑯 =
𝜕F𝑙(𝜃)
𝜕𝜃F  (2.6) 

Frequently, the maximum likelihood can hardly be calculated analytically and numerical 

maximisation is needed. This kind of optimisation is suitable for single heuristic models, 

like those in Chapter 4. Unfortunately, it can pose a problem for weakly identifiable models, 

as those being characterised in Chapters 5 to 8.  

Throughout this thesis, we assess the degree of identifiability of the models. In maximum 

likelihood, non-identifiability is detected by means of a non-invertible hessian or negative 

standard deviation estimates. However, there are several reasons that could explain these 

phenomena: i) poor asymptotic behaviour of the estimates (2.5), ii) numerical approximation 

algorithms are not at the optimal point, and iii) the model is, indeed, non-identifiable. Even 

though the first two problems can be tackled, they are non-dismissible. 

To estimate the models via maximum likelihood, the R software (R Core Team, 2016) with 

the Maxlik package (Henningsen and Toomet, 2011) are used in this research. In the Maxlik 

package –as well as in other packages–, all the optimisers calculate the robust hessian matrix. 

Most of the available optimization methods are algorithms that work on a continuous space 
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solution; while one of the methods, Simulation Annealing, works in a non-continuous space 

solution. 

The algorithms for non-continuous space optimisation are normally not suitable for 

maximum likelihood estimation. Preliminary simulations performed by us indicate that 

although Simulation Annealing fails in finding the optima, the solutions provided are 

acceptable. Two problems with this algorithm are that the “optimal point” identified changes 

from estimation to estimation and, because the point is suboptimal, the hessian matrix may 

be non-invertible. The latter problem implies an impossibility of obtaining a covariance 

matrix for the estimates. Yet, if the space of the likelihood is non-continuous, like in the 

estimation of thresholds in an Elimination by Aspects model, the only available method in 

this package is Simulation Annealing. 

The algorithms for continuous space optimisation are normally more suitable than non-

continuous space algorithms. However, they tend to be captured in local optima, which is a 

frequent phenomenon in latent class models, which are the main models used in this thesis.  

Then, maximum likelihood poses two problems in the context studied in this thesis. First, 

the impossibility of the inversion of the hessian matrix or the presence of negative standard 

deviation estimates cannot be uniquely linked to the non-identifiability of the model as a 

cause. And second, the most suitable algorithms for maximum likelihood tend to be captured 

by local optima. Therefore, an alternative estimation procedure is considered as an option 

for multiple heuristic models. 
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2.1.2. Bayesian estimation 

 

Bayesian estimation identifies the most probable distribution of the parameters or posterior 

distribution in light of the data given a distribution of plausible values or prior. It is based 

on the Bayes theorem expressed in (2.7). 

Pr(𝜃|𝑦) =
Pr(𝜃) Pr(𝑦|𝜃)

Pr	(𝑦)  (2.7) 

The first component Pr(𝜃) is a probability distribution of the parameters; its density function 

incorporates all available knowledge or prior belief. The second element Pr(𝑦|𝜃) is the 

likelihood function, as stated in (2.2), which relates the probability of generating the data 

under the model and parameters. The last component Pr	(𝑦) is the data density and is usually 

omitted since the model can be calculated with (2.8). 

Pr(𝜃|𝑦) 	∝ Pr(𝜃) Pr(𝑦|𝜃)	 (2.8) 

Despite the existence of simple cases where the convolution of the likelihood and the prior 

have a closed form –in this case known as conjugate prior–, in most cases (2.8) cannot be 

calculated analytically (Gelman et al., 2013, cap. 12). Normally, to obtain useful statistics 

such as mean and variance or the empirical shape of the posterior, numerical integration is 

needed. Several techniques for calculating this convolution exists, such as grid-

approximation, maximum a posteriori, and Markov Chain Monte Carlo (McElreath, 2012). 

The latter is the most general technique and is the one used in this thesis. 
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Markov Chain Monte Carlo (MCMC) is a stochastic method for numerical integration 

(Gelman et al., 2013). This technique samples from the desired distribution (Pr(𝜃|𝑦)) to 

obtain an approximation of the parameter distribution.  

There are several algorithms that implement MCMC, such as Metropolis Hastings, 

Hamiltonian sampling, and Gibbs sampling. In this thesis, we use Gibbs sampling1 as 

implemented in the JAGS software (Plummer, 2003) connected to R through the RJags 

package (Plummer, 2016).  

Gibbs sampling sequentially samples one parameter of the model conditional on the last 

values sampled for rest of the parameters (Gelman et al., chap. 11, 2013). Therefore, the 

parameter distribution depends exclusively on the current value of the rest of the parameters 

and not upon its history; hence, the sequence of sampled parameters is a Markov chain. The 

sampler sequentially obtains observations for each parameter of the model until the desired 

number of iterations or convergence is reached. 

For the Gibbs sampler –or any other sampler–to be able to approximate (2.7), the Markov 

chain must be in a stationary state. Depending on the structure of the Markov chain and the 

initial points, different iterations must be performed before the chain reaches a high joint 

density function point, which is usually named burn-out period (Godoy and Ortuzar, 2008). 

                                                

1 We also tested the STAN software (Stan Development Team, 2015) that implements Hamiltonian sampling.  

For simple probability functions, STAN is faster than JAGS; however, if every individual has a structurally 

different probability function, like in the EBA model, the compilation time can be extremely large. 
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Once the parameters are in the high density function point, all sampled values may be used 

(Kass et al., 1998). 

To analyse convergence, several tools may be used. Even though semi-automatic tools exist, 

the manual inspection of the Markov chains is recommended (Lunn et al., 2012). 

Convergence is analysed using a trace plot of the estimates and a density graph of the 

parameters. The trace plot of a parameter shows the value sampled for it in each iteration. 

Two examples are presented in Figure 2-1.  

Figure 2-1 Trace plot of a Markov Chain 

 

The trace plot is useful to determine whether the estimates of the Markov chain are stable in 

mean and variance. The left panel represents a parameter that does not have a stable mean; 

whereas the right panel shows parameter with stable mean and variance. A stable variance 

is represented by a non-varying dispersion of the trace plot. Shocks within the trace plot are 

expected, since low density events should be also represented, but no tendency should be 

obtained. 

The density graph of the parameters plots the approximate density function obtained by 

sampling. Given the structure simulated in this thesis with unique underlying “real” 
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parameters in each simulation, we expect a soft and unimodal density function (i.e. with only 

one peak). If the density function is not soft, then more sampling is needed. If the density 

function is not unimodal, then the Markov chain has not reached convergence or has a 

mixture of convergence and non-convergence sampling. 

2.2. Choice Heuristics 

 

The kernel of a discrete choice model is its choice heuristic, that is the procedure that DMs 

are supposed to follow to choose an alternative from a choice set. In other words, the choice 

heuristic is the set of rules that links certain sensitivities or parameters to a specific choice. 

To represent different behaviours, different heuristics have been proposed in the literature. 

Indeed, some heuristics try to represent a specific psychological theory (Simon, 1955; 

Kahneman and Tversky, 1979), while others represent different degrees of rationality 

(Chorus et al., 2008; McFadden, 1973). 

In the literature, the terms of heuristic and choice model have been used normally as 

equivalent terms. Even though this is correct when a single heuristic exists, when multiple 

heuristics are embedded in the same model, a distinction is needed. In this thesis, and 

consistent with some literature (e.g. Cantillo and Ortúzar, 2005; Kivetz et al., 2004), the 

heuristic will be taken as the specific set of rules or mechanisms that DMs follow to choose, 

while the model, is a mathematical representation of one or more choice heuristics.  
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We analyse several choice heuristics that have been proposed and organise them using three 

criteria. Even though not all choice heuristics present in the literature are analysed, an 

extensive number of them is considered.  

The first criterion is whether the choice heuristic evaluates alternatives in a comparative 

(relative evaluation) or in an absolute (absolute evaluation) fashion. Heuristics in the former 

group are contextually dependant and generally try to apply some concepts of Prospect 

theory (Tversky and Kahneman, 1991). Heuristics in the latter group are economically 

rational and exhibit the property of independence of irrelevant alternatives.  

The second criterion analyses if all alternatives’ attributes are evaluated (total evaluation) 

or if only a subset of them (limited evaluation) is considered. Heuristics in the limited 

evaluation cluster implement strategies that operate in contexts where a total evaluation 

strategy would involve high cognitive burden due to the number of attributes involved. 

The last criterion is designed to verify if the individual chooses applying several processes 

or a single straightforward one. Implicit choice set heuristics or two-stage heuristics first 

reduce the size of the choice set (i.e. screens alternatives) and later chooses with an explicit 

choice set heuristic. An explicit choice set heuristic selects an alternative from the choice set 

using a single procedure. Moreover, even though any explicit choice set heuristic can be 

transformed into an implicit choice set heuristic by adding a screening stage, to the best of 

our knowledge, no relative evaluation two-stage choice heuristic has been proposed.  

The choice heuristics presented are organised according to these criteria in Tables 2-1 and 

2-2. These tables enable to visualise the kind and degree of similarity between the analysed 
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heuristics and, furthermore, offer a framework to analyse/organise other choice heuristics. 

This framework allows us to select a subset of choice heuristics to test in the experiments.  

Table 2-1 Organisation of choice heuristics with explicit choice sets 

Explicit choice set Total evaluation  Limited evaluation 

Absolute 

evaluation 
RUM  

EBA 

LEX 

 

RAM 

LA 

RUM-RRM 

MCD   

Relative 

evaluation 

RRM 

CC 

  

 

Table 2-2 Organisation of choice heuristics with implicit choice sets 

Implicit choice set Total evaluation  Limited evaluation 

Absolute 

evaluation 
STS HTS Satisficing 

Relative 

evaluation 
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Finally, the following conventions will be used in this thesis. First, the modeller will be 

referred to as female, and the decision makers as males. Second, because the choice 

heuristics come from different bodies of knowledge (e.g. marketing, psychology, statistics 

and engineering), the nomenclature used is not straightforward and is stated in Appendix A.  

2.2.1. Random Utility Maximization (RUM) 

 

Random Utility Maximization (RUM) is a choice heuristic where DMs choose the 

alternative that maximise their utility. The utility of a given alternative 𝑖 for individual 𝑞 

(𝑈K.) is a construct used by individuals to summarise all the characteristics of an alternative 

into a single figure of merit. When applied, the utility maximization problem (or consumer 

problem) is solved and an indirect utility function is obtained, which is usually the expression 

estimated (for further details see McFadden,1981). The modeller assumes that there is a part 

of the utility that she can identify (𝑉K.) –which is frequently linear and additive in 

parameters– while the other part is considered a stochastic error (𝜖K.) as in (2.9).  

𝑈K. = 𝑉K. + 𝜖K. (2.9) 

Depending on the distribution of the error terms, the model obtained varies. A Normal error 

term generates a Probit model (Daganzo, 1979). Independent and identical distributed 

Gumbel errors generate the Multinomial Logit (MNL) model (McFadden, 1973), which has 

been for many years the most popular formulation (2.10): 
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𝜖.~𝐺𝑢𝑚𝑏𝑒𝑙(0, 𝜎F)	

𝑃K. =
exp	(𝜆 · 𝑉K.)

∑ exp	(𝜆 · 𝑉K\)\∈]
	

𝜆 =
𝜋
𝜎√6

 

(2.10) 

Because the MNL model has several assumptions that are easily violated (e.g. 

homoscedasticity and independence of observations and errors), several alternative models 

have been proposed. A more flexible generalisation of the MNL, the nested logit (Williams, 

1977; Daly and Zachary, 1978), works with partially correlated alternatives. A further but 

less popular improvement is the cross-correlated or cross-nested logit (Vovsha, 1997; Bhat, 

1998; Ben-Akiva and Bierlaire, 1999). Furthermore, computing development has enabled 

the estimation of even more flexible models like the mixed logit model (Cardell and Reddy, 

1977; Train, 1998). The mixed logit model enables a general covariance structure (Train, 

2009) and can approximate any discrete choice model derived from RUM as closely as one 

pleases (McFadden and Train, 2000). 

Developments over the MNL model have not only addressed the error term. Modifications 

of the MNL’s utility function have been applied also, for example to create the dogit model 

(Gaundry and Dagenais, 1979), which allows to handle captives users. Further 

improvements in the modelling of non-measurable (latent) variables have been also some 

important developments (Ben-Akiva et al., 2002, 2012; Raveau et al., 2010). Finally, latest 

development of the RUM heuristic allows to model DMs considering the simultaneous 
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decision of choosing a discrete alternative and, conditional on it, evaluate a continuous 

consumption level (Bhat, 2005, 2008; Pinjari and Bhat, 2010; Calastri et al., 2017b, 2017a). 

Even though the MNL model requires strong assumptions, given that it is the most popular 

and simple model, it is the one used that will be used in this thesis. Thus, from now on the 

MNL model and the RUM choice heuristic will be used unequivocally.  

2.2.2. Elimination by Aspects (EBA) 

 

Elimination by Aspects –EBA– (Tversky, 1972b, 1972a) is a choice heuristic applicable in 

complex situations where DMs face an overwhelming amount of information. EBA is a non-

independent random utility model (Tversky, 1972a) that sequentially discards alternatives 

based on their attributes. Even though in its general form the EBA is able to model a diversity 

of situations, having as special cases the MNL, the Nested Logit model, and the Cross Nested 

Logit model (Kohli and Jedidi, 2015, 2017; Aribarg et al., 2017), in this thesis we consider 

that heuristics derived from random utility theory as stand-alone heuristics differ from EBA. 

In EBA, alternatives are completely described by aspects, defined as discrete desirable2 

characteristics that are directly mapped from the alternative’s attributes. If the attribute 

associated to an aspect is discrete, then, a discrete set of aspects directly describes the 

attributes. However, if the attribute is continuous, there is no straightforward representation 

                                                

2 Tversky (1972b) postulates that an alternative model could consider an heuristic with undesirable attributes 

where regret is involved. However, this formulation is out of the scope of this thesis. 
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of the aspects. The most common representation considers a threshold that divides the 

attribute into acceptable (or desirable) and unacceptable (or undesirable). Unfortunately, the 

methods to estimate such threshold are scarce and are further addressed in Section 4.1. 

In the EBA heuristic, DMs are supposed to choose an aspect from the set of available aspects 

and eliminate all alternatives that do not have the it. The process continues until only one 

alternative is available, which is then chosen. 

The inspection order, or ranking of aspects, could be deterministically determined for the 

individual. However, to accommodate different decision profiles and uncertainty, the 

modeller assumes that DMs choose stochastically the inspected attribute. Therefore, the 

stochastic nature of the model lies in the stochasticity associated with the inspection order.  

The aspects are the only elements involved in the decision process. The importance of each 

aspect is given by a positive continuous variable 𝑤 ∈ 𝑊 named weight, that is positively 

correlated with the probability of choosing the aspect. The most common formulation of 

EBA selects one aspect with a probability proportional to the weight of the available aspects 

in the current choice set (2.11). To freely3 estimate the weight (i.e. unconstrained in ℝ), the 

log-weight (𝛼) is normally estimated as in (2.12). 

                                                

3 This is needed in maximum likelihood estimation since the estimators distribute asymptotic Normal. 

Additionally, it is desirable in Bayesian estimation in order to have a higher variety of priors available. 
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𝑃. =
𝑤.

∑ 𝑤\∀\	∈	fgf.hfihjk
 (2.11) 

wm = exp(𝛼n) (2.12) 

Different formulations of the aspects and the probability of selecting them generate different 

types of EBA models. The Hierarchical EBA heuristic, or PRETREE, is used to model the 

selection of aspects that are not independent (Tversky and Sattath, 1979). The Elimination 

by Dimensions heuristic (Gensch and Ghose, 1992) and Elimination by Cut-offs (Manrai 

and Sinha, 1989) try to tackle the problem of EBA’s thresholds on continuous attributes. 

Even though the EBA can accommodate several behaviours, only the most common version 

–and the most popular one– will be used (2.11) here and will be identified unequivocally as 

EBA. 

2.2.3. Random Regret Minimization (RRM) 

 

Random Regret Minimization –RRM– (Chorus et al., 2008) is a heuristic where DMs value 

alternatives relatively. It is based on the concept of anticipated regret, that is, the feeling 

triggered when the individual imagines how would have been the situation if he had taken 

another choice (Simonson, 1992). Indeed, the relationship between the anticipated regret and 

choice is a well-studied problem in psychology (e.g. Zeelenberg, 1999; Zeelenberg and 

Pieters, 2007). 
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The first formulation of the RRM model (2.13) is a direct interpretation of the economic 

principle of minimising the maximum loss (Savage, 1951). If the error term is Gumbel 

distributed, the model adopts the logit model structure (2.14). 

min
.
𝑅. = min

.
max
.t\

𝑅.\ + 𝜖.	

= min
.
max
.t\

u6𝑚𝑎𝑥 w0, 𝛽xy𝑥\x − 𝑥.xz{
x

| + 𝜖. 
(2.13) 

𝑃. =
exp	(−𝜆𝑅.)

∑ exp	(−𝜆𝑅\)∀\∈}
 (2.14) 

Even though (2.13) exhibits a simple structure, model estimation is not straightforward due 

to the 𝑚𝑎𝑥 operator. Then, typically an approximate function is used (Chorus, 2010), which 

is shown in (2.15). This is the most popular version of the RRM model, also known as RRlog 

(Jang et al., 2017). 

𝑅. ≈ 6 6 lnw1 + 𝑒𝑥𝑝 w𝛽xy𝑥\x − 𝑥.xz{{
∀n∈�∀\∈}t.

 (2.15) 

Several other versions of the RRM model have been proposed, one of them, the µ-RRM (van 

Cranenburgh et al., 2015), enables to further exploit the flexibility of the model (2.16). The 

RRlog model is not scale-invariant; hence, the scale may be estimated. The µ-RRM exploits 

such feature and estimates the scale at the expense of additional parameters. Even though, 

several other random regret models have been proposed, such as the generalized-random 

regret model (Chorus, 2014) or the pure-random regret model (van Cranenburgh et al., 

2015), they will not be further analysed since they do not represent a significant –or any–
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improvement over the µ-RRM model and only enable further understanding of the regret 

function. 

𝑅. ≈ 6 6 𝜇x ln�1 + 𝑒𝑥𝑝 �
𝛽x
𝜇x

y𝑥\x − 𝑥.xz��
∀n∈�∀\∈}t.

 (2.16) 

The µ-RRM has two variables per attribute-regret function which allows to change the 

degree of regret associated to each attribute. The 𝜇 parameter controls the shape of the regret 

and the 𝛽 parameter controls its magnitude. 

The behaviour of the 𝜇 parameter is shown in Figure 2-2. The blue line represents the 

traditional RRM model. The red lines, for which the shape parameter is indicated, represent 

the two most extreme cases where the 𝜇 parameter takes the higher and smaller values. For 

high values, the 𝜇-RRM model exhibit a behaviour where the penalisation of the losses 

compared to the gains is not extreme (in the RUM model the penalisation is null). On the 

other hand, for small values the model exhibits a high profundity of regret (van Cranenburgh 

et al., 2015), where the penalisation of the losses are extreme and the valuation of the gains 

are non-existent. Finally, the black line denotes an intermediate behaviour between the 

higher value of the shape parameter and RRM.  
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Figure 2-2 Regret function for different scale parameters 

 

The RRM has become popular in several domains. Applications are mainly found in 

transport, dealing with route choice (Leong and Hensher, 2012a; Chorus and Bierlaire, 

2013), vehicle purchase (Beck et al., 2013), searching of parking space (van Cranenburgh et 

al., 2015), manoeuvre in car accidents (Kaplan and Prato, 2012), and transport mode 

(Chorus, 2010). Other applications can be found in health economics (Boeri et al., 2013) and 

marketing, to analyse online dating (Chorus and Rose, 2012). 

2.2.4. Lexicographic behaviour (LEX) 

 

A Lexicographic choice heuristic privileges a single attribute over the rest. Only when the 

differences over the sought attribute are not noticeable, another attribute may be considered 

(Tversky, 1969). It has been argued that complex choices could trigger this choice heuristic 

(Ortuzar and Willumsen, 2011), and it has even been reported in simple decision tasks 

(Tversky et al., 1988). This choice heuristic has the particularity that no utility function can 
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accommodate it (Debreu, 1954) and in some specific context it can outperform 

compensatory structures (e.g. Jedidi and Kohli, 2008). 

The LEX choice heuristic is not intended to model all choice situations, thus, applications 

are not extensive. Moreover, distinguishing lexicographic behaviour from compensatory 

structures is not straightforward, since the response pattern of LEX could also be formed by 

compensatory responses (Saelensminde, 2006).  

It can be argued that a lexicographic behaviour is a reduced version of an EBA heuristic. 

The EBA heuristic categorises alternatives into desirable aspects, therefore, if the only 

sought aspect is if the alternative has the best value of the analysed attribute, then, EBA is 

consistent with lexicographic behaviour. Hence, LEX may be interpreted as an extreme 

version of the EBA heuristic. Thus, only EBA will be used for experimentation in this thesis. 

2.2.5. Models for dealing with Prospect Theory behaviour 

 

Prospect theory departs from the classic rational economical behaviour by anchoring in three 

key elements: (i) preferences are context-dependent, (ii) losses loom larger than gains, and 

(iii) DMs may perceive biased probabilities. The theory assumes that although DMs are 

utility maximisers, they perceive attributes subjectively.  

In sections 1.4 and 2.2 we have defined the limits of a choice heuristic. Prospect theory 

heuristics are in the blur limit between being contained in the RUM paradigm and being 

stand-alone. Although we consider that DMs following prospect theory behaviour are still 

utility maximisers, we consider this separately given its importance. 
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There are a family of models that try to capture the principles of Prospect theory (Kahneman 

and Tversky, 1979). Among the concepts applied, we describe the ones that focus on loss 

aversion (i.e. gains are valued different than losses). Gains and losses are compared against 

a reference; different reference points and utility functions gives birth to different models. 

Most of these models keep the RUM structure; indeed, they could be interpreted as RUM 

models with a different utility function. However, they are analysed as a different choice 

heuristic since they value alternatives relative to a reference point. 

2.2.5.1. Loss Aversion (LA) 

 

The loss aversion heuristic (Tversky and Kahneman, 1991) values gains differently than 

losses compared to the statuo quo. The utility function is piece-wise defined linear and 

additive (2.17): 

𝑉. = 𝛽� +6�
𝛽x(𝑥.x − 𝑥�x�����), 𝑥.x ≥ 𝑥\x

(𝛽x + 𝜆x)(𝑥.x − 𝑥�x�����), 𝑥.x < 𝑥\x
x

 (2.17) 

In (2.17), one branch represents the gain domain and the other the loss domain. If the 

attribute is desirable, the first branch represents gains with respect to the status quo valued 

at a 𝛽x rate; whereas, the other branch, represents the loss domain that is penalised higher 

through the loss aversion parameter (𝜆x). If the attribute is undesirable the relationship is 

inverse.  
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In the LA model, the relationship between the RUM heuristic and Prospect Theory is 

evident: the latter provides further insights about the way that DMs value attributes, but do 

not challenge the principle of utility maximisation. 

2.2.5.2. Contextual Concavity (CC) 

 

The CC heuristic (Kivetz et al., 2004) implements the concept of context dependence and 

loss aversion. It values each attribute against the best one available in the choice set (2.18).  

𝑈. = 𝛽� +6�𝛽n �𝑥.x −max
\
𝑥\x��

��

x

+ 𝜖. (2.18) 

In (2.18) the 𝜙 parameter generates a concavity or convexity in the utility function depending 

of its value. When the model is concave, i.e. 𝜙 ∈ 	(0,1), losses are valued more than gains. 

The max operator induces context dependence and positions the concavity point. Again, as 

in the LA model, the relationship between RUM and Prospect Theory is evident. 

2.2.6. Models of relative evaluation 

 

The objective of the following heuristics is to evaluate alternatives relatively. DMs build a 

representation of the alternative based on the alternative performance compared to other 

alternatives. The individual evaluates the ratio of gains and losses of the various alternatives 

considered. Among several formulations that model this feature, there are two that have been 

recently tested in transport research: the Relative Advantage Maximisation model and the 

Majority of Confirming Dimensions model.  
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2.2.6.1. Relative Advantage Maximisation (RAM) 

 

RAM (Tversky and Simonson, 1993) attempts to value context independent and context 

dependent features into a single unit of merit (2.19). Context independent features are 

modelled as a RUM-like structures (𝑉.), whereas context dependent features are modelled 

as a relative measure of advantage (𝐴x) and disadvantages (𝐷x) over other options (2.20). 

𝑈. = 𝛽g𝑉. + 𝛽�𝑅.} + 𝜖. (2.19) 

𝑅.} = 6 𝑅.\
∀\	t.

= 6 6
𝐴x(𝑖, 𝑗)

𝐴x(𝑖, 𝑗) + 𝐷x(𝑖, 𝑗)x∀\	t.

 (2.20) 

Equation (2.20) indicates how the relative performance of an alternative is linked to relative 

advantages and disadvantages. Tversky and Simonson (1993) suggests defining advantages 

and disadvantages asymmetrically, so that disadvantages are more valued than advantages. 

Even though this definition aligns with Prospect Theory (Kahneman and Tversky, 1979), no 

statistical evidence supports such proposal for this particular model yet (Kivetz et al., 2004).  

Finally, Equation (2.21) indicates the relationship between the attributes of the compared 

alternatives and the corresponding advantage: 

𝐴x(𝑖, 𝑗) = �𝛽n(𝑥.x − 𝑥\x), 𝛽x(𝑥.x − 𝑥\x) > 𝜏x

0, 𝑜𝑡ℎ𝑒𝑟	𝑐𝑎𝑠𝑒
 (2.21) 

Specifically, 𝛽n  values a desirable difference of an attribute of the selected alternative (𝑖) 

compared to another one (𝑗). The variable 𝜏 corresponds to a minimum perception threshold. 
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Yet, the application of a minimum perception threshold is only theoretical in this model 

since it has not been tested. Nonetheless, the minimum perception threshold has been applied 

in other models (e.g. Cantillo and Ortúzar, 2005). 

2.2.6.2. Majority of Confirming Dimensions (MCD) 

 

Similarly to RAM, the MCD (Russo and Dosher, 1983) is a choice heuristic that compares 

alternatives relatively. Its main objective is to reduce the cognitive burden involved in a 

decision. In MCD, individuals compare alternative attributes and choose the option with the 

biggest number of winning attributes. It has been implemented as a complement to RUM, 

within the same utility function, as an additional variable (Hensher and Collins, 2011) or as 

a standalone heuristic (Leong and Hensher, 2012b). 

2.2.7. Hard two-step (HTS) heuristics 

  

HTS heuristics are composed of two stages. First the choice is reduced by strictly (hard) 

applying some criteria and then, over this reduced choice set, a total evaluation heuristic is 

used for choice. Even though these heuristics do not restrict the type of total evaluation 

heuristic used, only RUM has been applied. 

In HTS heuristics, the screening criterion is hard because if the sought aspect is not found, 

the alternative is immediately discarded. For binary variables, the criterion is 

straightforward: the sought aspect is either present or not. Whereas for continuous variables, 

a threshold needs to be estimated or imposed –like in the EBA model. Since these heuristics 
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are hard, no tolerance over the thresholds is accepted. The stochastic nature of the model lies 

in one of two ways: estimation of such thresholds or, over imposed thresholds, estimation of 

the probability of usage of each threshold. 

The basic HTS heuristics are the Disjunctive (Gilbride and Allenby, 2004) and Conjunctive 

(Jedidi and Kohli, 2005) rules. The difference between them is the way they deal with 

multiple criteria. For the Disjunctive rule, an alternative is acceptable if one of the criteria is 

met, whilst for the Conjunctive rule, an alternative is acceptable if all criteria are met. The 

Conjunctive heuristic is equivalent to a two-step EBA-RUM (Gilbride and Allenby, 2006). 

Mathematically, let 𝐴. be 1 if the alternative is acceptable and 0 otherwise; let 𝑎.n  be 1 if 

alternative 𝑖 satisfies the condition 𝑘 and 0 otherwise. Then, the Disjunctive and Conjunctive 

rules are given by (2.22) and (2.23) respectively. 

𝐴. = �
1, 6 𝑎.n

∀n∈�

≥ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.22) 

𝐴. = �
1, - 𝑎.n

∀n∈�

= 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.23) 

A generalisation of the Disjunctive and Conjunctive heuristics is the Subset Conjunctive 

heuristic (Jedidi and Kohli, 2005). This considers an alternative acceptable if at least 𝑛 out 

of 𝐾 conditions are met (2.24). The optimal number 𝑛 may be estimated through maximum 

likelihood simultaneously with the rest of the model. This heuristic is equivalent to the 

Disjunctive rule when 𝑛 = 1 and to the Conjunctive rule when 𝑛 = 𝐾. 
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𝐴. = �
1, 6 𝑎.n

∀n∈�

≥ 𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.24) 

A model that further analyses the Conjunctive heuristic is the Economic Screening Rule 

(Gilbride and Allenby, 2006). This choice heuristic considers that if an alternative is not 

inspected, then both the expected maximum utility and the cognitive burden decreases. This 

choice heuristic analyses which attributes are screened by the Conjunctive rule by linking 

them to the expected maximum utility loss that could be experienced if some alternatives are 

not further analysed. Therefore, this model considers that if an attribute is inspected, a 

cognitive effort is involved; if not, the cognitive burden decreases, but so does the expected 

maximum utility.  

Let 𝔼(Max(𝑈)]) be the expected maximum utility of the choice set 𝐼 –calculated as the 

logsum4. Let the set 𝐼 − {𝑘} be the choice set remaining after screening alternatives with a 

certain criterion in the kth attribute. Then, the maximum utility of this reduced choice set is 

given by 𝔼y𝑀𝑎𝑥(𝑈)]C{n}z and attribute 𝑘 is screened if condition (2.25) is true; this indicates 

that an attribute is screened if the expected utility loss (left hand expression) is smaller than 

the willingness to lose utility that each individual 𝑞 has (𝛾K).   

𝔼(𝑀𝑎𝑥(𝑈)]) − 𝔼y𝑀𝑎𝑥(𝑈)]C{n}z < 𝛾K (2.25) 

                                                

4 In a RUM model, the expected maximum utility with Gumbel errors –𝔼(𝑀𝑎𝑥(𝑈.))– is given by 

log(∑ 𝑒𝑥𝑝(𝑈.).∈] ), popularly known as logsum. 
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The model then applies a RUM heuristic to choose among all acceptable alternatives. The 

objective is to estimate simultaneously the RUM’s parameters and the distribution of 𝛾K  in 

the population. 

2.2.8. Soft two-step (STS) heuristics 

 

In a STS heuristic DMs first reduce the size of the choice set by screening alternatives 

probabilistically and then choose using a total evaluation heuristic. In these heuristics, the 

choice set for each person is diffuse or probabilistic. These models are based on the work of 

Manski (1977), where the probability (𝑃.K) that each individual 𝑞 assigns to alternative 𝑖 is 

the total probability over the conditional choice sets 𝑐 ∈ 𝐶, as in: 

	𝑃.K = 6 𝑃.K©𝑃©
∀©∈ª

 (2.26) 

Even though any combination of screening heuristic and choice heuristic could be used, only 

conjunctive-RUM heuristics have been applied. One example is the Semi-Compensatory 

heuristic (Cantillo and Ortúzar, 2005). In the first step, alternatives are acceptable if all the 

sought conditions are met –like in the Conjunctive heuristic–. These conditions are modelled 

as a probability of acceptance of the analysed attributes around estimated thresholds. Then, 

in the second step, a RUM heuristic is applied over the remaining choice set. 

Given that the number of possible choice sets could be extensive, different approximations 

of (2.26) have been proposed (Cascetta and Papola, 2001; Martínez et al., 2009).  The most 

popular approximation, the Constrained multinomial logit (Martínez et al., 2009), has been 
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used with exogenous and endogenous thresholds (Castro et al., 2013). However, Bierlaire et 

al. (2010) have shown it to be a poor first order approximation of (2.26). Notwithstanding, 

higher order approximations –fifth order shows to be good enough– have shown to behave 

well (Paleti, 2015).  

2.2.9. Satisficing 

 

Satisficing has been commonly defined as choosing the first satisfactory alternative. Even 

though the notion of Satisficing was clearly expressed in the seminal work of Simon (1955), 

few researches have been able to wholly implement its principles.  

Among the principles of Satisficing stands the consideration of partial pay-off functions. 

Following Satisficing, individuals are supposed to have problems in mixing attributes of a 

different nature into a single unit of merit; however, this feature is frequently ignored in most 

applications (e.g. Araña et al., 2008; Radner, 1975; Richardson, 1982). 

Recently, a model in the marketing literature was proposed which fully applies the 

Satisficing principles (Stüttgen et al., 2012). Nevertheless, it requires eye-tracking data for 

estimation, which is yet not possible in most choice settings. So, a model that wholly applies 

the Satisficing principles is not available in practice. Therefore, to fill this gap in the 

literature, we propose a model that applies the three main Satisficing principles and explain 

it in Section 4.2. 
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2.3. Techniques for Model Selection 

 

When several models are available a criterion may be needed to choose the best among them. 

Several techniques allow to characterise different properties of the models and their 

performance. This way, information is provided to help select the preferred model. Among 

the several techniques for characterising model performance, we describe here the use of 

hypothesis tests, information criteria and out of sample validation. 

2.3.1. Hypothesis tests 

 

The statistical tests reported in this subchapter deliver indicators based on the model using 

exclusively the estimation sample. We describe two tests that may indicate the preference of 

one model over another non-nested model –as those to be compared in this thesis; however, 

they are restricted to maximum likelihood estimation contexts. 

2.3.1.1. Likelihood ratio test 

 

This test has several formulations under different conditions. There are some versions that 

are only valid for multinomial logit models by making use of the independent of irrelevant 

alternatives properties (McFadden et al., 1977; Horowitz, 1982). The most popular 

formulation (2.26) is only valid if the general model is well specified. Expression (2.27) 

relates the likelihood of a general model and the likelihood of a restricted version of the 

general model.  
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𝐿𝑅 = 	−2 w𝑙(𝜃�j­®�.©®j>)	– 	𝑙y𝜃°j±j�fhz{~𝜒�F	

𝑤𝑖𝑡ℎ	𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
(2.27) 

Even though version (2.27) of the test can be useful, in the literature it is widely reported 

that when the model is not well specified –a common case in models with multiple heuristics, 

the LR statistic does not necessary distribute chi-squared (Foutz and Srivastava, 1977; Kent, 

1982; White, 1982). A general version of the LR statistic, less popular however, enables its 

use under non-nested models (i.e. one is not a restricted version of the other) and under 

misspecification (Vuong, 1989). Let the two compared models be 𝑓 and 𝑔; then (2.28) 

defines the terms under which the estimator is defined. 

𝐻�: 𝑏𝑜𝑡ℎ	𝑚𝑜𝑑𝑒𝑙𝑠	𝑎𝑟𝑒	𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	

𝜔F =
1
𝑛6

¹log�
𝑝º(𝑌®|𝜃D)
𝑝°(𝑌®|𝜃F)

�	¼
F±

®½D

 
(2.28) 

Expression (2.29) states how the estimator distributes. With the expression of 𝐻� a t-test may 

be performed that indicates the equivalence of the two models. 

𝐻�:
𝐿𝑅
𝜔√𝑛

~𝑁(0,1)	

𝑈𝑛𝑑𝑒𝑟	𝐻º :		
𝐿𝑅
𝜔√𝑛

→ ∞	

𝑈𝑛𝑑𝑒𝑟	𝐻° :		
𝐿𝑅
𝜔√𝑛

→ −∞ 

(2.29) 
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2.3.1.2. Other tests for non-nested models 

 

Other tests have been proposed to compare non-nested models by simultaneously estimating 

both models under analysis. The versions of Cox (1962) and Davidson and 

MacKinnon (1981), stated by (2.30) and (2.31) respectively, enable to compare two models 

by means of a t-test. 

𝑦 = 𝛼𝑓(𝑥) + 𝛽𝑔(𝑥) (2.30) 

𝑦 = (1 − 𝛼)𝑓(𝑥) + 	𝛼𝑓(𝑥) (2.31) 

Even though the test –and the idea behind it–can be simple, it is difficult to apply it in our 

context. Multiple heuristic models are difficult to estimate and the risk of non-identifiability 

is high; therefore, the simultaneous estimation of two multiple heuristic models is 

implausible. 

2.3.2. Information criteria 

 

Information criteria deals with a phenomenon known as bias-variance trade-off (Hastie et 

al., 2001; McElreath, 2012). This relates the fit of the model (bias) with its performance in 

out of sample validation as the number of parameters increases (variance). From it, we can 

conclude that although sophisticated models may reduce the bias significantly, their 

predictive performance may be compromised; when this happens, the model is said to be 

overfitted. 
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Several information criteria try to approximate the additional forecasting bias produced by 

adding additional parameters. Most information criteria are based on the concept of 

divergence, that is the additional uncertainty induced by using a probability distribution to 

approximate another one (McElreath, 2012). The best known measure to quantify the 

divergence of a model is the Kullback-Leibler divergence –KL (Kullback and Leibler, 1951).  

Approximating one distribution through another, produces an error measured in entropy 

units quantified by the divergence. The KL divergence quantifies the divergence as the 

difference in cross-entropy of the distribution used and the entropy of the distribution to 

approximate (2.32). Let 𝐻(𝑓) be the entropy of a distribution and 𝐻(𝑓, 𝑔) the cross entropy 

of two distributions. Random variable 𝑦K comes from a 𝑓 distribution. If a distribution 𝑔 –

or model– is used to approximate distribution 𝑓, then the KL divergence is defined as (2.32) 

and expands to (2.33) acquiring the form of an expectation. Note that the minimum value of 

the divergence KL is zero: 

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒�¿(𝑓, 𝑔) = 𝐻(𝑓, 𝑔) − 	𝐻(𝑓) (2.32) 

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒�¿(𝑓, 𝑔) = 6 𝑝ºy𝑦Kz · wlog w𝑝ºy𝑦Kz{ − logw𝑝°y𝑦Kz{{
∀K∈À

 (2.33) 

Akaike (1973, 1974) proves that if a researcher uses a KL loss function to compare two 

models, then the divergence need not be completely computed, but rather the difference 

among the deviances of the two models. Akaike proves that the difference of two KL 

Divergences is the difference of the loglikelihood of the models. To calculate the difference, 

let the deviance of a model be given by (2.34). Then, if two models 𝑔 and 𝑒 try to represent 
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a generating process 𝑓, the difference of the two divergences, which is equivalent to the 

difference of the deviances, is stated by (2.35). 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 	−2	 6 logw𝑝°y𝑦Kz{
∀K∈À

 (2.34) 

𝛥𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 	−2	 6 logw𝑝°y𝑦Kz{ − logw𝑝jy𝑦Kz{
∀K∈À

 (2.35) 

The out of sample deviance of two models is a measure of model underfit/overfit. To 

calculate it, the deviance needs to be computed piecewise. However, to avoid using separate 

samples or to have an immediate indicator after model fitting, most information criteria try 

to approximate the out of sample deviance by using information of the estimation sample 

and the model structure.  

The Akaike information criterion (AIC) tries to approximate the corresponding piece of the 

out of sample deviance of a model (Akaike, 1973). This estimator uses the log-likelihood of 

a model and penalizes it by the number of parameters 𝑘 (2.36). This estimator is valid for 

both Bayesian estimated models and maximum likelihood estimated models. 

𝐴𝐼𝐶 = −2 6 logw𝑝y𝑦Kz{ + 2𝑘
∀K∈À

 (2.36) 

AIC approximates correctly the deviance under several conditions. First, it requires the 

sample to be large. Second, it requires that the prior distribution of the parameters is 

relatively flat, which is always true in maximum likelihood estimation, but not necessarily 

under a Bayesian framework. And finally, it requires that the posterior distribution of the 
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parameters is Normal. Each of these restrictions have been approached through other 

information criterion. 

When the sample is not big enough, the AIC may be biased. The Corrected Akaike 

Information Criterion –CAIC (Hurvich and Tsai, 1989; Anderson et al., 1998) provides a 

correction for this: 

𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 +
2(𝑘 + 1)(𝑘 + 2)
|𝑄| − 𝑘 − 2  (2.37) 

When the prior distribution of the parameters is not relatively flat, the Deviance Information 

Criterion –DIC  (Lunn et al., 2012) is used. The DIC (2.38) changes the parameter penalty 

in the AIC formulation (2.36) considering the number of effective parameters. 

𝐷𝐼𝐶 = −2 6 logw𝑝y𝑦Kz{ +
∀K∈À

2𝑘jºº	Ã]ª  (2.38) 

The number of effective parameters does not have a precise definition but can be estimated 

as in (2.39) and (2.40). Both estimators arise from a 𝜒F distribution and are valid 

asymptotically (Gelman et al., 2013). To estimate the DIC, several Markov chains are run 

over the same dataset and stability is analysed over the different chains; here 𝑆 is the set of 

samples from each chain. 

𝑘jºº	Ã]ª = 6 �logw𝑝y𝑦Kz{ −
1
𝑆 6 log w𝑝y𝑦KÅ𝜃­z{
∀­∈Æ

�
∀K∈À

 (2.39) 
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𝑘jºº	Ã]ª = 6 𝑉𝑎𝑟 wlog w𝑝y𝑦Kz{{
∀K∈À

 (2.40) 

If the posterior distribution do not distribute normal, then the Widely Applicable Information 

Criterion or Watanabe Akaike Information Criterion –WAIC– (Watanabe, 2010) is used. 

WAIC modifies the DIC by adding further information about the different Markov chains as 

in (2.41) and (2.42). Note that if the posterior distribution is symmetrical in (2.41), the 

estimator for DIC and WAIC is the same. 

𝑘jºº	Çk]ª = 6 �log�
1
𝑆 6 𝑝y𝑦K|𝜃­z
∀­∈Æ

� −
1
𝑆 6 logw𝑝y𝑦KÅ𝜃­z{
∀­∈Æ

�
∀K∈À

 (2.41) 

𝑘jºº	Çk]ª = 6 𝑉𝑎𝑟 wlog w𝑝y𝑦Kz{{
∀K∈À

 (2.42) 

Even though DIC and WAIC have two estimators for the number of effective parameters, 

the second formulation –(2.40) and (2.42)– has shown a better performance in replicating 

the out of sample deviance (Gelman et al., 2013). 

Another information criterion is the Bayesian Information Criterion –BIC (Hastie et al., 

2001), which is based in the Schwarz criterion (Schwarz, 1978). This criterion is also valid 

for Bayesian and maximum likelihood estimated models. Unlike other estimators that try to 

assess the forecasting performance of a model, BIC tries to establish the posterior probability 

of a model over other models (akin to Equations 2.6 and 2.7). Equation (2.43) shows the 

BIC; as can be easily inspected, it penalises harder the likelihood of the model than the AIC 

as the sample grows.  
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𝐵𝐼𝐶 = 	−2 6 logw𝑝y𝑦Kz{
∀K∈À

+ log(|𝑄|) · 𝑘 (2.43) 

Finally, the Minimum Description Length (Wallace, 2005; Grünwald, 2007) promotes more 

parsimonious models. This measure finds its origin in the theory of coding for data 

compression. Even though its origin differs from other information criteria, this approach 

gives a selection criterion formally identical to BIC (Hastie et al., 2001). 

There are other information criteria, e.g. the Vapnik-Chervonenkis Dimension (Hastie et al., 

2001), that are not addressed here. However, as these techniques do not have the popularity 

of AIC and BIC are less validated. Because the objective of this thesis is not an exhaustive 

analysis of different information criteria, their analysis is out of the scope of this thesis. 

2.3.3. Out of sample validation 

 

Once several satisfactory models are available (satisfactory in terms of its statistical 

properties and theoretical validity), we may desire to categorise them in terms of their 

predictive performance. Out of sample validation is one of the best tools to analyse the 

performance of a model as it allows to directly measure any desired property (like predictive 

performance). Indeed, information criteria try to approximate these techniques. If plenty of 

data is available, the predictive performance can be directly measured though out of sample 

validation and no approximation would be needed.  



46 

  

Several techniques use out of sample validation to measure the forecasting performance and 

degree of overfit of a model. We categorise the different techniques in two dimensions 

depending of the data involved in the validation and the statistical estimator calculated.  

2.3.3.1. Type of data in out of sample validation 

 

The first dimension considers the type of data used for the analysis. Validation data may 

come from the same type of experiment or context as the estimation data (which is the typical 

out of sample analysis) or it can come from another context; this is known as response 

analysis (Williams and Ortuzar, 1982a, 1982b). Moreover, when data comes from the same 

type of experiment, the whole sample may be used for estimation and validation, like in 

bootstrapping, or it may be used in disjoint fashion, like in cross-validation. This first 

dimension is summarised in Figure 2-3. 

Figure 2-3 Classification of out of sample techniques 
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When data comes from the same context of the experiment, it has the advantage that no 

additional experiment must be performed for validation. The totality of the data may be used 

for estimation and validation, like in the case of bootstrapping (Efron and Tibshirani, 1997), 

or they may be disjoint sets, like in cross validation. In both techniques, the process may be 

repeated to obtain a mean and variance of the analysed feature. 

Bootstrapping uses the same sample for estimation and validation. This technique first 

estimates the model with the totality of the sample. Then, the validation sample is obtained 

by sampling with reposition from the original dataset. This technique provides biased 

estimates –however consistent– of the measured properties. Nevertheless, for small samples, 

it provides smaller mean square errors due to the increase in the estimation and validation 

sample sizes. 

Cross validation uses disjoint datasets for estimation and validation. This technique has the 

advantage of providing unbiased estimates. Depending on the proportion of sample used for 

estimation and validation, this technique is classified into two subgroups: K-fold cross 

validation and leave-one-out cross validation (Hastie et al., 2001). K-fold cross validation 

divides the sample into K groups; one group is used for validation and K-1 for estimation. 

Then, the group left out is alternated until every group has been left out once. Leave-one-out 

cross validation is the extreme case where the number of groups is the sample size. Larger 

estimation samples decrease the estimated bias, whereas, larger validation samples decrease 

the variance of the estimation.  Studies present in the literature suggests that dividing the 
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sample into five to ten parts offers a good compromise between bias and variance (Breiman 

and Spector, 1992; Kohavi, 1995). 

Finally, response analysis or non-hold out sample uses validation data from a different 

context than the estimation data. It has the disadvantage of requiring another data source or 

additional experiments must be performed. The objective of response analysis is to 

understand how the model performs to a change in the choice context; e.g. in transportation 

it could be an increase in the fare of all modes. The underlying hypothesis is that a model 

that represents adequately the phenomenon should have a good performance if the context 

changes since it captures the underlying mechanisms (Keane and Wolpin, 2007). On the 

other hand, if a model is overfitted, it may perform adequately in the estimation sample, but 

poorly when the context changes. This technique can characterise the competing models 

deeper, however, it requires richer information. 

2.3.3.2. Estimator calculated in out of sample techniques 

 

Independent of the type of data used for analysis, a statistic must be calculated for the tested 

case. We will analyse three different statistics: the first preference recovery (FPR) or hit rate, 

the log-likelihood of the validation sample, and probability bands. 

The FPR (Ortuzar and Willumsen, 2011, chap. 8) or hit rate corresponds to the proportion 

of the cases in which the model assigns the maximum probability to the chosen alternative.  

The expected value of the FPR, the expected recovery, is the average likelihood of the model. 

By using both estimates and the expected recovery of a null model it is possible to infer if 
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the model is informative and reasonable. The FPR main advantage is being an intuitive 

estimator. 

The average log-likelihood of the validation sample is a measure to express the performance 

of a model. It is based on the deviance of a model (2.34) that measure the difference between 

the model’s performance and the real underlying model. The deviance has several useful 

properties that outperforms the FPR as a performance statistic. For example, it is obtained 

analytically from information theory. Furthermore, it penalises infinitely a deterministic 

model as a model for a stochastic process (for further information see McElreath, 2012). 

However, it could be a less intuitive statistic. 

Probability bands is a technique that analyses in detail the performance of the model 

throughout the complete range of possible probabilities (Ortuzar and Willumsen, 2011, 

chap. 8). The analysis through probability bands compares the theoretical distribution of the 

model in the scope of the data range with the empirical distribution of the data. Then, the 

significance of this difference may be checked through a chi-squared test. This way, the 

competing models may be precisely analysed in the whole domain of probabilities. 

2.3.4. Use of techniques of model selection in this thesis 

 

As stated in Section 2.1, this thesis uses Bayesian and maximum likelihood estimation. To 

be able to compare Bayesian models, no hypothesis tests will be used to discriminate among 

competing models.  
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Information criteria may be used with maximum likelihood and Bayesian estimation. Among 

the information criteria exposed in subsection 2.3.2, the performance of DIC and BIC will 

be analysed regarding their capacity to choose between satisfactory models when multiple 

choice heuristics are involved. DIC is needed since some priors are not flat enough. Because 

of the large sample sizes, we will use no correction for the DIC. Our numerical simulation 

shows that for 15 parameters, a sample size of 1,000 observations is enough to exhibit a bias 

smaller than 0.5 log-likelihood points. Therefore, conventional DIC and BIC will be used. 

Finally, regarding out of sample techniques, this thesis considers the use of simulated data; 

therefore, the amount of data is not a restriction. This way, techniques like bootstrapping are 

not required. Indeed, cross validation is used with relatively large sample sizes. Moreover, 

in some cases, response analysis is used to further understand the model’s properties. 

Regarding the estimator calculated, only out of sample log-likelihood is calculated, since it 

outperforms the FPR and the degree of detail that the probability bands provides is not 

needed. 

2.4. Modelling Multiple Choice Heuristics 

 

Models with multiple choice heuristics attempt to capture the behaviour of the population in 

which DMs choose using different heuristics. The main approach to model multiple choice 

heuristics is to use latent classes, where each class represents a heuristic. Despite other 

attempts to use flexible structures to represent more than one choice heuristic in a single 

formulation (Fiebig et al., 2010; van Cranenburgh et al., 2015), the use of latent classes has 
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been the prevalent modelling technique. Therefore, we will refer to the multiple heuristic 

model unequivocally as the one using the latent class approach. 

The logic behind latent classes is summarised in Figure 2-4. DMs choose every heuristic 

with a certain probability function –the class membership function. Then, once the heuristic 

is chosen, DMs choose one of the available alternatives with the corresponding heuristic. 

The model tries to estimate simultaneously the class membership function’s parameters and 

each of the heuristics’ parameters.  

Figure 2-4 Structure of a latent class model for multiple heuristics 

 

The probability assigned by the latent class model to each alternative 𝑖 is given by (2.44). In 

it, the probability that individual 𝑞 chooses an alternative is given by the total probability of 

choosing the alternative conditional on the choice heuristic ℎ and the probability of choosing 

such heuristic 𝜋(𝜃). 
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𝑃.K = 6 𝑃.KÉ(𝛽|ℎ)	𝜋É(𝜃)
∀É∈Ê

 (2.44) 

Some studies using multiple choice heuristics reported in the literature are summarised in 

Table 2-3. Analysing them is important to identify the issues concerning multiple choice 

heuristic models. As can be seen, most studies considering multiple choice heuristics use 

stated preference (SP) data. The sample size among studies vary, throughout the experiments 

we test with sample sizes ranging from 1,000 to 40,000 observations.  

The main issue of multiple heuristics models is identifiability, which we will address in 

Chapters 5 and 6. The higher the number of heuristics used, the harder it is to identify the 

model. Furthermore, sophisticated class membership function that enables to characterise 

the decision process of individuals further complicate identifiability. That is the reason that 

from the experiments reported, all except two models use a constant class membership 

function, i.e. the probability of using a heuristic is the same across all individuals. The two 

models that estimate a “sophisticated” class membership function exhibit identifiability 

problems: McNair et al. (2012) had to normalise certain estimates, whereas Hess and 

Stathopoulos (2013) had to use latent variables. Therefore, identifiability is the main issue 

in multiple heuristic models.  

 

 



53 

  

Table 2-3 Studies reported in the literature using multiple choice heuristics 

Study Type of 
data Individuals Responses per 

individual 
Total 

sample size 
Simultaneous 

heuristics 

Araña et al. 
(2008) 

SP 225; 225 3 675; 675 4 

McNair et al. 
(2012) 

SP 290; 292 4 800; 872 3 

Hess et al. 
(2012) 

SP 1,676; 368; 
996 

8; 10; 8 13,408; 
3,680; 7968 

2 

Leong and 
Hensher (2012) 

SP 752 16 12,032 2 

Hess and 
Stathopoulos 

(2013) 

SP 368 10 3,680 2 

Balbontin et al. 
(2017)5 

SP 1,578 6 9,468 4 

Adamowicz and 
Swait (2013) 

RP 3,242; 262 5,4; 14,8 17,504; 
3,885 

3 

   Note: SP = stated preference; RP = revealed preference 

 

Higher identifiability may be obtained if the choice heuristic uses different attributes. Indeed, 

latent class models using only RUM are frequent in the literature; these models are identified 

by using different attributes in the utility functions in each class. In this thesis we try to 

                                                

5 They consider attribute non-attendance as a stand-alone heuristic. We interpret attribute non-attendance as a 

RUM heuristic where an attribute is ignored. 
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reduce this phenomenon to the minimum, so that choice heuristics may be identified solely 

due to their difference in interpreting attributes or behavioural difference. This way, we 

guarantee no confounding between heuristic preference and sensitivity difference. 
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3. DATASETS USED IN THIS THESIS 

 

This chapter addresses issues concerning the two datasets used in this thesis. Neither was 

collected within the specific context of this thesis; however, they provide useful contexts to 

apply some of the models.   

3.1. Las Condes - CBD, San Miguel - CBD dataset 

 

This dataset comes from a revealed preference survey and is used intensively throughout the 

simulation experiments. First, we explain the dataset and its general characteristics. Then, 

we explain how we obtained fictitious choice sets from it and how we manipulated its 

characteristics according to the design of the experiment. 

3.1.1. The dataset 

 

The “Las Condes - CBD, San Miguel CBD” dataset is a revealed preference transport mode 

choice dataset collected by Donoso and Ortuzar (1982). The “Las Condes - CBD” corridor 

survey was gathered in 1981 and the “San Miguel - CBD” corridor survey was gathered in 

1983 (Ortuzar et al., 1983). This dataset has the feature of being well-tested as it has been 

used in several transport studies throughout the years (Ortúzar and Fernández, 1985; Ortúzar 

and Espinosa, 1986; Ortuzar and Ivelic, 1987; Gaudry et al., 1989; Jara-Díaz and Ortúzar, 
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1989; Guevara, 2016; Guevara et al., 2016). Its popularity is probably due to the extreme 

quality of measurement of all the alternative attributes 

The dataset considers journey-to-work trips made by 1,374 DMs, with 697 of them living in 

the “Las Condes - CBD” corridor in Santiago de Chile and 677 of them living in “San Miguel 

- CBD”. DMs had between two and nine modes available which where endowed with the 

following attributes: cost, travel time, walking time and waiting time. Considering each 

available mode as an observation, their means and variances (expressed as the coefficient of 

variation for ease of inspection) are given in Table 3-1. 

Table 3-1 Mean and coefficient of variation of the alternative attributes 

Attribute Mean Coefficient of variation 

Cost (CLP$1) 45.4 0.72 

Travel time (min) 16.9 0.43 

Walking time (min) 6.6 0.62 

Waiting time (min) 1.5 0.97 

   1In 1983, 1 US dollar was worth CLP$ 80. 

The “Las Condes - CBD, San Miguel CBD” dataset is extensively used throughout the 

simulated experiments of this thesis with the objective of providing realistic choice set in 

which fictitious DMs can choose. Two dimensions are controlled throughout the 

experiments: the sample size and the number of alternatives. Both are explained below.  
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3.1.2. Creating fictitious choice contexts 

 

The objective of using a real dataset in a simulated experiment is to provide realistic choice 

sets, while being able to control the conditions of the experiment. In this thesis two 

conditions regarding the datasets are manipulated: the sample size and the number of 

alternatives. 

3.1.2.1. Sampling process 

 

Through the sampling process we obtain datasets of the desired sample size. To create a 

synthetic choice set databank which is as realistic as possible, random observations (i.e. 

choice sets) are obtained from the real dataset. The objective is to preserve the correlation 

of each alternative’s attributes and the correlation of the attributes between the different 

alternatives. To achieve it, rather than sampling individual alternatives, a whole random 

choice set is sampled from the real dataset. The sampling process must be done with 

replacement, since the original dataset size does not allow to obtain several synthetic datasets 

of the desired sizes without replacement.  

3.1.2.2. Adjusting the number of alternatives 

 

The method described previously provides a realistic scenario for DMs to choose from. 

However, in some experiments we required that the dataset had some desired characteristics 
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such as a specific size of the choice set. In this thesis, choice sets of size three and seven 

were used for simulation. 

To have a choice set with the desired characteristic, two options may be followed: sample 

from the observations that meet the characteristics or adjust the sampled observation so that 

they meet the characteristic. The former solution has the problem of reducing the available 

sample size; whereas, the latter need further processing. 

In the experiments, we wish to control for the size of the choice sets. Then, the total sample 

size of 1,374 observations may be categorised in relation to its choice set size as in 

Figure 3-1. We used sample sizes of up to 40,000 observations. Therefore, the choice sets of 

a specific sample size might not provide the necessary variety of choice sets for the 

estimation to be successful.  

Figure 3-1 Choice set size distribution 
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The problem of the variety of alternatives could be tackled by modifying (and expanding) 

large choice sets (i.e. the second approach described before). For example, suppose there are 

choice sets with two to nine available alternatives and we require to have choice sets with 

eight alternatives; then every choice set with eight alternatives is useful plus every choice 

set with nine alternatives only by removing one alternative. Additionally, each nine 

alternative choice set can be expanded nine times by eliminating a different alternative in 

each of them.  

Sampling was performed as follows. Let 𝐶. be the choice sets of size 𝑖, |𝐶.| its cardinality, 

and 𝑐. an element of 𝐶.. Let 𝑙 be the minimum sample size or lower bound of acceptable 

choice set sizes and 𝑢 the maximum. We would like to give every choice set the same 

probability of being chosen before being adjusted; then, the probability of sampling choice 

set 𝑐. before being adjusted is given by (3.1). 

𝑃(𝑐.) =
1
|𝐶.|

·
|𝐶.|

∑ |𝐶.|x
Ë

 (3.1) 

Once a choice set is sampled, alternatives are randomly removed until the desired choice set 

size is obtained. This way, there are a large variety of different choice sets available to be 

sampled. We used two choice set sizes, three alternative choice set with 28,477 available 

and size seven choice sets with 2,933 available. 
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3.2. Singapore Air Travel 

 

The “Singapore air travel” dataset comes from a SP experiment conducted by Sebastián 

Raveau in 2015 and was answered by 52 MIT Singapore workers yielding 1,248 choices. 

The data consists of travel itineraries from Singapore to 24 different destinations in Asia-

Pacific and the Middle East (Figure 3-2). Trips were divided into 12 short-haul trips and 12 

long-haul trips. All alternative itineraries correspond to real flight options for given travel 

dates: all short-haul itineraries correspond to a weekend-long trip from Thursday November 

26, 2015 to Sunday November 29, 2015; while all long-haul itineraries correspond to a week-

long trip from Saturday November 21, 2015, to Sunday November 29, 2015. DMs evaluated 

the alternatives in the context of a leisure trip considering only economy class seats.  

Figure 3-2 Trips considered in the Singapore air travel survey 

 
a) Short-haul trips b) Long-haul trips 
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For 23 of the 24 choice scenarios, respondents had to choose between five real itineraries. 

The only exception was Bandar Seri Begawan (BWN), where only four reasonable 

itineraries existed (i.e. without excessively long detours and layovers). All respondents had 

to choose among the same alternatives. In total, 35 different airlines were part of the 119 

itineraries, with an expectable bigger representation of carriers from South-East Asia. Of the 

35 airlines, eight were low-cost carriers. 

Each alternative itinerary was characterized according to six attributes: fare, total time, 

number of connections, connecting time (if any), if the airline was a low-cost carrier, and if 

the itinerary required to be at the airport at an “inconvenient” time (earlier than 9:00am 

and/or later than 9:00pm).  

The aggregate attributes of the alternative itineraries for the 24 trips are presented in 

Figure 3-3. There is a strong dependency between connections and travel time, whereas there 

is no clear relationship between connections and fare. The relationship between fare and 

low-cost carrier is not as expected for several destinations, since even in the presence of low-

cost alternatives, the cheapest itinerary for eight destinations corresponds to a regular-

carrier. 
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Figure 3-3 Attributes of Singapore air travel survey alternatives 

 



63 

  

4. FURTHER DEVELOPMENTS OF CHOICE HEURISTICS 

 

This chapter presents contributions related with two of the key choice heuristics examined 

in this thesis. First, an analysis of the estimation of the EBA model is performed, and second, 

the formulation of a model that wholly represents Satisficing theory is proposed. 

4.1. Estimation of the Elimination by Aspects Model 

 

The EBA model, as described in subsection 2.2.2, sequentially selects aspects and eliminates 

all alternatives not having the sought aspect. Each aspect has a certain weight and the 

probability of selecting it is proportional to this weight (2.10). Finally, the model estimates 

each aspect’s weight. 

The estimation of the EBA model involves two main issues: the generation of the 

alternatives’ probabilities and the categorization of continuous attributes into aspects. Two 

contributions designed to decrease the importance of these issues are proposed in this thesis. 

First, an analytical approach to estimate the EBA model is proposed in subsection 4.1.1. This 

approach is discussed and compared with the current approach. Then, in subsection 4.1.2 we 

show that it is possible to estimate the thresholds and weights simultaneously under 

maximum likelihood and provide an example of it. 
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4.1.1. Estimation of weights in the EBA model 

 

The estimation process of the EBA model is not straightforward since no general formula 

can represent the process heuristic. Even in simple configurations, the probability is hard to 

obtain analytically as the following example shows. 

Consider three alternatives 𝐴,𝐵, 𝑎𝑛𝑑	𝐶 represented by six aspects with weights 𝑤. as shown 

in Table 4-1. Aspects one to three are shared between alternatives, whereas aspects four to 

six are exclusives to one alternative. 

Table 4-1 Aspects defining alternatives on example of the EBA formula 

Alternative Aspects 

A {𝑤D, 𝑤F,𝑤Ì} 

B {𝑤F, 𝑤Í,𝑤Î} 

C {𝑤D,𝑤Í, 𝑤Ï} 

 

Even in this simple case, the choice probabilities are not straightforward; for example, the 

probability of choosing 𝐴 is given by (4.1). In it, alternative A can be chosen by selecting 

immediately aspect 4 or by selecting either 1 or 2 and then one of the remaining A’s aspects. 
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𝑃(𝐴) =
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∑ 𝑤\Ï
\½	D

∗ �
𝑤F + 𝑤Ì

𝑤F + 𝑤Í + 𝑤Ì + 𝑤Ï
� +
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𝑤D + 𝑤Ì
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+
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∑ 𝑤\Ï
\½	D

 

(4.1) 

The elimination process is recursive and so it is its formula. Therefore, there is no general 

formulation to easily estimate the EBA model. Three main strategies have been used to 

calculate this recursive formula:  

i. For each alternative manually identify all paths that have as an outcome the inspected 

alternative chosen (Young et al., 1983; Manrai and Sinha, 1989; Fader and 

McAlister, 1990). 

ii. Enumerate all paths and then identify which alternative is chosen in each path (Hess 

et al., 2012). 

iii. Simulate the likelihood function to avoid the path construction (Gilbride and 

Allenby, 2006). 

The first two strategies work efficiently while the structure of the elimination process does 

not change among DMs. This happens when there is a limited number of choice sets to be 

faced by the DMs –like in SP data– and the thresholds are assumed constant population-

wide. However, these strategies are not suitable for RP data where every individual may face 

a different choice set or if thresholds are individually analysed. In these cases, the solution 

does not exploit the recursive nature of the problem. 
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The third strategy simulates the decision process for each individual. Therefore, it does not 

have any problem with changing choice sets among individuals and could be time efficient 

if the choice set is extensive. However, it has several drawbacks such as not calculating the 

likelihood function precisely and restricting the use of some Bayesian techniques6 such as 

Gibbs Sampling since simulated likelihood does not offer conditional probability densities.  

Our objective here is to propose a mathematical implementation for calculating the 

probabilities of the EBA model when the choice set varies across individuals. Our approach 

makes use of the recursive structure of the problem to speed up the first strategy. 

4.1.1.1. Analytical estimation of the EBA model 

 

We show that for low and intermediate complexities, exploiting the EBA structure to obtain 

analytical solutions offers smaller running times and higher accuracy than the simulated 

likelihood strategy.  To obtain the choice probabilities, the choice set is analysed recursively 

to exploit the problem’s recursive structure.   

Let 𝐴 be the set of all available aspects and 𝑎 an element of 𝐴; let 𝐴. the set of all aspects of 

alternative 𝑖 and 𝑎. an element of it. The initial condition of the recursion is expressed 

by (4.2):  

                                                

6 Indeed, Gilbride and Allenby (2006) use Metropolis-Hastings which could also be time consuming. 
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𝐴 =	Ñ𝐴.
∀.

 (4.2) 

Let 𝑃.(𝐴) be the probability of choosing alternative 𝑖 when 𝐴 is the set of available aspects. 

In each step, an aspect is chosen and all alternatives without that aspect are eliminated. Let 

𝑃(𝑎, 𝐴) be the probability of selecting aspect 𝑎 from the set of available aspects 𝐴 (2.10). 

Then, the probability of selecting an alternative is given by (4.3). 

𝑃.(𝐴) =

⎩
⎨

⎧
0 {∀𝑎. ∈ 𝐴.} ∉ 𝐴

6 𝑃.(𝐴 − {𝑎})
∀f∈k

𝑃(𝑎, 𝐴) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1 𝐴 ∈ 𝐴.

 (4.3) 

Expression (4.3) states three conditions. First, if no aspect of alternative 𝑖 is part of the set 

of available aspects 𝐴, then it cannot be chosen. Then, the last equation states that if every 

other alternative has been discarded and only aspects of 𝑖 remain, then 𝑖 is the chosen 

alternative. Finally, the second expression is the recursion, which expands for every 

combination of the tree of possible decision routes. Note that this considers that no 

alternative is identical in terms of the aspects. 

When applying (4.3) parametrically –rather than numerically– we obtain the analytic 

expression of the probability of choosing each alternative –like (4.1). This approach finds 

the tree of paths that has as outcome each of the alternatives; this is more efficient that 

enumerating paths independently. Finally, these analytic expressions can be directly plugged 

in into the desired estimation algorithm.  
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Using either the analytical approach or the simulation approach has different advantages in 

terms of the number of calculations, the ability to scale with complexity, and the precision 

of the probabilities estimated. 

Regarding the number of calculations, the analytical approach calculates the tree of paths 

that selects each alternative. The algorithm obtains the probability density function of each 

branch and to which alternative corresponds. Thus, the number of calculation depends on 

the number of branches.  

The simulation approach requires to simulate several times the path taken by the individual. 

Thus, the estimation time depends on the number of steps to reach an alternative and the 

number of simulations. However, it is straightforward noting that the number of steps to 

select a single alternative is always smaller or equal to the number of branches. Also, the 

number of simulations should be enough to guarantee that in each iteration of the algorithm 

– in our case a maximum likelihood algorithm– the chosen alternative has strictly positive 

probability density of being chosen.  

The relation of the estimation times depends on the relation between the number of branches 

analysed in the analytical approach and the steps taken and the number of simulations in the 

simulated approach; neither of them is a priori more efficient.  

The second characteristic of the algorithms is how they scale as complexity increases. The 

analytical approach estimation time is related with the number of possible branches. The 

complexity of the tree of possible paths increases as either the number of alternatives 

increases or as the number of aspects increases. Because of the structure of the EBA 
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heuristic, it is straightforward noting that the number of branches tends to increase 

exponentially. The simulation approach estimation time is related with the number of steps 

required to reach a single alternative. When complexity increases, the number of steps 

required to reach an alternative increase, but at a slower rate than the number of possible 

branches. Therefore, the analytical approach scales worst with complexity than the 

simulation approach.  

Finally, the last element is related with the accuracy of the estimated likelihood. The 

analytical approach calculates exactly the likelihood value at each point. Conversely, the 

simulation approach obtains an approximate value of the likelihood function at each point. 

The accuracy of such approximation may be improved by increasing the number of 

simulations per individual with the drawback of increasing the simulation time at each point 

calculated.  

The inaccuracy of the estimation of the likelihood can have different impacts depending on 

the method used: Bayesian or maximum likelihood estimation. In Bayesian estimation the 

inaccuracy of the estimated likelihood impacts the accuracy of the sampling process, but 

does not slow it since the sampling number is fixed. On the other hand, in maximum 

likelihood estimation, the deviations could prevent the optimisation algorithm from taking 

the optimal path, hence, increasing the estimation time.  

In conclusion, the balance between the advantages and disadvantages of each estimation 

procedure indicates the fastest option. In the next experiment we provide evidence for a 

specific context about the efficiency of the different approaches.  
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4.1.1.2. Experiment for comparing simulation and analytical approaches 

 

The structure of the decision trees in the EBA model implies that the analytical approach 

scales worse with complexity than the simulation strategy. Nevertheless, we show that for 

the type of dataset used in this thesis, the analytical approach is faster than the simulation 

strategy for every available sample size. 

To compare the performance of the estimation techniques, we used the “Las Condes - CBD, 

San Miguel CBD” dataset. We generated datasets of 1,000 DMs and explored choice sets of 

three and eight alternatives. For each of the two meta-experiments, ten experiments were 

performed. In each experiment, the model was estimated through both the simulation and 

parametrical approaches.  

To generate the data, we used the procedure described in section 3.1 to obtain several 

datasets with the desired number of alternatives. The threshold values were designed through 

the methodology presented in Appendix B. Then, the EBA model is simulated considering 

two thresholds for cost and one for each of the times with weights and thresholds. Table 4-2 

presents these parameters and the alternative specific constant parameters (ASC). 

 

 



71 

  

Table 4-2 EBA weights for each aspect 

Aspect Thresholds Log-Weights  Aspect Log-Weights 

Cost ($CLP) 40; 100 1.39; 1.39  ASC4 0.59 

Vehicle time (min) 

sensitivity 

15 1.39  ASC5 0.53 

Waiting time (min) 

(((min)(min)sensitivity 

5 2.30  ASC6 0.47 

Walking time (min) 

min) sensitivity 

3 2.08  ASC7 0.18 

ASC1 - 0.41  ASC8 0.26 

ASC2 - 0  ASC9 0.34 

ASC3 - 0.10    

 

To estimate the models, through both approaches we used maximum likelihood. The 

implemented algorithm for both approaches does not differ much and uses the same number 

of computational cores. To maximise the likelihood we used the Maxlik package 

(Henningsen and Toomet, 2011) for the R software. The starting point considered the same 

weight (equal to one) for each aspect. 

The estimation through simulation requires to repeat the process several times to obtain 

average probabilities. Not having the required sample size could imply that a zero probability 

may be assigned to a chosen alternative and, therefore, obtain a null likelihood and fail to 

estimate the model. In this specific dataset, first 100 simulations per individual were used, 

but, it usually failed due to encountering a null likelihood at some point of the simulation. 

When, 200 simulations per individuals where considered; we could estimate the model in 19 

out of 20 estimations. In the only failed case, the estimation was repeated with a different 

random number generator seed successfully. 



72 

  

4.1.1.3. Results of the analytical and simulation approaches 

 

Table 4-3 presents the general results of the experiment. First, the estimation time for the 

analytical and simulation time is presented. Then, the ratio of estimation times is shown. 

Note that the analytical approach is always faster for this dataset. However, its advantage 

decreases as choice set complexity increases. Nevertheless, even in the most unfavourable 

case, the analytical approach is 7.1 times faster than the simulation approach. 

Table 4-3 Estimation time of EBA model with the analytical and simulation approaches 

Choice set 
size 

Simulation approach 
estimation time [h] 

Analytical approach 
estimation time [h] 

Ratio of 
estimation times 

3 9.62 0.38 25.2 

8 10.60 1.50 7.1 

 

Figure 4-1 presents the mean point and 95% confidence interval (two tailed t-student 

distribution with 9 degrees of freedom) of the estimation time for each choice set size and 

approach used. Note that again for our sample, the analytical approach outperforms the 

simulation approach, but the difference decreases as complexity increases. Also note that the 

simulation approach estimation time increases with sample size, but the difference is not 

statistically significant. Finally, note that the difference between the analytical and 

simulation approaches are statistically significant at the 95% confidence level. 
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Figure 4-1 Distribution of estimation times for each approach 

 

In conclusion, for our sample size structure, the analytical approach outperforms 

significantly the simulation approach. Much complex choice sets are required for the 

simulation approach to be a better alternative than the analytical approach. 

4.1.2. Estimation of thresholds for continuous attributes 

 

Subsections 2.2.2 and 4.1.1 show the typical structure of an EBA model. Working with it is 

straightforward if aspects are discrete; however, if attributes are continuous there is no 

readily way to model the problem. Typically, acceptability thresholds are imposed over 

continuous attributes, which impact the maximum likelihood obtained. If thresholds impact 

the maximum likelihood, then, they can be estimated using maximum likelihood. Therefore, 

thresholds and weights can be simultaneously estimated. 
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The EBA model does not have a generalizable equation; to estimate it, a tree of possible 

paths is built as shown in subsection 4.1.1. Thresholds determine the aspects belonging to 

each alternative and thus the structure of aspects in the alternatives. Hence, a change in the 

thresholds may change the aspect distribution and rearrange the tree of possible paths to 

choose an alternative. 

Several approaches have been used to cope with the issue of the continuous attributes. Some 

authors have used elimination rules that compare alternatives (Hess et al., 2012), for 

example, by eliminating the alternative with the higher cost. Other authors have modified 

the EBA structure to accommodate alternatives with continuous attributes (Manrai and 

Sinha, 1989; Gensch and Ghose, 1992); however these approaches have had small impact. 

Finally, recently some other authors have included continuous attributes into the weight 

functions of the aspects (Kohli and Jedidi, 2015; 2017), bypassing the problem but not 

solving it. 

Simultaneous estimation of thresholds and aspects entails two problems. First, as mentioned 

above, changing the thresholds may change the structure of the aspects. In this thesis, we do 

not tackle this issue. Therefore, when estimating thresholds, we recalculate the aspects’ 

structure at each step. The second problem is its impact in the likelihood function. Changing 

thresholds only has an impact in the likelihood function if this changes the structure of the 

aspects. Therefore, the likelihood is flat across changes in the thresholds until at least one 

alternative of one individual changes the structure of its aspects (see Figure 4-2). When the 

aspect structure changes, the likelihood function changes, generating a discontinuity in it. 
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Figure 4-2 EBA's log-likelihood versus a fictitious threshold 

 

As Figure 4-2 shows, there are two problems regarding the use of traditional optimisation 

tools for calculating the maximum likelihood. First, under changes in the thresholds, the 

concavity of the log-likelihood is not granted. For this reason, a robust optimisation tool 

must be used. Second, the likelihood function is flat under small changes in the thresholds; 

therefore, any method that is gradient based will fail. And finally, the likelihood function is 

non-continuous under changes in the thresholds, which could be problematic for some 

optimisation tools. 

We could partially solve the three problems using the Simulated Annealing optimiser. 

Simulated Annealing can increase the likelihood of mis specified thresholds, but fails to find 

the maximum likelihood, even locally. To obtain a locally optimal solution, three 

optimisations were performed. First, to find an acceptable initial solution, we optimised the 
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weights under fixed thresholds using a gradient optimiser like BHHH (Berndt et al., 1974). 

Then, Simulated Annealing was used to find a better threshold/weight combination by 

changing them simultaneously. Finally, a local optimum was obtained using the gradient 

based optimiser. An example of this procedure is described below. 

4.1.2.1. Example of estimation of thresholds and weights 

 

We simulated a population that chose alternatives following a EBA heuristic. We used 5,000 

DMs which chose from random choice sets of the “Las Condes - CBD, San Miguel - CBD” 

dataset with three alternatives. The dataset was built following the methodology described 

in Section 3.1. The DMs chose using the weights and thresholds given in Table 4-2. 

When estimating the EBA model, there are two time-consuming processes. The first is the 

formulation of the probability of choosing each alternative for each individual, which took 

1.32 minutes in our experiment. The second time consuming process is the numerical 

calculation of the probability matrix for each individual, which took 7.18 seconds in our 

experiment. When optimising exclusively weights, the first calculation is done only once, 

since no threshold change occurs. Whereas in the threshold-weight optimisation, in each 

iteration of the algorithm, both processes are involved. 

We started by optimising the initial weights subject to wrong thresholds as shown in 

Table 4-4. This provides a reasonable starting solution for the threshold-weight optimisation. 

The initial weights were equals to one and the optimiser used was BHHH.  
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Table 4-4 Initial thresholds for the weight-threshold estimation 

Parameter Cost Vehicle time Waiting time Walking time 

Thresholds 30; 80 25 10 8 

 

After eight iterations of the algorithm7 (equivalent to 2.6 hours), the optimiser found an 

optimal solution for the fixed thresholds EBA model (Table 4-5). This solution is the initial 

solution of the optimisation problem solved by using the Simulated Annealing algorithm.  

Table 4-5 Optimal parameters for the fixed threshold EBA model 

Aspect Log-Weights  Aspect Log-Weights 

Cost ($CLP) -84.6; 2.01  ASC4 1.62 

Vehicle time (min) 

sensitivity 

-0.67  ASC5 1.77 

Waiting time (min) 

(((min)(min)sensitivity 

1.57  ASC6 1.76 

Walking time (min) 

min) sensitivity 

1.22  ASC7 1.56 

ASC1 1.67  ASC8 1.11 

ASC2 2.01  ASC9 (fixed) 0.34 

ASC3 1.22    
 

In each step, Simulated Annealing tests a combination of thresholds and weights. For each 

combination of thresholds, the formulation of the probability of choosing each alternative is 

analysed. After analysing 10,000 points in 223 hours, the algorithm produced the parameters 

                                                

7 In each iteration of the BHHH algorithm, the log likelihood is estimated at several points. 



78 

  

shown in Table 4-6. Finally, the thresholds obtained from the second optimisation were fixed 

and used to calculate final weights in a third optimisation. The results are shown in Table 4-

7 and the likelihoods in Table 4-8.  

Table 4-6 Estimation of thresholds and weights for the EBA model 

Aspect Thresholds Weights  Aspect Weights 

Cost ($CLP) 32.1; 80.1 -82.3; 2.55  ASC4 1.73 

Vehicle time (min) 

sensitivity 

24.1 -0.68  ASC5 1.65 

Waiting time (min) 

(((min)(min)sensitivity 

9.5 1.21  ASC6 1.58 

Walking time (min) 

min) sensitivity 

5.0 2.88  ASC7 1.33 

ASC1 - 1.54  ASC8 1.10 

ASC2 - 1.38  ASC9 0.34 

ASC3 - 0.89    

 

Table 4-7 Estimation of weights for the optimised thresholds of the EBA model 

Aspect Log-Weights  Aspect Log-Weights 

Cost ($CLP) -82.3; 2.38  ASC4 1.83 

Vehicle time (min) 

sensitivity 

-0.17  ASC5 1.6 

Waiting time (min) 

(((min)(min)sensitivity 

1.50  ASC6 1.59 

Walking time (min) 

min) sensitivity 

2.98  ASC7 1.32 

ASC1 1.55  ASC8 1.10 

ASC2 1.44  ASC9 (fixed) 0.34 

ASC3 0.96    
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Finally, we calculated the likelihood of two models: that of the real underlying model and a 

model with the real thresholds but optimised weights (Table 4-8). 

Table 4-8 Log-likelihood of successive estimations of the EBA model 

Estimation Log-likelihood 

1a. Fixed thresholds -5,188 

1b. Thresholds and weights -4,739 

1c. Weights on optimised thresholds -4,736 

2. Real underlying model -4.909 

3. Optimised real underlying model -4.565 

 

Table 4-8 shows the likelihood of five estimations. First, note the important improvement in 

likelihood when considering different thresholds (1a vs 1c). Also note that although the 

thresholds of estimation 1b do not differ much from the initial case, the difference in 

structure of the tree of possible routes to choose an alternative is important, and this modifies 

substantially the likelihood. Also note that even though the Simulated Annealing algorithm 

did not find the optimal solution, the likelihood obtained is close to the likelihood obtained 

when optimising the weights with a continuous algorithm (1b vs 1c). Finally, note that the 

solution found using the proposed procedure (1c) is better than the real data generating 

process (2) but not better than an optimised case under real thresholds (3).  

In conclusion, the proposed procedure can estimate simultaneously thresholds and weights 

for the EBA model. The proposed approach finds solutions that may be even better than the 

real underlying model; however, it does not outperform an optimisation of the weights under 



80 

  

the real thresholds. Nevertheless, it provides a useful approach when thresholds cannot be 

fixed naturally.  

The proposed approach has two main limitations. The first is the large computational time 

due to the difficulty in finding the tree of possible routes for choosing each alternative under 

EBA. The second is related to the nature of the solution found. As exposed in Figure 4-2, 

the likelihood is flat under small changes in the thresholds, therefore, the hessian matrix of 

the likelihood function is flat in the optimum. This issue implies that a covariance matrix 

cannot be calculated and no confidence interval may be obtained for the thresholds.  

4.2. The Stochastic Satisficing (SS) Choice Model 

 

Since psychologist first pointed out the potential impact of bounded rationality in decision 

making (Simon, 1955), there  has been a growing consensus that people’s limited processing 

faculties may affect the way they make decisions (Conlisk, 2014). This way, the concept of 

bounded rationality has permeated several disciplines, such as behavioural economics 

(McCain, 2015) and choice modelling (Araña et al., 2008; Stüttgen et al., 2012). 

Simon’s work on Satisficing Theory (Simon, 1955, 1956), henceforth ST, provides the basis 

for the Satisficing choice heuristic. Even though Simon’s work does not give a precise 

definition for this heuristic (Manski, 2017), it highlights what elements of ‘rational’ choice 

are highly implausible and what reasons could trigger a simpler behaviour by DMs.  
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Simon analysed three simplifying principles. First, he argued that any choice model 

requiring the inspection of all attributes and a comparison (or consideration) of all 

alternatives would be highly implausible in many practical applications; thus, simple pay-

off functions should be expected8. Then, Simon argued that information gathering is costly 

due to cognitive and processing efforts, suggesting a reservation value or acceptance 

threshold. Finally, the third principle explicitly recognized is that DMs may have trouble 

combining attributes of a different nature (e.g. quality and cost) into a single figure of merit 

(e.g. utility). Thus, DMs actually consider only partial ordering pay-off functions. 

Several of Simon’s ideas have been applied into decision and search theory. For example, 

some studies implemented directly the cost of information (Gabaix et al., 2006). Other 

researchers have implemented indirectly the cost of information through sequential 

inspection of the choice set (Caplin et al., 2011; Manzini and Mariotti, 2014; Aguiar et al., 

2016) or by analysing sequential menus (Papi, 2012). Several models considered a 

reservation utility in accordance to ST (Gabaix et al., 2006; Caplin and Dean, 2011; Papi, 

2012). However, to the best of our knowledge, none of these studies have applied the third 

principle of ST (i.e. partial ordering pay-off functions), probably because it implies 

dismissing the concept of utility. 

                                                

8 Simple pay-off functions are, for example, distinguishing between acceptable and unacceptable alternatives. 

Even though Simon (1955) does not restrict the pay-off functions to be binary, to the best of our knowledge, 

only binary pay-off functions have been implemented when modelling Satisficing behaviour. 
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Following these theoretical considerations, discrete choice models have attempted to 

implement the principles in different ways; however, most models have not incorporated 

important cornerstones of the theory9. Whilst some applications of ST completely inspects 

all available alternatives –violating the second principle (Recker and Golob, 1979; Young et 

al., 1983; Durbach, 2009), other applications mix attributes of a different nature into a single 

figure of merit, violating the third principle (e.g. Radner, 1975; Richardson, 1982; Araña et 

al., 2008). Only recently, ST has been thoroughly  applied using eye-tracking technology 

(Stüttgen et al., 2012), yet, this is not possible in most choice settings. Therefore, despite 

several attempts to implement ST in practice, a Satisficing choice model that can be used 

broadly with simple data10 does not exist.  

The main contribution of this chapter is the proposal of an econometric model, the Stochastic 

Satisficing model, that applies ST as rigorously as possible for a simple dataset7. To create 

this model, we start by describing a general Satisficing behaviour, which incorporates the 

three ST principles that could lead to several ST models. Then, simplifications are stated to 

adapt to the data structure and the econometric model is solved. As a result, the model 

considers that DMs choose the first alternative which is stochastically satisfactory on all 

dimensions of the pay-off vector. Thus, DMs are assumed to explore the choice set 

                                                

9 This is probably because Satisficing has been interpreted in different ways among researchers, without 

reaching a consensus (Manski, 2017). 
10 By simple data, we understand only alternative profiles and the chosen alternative. 
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sequentially, in a process based on alternatives rather than on attributes (Williams and 

Ortuzar, 1982a). 

One of the key features of the Stochastic Satisficing model is the consideration of a 

multidimensional pay-off acceptability function. This approach, explicitly suggested by 

Simon (1955) and identified by us as the third principle, differentiates our model from 

previous work. By using this approach, we imprint further realism to the choice heuristic 

and do not restrict the model structure, which has scalar utility functions as a particular case. 

As the multiple dimensions of the pay-off function interact into a single stochastic 

acceptability, different substitution patterns are analytically obtained. 

We test the proposed model’s properties on synthetic and real data. The analysis on synthetic 

data suggests that the model could be unbiased and that consistency is reached with common 

sample sizes. The real data case provides an example where the model can adapt its 

behaviour when the evidence in the data suggests that constant compensation among 

attributes does actually exist. 

The rest of the sections are organised as follows. In Subsection 4.2.1 we describe the ST 

principles and the reported evidence in the literature that motivates people using a Satisficing 

choice heuristic. In Subsection 4.2.2, we propose a general Satisficing behaviour theory 

which is later simplified into the Stochastic Satisficing model. We end Subsection 4.2.2 by 

analysing the analytical properties of the model. Then, Subsection 4.2.3 analyses the model 

in two contexts: synthetic and real data. Conclusions regarding our model is presented in 
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Subsection 4.2.4. Additional information is presented in Subsection 4.2.5 as well as the 

publication history of this theme. 

4.2.1. On Simon’s theory: principles and motivation 

 

We first address the behavioural theory of rational choice proposed by Simon (1955, 1956) 

and discuss its main principles. Then, we analyse how context can induce a Satisficing 

choice heuristic.  

4.2.1.1. Simon’s theory principles 

 

Most discrete choice models, such as RUM, EBA and RRM among others, require the 

evaluation of all alternatives, involving a large cognitive load for DMs. Furthermore, this 

burden is increased in RUM and RRM due to the consideration of all alternative attributes 

in compensatory trade-off terms of either utility or regret. 

ST suggests several simplifications, or principles, that make the behavioural process more 

plausible for the human mind. We have categorized such simplifications into three main 

principles. The first, states that DMs may assume only a few evaluation outcomes per 

alternative (e.g. acceptable or not; desirable, neutral, or undesirable) instead of a continuous 

outcome (e.g. utility). In the Stochastic Satisficing model, we postulate that an alternative 

can be either acceptable or non-acceptable. 
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The second principle is based on the fact that information gathering is not costless. People 

may use information sequentially as they acquire it and use only a subset of the available 

information. For example, neither the need to visit an apartment before deciding if it is 

acceptable, looking at a shelf of a supermarket before settling for a bottle of wine, nor 

examining the attributes of alternatives presented in a stated choice survey are free of cost 

or burden. The higher the information cost is –probably relative to the importance of the 

choice decision– the simpler the cognitive process may become (e.g. not inspecting all 

alternatives or attributes). Simplifications can be attained by inspecting a subset of attributes 

of each alternative, as in the EBA model, or by inspecting a subset of alternatives as in the 

Satisficing heuristic. In the Stochastic Satisficing model, we assume that people truly choose 

the first “good enough” alternative. 

Finally, the third principle is associated with the difficulty that DMs may have in mixing 

attributes of a different nature (e.g. quality and cost). Contrary to this principle, in random 

utility modelling for example, the analyst assumes that DMs are willing to compensate 

attributes at certain marginal rates of substitution. ST suggests that DMs may not analyse 

such attributes conjointly, but rather consider them independently and still infer if the 

alternative is acceptable or not.  

4.2.1.2. How context can induce satisficing 

 

Several reasons why someone could choose using a Satisficing heuristic have been reported 

in the literature. Simon (1956) suggests that when the choice is too complex, people could 
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use simpler heuristics to cope with the high cognitive burden. We think that if complexity is 

related to the size of the choice set, then Satisficing behaviour or any other heuristic based 

on alternative discarding is highly plausible. Conversely, if complexity is associated with 

the number of attributes, then EBA or any other choice heuristic based on attribute discarding 

may be expected. If complexity is not an issue, then utility maximization might be a plausible 

choice heuristic.  

A second argument related to the propensity of using a Satisficing heuristic is that search 

costs could prevent people from inspecting the complete choice set (Simon, 1955). Indeed, 

maximizing utility considering search costs leads to a class of satisficing behaviour 

(Richardson, 1982). Nevertheless, even if satisficing is optimal under utility maximisation 

with search costs, ST dismisses the concept of utility as being intractable for DMs (Manski, 

2017). Finally, we postulate that costs may be interpreted not only as direct costs (e.g. 

monetary or time), but as indirect costs (e.g. effort) –a similar definition may be found in 

Chassang (2013). Under this interpretation, even the mere possibility of losing a quasi-

unique good for not making the choice fast enough (e.g. in a dwelling or real-estate choice), 

could be a cost that triggers the Satisficing choice heuristic. 

Finally, Simon (1956) also questions the idea that DMs could even try to optimize a decision 

or to maximize utility. We do not discuss this notion here, but rather concentrate on the 

formulation of a practical model under the assumption that a Satisficing heuristic is 

appropriate. 
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4.2.2. The Stochastic Satisficing model 

 

We start by describing a general Satisficing behaviour in accordance to ST. Then, several 

simplifying assumptions are proposed to adapt the model to the type of data that we want to 

use. Then, upon that simplified behaviour, we propose and solve an econometric model. We 

end up this subsection by analysing the proposed model’s analytical properties. 

4.2.2.1. A general Satisficing behaviour 

 

A choice heuristic describes how DMs choose one alternative from a choice set. It starts by 

analysing how an individual faces a choice set and ends by choosing an alternative. In this 

model, DMs face alternatives sequentially and choose the first satisfactory alternative. This 

simple choice heuristic is divided into four stages or components.  

First, DMs start by analysing an alternative of the choice set. The starting alternative is 

chosen in accordance to a probability density function. Depending on the nature of the choice 

set, the way to approach each alternative may differ and, therefore, the probability of 

choosing such alternative first could vary. For example, a list of alternatives in a stated 

choice experiment may be read sequentially; while products in a shelf may be faced 

differently depending on their position. Thus, attributes related with the probability of 

inspecting a certain  alternative first may need to be estimated (Stüttgen et al., 2012).  
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The second component is a transition probability between alternatives. Once an alternative 

is inspected, the probability of inspecting another one could be identical or could vary in 

terms of its attributes. For example, a product located low in a shelf may be harder to reach 

than another ‘better located’, reducing the former probability of inspection.  

The third component is an acceptability function. Typically, the acceptability of an 

alternative has been modelled by means of a utility function and a reservation utility. DMs 

choose an alternative if its utility surpasses the reservation utility (Richardson, 1982; Tyson, 

2008; Caplin and Dean, 2011; Zhao and Huang, 2016). Despite common practice, we model 

the acceptability function as a partial pay-off function or a vectorial function of acceptability 

in accordance with ST (Simon, 1955)11. In our model, the acceptability of an alternative 𝑖 

(𝐴.K) evaluated by individual 𝑞 is given by the acceptability of each component of the 

acceptability vector as stated in (4.4). 

𝑃𝑟y𝐴.K = 1z = 	 - 𝑃𝑟(𝑎n.K = 1)
∀	n	Ö	�

 (4.4) 

Each element that impacts the acceptability of an alternative may be interpreted as an 

attribute or combination of attributes. Attributes being compared in a compensatory way are 

evaluated in the same acceptability function, whereas attributes non-compensated are 

evaluated in different functions; further comments are addressed in Subsection 4.2.2.4. Thus, 

                                                

11 Note that in ST, the acceptability function could be dynamic since the preferences are built in the choice 

process rather than being defined externally. However, we do not incorporate this element of the theory. 
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modelling a utility function is a restricted case where every attribute is compared in the same 

acceptability function.  

Finally, the last stage concerns the behaviour of DMs once an acceptable alternative is found. 

Theoretically, we state that DMs can continue searching alternatives with certain probability, 

which could even be decreasing while the search continues longer after encountering the 

first acceptable alternative. Indeed, eye-tracking data (Stüttgen et al., 2012) suggests that 

once DMs find a satisfactory alternative they do not choose it immediately. 

4.2.2.2. Simplifications to the general Satisficing behaviour 

 

The general Satisficing behaviour applies rigorously ST; however, it requires rich datasets 

to be estimated. We adapt the general Satisficing behaviour to formulate a model that may 

be used with simple datasets. The data we want to work with contains just a full profile of 

each available alternative and knowledge of which was the chosen alternative. Thus, we 

intend to create a model based on a path dependent heuristic with unknown search paths. To 

accomplish it, several assumptions or simplifications need to be considered. 

The first simplification is associated to the probability of starting with a particular 

alternative. Given that the search path is unknown, the starting alternative is also unknown. 

Then, it is not possible to model what factors affect the probability to start with a certain 

alternative. Thus, we assume that the first alternative is randomly chosen with equal 

probability. 
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The second simplification involves the transition probability between alternatives. It is not 

possible to estimate a probability function of transition since the inspected alternatives and 

search paths are unknown. For this reason, we consider an equal transition probability 

between all alternatives. 

Finally, we simplify how long the search continues after finding the first acceptable 

alternative. Because the length of this search is unknown, it is not possible to estimate any 

stopping criteria. Therefore, we assume that DMs choose their first acceptable alternative. 

With these three simplifications, which are summarised in Table 4-8, we intend to estimate 

a Satisficing behaviour model with simple data. Nevertheless, availability of richer data 

could allow us to relax some of these simplifications, and another model could be 

formulated. 

Table 4-9 Satisficing choice elements, data limitations and simplifications 

Element Problem Simplification 

Probability of starting with a 
particular alternative 

Initial alternative is unknown Equal probability of starting 
for all alternatives 

Transition probability Choice path is unknown Equal probability of 
inspecting each alternative 
that has not been inspected 

Probability of choosing, 
conditional on having found 

an acceptable alternative 

Number of alternatives after 
inspecting the acceptable one 

is unknown 

The first satisfactory 
alternative is chosen 

immediately 
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4.2.2.3. The mathematical model 

 

The mathematical model described in this subsection represents the simplified Satisficing 

behaviour proposed in subsection 4.2.2.2. In this model, DMs randomly inspect their choice 

sets and choose the first satisfactory alternative. We start by defining the criteria for 

satisfaction by linking the acceptability of an alternative to the acceptability of each attribute. 

Finally, our model ends by linking the acceptability of each alternative to the probability of 

choosing it. 

Alternative acceptability 

Following the simplified Satisficing behaviour, the DMs chooses the first acceptable 

alternative. According to ST, an alternative is acceptable if all attributes are satisfactory. Let 

𝐴.K be the probability that alternative 𝑖 is acceptable for individual 𝑞. Then, 𝐴.K is the joint 

probability that each attribute of 𝑖 is acceptable. If we assume that the acceptance of each 

attribute is independent, then the joint probability is given by the product of the acceptability 

of the various attributes (4.4) as stated in Subsection 4.2.2.1. 

Attribute acceptability 

The acceptability of an alternative is based on the acceptability of its attributes. To define 

attribute acceptability, let 𝐾 be the set of attributes and 𝑘 an element of it. Each individual 

𝑞 has a set of acceptability thresholds; let 𝐹′ be that set and 𝑓′ an element of it. Each threshold 

𝑓′ is associated with a certain attribute 𝑘. Without loss of generality, we assume that more 
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of each attribute is desirable. Furthermore, we could also assume that thresholds 𝑓′ are a 

function for each individual. An attribute could be a single trait of the alternative or a 

combination of several characteristics. We refer to the acceptability of an attribute, 𝑎n.K , in 

terms of its quantity or level 𝑥n.K, as in (4.5). 

𝑎n.K = �1, 𝑖𝑓	𝑥n.K > 𝑓′n.K
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.5) 

The threshold (𝑓′) represents the aspirational level for the specific attribute; a similar 

definition can be found in the work of Radner (1975) and Stüttgen et al., (2012). This 

function does not depend on the level of the attributes but could be influenced by socio-

demographic characteristics and experimental conditions. For example, people with lower 

income could be very sensitive to cost; whereas the wealthy could almost ignore this attribute 

by having a higher cost threshold. We do not analyse the origin of this aspirational level, but 

follow Simon (1956): “it has no problem of maximization” involved. Further, we will 

assume, as in the random utility framework, that there are elements that the researcher can 

observe, which we will denote by 𝑓, and others that the researcher cannot observe and will 

be captured by random disturbances, 𝜖n.K	. We will further assume that 𝜖n.K  has a Logistic 

distribution with mean zero and variance 𝜎n.KF . Then, the probability that an attribute is 

acceptable is given by (4.6): 

𝑃𝑟y𝑎n.K = 1z = 	𝑃𝑟y𝑥n.K > 𝑓n.K + 𝜖n.Kz = 𝑃𝑟(𝑥n.K − 𝑓n.K > 𝜖n.K) (4.6) 

Expression (4.6) is transformed into (4.7) by using the expression for the cumulative 

probability function of the logistic distribution.  
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𝑃𝑟y𝑎n.K = 1z =
exp w𝜆n.Ky𝑥n.K − 𝑓n.Kz{

1 + exp w𝜆n.Ky𝑥n.K − 𝑓n.Kz{
		 , 𝑤𝑖𝑡ℎ	𝜆 =

𝜋
𝜎√3

 (4.7) 

Expression (4.7) is based on two terms, the scale factor and the threshold function; both are 

analysed in Figure 4-3. The scale factor (𝜆n.K) represents the impact of an additional unit of 

𝑥n.K in the probability of accepting attribute 𝑘; thus, higher values imply a higher sensitivity 

to changes in the attribute. On Figure 4-3, the horizontal axis presents the difference between 

the attribute and its threshold.  

Figure 4-3 Acceptability function versus different scale factors and attribute-threshold 

differences 

 

As the level of the desirable12 attribute increases, higher is the probability of acceptance. The 

interpretation of the threshold function is two-fold. On the one hand, it indicates the point 

                                                

12 An attribute is desirable if the scale function is positive; further details are provided in subsection  4.2.2.4. 
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where attribute acceptability is 50%. Then, an increase in the threshold implies an increase 

in the point where acceptability reaches 50%. On the other hand, higher values of the 

threshold are related with a decrease in the difference  𝑥n.K − 𝑓n.K  or a decrease in the 

quantity that surpasses the threshold; hence, increasing a threshold implies a decrease in the 

probability of accepting the attribute. 

Probability of choosing an alternative 

The link between acceptability of an alternative and its probability is developed using the 

assumptions made in subsection 4.2.2.2. Let 𝑡K. determine the alternative chosen by the 

individual as in (4.8): 

𝑡K. = Ú1		if	alternative	i	is	chosen0		otherwise  (4.8) 

Because we only know the choices but not their search paths, we assume that DMs choose 

the first satisfactory alternative. To link this assumption to the probability that alternative 𝑖 

is chosen by the individual, every possible path that ends in choosing alternative 𝑖 must be 

computed. To avoid this calculation, we suppose that DMs could have separated their 

complete choice sets into two: a set of acceptable alternatives and another one of 

unacceptable alternatives. Note that these separated choice sets are designed as an artifice to 

solve the mathematical problem; indeed, DMs never split their choice sets.  

Let 𝐼′ be the set of acceptable alternatives and |𝐼′| its cardinality. If the search path is 

completely random (i.e. every alternative has the same probability of being analysed), then, 
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the probability of choosing alternative 𝑖 is the probability of inspecting it before another 

alternative in 𝐼′. This probability is given by (4.9): 

Pry𝑡K. = 1|𝐼áz =
1
|𝐼á| (4.9) 

Expression (4.9) is based on the DMs acceptable choice sets. The acceptable choice sets are 

based on the probability that each of its alternatives is acceptable. Let Pr(𝐼á) be the 

probability that only alternatives in 𝐼á are acceptable. Then, assuming that each alternative 

is analysed independently, the probability of choosing alternative 𝑖 is given by the total 

probability over every conditional choice sets, shown in (4.10): 

Pry𝑡K. = 1|𝐼áz =
1
|𝐼á| (4.10) 

Expression (4.10) establishes the link between the acceptability of an alternative, through 

the acceptable choice set, and the probability of choosing it. The only unknown element in 

(4.10) is the acceptable choice set probability, which is explained below. 

Acceptable choice set probability 

The probability that subset 𝐼á exists, Pr(𝐼á), is built from its alternatives’ acceptability. For 

example, if there are 𝑚 acceptable alternatives and 𝑛 non-acceptable ones, the probability 

that only the 𝑚 alternatives in 𝐼á are acceptable is given by (4.11): 
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Pr(𝐼á) = 	 - 𝑃𝑟(𝐴xK = 1)
x	∈	]á

- Pry𝐴±K = 0z
±	∉]â	

 (4.11) 

Opt-out alternative 

The only case that has not been defined yet is the probability of choosing no alternative (i.e. 

opting-out). If an opt-out option is available, as in many stated choice experiments, its 

probability is straightforward and is given by (4.12): 

Pr(𝑜𝑝𝑡 − 𝑜𝑢𝑡) = 	- 𝑃𝑟(𝐴.K = 0)
∀.	∈	]

 (4.12) 

Likelihood function 

Given that every outcome has been analysed, it is possible to define the likelihood function. 

If 𝑝∗K is the probability assigned by the model to the chosen alternative, then, when the opt-

out alternative is available, the log-likelihood of the model is given by (4.13): 

𝑙𝑙 = 	 6 logy𝑝∗Kz
∀K∈À

 (4.13) 

If there is no opt-out alternative (i.e. DMs are forced to choose) or if we have information 

only about the DMs that chose, the estimated probabilities must be adjusted to represent only 

this spectrum of DMs. We can estimate the conditional probability upon their choices as in 

(4.14): 
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Pr(𝑎𝑙𝑡	𝑖) = Pr(𝑎𝑙𝑡	𝑖|𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔	𝑎𝑛𝑦	𝑎𝑙𝑡) ∗ Pr(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔	𝑎𝑛𝑦	𝑎𝑙𝑡)  

Pry𝑡K. = 1z = Pr �𝑡K. = 1|6𝑡K. = 1
.

�Pr �6𝑡K. = 1
.

�  

𝑝K.á = Pr �𝑡K. = 1|6𝑡K. = 1
.

� =
Pry𝑡K. = 1z
∑ Pry𝑡K. = 1z\

 (4.14) 

And the estimated log-likelihood without an opt-out alternative is given by (4.15). 

𝑙𝑙 = 	 6 logy𝑝∗Ká z
∀K∈À

 (4.15) 

Finally, if no opt-out alternative is available, then estimating absolute acceptability is 

meaningless since the possibility of not choosing any alternative does not exist. In such case, 

the model estimates a relative acceptability, rather than an absolute alternative acceptability. 

 

4.2.2.4. Model properties 

 

We explore some of the model’s analytical properties, relax some assumptions made in the 

process and explore its performance. 

Identifiability 

The identifiability of the acceptability functions depends on whether there is an opt-out 

alternative or not. If there is one, every element of the acceptability function is identifiable. 
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In that case, both the scale factor and threshold functions of each attribute plus an alternative 

specific constant can be estimated. If there is no opt-out option, the model can only estimate 

the relative difference in acceptability and one alternative specific constant must be fixed, 

as in classical discrete choice models. 

For example, in the classic logit model the scale factor is unidentifiable from the utility 

function. In our model, the scale factor is identifiable in the two cases discussed above. The 

probability of an attribute being acceptable is given by (4.7); in it, the expression in the 

exponential function can be decomposed as (4.16): 

𝜆n.Ky𝑥n.K − 𝑓n.Kz = 𝜆n.K𝑥n.K − 𝜆n.K𝑓n.K  (4.16) 

Since by definition 𝑓n.K  does not depend on the attribute level, 𝑥n.K, both 𝑓n.K  and the scale 

factor (𝜆n.K) can be identified. 

Working with non-desirable attributes 

In Subsection 4.2.2.3 we assumed that attributes were desirable. If an attribute is undesirable 

(e.g. cost), the probability function of acceptance – (4.6) and (4.7) – switches to (4.17): 

𝑃y𝑎n.Kz = 	𝑃y𝑥n.K < 𝑓n.K + 𝜖n.Kz = 𝑃(𝑥n.K − 𝑓n.K < 𝜖n.K) 

𝑃y𝑎n.Kz =
exp w−𝜆n.Ky𝑥n.K − 𝑓n.Kz{

1 + exp w−𝜆n.Ky𝑥n.K − 𝑓n.Kz{
 

(4.17) 
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Note that the difference between (4.7) and (4.17) is that the scale factor –that is always 

positive– is preceded by a negative sign if the attribute is undesirable. As the scale factor 

sign can be estimated, there is no need to define a priori if an attribute is desirable or not. 

Indeed, if 𝜆n.K  is freely estimated, a positive result would imply that an attribute is desirable; 

while if it is negative, the attribute is undesirable. As in random utility models, the only 

problem is when the scale factor is zero, in which case the parameters cannot be identified. 

This could only happen if the variance of the error term is infinite, and thus the model would 

not suit the problem. 

Use of categorical variables 

A third analysis refers to the use of dummies or categorical variables. When using this type 

of variables there is no continuous threshold implied, just the presence or absence of the 

variable. Then, we could define the probability of accepting the presence of the characteristic 

as in (4.18): 

Pry𝑎n.K = 1z =
𝑒𝑥𝑝y𝜆n.K𝑓n.Kz

1 + 𝑒𝑥𝑝y𝜆n.K𝑓n.Kz
 (4.18) 

Given (4.18), it can be deduced that the scale factor is not identifiable from 𝑓n.K  –the same 

happens in RUM models– and must be interpreted simultaneously or normalised, as usual to 

unity, as in (4.19): 

Pry𝑎n.K = 1z =
expy𝑓n.Kz

1 + expy𝑓n.Kz
 (4.19) 
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Search costs 

Several authors have theoretically accounted for search costs (Richardson, 1982; Tyson, 

2008; Caplin and Dean, 2011). In our framework, the total search cost cannot be incorporated 

explicitly since each attribute is treated independently. However, we can assume that there 

is a fraction of the costs that could be associated with each attribute (e.g. monetary costs 

associated with the cost variable); let 𝑐n be that cost and 𝛾n  its sensitivity. Following 

Richardson (1982), the search costs would imply that the probability of accepting an attribute 

is given by (20). 

Pry𝑎n.Kz = Pry𝑥n.K > 𝑓n.K + 𝛾n𝑐n + 𝜖n.Kz = Pry𝑥n.K − 𝑓n.K − 𝛾n𝑐n > 𝜖n.Kz (4.20) 

An increase in the search costs increases the probability of accepting an attribute, since 

continue searching induces additional costs. If we assume that the cost is constant at each 

step of the process and that the function 𝑓n.K  has an attribute specific constant, then the cost 

is not identifiable from the constant. Hence, if we use an acceptance function that has an 

attribute specific constant, it would incorporate implicitly the search cost. Therefore, the use 

of an attribute specific constant in each acceptability function is highly recommended. 

Understanding the rate of substitution in the Stochastic Satisficing model 

The Stochastic Satisficing model allows for two types of substitution patterns between 

attributes. The first type focuses on attributes modelled in the same acceptability function; 

whereas the second, targets attributes in different acceptability functions. 
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Note that in this model there is no utility function, so a marginal rate of substitution (MRS) 

over a utility function is not possible. However, a MRS over the acceptance function attends 

a similar purpose in the sense of allowing to study the trade-offs that enable the probabilities 

to be constant. Still, any substitution pattern should not be used in cost-benefit analysis, since 

there is only a vague relationship with individual’s welfare. Yet, the MRS over the 

acceptability functions are valuable because they enable us to understand the behaviour of 

the model given a change in the attributes. 

The first analysis considers attributes modelled in the same acceptability function. As 

anticipated in Subsection 4.2.2.1, considering attributes in the same acceptability function 

entails a direct compensation between them. Let 𝐶n be the space of attributes to be 

compensated with attribute 𝑥n and 𝑐 an element of 𝐶n. (4.21) states the structure attributes 

of an acceptability function where direct compensation is allowed. As a result, the term 𝑥n.K 

in (4.7) is replaced by (4.21) leading to (4.22): 

𝑥n.K + 6 𝜃©𝑥©.K
∀©∈ªã

 (4.21) 

Pry𝑎n.K = 1z = Prä𝑥n.K + 6 𝜃©𝑥©.K
∀©∈ªã

− 𝑓n.K > 𝜖n.Kå (4.22) 

From (4.21), it is straightforward to note that the rate of substitution between 𝑥©.K and 𝑥n.K 

in the whole data spectrum is 𝜃©. Subsections 4.2.3.1 and 4.2.3.2 presents two examples of 

applications of this type of substitution patterns. 
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The second analysis considers the relationship between attributes in different acceptability 

functions. We suggest that attributes should be modelled in different acceptability functions 

if the degree of compensation is limited. Even though no direct compensation is possible, in 

Equation (4.4) an increase in the acceptability of one attribute could substitute for the loss 

in another one. Then, the Stochastic Satisficing model, at least in an analytical way, allows 

for a (weak) substitution of one attribute for another in the case of attributes of a different 

nature.  

Let 𝑣n.K  be the difference of the current attribute from its threshold (𝑣n.K = 𝑥n.K − 𝑓n.K). To 

obtain the MRS for alternative acceptability, first we need the derivative of the acceptability 

function (Equation 4.4). Let 𝐼n be the space of all alternatives except 𝑘 (i.e. 𝐼n = 𝐼 − {𝑘}). 

Then the derivative of the acceptability function is given by (4.24): 

𝜕 Pry𝐴.K = 1z
𝜕𝑥n

=
𝜕 Pry𝑎n.K = 1z∏ Pry𝑎\.K = 1z∀\∈]ã

𝜕𝑥n
 

	

𝜕 Pry𝐴.K = 1z
𝜕𝑥n

=
𝜆n.K exp w𝜆n.Ky𝑥n.K − 𝑓n.Kz{

ç1 + exp w𝜆n.Ky𝑥n.K − 𝑓n.Kz{è
F - Pry𝑎\.K = 1z
∀\∈]ã

 

(4.24) 

If we replace the difference of the attribute and threshold for 𝑣n.K , then the marginal rate of 

substitution is given by (4.25). 
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𝑀𝑅𝑆𝑥D𝑥F =

𝜕 Pry𝐴.K = 1z
𝜕𝑥D

𝜕 Pry𝐴.K = 1z
𝜕𝑥F

=

𝜆D exp(𝜆D𝑣D)
(1 + exp(𝜆D𝑣D))F

∏ 𝑃y𝑎\éz∀	\é	Ö	]âé

𝜆F exp(𝜆F𝑣F)
(1 + exp(𝜆F𝑣F))F

∏ 𝑃y𝑎\êz∀	\ê	Ö	]âê

 

𝑀𝑅𝑆𝑥D𝑥F =

𝜆D exp(𝜆D𝑣D)
(1 + exp(𝜆D𝑣D))F

Pry𝑎F.K = 1z

𝜆F exp(𝜆F𝑣F)
(1 + exp(𝜆F𝑣F))F

Pry𝑎D.K = 1z
		

𝑀𝑅𝑆𝑥D𝑥F = 	

𝜆D exp(𝜆D𝑣D)
(1 + exp(𝜆D𝑣D))F

exp(𝜆F𝑣F)
(1 + exp(𝜆F𝑣F))

𝜆F exp(𝜆F𝑣F)
(1 + exp(𝜆F𝑣F))F

exp(𝜆D𝑣D)
(1 + exp(𝜆D𝑣D))

=

𝜆D
1 + exp(𝜆D𝑣D)

𝜆F
1 + exp(𝜆F𝑣F)

 

(4.25) 

From (4.25) we can see that the marginal rate of substitution (MRS) between any two 

attributes in different acceptability function is given by (4.26): 

MRSíD,íF =
𝜆D(1 + exp(𝜆F𝑣F))
𝜆F(1 + exp(𝜆D𝑣D))

	 (4.26) 

We are interested in finding if an acceptable attribute can compensate for a non-acceptable 

one; that is, if a positive 𝜆F𝑣F can substitute a negative 𝜆D𝑣D. Figure 4-4 shows the 

indifference curves between two attributes of different acceptability functions; the MRS 

varies over the product of 𝜆. and 𝑣.. Note that if 𝜆.𝑣. = 0 there is a 50% probability of 

accepting the attribute and for 𝜆.𝑣. = −2 there is a 12% acceptance probability. 

Expression (4.26) suggests that the MRS is not constant over attribute levels. From 

Figure 4-2 we can deduce that when both attributes have similar satisfaction levels, a 

substitution is reasonable since MRSs are close to one. However, to trade an unacceptable 

attribute (𝜆D𝑣D) for an acceptable one (𝜆F𝑣F), the high MRS suggests that many units of 
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𝜆F𝑣F must be traded for one unit of 𝜆D𝑣D,  which might be unfeasible. For example, 8.5 units 

of 𝜆F𝑣F at +2 must be traded to compensate the loss of one unit of 𝜆D𝑣D at −4; while the 

MRS of 15 is reached when 𝜆F𝑣F is +2.65. These results suggest that the DMs are willing to 

compensate when the satisfaction of attributes has similar levels; further, if one attribute is 

undesirable individuals may not be willing to trade-off. 

Figure 4-4 Indifference curves of two attributes of different acceptability functions 

Marginal rates of substitution ranging between 1 and 15 

 

Moreover, (4.26) could represent another feature of human behaviour: when an attribute is 

satisfactory, a person might prefer to increase another non-satisfactory attribute rather than 

obtaining an increase in the satisfactory one. So, this model allows to analyse two 

phenomena: first, why people could focus on second order needs only after high order needs 
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are fulfilled, and second, the issue of attribute non-attendance. For example, when buying a 

public transport ticket, low income people could be highly sensitive to cost (cost is in the 

unacceptable spectrum) and thus, they would not accept to pay a higher price for additional 

comfort. Conversely, wealthier people feeling that cost is acceptable, would be prepared to 

pay for additional comfort since price is already in an acceptable level. Therefore, this model 

would allow to identify restrictions in the DM’s decision process. 

To sum up, the Stochastic Satisficing model enables to model attributes that can be 

compensated, weakly compensated or non-compensated at all. This feature could give the 

model the flexibility to interpret different contexts. 

 

4.2.3. Application to data 

 

In this subsection, we apply our model to test its properties with finite samples and in 

different behavioural conditions. First, we use synthetic data with the objective of analysing 

convergence to simulated parameters; later we apply the model to a real choice context. We 

use maximum likelihood estimation throughout. 

In both experiments we use the Las Condes – CBD, San Miguel – CBD dataset (Chapter 3.1) 

In the application to synthetic data, we use choice set sizes ranging from two to nine 

alternatives and three samples sizes: 500, 1000 and 5000 observations. Whereas in the real 

data experiment, we use the whole sample. 
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It is well known that maximum likelihood estimates are consistent or asymptotically 

unbiased. However, we are interested in testing the model in finite samples sizes that are 

frequently reported in the literature. To test the approximate behaviour in finite samples we 

used synthetic data. The objective was to analyse the bias, the dispersion of the estimates, 

and possible identifiability issues. To test these elements, we analysed several sample sizes 

and different experiments within each sample size. 

The simulated individuals searched for alternatives sequentially until they found a 

satisfactory one; then, this alternative was immediately chosen and the search finished. No 

opt-out alternative was considered, so only individuals who choose are present in the data. 

The synthetic population only considered cost, travel time and walking time. There was no 

compensation between cost and times, but there was compensation allowed between travel 

time and walking time. We also created a small preference for each alternative given by an 

alternative specific constant (ASC). The values of the parameters used to generate the 

simulated choices are shown in Table 4-10. 

We analysed three sample sizes: 500, 1,000 and 5,000 observations; representing typical 

sample sizes that may be found in practice. To create the databank, we sampled random 

observations (i.e. sets of alternatives) from the real data set. For each sample size, 30 

different and independent datasets were generated. 
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Table 4-10 Parameters used for simulation 

Parameter Value Parameter Value 

Cost sensitivity -0.1 Cost threshold 45 

Time sensitivity -0.2 Time threshold 37 

MRS travel – walking time 3.0 ASC1 1.6 

ASC2 1.4 ASC3 1.2 

ASC4 1.0 ASC5 0.8 

ASC6 0.6 ASC7 0.4 

ASC8 0.2 ASC9 (fixed) 0 

 

In Figures 4-5 to 4-10, the boxplot presents the 25% quantile, the median, and the 75% 

quantile of the estimated parameters. Alternative specific constants are analysed in Appendix 

B. Additionally, the vertical line through the box, shows the minimum and maximum 

estimates for each parameter. We divided the estimated parameters by their target values to 

obtain a relative statistic easier to visualize. Finally, we plotted the mean estimate with a dot 

and, as a matter of reference, the unit value with a dashed line. Since every value is divided 

by the target value, estimates near the dashed line show unbiased estimations. The difference 

between the mean point – mean of the 30 estimates – and the dashed line would show a 

systematic bias throughout the experiments.  
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Figure 4-5 Estimated parameters relative to targets in the 500 observations’ sample 

 

Figure 4-6 Estimated parameters relative to targets in the 1,000 observations’ sample 
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Figure 4-7 Estimated parameters relative to targets in the 5,000 observations’ sample 

 

The 1,000 and 5,000 observations’ samples allow us to estimate the model with little 

variance throughout the 30 estimations. Interestingly, for every sample size the model tends 

to be unbiased in this dataset, since the points (mean estimates) are contiguous to the dashed 

line (target values). Moreover, model consistency has a desirable behaviour since the 

estimates tend toward their target values relatively fast as the sample grows. 

The alternative specific constant has a higher variance than the sensitivities and is biased for 

the smaller sample sizes, overestimating the attribute as shown in Figures 4-8 and 4-9. For 

higher number of observations, the model is unbiased and consistent as shown in 

Figure 4-10. 
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Figure 4-8 Alternative specific constants relative to targets in the 500 observations’ sample 

 

Figure 4-9 Alternative specific constants relative to targets in the 1,000 observations’ 
sample 
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Figure 4-10 Alternative specific constants relative to targets in the 5,000 observations’ 

sample 

 

To compare the difference in performance with a traditional discrete choice model, we also 

estimated a MNL model for each experiment. The estimation results, shown in Table 4-11, 

indicate that ignoring the choice heuristic and simply using a RUM model would imply a 

statistically significant loss of likelihood.  

As a conclusion of the synthetic experiment, testing the Stochastic Satisficing model with 

synthetic data indicates that it is an unbiased and consistent model when applied to 

frequently used sample sizes. When the nature of the data tends to be of a Satisficing nature, 

considering a RUM model could imply non-negligible loss of performance. Moreover, we 

expect higher differences when predicting with the RUM model if the attribute values 

change, as shown by Williams and Ortúzar (1982a) in their pioneering response analysis 

work. 
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Table 4-11 Satisficing and MNL performance in the simulated experiment 

 Mean log-likelihood 

(standard deviation) 

 

Sample size Satisficing MNL Difference 

500 -800 
(17) 

-845 
(18) 

45 

    1,000 -1,617 
(23) 

-1,702 
(25) 

85 

    5,000 -8,084 
(51) 

-8,503 
(51) 

418 

 

4.2.3.1. Application to real data 

 

We estimated the proposed model using the real choices of the dataset. We modelled DMs 

choosing their transport mode depending on cost, travel time, walking time and waiting time 

of each available alternative. All times were modelled using the same acceptability function, 

thus being able to compensate each other at a constant MRS –to be estimated– for the whole 

data spectrum. Additionally, we estimated alternative specific constants (ASC). Table 4-12 

presents the results of the estimates of the Stochastic Satisficing model using this dataset13. 

 

                                                

13 We provide standard deviations rather than t-tests because a standard t-test with respect to zero is 

meaningless for the threshold attributes. 
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Table 4-12 Satisficing model estimation results for real data 
 

Parameter Value 
(s. deviation) 

Parameter Value 
(s. deviation) 

Cost sensitivity -0.00474  
(1.00) 

Cost threshold  -1,850 
 (10.61) 

    Time sensitivity -0.0846  
(0.36) 

Time threshold -1,670 
(5.77) 

    MRS travel – walking time 1.29 
 (0.10) 

MRS travel–waiting time 4.05 
(0.32) 

    ASC1 -3.32 
(0.09) 

ASC2 -5.04 
(0.13) 

    ASC3 -4.63 
(0.14) 

ASC4 (fixed) 0 

    ASC5 -2.54 
(0.07) 

ASC6 -3.16 
(0.11) 

    ASC7   -4.02 
(0.16) 

ASC8 -3.99 
(0.13) 

    ASC9 -3.59 
(0.12) 

 

Log-likelihood 
Sample size 

-1,609 
1,374 

  

 

The model results are reasonable. First, the signs of the sensitivities are both negative; 

meaning that the DMs do not like to pay more or to travel more. The marginal rates of 

substitution of travel time compared with walking time and waiting time have the expected 

signs and order of magnitude; furthermore, they are statistically different from unity at a 

99% confidence level.  

In this case, absolute acceptability cannot be obtained since an opt-out alternative is not 

available; thus, only relative acceptability can be analysed from this model. For example, 



114 

  

the model indicates that if an alternative's cost is $CLP 40 (approximately 0.25 USD) and 

its cost is raised by 20%, then acceptability decreases by 4%. 

MRS are an interesting output in this model; not because there is a welfare implication, but 

rather because they help to interpret the behaviour of the model. The Stochastic Satisficing 

model can identify constant or flexible MRS. We modelled times and cost in different 

acceptability functions. Walking and waiting times are both more onerous than in-vehicle 

time by 1.29 and 4.05 times respectively at an -imposed– constant rate. 

Even though we allowed for a flexible MRS of times and cost, in this sample the marginal 

rate of substitution was flat and around 18 CLP$/min for the whole time and cost domains. 

This result provides evidence that, for this case, the MNL assumption of constant marginal 

rates of substitution is probably reasonable. To test this hypothesis, we estimated a MNL 

with a utility function involving the same variables: cost, travel time, walking time, and 

waiting time. The results in Table 4-13 imply that the logit model outcome is reasonable 

with almost the same likelihood than the Stochastic Satisficing model. 

The marginal rate of substitution between travel time and walking time is 1.4 and between 

travel time and waiting time is 4.3, which are similar to the Satisficing model MRS. 

Similarities are also found in the case of the marginal rate of substitution between cost and 

time, being valued at 18 CLP$/min. 
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Table 4-13 Random utility model estimation results for the real data 

Parameter 
Value 

(s. deviation) 
Parameter 

Value 
(s. deviation) 

Cost 
(x100) 

-0.48  
(0.17) 

Travel time -0.08 
 (0.01) 

    Walking time -0.11  
(0.01) 

Waiting time -0.34 
(0.05) 

    ASC1 -3.04 
(0.26) 

ASC2 -4.75 
(0.25) 

    ASC3 -4.33 
(0.23) 

ASC4 (fixed) 0 

    ASC5 -2.30 
(0.20) 

ASC6 -2.89 
(0.21) 

    ASC7   -3.73 
(0.24) 

ASC8 -3.69 
(0.20) 

    ASC9 -3.30 
(0.19) 

 

Log-likelihood -1,607   
Sample size 1,374   

 

Note that although both models have similar flat MRS over the whole spectrum of data, this 

condition is imposed in the MNL rather than estimated as in the case of the Stochastic 

Satisficing model. Hence, the latter model is structurally more flexible. 

4.2.4. Conclusions on the Stochastic Satisficing model 

 

Starting from Satisficing Theory –ST– (Simon, 1955), we have analytically derived a 

behavioural choice model, where the probability that an alternative is accepted is equal to 
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the joint probability of accepting each attribute. In the presence of an opt-out option, absolute 

acceptability is obtained, otherwise, only relative acceptability is possible.  

Most model properties were also obtained analytically. We discussed identifiability issues 

and showed the link with the implicit search costs. An analysis of the MRS reveals that if 

attributes are analysed independently, they can only be compensated if they have a similar 

degree of acceptability. From this analysis, several features of human behaviour can be 

explained, such as attribute non-attendance because it is already highly acceptable or valuing 

more an improvement of an inadequate level attribute that an acceptable one (akin to 

attribute saturation). 

We tested the model properties with synthetic data, showing that the model seems unbiased 

and consistent. The model can estimate flexible MRS. When modelling with real data, the 

estimated parameters have the correct sign and magnitude, thus giving reasonable 

predictions. In this case a constant MRS (that must be assumed in classical discrete choice 

models) was estimated for the whole data spectrum, demonstrating the flexibility of the 

Stochastic Satisficing model. 

The main contribution of this model is the explicit characterization of non-compensatory 

behaviour as described in the literature. It explains why people could not be influenced by 

improving higher order attributes if basic ones are not fulfilled. 

The model appears as an attractive alternative to traditional discrete choice compensatory 

models when decision makers find cognitive burden difficult to handle. It can capture 

extreme behaviour when one attribute is not compensated (e.g. cost for poor people or 
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comfort for the well-off) and leave traditional models to work where they perform best, i.e. 

when individuals can compensate. 

4.2.5. Publication history 

 

This chapter was presented as a paper at the International Choice Modelling 

Conference 2017 (Gonzalez-Valdes and Ortúzar, 2017) as well as in seminars in Chile and 

in the United Kingdom. It was finally published in the Journal of Choice Modelling 

(González-Valdés and Ortúzar, 2018). 



118 

  

5. THEORETICAL ANALYSIS OF IDENTIFIABILITY OF LATENT CLASS 
MULTIPLE HEURISTIC MODELS 

 

In Section 2.4 we have shown that estimating multiple heuristic discrete choice model is not 

straightforward. Most studies that use multiple choice heuristics model the class membership 

function as a constant across the population. The two studies that have reported a more 

explanatory formulation have required latent variables (Hess and Stathopoulos, 2013) or 

normalisation between heuristics’ sensitivities (Leong and Hensher, 2012b). Our objective 

is to study the identifiability provided the absence of latent variables and with no 

normalisations between the choice heuristics parameters. 

We develop a theoretical framework that facilitates understanding the identifiability of 

multiple heuristics discrete choice models. We start by analysing a binary case, where the 

simple structure illuminates the underlying phenomena. Then, we generalise by analysing a 

multi-heuristics case. In each of the analyses, we establish the first-order optimality 

conditions on the likelihood function to understand if and when several coexisting choice 

heuristics can be identifiable. Finally, the hessian matrix of the likelihood function is 

analysed to relate the choice heuristics and their empirical identifiability. 
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5.1. Binary Case 

5.1.1. The balance of choice heuristics 

 

Suppose that two choice heuristics, denoted as 𝑎 and 𝑏, are followed by DMs with 

probability 𝜋f and (1 − 𝜋f) respectively. Let 𝑃ÉK.(𝜃) be the probability that individual 𝑞 

chooses alternative 𝑖 following heuristic h using parameters 𝜃. Then, 𝑃K.(𝜃), the probability 

of choosing alternative 𝑖 under a latent class model, is given by (5.1). 

𝑃K.(𝜃, 𝜋f) = 𝜋f𝑃fK.(𝜃) + (1 − 𝜋f)𝑃iK.(𝜃)	 (5.1) 

The log-likelihood function of this model with set (𝜃, 𝜋f) is given by (5.2), where 𝑃ÉK∗(𝜃) 

represents the probability that q would have chosen the selected alternative under heuristic h: 

𝑙(𝜃, 𝜋f) =6logw𝜋f	𝑃fK∗(𝜃) + (1 − 𝜋f)	𝑃iK∗(𝜃){
K

 (5.2) 

The likelihood can be maximised either at a boundary or in an interior solution. In the case 

of a boundary solution, i.e. 𝜋f ∈ {0,1}, it is optimal for the model to consist of a single 

heuristic. Whereas in the case of an interior solution, the two choice heuristics will coexist 

in the model. 

The solution depends on the balance between the losses and gains in likelihood associated 

with including an additional heuristic and, therefore, reducing the proportion of the original 

one. There may be individual observations where the initial heuristic performs better than 

the additional one, whilst others where the latter performs better. Including the alternative 
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heuristic should provide an improvement in likelihood for the observations where it performs 

better than the former. However, in the cases where the former heuristic performs better, 

there should be a loss of likelihood due to the reduction of its initial proportion in favour of 

including the additional one. The balance between these two performances determines the 

type of solution obtained (i.e. whether the solution is a boundary or interior one). Both cases 

are illustrated in Section 5.1.2. 

In the more interesting case of an interior solution, the point of maximum likelihood is 

obtained when the likelihood function is stationary with respect to variations in the class 

membership probability 𝜋f. This can be detected as an interior point at which the derivative 

of the log-likelihood function equals zero. Among the variables to analyse, an interesting 

one is	𝜋f, since it determines the proportion of individuals following each choice heuristic 

and, therefore, connects them in the model. The first order condition regarding 𝜋f is 

examined next. 

We start by considering the case where the class membership function 𝜋f is constant across 

the population (i.e. every individual chooses among heuristics with the same probability). 

This basic case is the most frequent formulation reported in the literature (Adamowicz & 

Swait, 2013; Araña et al., 2008; Balbontin et al., 2017; Hess et al., 2012; McNair et al., 

2012). Under this specification the following theorem describes the coexistence of choice 

heuristics: 
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THEOREM 1: Two choice heuristic coexist optimally in a discrete choice model with 

constant heuristic probabilities if the vector of estimated parameters satisfies the balance 

specified by (5.3): 

6
	𝑃fK∗(𝜃)
𝑃K∗(𝜃)K

=6
	𝑃iK∗(𝜃)
𝑃K∗(𝜃)K

 (5.3) 

where 𝑃K∗(𝜃) = 𝜋f	𝑃fK∗(𝜃) + (1 − 𝜋f)	𝑃iK∗(𝜃) represents the probability that individual q 

would have chosen the selected alternative according to the combined model 

PROOF: For an interior solution, the first order condition for the maximisation problem 

is given by (5.4):  

𝜕𝑙(𝜃, 𝜋f)
𝜕𝜋f

=6
	𝑃fK∗(𝜃) − 𝑃iK∗(𝜃)

𝜋f	𝑃fK∗(𝜃) + (1 − 𝜋f)	𝑃iK∗(𝜃)K

= 0 (5.4) 

Manipulation of (5.4) leads to (5.5):  

6
	𝑃fK∗(𝜃)

𝜋f	𝑃fK∗(𝜃) + (1 − 𝜋f)	𝑃iK∗(𝜃)K

=6
	𝑃iK∗(𝜃)

𝜋f	𝑃fK∗(𝜃) + (1 − 𝜋f)	𝑃iK∗(𝜃)K

 (5.5) 

Using the definition of  𝑃K∗(𝜃) , this is equivalent to (5.3). 

Expressions (5.3) and (5.5) indicate that when both choice heuristics are present in the 

model, there is a balance between them. When present, this balance indicates that the gain 

in likelihood due to the inclusion of an alternative heuristic surpasses the losses in likelihood 

due to the decrease in the former heuristic until balance is obtained. 
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The optimal proportion of choice heuristics (i.e. the proportion that achieves maximum 

likelihood) is given by their relative performance. The higher the performance of a heuristic, 

higher is its optimal proportion. If the performance difference is too important, then, no 

balance could be optimal. 

A second force that plays a role in this balance is the proportion in which the heuristics are 

present in the data generating process. If this process is aligned with a higher proportion of 

one choice heuristic, then its performance in the overall sample will be better and its optimal 

proportion will increase. Different proportions may favour the balance if the less effective 

heuristic dominates the sample or may deter it if it promotes the more effective heuristic. 

Therefore, if the most effective heuristic also dominates the sample, it may be sub-optimal 

to include an alternative heuristic and no balance will be achieved. 

Under the conditions of a constant class membership function, the balance of (5.5) has a 

known value described by Theorem 2: 

THEOREM 2: Two choice heuristic coexist optimally in a discrete choice model with 

constant heuristic probabilities if the balance quantity in (5.3) is equal to the sample size Q. 

PROOF: Expanding the left-hand side of (5.3) gives (5.6): 

6
	𝑃fK∗(𝜃)
𝑃K∗(𝜃, 𝜋f)K

=6
𝜋f	𝑃fK∗(𝜃)
𝑃K∗(𝜃, 𝜋f)K

+6
(1 − 𝜋f)	𝑃fK∗(𝜃)

𝑃K∗(𝜃, 𝜋f)K
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=6
𝜋f	𝑃fK∗(𝜃)
𝑃K∗(𝜃, 𝜋f)K

+6
(1 − 𝜋f)	𝑃fK∗(𝜃)

𝑃K∗(𝜃, 𝜋f)K

+6
(1 − 𝜋f)	𝑃iK∗(𝜃) − (1 − 𝜋f)	𝑃iK∗(𝜃)

𝑃K∗(𝜃, 𝜋f)K

 

⟹6
	𝑃fK∗(𝜃)
𝑃K∗(𝜃, 𝜋f)K

=6
𝜋f	𝑃fK∗(𝜃) + (1 − 𝜋f)	𝑃iK∗(𝜃)

𝑃K∗(𝜃, 𝜋f)K

+ (1 − 𝜋f)6
𝑃fK∗(𝜃) − 𝑃iK∗(𝜃)

𝑃K∗(𝜃, 𝜋f)K

 

 

(5.6) 

In the first summation of the right-hand side of (5.6), every term is identically equal to one, 

therefore the summation adds to Q. The second summation is equal to zero because of 

stationarity (5.4). Because of (5.3) and in light of the symmetry between both choice 

heuristics, the condition corresponding to heuristic 𝑎 applies equally to heuristic 𝑏. Then, 

(5.7) describes the balance in a model with two choice heuristics and constant heuristic 

probabilities: 

6
	𝑃fK∗(𝜃)
𝑃K∗(𝜃, 𝜋f)K

=6
	𝑃iK∗(𝜃)
𝑃K∗(𝜃, 𝜋f)K

= 𝑄 (5.7) 

Examples of this balance are given in Section 5.1.2. The balance is broken (i.e. the optimal 

model contains only one choice heuristic), when it is optimal to not include any amount of 

the other heuristic, as previously explained. A diagnostic condition for this is presented in 

(5.8) and (5,9) for the case of a model that includes heuristic	𝑏 alone: 

𝜋f∗ = 0 ⟺
𝜕𝑙(𝜃, 𝜋f)
𝜕𝜋f

ó
ôõ½�

= 6
	𝑃fK∗(𝜃) − 𝑃iK∗(𝜃)

𝜋f	𝑃fK∗(𝜃) + (1 − 𝜋f)	𝑃iK∗(𝜃)K

< 0 (5.7) 

𝜋f∗ = 0 ⟺6
	𝑃fK∗(𝜃)
𝑃iK∗(𝜃)K

< 𝑄 (5.9) 



124 

  

The optimality of a single choice heuristic can be identified using (5.9) or its counterpart for 

heuristic 𝑎 alone. For this to occur, the prevalent heuristic must perform well, even when 

DMs actually choose using the other heuristic; otherwise, the loss for not considering an 

alternative heuristic would be too high. Conversely, a plausible way for a balanced interior 

combination of heuristics to be optimal is that (5.10a) holds for some observations and 

(5.10b) for others:  

	𝑃fK∗(𝜃)
𝑃iK∗(𝜃)

≫ 1 (5.10a) 

	𝑃iK∗(𝜃)
𝑃fK∗(𝜃)

≫ 1 (5.10b) 

 
If the class membership function 𝜋f is not constant but some function 𝜋f(𝜃), the balance is 

stated in the following theorem: 

THEOREM 3: Two choice heuristic coexist optimally in a discrete choice model if the 

vector of estimated parameters satisfies the balance specified by (5.11): 

6
	𝜕𝜋f(𝜃)𝜕𝜃 𝑃fK∗(𝜃) +	

𝜕𝑃fK∗(𝜃)
𝜕𝜃 𝜋f(𝜃)

𝑃K∗(𝜃)K

=6
𝜕𝜋f(𝜃)
𝜕𝜃 	𝑃iK∗(𝜃) +

𝑃iK∗(𝜃)
𝜕𝜃 	(𝜋f(𝜃) − 1)

𝑃K∗(𝜃)K

 (5.11) 
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PROOF: (5.12) states the stationarity condition required for optimality.  

0 =
𝜕𝑙(𝜃)
𝜕𝜃

=6
𝜕𝜋f(𝜃)
𝜕𝜃 	𝑃fK∗(𝜃) + 𝜋f(𝜃)

𝜕𝑃fK∗(𝜃)
𝜕𝜃 − 𝜕𝜋f(𝜃)𝜕𝜃 𝑃iK∗(𝜃) +	y1 − 𝜋f(𝜃)z

𝜕𝑃iK∗(𝜃)
𝜕𝜃

𝜋f(𝜃)𝑃fK∗(𝜃) + y1 − 𝜋f(𝜃)z	𝑃iK∗(𝜃)K

 

(5.12) 

 Expression (5.11) is a direct rearrangement of (5.12), where the balance between choice 

heuristics is stated.  

Suppose that the set of parameters 𝛽 of the class membership function is disjoint from the 

set 𝜃 affecting the choice heuristics. Then, the following corollary follows from Theorem 3: 

COROLLARY: If the class membership function is independent from the choice heuristics, 

the balance is given by (5.13): 

6
	𝜕𝜋f(𝛽)𝜕𝛽 𝑃fK∗(𝜃)

𝑃K∗(𝜃, 𝛽)K

=6

𝜕𝜋f(𝛽)
𝜕𝛽 	𝑃iK∗(𝜃)

𝑃K∗(𝜃, 𝛽)K

 (5.13) 

This analysis identifies when it is optimal for the model to include more than one choice 

heuristic. Nevertheless, the coexistence of choice heuristics does not guarantee that the 

model is identifiable; it only guarantees that the optimal point contains multiple heuristics. 

However, this optimal point might not be unique nor empirically identifiable. This empirical 

identifiability issue is addressed next.  
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5.1.2. Examples of balance of heuristics 

 

We present three small examples of the balance of choice heuristics. In each example the 

DMs choose six times; three times with heuristic 𝑎 and three times with heuristic 𝑏. In all 

examples individuals choose the same alternatives as in Table 5-1. 

 Table 5-1 Chosen heuristic and alternatives in the balance examples 

Chosen heuristic Chosen alternative 

1 1 

1 2 

1 2 

2 1 

2 1 

2 2 

 

For this example and for simplicity, we assume that the choice heuristics are correctly 

identified but the heuristics used by the DMs are unknown.  Therefore, we estimate a 

multiple heuristic model with only one unknown parameter, the class membership 𝜋f as 

in (5.14). 

𝑃K.(𝜋f) = 𝜋f𝑃fK. + (1 − 𝜋f)𝑃iK.	 (5.14) 

The multiple heuristic model is estimated via maximum likelihood to obtain the population 

split that maximises the model’s likelihood.  
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The first four columns in Tables 5-2, 5-3 and 5-4 show the probabilities of choosing each 

alternative when following each choice heuristic. By changing the probabilities of heuristic 

𝑏 (third and fourth columns), we manipulate the point of maximum likelihood shown in the 

fifth column. The sixth column shows the probability of the multiple heuristic model which 

takes as input the probability 𝜋f and the probabilities of choosing each alternative 

conditional on the choice heuristic. Finally, the last column shows the ratio of the probability 

that each heuristic assigns to the chosen alternative and the probability that the multiple 

heuristic model assigns to the chosen alternative. 

Table 5-2 Multiple heuristic model example with strong balance 

Heuristic 𝑎 Heuristic 𝑏 Prob. of following 

heuristic 𝑎 

probability 

Probability assigned to the 

chosen alternative 
Alt 1 Alt 2 Alt 1 Alt 2 𝜋f 𝑃K∗ 𝑃fK∗/𝑃K∗ 𝑃iK∗

/𝑃K∗ 0.50 0.50 0.35 0.65 0.31 0.40 1.26 0.88 

0.50 0.50 0.60 0.40 0.31 0.43 1.16 0.93 

0.50 0.50 0.70 0.30 0.31 0.36 1.38 0.83 

0.50 0.50 0.80 0.20 0.31 0.71 0.71 1.13 

0.50 0.50 0.80 0.20 0.31 0.71 0.71 1.13 

0.50 0.50 0.30 0.70 0.31 0.64 0.78 1.10 

        
     Sum 6 6 

 

Table 5-2 shows an example where a balance of choice heuristic exists. The optimal class 

membership function indicates that the probability of following heuristic 𝑎 is 0.31. 

Therefore, there is a strong balance across the two choice heuristics. Also note the balance 
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given by the sum of the ratios of the heuristic and the model: as stated in Theorem 2, its 

value equals the sample size. 

In the second example, shown in Table 5-3, one of the probabilities –which is underlined– 

is changed, improving the performance of heuristic 𝑏. In this example, the balance still exists 

but the model’s estimated probability of following heuristic 𝑎 decreases. Because the 

balance still exists, Theorem 2 holds, showing that the sum of the ratios of the choice 

heuristic and the models equals the sample size. 

Table 5-3 Multiple heuristic model example with weak balance 

Heuristic 𝑎 Heuristic 𝑏 Prob. of following 

heuristic 𝑎 

probability 

Probability assigned to the 

chosen alternative 
Alt 1 Alt 2 Alt 1 Alt 2 𝜋f 𝑃K∗ 𝑃fK∗/𝑃K∗ 𝑃iK∗

/𝑃K∗ 0.50 0.50 0.35 0.65 0.04 0.36 1.40 0.98 

0.50 0.50 0.60 0.40 0.04 0.40 1.24 0.99 

0.50 0.50 0.64 0.36 0.04 0.37 1.37 0.98 

0.50 0.50 0.80 0.20 0.04 0.79 0.63 1.02 

0.50 0.50 0.80 0.20 0.04 0.79 0.63 1.02 

0.50 0.50 0.30 0.70 0.04 0.69 0.72 1.01 

        
     Sum 6 6 

 

Finally, the third example (Table 5-4) presents a model for which the optimal point is a 

single choice heuristic. Even though heuristic 𝑎 performs better than heuristic 𝑏 when 

predicting choices made by following the former, the loss of performance of the last three 
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choices due to the inclusion of heuristic 𝑎 outweighs the benefit of its inclusion. Therefore, 

even though a different heuristic is present in the underlying choice mechanism, it is optimal 

not to include it in the choice model. Finally, note that in this case the balance is broken the 

probability of the total model is identical to the probability of the identified heuristic, 

therefore only the identified heuristic ratio sums to the sample size. 

Table 5-4 Multiple heuristic model example with no balance 

Heuristic 𝑎 Heuristic 𝑏 Prob. of following 

heuristic 𝑎 

probability 

Probability assigned to the 

chosen alternative 
Alt 1 Alt 2 Alt 1 Alt 2 𝜋f 𝑃K∗ 𝑃fK∗/𝑃K∗ 𝑃iK∗

/𝑃K∗ 0.50 0.50 0.35 0.65 0 0.35 1.43 1 

0.50 0.50 0.60 0.40 0 0.40 1.25 1 

0.50 0.50 0.60 0.40 0 0.40 1.25 1 

0.50 0.50 0.80 0.20 0 0.80 0.63 1 

0.50 0.50 0.80 0.20 0 0.80 0.63 1 

0.50 0.50 0.30 0.70 0 0.70 0.71 1 

        
     Sum 5.89 6 

 

These results indicate that the balance can be fragile; however, we expect less fragility as 

the sample grows.  Nonetheless, these results exemplify that even though the underlying 

process may contain several choice heuristics, a balance among them might not be achieved 

in estimation. 
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5.1.3. Behavioural diversity of choice heuristics and identifiability 

 

To study the identifiability of a multiple heuristics model, that is, when the estimator can be 

identified uniquely without any parameter set being observationally equivalent (Hsiao, 1983; 

Matzkin, 2007), we assume that the model has an interior solution. If the model had a 

boundary solution (i.e. only one heuristic is estimated), then the empirical identifiability 

analysis of multiple choice heuristics would not be relevant. 

For a parametric model to be identifiable, the information matrix (5.15) must be non-singular 

(Rothenberg, 1971). Moreover, it is desirable that the covariance matrix is reasonably small, 

which we refer as strong identifiability. The covariance matrix is related to the model via the 

Fisher information matrix (5.16). Thus, to obtain strong identifiability, the information 

matrix should have a large determinant so that the covariance matrix exhibits small values.  

𝐹 = 	−𝔼�
𝜕F𝑙(𝜃)
𝜕𝜃ø𝜕𝜃ù

� (5.15) 

𝛴 = 𝐹CD (5.16) 

Similar to the analysis of the first order condition for the two-heuristic case, we analyse the 

information matrix at the point determined by 𝜋f. The diagonal element of the information 

matrix corresponding to 𝜋f is given by the derivative of (5.4) with respect to 𝜋f, as in (5.17): 
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𝜕F𝑙(𝜃)
𝜕𝜋fF

= −6
y𝑃fK∗ − 𝑃iK∗z

F

𝑃K∗FK

 (5.17) 

For F to have a large determinant, and thus for the standard errors of the estimator to be 

small, it is necessary for the expression given by (5.17) to be large. Two elements play an 

important role here, the sample size and the numerator. As the sample size increases the 

magnitude of the summation also increases, which promotes identifiability. Regarding the 

numerator, note that the maximum likelihood estimates are obtained when the probability 

𝑃K∗F  is maximum; then, identifiability is determined by the numerator of (5.17). Thus, 

expression y𝑃fK∗ − 𝑃iK∗z
F
 is an important element in the identification of choice heuristics. 

High values of this expression are obtained when the choice heuristics exhibit disparate 

behaviour. Thus, that absence of substantial behavioural diversity between the two heuristics 

may cause identifiability problems. Therefore, this behavioural diversity requires not only 

different functional forms but should also be reflected in the data. 

5.2. Multiple Heuristics Case 

 

Now consider the general case where several choice heuristics are used by DMs. We start 

by analysing the first order conditions to generalise the balance obtained in Section 5.1. 

Then, the analysis of identifiability is extended to this multiple heuristic case. 
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Extending the notation of Section 5.1, let 𝜋É be the probability that DMs behave according 

to heuristic ℎ	Î	𝐻 so that ∑ 𝜋ÉÉ∈Ê = 1. Then, the log-likelihood function 𝑙	(𝜋, 	𝜃) of the 

model is given by (5.18): 

𝑙(𝜋, 	𝜃) =6log�6πÉ𝑃ÉK∗(θ)
É∈Ê

�
K

 (5.18) 

To maximise the likelihood of the model subject to the sum constraint on the population 

probabilities 𝜋É, we seek stationary points of the Lagrangean (5.19): 

𝐿 = −𝑙(𝜋, 𝜃) − 𝜆 �1 − 6 𝜋É
É∈	Ê

� (5.19) 

Differentiating the Lagrangean with respect to 𝜋f and equating it to 0 for stationarity gives 

the necessary condition for recovery of the optimal probabilities 𝜋f (5.20):  

𝜕𝐿
𝜕𝜋f

= 0 ⟺	6
𝑃fK∗

∑ 𝜋É𝑃ÉK∗(𝜃)É∈ÊK

= 𝜆 

⇒6
𝑃fK∗
𝑃K∗K

= 𝜆				∀𝑎 ∈ 𝐻 

(5.20) 

According to (5.20), stationarity is achieved when each choice heuristic ℎ	Î	𝐻  contributes 

the same aggregated ratio 𝑃ÉK∗/𝑃K∗ for the alternatives chosen. This result extends the 

balance exposed in section 5.1 to multiple heuristics. 
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Expression (5.20) shows the balance condition for the optimal point, but again does not 

guarantee the identifiability of the choice heuristics. For the vector 𝛑 of different choice 

mechanism probabilities to be identifiable, the information matrix should be non-singular 

and, therefore, the hessian matrix of the Lagrangean should be positive definite. This 

requires that all principal submatrices of the hessian (that correspond to the second 

derivatives with respect to the proportions) should have positive determinants. The mixed 

second partial derivatives of the Lagrangean are stated in (5.21). 

𝜕F𝐿
𝜕𝜋f𝜕𝜋i

=6
𝑃fK∗𝑃iK∗

y∑ 𝜋É𝑃ÉK∗(𝜃)É∈Ê z	F
K

=6
𝑃fK∗𝑃iK∗
𝑃K∗FK

 (5.21) 

Therefore, each 2×2 submatrix of this kind has the structure shown in (5.22). 

⎣
⎢
⎢
⎢
⎢
⎡ 6

𝑃fK∗F

𝑃K∗FK

6
𝑃fK∗𝑃iK∗
𝑃K∗FK

6
𝑃fK∗𝑃iK∗
𝑃K∗FK

6
𝑃iK∗F

𝑃K∗FK ⎦
⎥
⎥
⎥
⎥
⎤

 (5.22) 

Because the elements on the principal diagonal are positive, the submatrix is positive definite 

if the determinant exceeds zero. Moreover, the determinant D given by (5.23) needs to be 

large so that the covariance matrix of the estimators is small. 

𝐷 = 6
𝑃fK∗F

𝑃K∗FK∈À

	6
𝑃i�∗F

𝑃�∗F�∈À

− ä6
𝑃fK∗𝑃iK∗
𝑃K∗FK

å

F

 (5.23) 
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Before analysing (5.23) to determine when D will be positive, note that this analysis is useful 

in the case that a balance exists between choice heuristics. In that case, we cannot have 

𝑃fK∗ = 𝑃iK∗	∀𝑞. Therefore, there will be a proportion of outcomes where heuristic 𝑎 

outperforms the aggregate model and another proportion where its performance will be 

worse. The expressions 𝑃ÉK∗F 𝑃K∗F& 		ℎ	 ∈ 𝐻	 tend to amplify the difference when one model 

outperforms the other. Provided that each heuristic outperforms simultaneously the 

aggregate model and every other heuristic for some observations, then every determinant  𝐷  

of the form given by (5.23) will be positive.  

For a convenient analysis of (5.23), we introduce some notation for the moments of the 

estimated conditional probabilities  𝑃ÉK∗/𝑃K∗			ℎ	𝜖	𝐻	. Thus, let the first and second moments 

be respectively: 

𝜇É = 𝔼�
𝑃ÉK∗
𝑃K∗

� , ℎ ∈ 𝐻 

𝜎ÉF = 𝑉𝑎𝑟 �
𝑃ÉK∗
𝑃K∗

� 		ℎ ∈ 𝐻		𝑎𝑛𝑑		𝜎fi = 𝐶𝑜𝑣 �
𝑃fK∗
𝑃K∗

,
𝑃iK∗
𝑃K∗

� 				𝑎, 𝑏 ∈ 𝐻. 

 

With this notation, the expectation of elements involved in (5.23) can be written as: 

𝔼ä6
𝑃ÉK∗F

𝑃K∗FK∈À

å ≈ 𝑛(𝜇ÉF + 𝜎ÉF)		and		𝔼ä6
𝑃fK∗𝑃iK∗
𝑃K∗FK∈À

å ≈ 𝑛(𝜇f𝜇i + 𝜎fi)  
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Therefore, the expectation of (5.23) can be rearranged to express a sample estimate of the 

population quantity as (5.24) where the approximation arises from finite sample estimation 

of the moments. 

1
𝑛F 𝔼

(𝐷) ≈ 𝜇fF𝜇iF �
𝜎fF

𝜇fF
− 2

𝜎fi
𝜇f𝜇i

+
𝜎iF

𝜇iF
� + 𝜎fF𝜎iF �1 −

𝜎fiF

𝜎fF𝜎iF
� (5.24) 

Recall that from condition (5.20) for both heuristics a and b to be present in the model, 

	𝜇f = 𝜇i . If choice probabilities are perfectly correlated, 𝜎fiF = 𝜎fF𝜎iF, the right-hand side 

of (5.24) will be identically zero showing that the hessian matrix would be singular in 

expectation. The expectation of the partial derivative of D with respect to the correlation  sab 

in (5.24) is negative, so the expectation of the determinant increases as the correlation 

decreases. In particular, 

𝔼 �
𝑑𝐷
𝑑𝜎fi

� ≈ −2𝑛F(𝜇f𝜇i + 𝜎fi) = −2𝑛F𝔼�
𝑃fK∗𝑃iK∗
𝑃K∗F

� ≤ 0	. (5.25) 

Thus, estimation of the mixed model is better conditioned (as indicated by larger values of 

D) when correlation  sab is reduced and as sample size n increases. 

The requirement for positive determinants of the principal submatrices of the hessian, 

therefore, generalises the requirement for the binary heuristic case presented in Section 5.1. 

To be identifiable, the behaviour of each heuristic should differ from that of all other 

heuristics; the greater the behavioural difference is, the larger the determinant of (5.23) and 

hence the smaller the covariance matrix of the estimators. In conclusion, a natural 
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requirement for a mixture of choice heuristics to be identifiable is that each of them performs 

best for some of the cases in the data used for estimation. 

5.3. Conclusions on the Theoretical Analysis of Identifiability 

 

To analyse the identifiability of multiple heuristic models, we developed a theoretical 

framework to analyse when a mixed model of this kind is identifiable. We established two 

analytical conditions for this: first, a balance must exist between choice heuristics and 

second, the behaviour of the heuristics must differ sufficiently so that they can be identified 

with an acceptable accuracy of parameters.  

The balance may not exist even if the underlying data generating process reveals a 

combination of two processes. The proportion of each process and the performance of each 

heuristic interpreting each of the data generating processes determines the existence (or not) 

of a balance. Higher proportion heuristic are more plausible to dominate the balance. Indeed, 

the dominant choice heuristic must perform poorly on some choices aligned with the other 

heuristic so that the model is able to incorporate two choice heuristics.  

Finally, our analysis concludes that a necessary condition for the estimation to show a 

reasonable small covariance matrix is that the choice heuristics differ in their behaviour. 

Therefore, to identify several choice heuristics, the context tested must exhibit choice sets 

that let the heuristics perform disparately in some observations.  
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5.4. Publication History 

 

Initial analysis of this chapter was presented at the 6th Symposium of the European 

Association for European Research in Transportation (Gonzalez-Valdes and Raveau, 

2017a). Further versions were presented in seminars in the United Kingdom and in the 18th 

Chilean Transport Engineering Conference (Gonzalez-Valdes et al., 2017). Finally, a full 

developed paper is under revision in Transportation Research Part B: Methodological 

(Gonzalez-Valdes et al., 2018). 
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6. EMPIRICAL IDENTIFICATION OF CHOICE HEURISTICS AT SAMPLE 
LEVEL 

 

In Section 2.4 we showed that estimating multiple heuristic discrete choice model is not 

straightforward. Most of the previous studies on this subject model the class membership 

function as a constant across the population. Moreover some studies use extremely simple 

heuristics (Araña et al., 2008), which probably capture heterogeneity in tastes rather than 

heterogeneity in rules. In the same spirit, some authors include attribute non-attendance as a 

heuristic per se (Leong, 2014; Balbontin et al., 2017), which captures different sensitivities 

in the RUM framework. Therefore, only few studies identify choice heuristics by their 

different behaviour exclusively.  

In Section 2.4 and Chapter 5 we argue that no study has been able to identify non-constant 

population wide class membership functions without the need of normalisations or latent 

variables (Leong and Hensher, 2012b; Hess and Stathopoulos, 2013). On Chapter 5 we 

showed that the multiple choice heuristic model may exhibit a balance of two choice 

heuristic coexisting even when the class membership function is not a constant. For this, the 

context must be able to provide a scenario where the choice heuristics perform disparately. 

In this chapter we study several elements that affect the identifiability of choice heuristics in 

the context of a pseudo-real mode choice context. First, we study the identifiability of pairs 

of choice heuristics changing: the type of heuristic, degree of correlation, proportion of each 

choice heuristic, sample size, and alternatives per choice set. Then, we examine the 
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identifiability in the case of three heuristics. In all cases, we consider the same attributes 

affecting the different heuristics so that identifiability is obtained exclusively due to their 

different behaviour. 

6.1. Empirical Identifiability of Two Heuristics Models 

 

To guarantee the presence of different choice heuristic and to exert control over the choice 

parameters, a synthetic population was generated. We studied four dimensions affecting the 

choice process: the type of choice heuristic, the proportion of each choice heuristic in the 

synthetic sample, the correlation between the parameters of the probability of using each 

choice heuristic and the sensitivities for different attributes of the alternatives, and the 

number of alternatives per choice set. Finally, for each of these three dimensions, ten 

experiments were performed.  

Among the elements we considered, first we analysed the degree of identifiability of each 

heuristic in the models. Then, we selected some interesting estimations cases and exposed 

the bias of the model’s estimated parameters. We ended up by concluding how the popular 

heuristics tested differed in their degree of identifiability. 

6.1.1. Experimental design 

 

Among the dimensions considered, the first one is the type of choice heuristic. The analysis 

of Chapter 5 indicated that the difference between choice heuristics is key to their 
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identification. Three different choice heuristics were tested against the most widely used 

RUM heuristic to investigate whether they could be identified in a practical context, namely: 

Elimination By Aspects –EBA (Tversky, 1972a; 1972b), Stochastic Satisficing –SS 

(González-Valdés and Ortúzar, 2018) and Random Regret Minimization –RRM (Chorus et 

al., 2008).  

The second dimension considered was the proportion of each choice heuristic in the sample. 

The analysis in Chapter 5 indicated that the greater the proportion of a choice heuristic, the 

greater the number of observations for which it will outperform the other heuristics, thus 

increasing its identifiability. Two choice proportions were tested: approximated 70% of the 

sample chooses according to RUM and 30% according to the other heuristic, and vice versa, 

that is 𝜋f ∈ {0.3, 0.7}. These proportions were designed so that there are cases in which one 

heuristic dominates the sample but without monopolizing the importance in the model. 

The third dimension considered was the correlation between the choice parameters and the 

probability of selecting a heuristic. The purpose here was to analyse how any such 

correlation would bring complexities to the identification task. This correlation is added by 

introducing a personal trait that affects both the probability of using a choice heuristic and 

the RUM preferences.  

Finally, the fourth dimension tested was the number of alternatives in the choice sets. We 

discuss the degree of identifiability from RUM under different number of heuristics. To 

adapt the number of alternatives we used the methodology exposed in Subsection 3.1.2. 
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Because the focus of this study is to work with models that have identifiability issues, we 

preferred Bayesian estimation over other maximum likelihood estimation to avoid being 

captured at local optima. The Bayesian estimation was performed using Gibbs sampling with 

the JAGS package (Plummer, 2016) for the R software system (R Core Team, 2016) . 

Previous tests suggest that this estimation procedure usually requires numerous iterations to 

achieve stationarity. Five thousand burn-in samples were discarded before sampling from 

the Markov chain. Moreover, a large number of samples were required to sample the 

posterior distribution of the parameters broadly. Therefore, for each parameter, ten thousand 

useful samples were obtained after burn-in. Regarding the prior distributions, low precision 

zero-centred Normal priors were used.  

We used a simulated dataset to investigate whether it is possible to capture different choice 

heuristics in a practical transport context. For estimation we required two components: a set 

of choice alternatives available to each individual and the individuals’ choices. The choice 

sets for each individual were extracted from the Las Condes – CBD, San Miguel – CBD 

database explained in Section 3.1. 

6.1.1.1. The choice heuristics 

 

To incorporate sociodemographic characteristics and having control of such characteristic, 

a binary variable 𝑧 was generated (simply named trait) with probability of 0.70. This 

probability was designed to represent an interesting trait to be studied in the population. Each 

simulated individual was also assigned, independently, to use one of two available choice 
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heuristics: RUM and the contrasting one (i.e., EBA, RRM or SS). In each case, the 

probability of using RUM was given by the inverse logit function (6.1) with parameters as 

shown in Table 6-1. These were calculated to give a probability of 0.71 (as indicated in the 

previous section) for choosing RUM in one experiment and the same probability for adopting 

the contrasting heuristic in another. 

𝜋,-. =
exp(𝜃� + 𝜃D𝑧)

1 + exp	(𝜃� + 𝜃Dz)
 (6.1) 

Table 6-1 Synthetic population latent class parameters 

Parameter Value 

𝜃� 0 

𝜃D +/- 1.39 

 

Once the individual chooses the heuristic, he will select the alternative using the parameters 

given in Table 6-2. The EBA heuristic employs the same formulation used in Section 4.1 

and further detailed in Appendix B. We considered different thresholds for travel time (15 

min), waiting time (5 min), and walking time (3 min). For cost, we considered two thresholds 

set at USD 0.25 and USD 0.65; these two thresholds split the costs into three aspects levels, 

where two of them are desirable. Finally, an alternative specific aspect was created for each 

alternative. The SS heuristic considers three acceptability functions one for cost, one for all 

the time components, and one for the alternative specific constant. The model also estimates 

the constant marginal rate of substitution between travel, waiting, and walking time. 
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Table 6-2 Choice heuristic simulation parameters 

Parameter EBA RRM SS RUM 

Cost sensitivity 1.39; 1.39 0.375 -6.25 -0.31; +0.09 

SS cost threshold - - 0.28 - 

Vehicle time sensitivity 1.39 2 -12 -5 

Waiting time sensitivity 2.08 10 4 -20 

Walking time sensitivity 2.30 4 1.5 -6.5 

SS time threshold - - 0.60 - 

𝜇 - 0.2 - - 

ASC1 0.41 0.1 -0.84 0.5 

ASC2 0 0 0 0 

ASC3 0.10 0.02 -0.96 0.1 

ASC4 0.59 0.16 -0.77 0.8 

ASC5 0.53 0.14 -0.80 0.7 

ASC6 0.47 0.12 -0.82 0.6 

ASC7 0.18 0.04 -0.93 0.2 

ASC8 0.26 0.06 -0.90 0.3 

ASC9 0.34 0.08 -0.87 0.4 

 

With the objective of increasing the difference between RRM and RUM, we selected the 

𝜇 − 𝑅𝑅𝑀 version to increase the profundity of regret compared to the simplest version (both 

detailed in subsection 2.2.3). The 𝜇 parameter was fixed at 0.2 so that the regret was highly 

increased. 
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 The RUM utility function was considered linear and additive in parameters. As detailed 

before, in some of the experiments, the cost attribute was modified based on the individual’s 

sociodemographic trait.  If DMs had it (indicated by 𝑧 = 1), the sensitivity to cost was 

modified; we call this attribute “cost difference” of sensitivity. 

6.1.2. Analysis of results 

 

Typically, a model is non-identifiable if the information matrix is singular; this is equivalent 

to having an infinite element within the covariance matrix. In our context with Bayesian 

estimation, no matrix inversion is required; nonetheless, model non-identifiability can be 

detected when the standard deviations of the parameters are extreme with associated 

instability of the Markov chain.  

Even though we have described what identifiability is, we detected different degrees of non-

identifiability. Therefore, to better describe these, we developed three further descriptions: 

- Strong identifiability: all parameters of the model are estimated with acceptable 

standard deviations. Both choice heuristics are identified, thus there is a balance 

between them. 

- Weak identifiability: a small proportion of the model parameters are estimated with 

extreme standard deviations. Nevertheless, the model can clearly identify the 

presence of two choice heuristics and identify the variables governing their selection.  

- Non-identifiability: most parameters are estimated with extreme standard deviation 

or no balance can be found between choice heuristics.  
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In Chapter 5 we analysed how behavioural differences impacted the identifiability of 

different choice heuristics. Figure 6-1 shows the distribution of behavioural differences 

between RUM and the other choice heuristics among the alternatives in the dataset. This 

difference is quantified by the absolute difference between the probabilities given by two 

choice heuristics. For example, if two heuristics 𝑎 and 𝑏 estimate probabilities 𝑃f.	and 𝑃i. 

of choosing alternative 𝑖 , then the difference is calculated as  |𝑃f.	– 	𝑃i.| . 

Figure 6-1 Behavioural difference of RUM and RRM, SS, and EBA 

Figure 6-1 shows that among the choice heuristics, the RRM choice mechanism differs least 

from RUM. Thus, we expect that RRM to be the choice heuristic with the least probability 

of balance with RUM. Conversely, SS and EBA present important behavioural differences 

from RUM. Note however, that because this analyses only one dimension of the information 

matrix, it is useful for generating hypotheses but cannot guarantee them. 
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We analysed each pair of choice heuristics separately according to the three degrees of 

identifiability. We also analysed separately the two proportions of choice heuristics and each 

of the correlation cases below.  

6.1.2.1. Analysis of the RUM and RRM case 

Analysis of identifiability 

Table 6-3 shows the results of the identifiability analysis for each of the 40 estimations 

among the four categories of correlation and proportions of choice heuristics in this case. 

When RUM dominates the sample, in most cases, RUM was the only choice heuristic 

identified with no balance between RUM and RRM in the models estimated. However, there 

were three cases where RUM was the main heuristic but RRM alone was identified. When 

positive correlation between the class membership function and the RUM’s sensitivities was 

introduced, surprisingly, the number of cases where RUM was identified increased from 8 

to 9. Therefore, in the overall no balance between RUM and RRM was detected. 

In the case that RRM dominated the sample, its identifiability increased although the RRM 

model was less identifiable than the RUM model when the latter dominated. When no 

correlation was present between the class membership function and the parameters of the 

RUM heuristic, RRM was identified in seven of the ten cases. Nevertheless, in a high 

proportion of the cases where RRM was identified, it was identified weakly, with a few 

parameters having extreme variance. When the correlation between the class membership 

function and the RUM heuristic was greater, the identifiability of the RRM increased; this 

may be as being due to increased difficulty in identifying the RUM class. 
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Table 6-3 Identifiability results of RUM and RRM models (number of cases) 

Correlation RUM dominates (70%) RRM dominates (70%) 

 0
D�

 identifies RUM only Í
D�

 identifies RUM only 

No correlation F
D�

 identifies RRM only Ì
D�

 identifies RRM only 

  Í
D�

 identifies weakly RRM only 

   
 No balance detected No balance detected 

   
 1

D�
 identifies RUM only Í

D�
 identifies RUM only 

Positive correlation D
D�

 identifies RRM only Ï
D�

 identifies RRM only 

  D
D�

 identifies RRM weakly only 

 

 

  
 No balance detected No balance detected 

 

Finally, we tested increasing the sample size to see if there was a point where both heuristics 

could be identified; particularly we tested 20 and 40 thousand samples in both proportions 

with no correlation. We were not able to detect any degree of coexistence of RUM and RRM 

in any of the 40 cases analysed.  

The results from the cases where either RUM dominates or RRM dominates are consistent: 

the balance or coexistence of RUM and RRM in the choice model is improbable in this 

dataset. However, the RUM mechanism seems to be more robust by being able to 

accommodate RRM individuals better than the RRM can accommodate RUM individuals, 

thus, imposing itself in the balance more frequently than RRM. Moreover, note that although 
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we used the 𝜇-RRM with the intention to increase the probability of detecting coexistence 

by increasing the behavioural difference of RRM and RUM, this was not effective. Then, 

for this kind of real discrete choice data, a model that includes both RRM and RUM is not 

suitable and should be avoided. 

Analysis of parameters 

The RRM-RUM models provide evidence of the degree of bias obtained when it is not 

possible to identify both choice heuristics present in the sample. The RRM-RUM model 

analysed here corresponds to the case where RUM dominates the sample without correlation 

between the probability of choosing a heuristic and the RUM’s parameters. This was found 

to be the most favourable pairing for the RUM heuristic as it is identified in most cases. 

Table 6-4 presents the mean of the estimators and the t-test statistic of the mean against the 

target value of the identified heuristic: the RUM column summarises the eight cases where 

the RUM heuristic was identified; whereas the RRM column summarises the two cases 

where the RRM was identified. No class membership function parameter is reported because 

no balance between the two choice heuristics was found in any of these cases. 

The results of Table 6-4 show that both estimated heuristics experienced a systematic bias 

in their parameters. Because we analysed the case where the RUM model dominates, the 

bias of the RUM heuristic is lower than that of the RRM heuristic –as expected. The bias in 

the RRM is shown by high t-test statistics for the estimates against their target values. Even 

though the biases of the RUM parameters are smaller, they remain statistically significant 

and substantial. 



149 

  

Table 6-4 Mean and t-test statistic against target value for RUM and RRM models 

Estimator RUM (t-test) 

 

RRM (t-test) 

 

Estimator RUM (t-test) 

 

RRM (t-test) 

 𝜇 - 0.76 (3.72) Cost -0.38 (-1.46) 0.07 (19.72) 

Vehicle Time -4.53 (1.61) 0.76 (7.11) Wait Time -17.98 (1.74) 3.18 (9.12) 

Walk Time -6.37 (0.45) 1.11 (11.51) ASC1 0.48 (-0.23) 0.10 (0.08) 

ASC2 0 (fixed) 0 (fixed) ASC3 0.10 (-0.04) 0.00 (-1.59) 

ASC4 0.81 (0.10) 0.14 (-1.01) ASC5 0.73 (0.48) 0.13 (-0.79) 

ASC6 0.61 (0.20) 0.11 (-0.86) ASC7 0.21 (0.09) 0.03 (-0.60) 

ASC8 0.29 (-0.09) 0.05 (-0.75) ASC9 0.42 (0.20) 0.06 (-1.07) 

 

Finally, we consider the 𝜇 estimator in the RRM model, which controls the profundity of 

regret in the model. Smaller values represent greater “regret” behaviour, which departs more 

from the RUM behaviour. The estimate of the 𝜇 parameter is 0.76, which is substantially 

greater than the value of 0.2 used in the simulation (𝑡 = 3.72). Therefore, the 𝜇 parameter 

adapts the RRM to represent an intermediate behaviour, which still corresponds to greater 

regret than the traditional RRM, which has an implicit 𝜇 parameter of 1. 

6.1.2.2. Analysis of the RUM and EBA case 

Analysis of identifiability 

Table 6-5 shows the results of estimating the latent class model with RUM and EBA as 

choice heuristics. The results suggest that a degree of balance was present in each of the 40 

experiments. However, when RUM dominated the sample, the balance was weaker than 

when EBA dominated. Moreover, the introduction of correlation into the experiments 
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decreased the identifiability of the balance both when RUM or EBA dominated. As expected, 

the model identified more readily the choice heuristic with greater proportion in the sample. 

Table 6-5 Identifiability results of RUM and EBA models 

Correlation RUM dominates (70%) EBA dominates (70%) 

 1
D�

 identifies RUM and EBA D�
D�

 identifies RUM and EBA 

No correlation D
D�

 identifies RUM and weakly EBA   

   
 Balance detected Balance detected 

   
 2

D�
 identifies RUM and EBA 1

D�
 identifies RUM and EBA 

Positive correlation Í
D�

 identifies RUM and weakly EBA  D
D�

 identifies EBA and weakly RUM  

   
 Balance detected Balance detected 

 

These results suggest that when RUM and EBA are present in the data, they could be 

identified simultaneously with high identifiability in most cases. This indicates that neither 

RUM nor EBA can represent the behaviour of the other choice heuristic. Therefore, if it is 

possible to detect (e.g. with a qualitative method) the presence of an EBA kind of behaviour, 

then it is advisable to adopt the multiple heuristic model as RUM is not able to accommodate 

the EBA behaviour effectively. 
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Analysis of parameters 

The EBA-RUM case presents the better indices of identifiability since in most cases it is 

strongly identifiable. Below, we analyse the less favourable case for the EBA heuristic. The 

EBA-RUM case analysed is the one where the RUM heuristic dominates with positive 

correlation between the RUM’s sensitivities and the class membership function. This case 

provides evidence of the worst performance of the EBA heuristic. Table 6-6 presents the 

mean of the estimators and the t-test statistic of the mean against the target values across the 

experiments. The table analyses the seven identified models (of the ten tested). 

Table 6-6 Mean of RUM parameter estimates and EBA log-weights together with t-test 

against target values 

Estimator 

 
  

RUM (t-test) 

 

EBA (t-test) 

 

Estimator RUM (t-test) EBA (t-test) 

Cost 1 -0.34 (-0.24) 2.18 (1.10) Cost difference/ 

Cost 2 

0.14 (0.07) 1.92 (0.74) 

Vehicle time -4.62 (0.83) 1.99 (0.79) Wait time -19.58 (0.25) 2.65 (0.85) 

Walk time -6.38 (0.28) 3.06 (1.11) ASC1 0.48 (-0.20) 0.72 (0.57) 

ASC2 0 (fixed) 0 (fixed) ASC 3 0.09 (-0.15) 0.16 (0.41) 

ASC 4 0.75 (-0.36) 0.79 (0.31) ASC 5 0.70 (-0.06) 0.63 (0.19) 

ASC 6 0.57 (-0.28) 0.78 (0.47) ASC 7 0.21 (0.11) 0.23 (0.12) 

ASC 8 0.28 (-0.17) 0.58 (0.71) ASC 9 0.40 (0.01) 0.59 (0.48) 

      
𝜃� 0.22 (0.94)  𝜃D 1.30 (-0.50)  
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All RUM parameters are unbiased with the greatest t statistic against the target value 

being 0.83. Thus, the RUM estimated parameters are not statistically different from their 

targets. The EBA parameters are also unbiased with the greater t statistic being 1.11. Note 

however, that this is the worst case for EBA in the EBA-RUM models. 

6.1.2.3. Analysis of the RUM and SS case 

Analysis of identifiability 

Table 6-7 shows the results of estimating SS and RUM jointly. When RUM dominated the 

sample, our procedure was always able to identify a RUM class. Moreover, the model 

exhibited a certain degree of balance where the SS class was also identified, albeit weakly, 

since some parameters had extreme variance. The introduction of higher correlation did not 

influence identifiability.  

When SS dominated the sample, a proper balance was detected. The model could identify, 

with reasonable variance, the estimators of the RUM heuristic, the SS heuristic, and the class 

membership function. When correlation was introduced, the degree of identifiability 

decreased, since one of the cases was no longer completely identifiable.  

The results of the SS and RUM case suggest that a balance is plausible; however, it depends 

on the proportion of the population that use each choice heuristic. When the greater 

proportion of DMs follows the RUM heuristic, incorporating the SS heuristic did not 

compensate for the loss of likelihood of the RUM individuals. Conversely, when the 

proportion of SS dominated, the better performance of the RUM individuals compensated 

for the decrease in likelihood of the SS individuals. Hence, a balance may be achieved when 
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SS individuals are more numerous than the RUM ones. In either case, the RUM appears as 

the most robust heuristic as it can be identified even in cases of low proportion in the sample. 

Table 6-7 Identifiability results of RUM and SS models (10,000 DMs) 

Correlation RUM dominates (70%) SS dominates (70%) 

 1
D�

 identifies RUM and weakly SS D�
D�

 identifies RUM and SS 

No correlation D
D�

 identifies weakly RUM and SS  

   
 Weak balance detected Balance detected 

   
 1

D�
 identifies RUM and weakly SS 1

D�
 identifies RUM and SS 

Positive correlation D
D�

 identifies weakly RUM only D
D�

 identifies RUM and weakly SS 

   
 Weak balance detected Balance detected 

 

Note that these results are specific for the present dataset; hence, if a dataset provides choice 

situation where SS differs more from RUM –and people behave following such heuristics– 

achieving balance would seem highly plausible.  

Given the degree of identifiability detected in this experiment, we explored two larger 

sample sizes: 20 and 40 thousand DMs; for each of them, we studied the same two 

proportions and correlation structure. We summarise the results in Table 6-8. 

 

 



154 

  

Table 6-8 Identifiability results of RUM and SS models (20 and 40 thousand DMs) 

Correlation RUM dominates (70%) SS dominates (70%) 

 20,000 decision makers  

 F
D�

 identifies RUM and SS D�
D�

 identifies RUM and SS 

No correlation 0
D�

 identifies RUM and weakly SS  

   
 Weak balance detected Balance detected 

   
Positive correlation D�

D�
 identifies RUM and weakly SS D�

D�
 identifies RUM and SS 

   
 Weak balance detected Balance detected 

 40,000 decision makers  

 1
D�

 identifies RUM and SS D�
D�

 identifies RUM and SS 

No correlation D
D�

 identifies RUM and weakly SS  

   
 Balance detected Balance detected 

   

Positive correlation D�
D�

 identifies RUM and SS D�
D�

 identifies RUM and SS 

   
 Balance detected Balance detected 

 

The results for the 20 thousand sample experiment achieve higher identifiability compared 

to the 10 thousand experiments. In both cases that RUM dominates the sample, the model 

can identify strongly the RUM and weakly SS; whereas in the case where SS dominates the 
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sample, the model always identifies both heuristics. The difference between the 20 and 10 

thousand experiments is that, for the 20 thousand experiments, in the RUM dominating case 

two models strongly identified both heuristics, whereas, in the SS dominating case no weakly 

identification was obtained. 

The 40 thousand experiment results strongly improved identifiability when compared to the 

20 and 10 thousand experiments. Even though the SS dominating case improved its results 

in terms of identifiability (as the standard deviation of the parameters tended to decrease), 

the main identifiability improvement was obtained in the RUM dominating case. The 

40 thousand sample was enough to achieve strong identifiability in almost all cases where 

RUM dominates the sample. Therefore, there is evidence to confirm the theoretical findings 

of Chapter 5, plausible increases in sample size increases identifiability; however, a 

non-dismissible increase might be needed. 

Finally, we tested whether the number of alternatives increases the behavioural difference 

between the two heuristics and, therefore, improves identifiability. We tested the SS and 

RUM in both heuristic proportions, with and without correlation, and ten thousand 

observations. The results are summarised in Table 6-9 and suggest that increasing the 

number of alternatives in the RUM-SS model decreases the identifiability of the heuristics. 

Even though the decrease is small, it is noticeable. A possible reason for this is that since the 

probability mass is distributed in more alternatives, the absolute difference of RUM and SS 

decreases; therefore, identifiability also decreases. 
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Table 6-9 Identifiability results of RUM and SS models with 10,000 DMs and 

7 alternatives per choice sets 

Correlation RUM dominates (70%) SS dominates (70%) 

 D�
D�

 identifies RUM and weakly SS D
D�

 identifies RUM and SS 

No correlation  1
D�

 identifies RUM and weakly SS 

   
 Weak balance detected Weak balance detected 

   
 0

D�
 identifies RUM and weakly SS D�

D�
 identifies RUM and weakly SS 

Positive correlation F
D�

 identifies RUM only  

   
 Weak balance detected Balance detected 

 

Analysis of parameters 

The SS-RUM case enables us to analyse how well the RUM can be estimated even when it 

is the lesser used heuristic. The SS-RUM data analysed here corresponds to the case where 

the SS dominates the sample and there is positive correlation between the class membership 

function and the RUM sensitivities. Among the SS-RUM cases, this is the least unfavourable 

case for RUM. It reveals the RUM’s performance in the worst case where it is identified. 

Table 6-10 presents the mean of the estimators and the mean of the t-test against the target 

values of the RUM parameters, SS parameters and class membership function parameters 

for the cases analysed. The table summarises the nine cases where both heuristics were 

identified.  
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Table 6-10 Mean and t-test against target values of RUM or SS estimation (10,000 DMs) 

Estimator RUM (t-test) 

 

SS (t-test) 

 

Estimator RUM (t-test) 

 

SS (t-test) 

 Cost sensitivity -0.29 (0.08) -6.31 (0.13) Cost difference/ 

Cost threshold 

0.09 (-0.32) 0.28 (0.15) 

Vehicle time 
sensitivity 

-4.69 (0.29) -11.70 (0.47) In-vehicle time 
threshold 

- 0.61 (0.25) 

Wait time / 
MRS veh-wait 

-22.29 (-0.51) 1.64 (0.50) Walk time /  

MRS veh-walk 

-6.65 (-0.20) 4.11 (0.36) 

ASC1 0.42 (-0.41) -0.83 (-0.08) ASC2 0 (fixed) 0 (fixed) 

ASC 3 0.05 (-0.32) -0.81 (0.49) ASC 4 0.91 (0.30) -0.63 (0.48) 

ASC 5 0.69 (-0.12) -0.75 (0.23) ASC 6 0.70 (0.35) -0.76 (0.19) 

ASC 7 0.13 (-0.21) -0.87 (0.25) ASC 8 0.41 (0.37) -0.78 (0.40) 

ASC 9 0.44 (0.09) -0.77 (0.39)    

      
𝜃� -0.02 (-0.12)  𝜃D -1.33 (0.46)  

 

With this pairing of heuristics, all model parameters were estimated with small and not 

statistically significant bias. Indeed, t-test against the target values of the model parameters 

were low, with the greatest value being 0.51. Even though the RUM heuristic was used in 

smaller proportion, the model could estimate the parameters accurately, including the 

difference between the cost sensitivity of DMs with and without the trait. As expected due 

to its high proportion in the synthetic sample, we could identify all parameters of the SS 

model. Even though the SS proportion is higher than that of the RUM (70% versus 30%), 

the bias of the parameters is comparable to that of the RUM. Finally, the class membership 

function is also estimated accurately.  
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When comparing the identifiability of parameters with the EBA-RUM case, the results 

suggest that the parameters of the SS-RUM case are more accurately estimated. Indeed, the 

RUM parameters, EBA versus SS parameters, and class membership function parameters 

where better estimated in the SS-RUM case. 

6.2. Empirical Identifiability of Three Heuristics Model 

 

Chapter 5 provided evidence about the phenomenon behind the identifiability of multiple 

heuristic models. The findings for two heuristics is readily interpretable, yet, they also apply 

to the multiple heuristic case, as shown in Chapter 5.2. Then, Chapter 6.1 provided us with 

a deep understanding of the dynamics of different heuristics and the factors affecting the 

identifiability of choice heuristics. In this section, we show an application to a three heuristic 

case. 

6.2.1. Experimental design 

 

The objective here was showing a case where identifiability is successfully obtained in a 

three heuristics case. To achieve it, we selected the heuristics that exhibited higher degree 

of identifiability in conjunction with RUM: SS and EBA.  

Following the same structure as in the two heuristics case, we simulated a synthetic 

population choosing from the dataset of the Las Condes – CBD, San Miguel – CBD 
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experiment. All choice sets considered three alternatives and sample sizes of 20,000 and 

40,000 observations.  

We chose only one proportion of heuristics in the sample. As SS had the worst identifiability 

among the three heuristics, the experiment was designed to have a higher proportion of it. 

Thus, the synthetic population was designed to choose SS with a 40% probability and with 

a probability of 30% for both RUM and EBA.  

With the objective of generating a non-constant class membership function, we introduced 

a socio-demographic characteristic that affected the probability of choosing each heuristic. 

DMs had this trait (𝑧 = 1) with a probability of 70%. The probability of using each choice 

heuristic conditional on the trait was given by the inverse Logit function14 (6.3) which has 

as input the function shown in (6.2). The parameters are given in Table 6-11. 

𝑊É = 𝜃�,É + 𝜃D,É · 𝑧 (6.2) 

𝜋É =
exp(𝑊É)

∑ expy𝑊\z\∈Ê
 (6.3) 

                                                

14 Even though the inverse Logit function is equivalent to a MNL model, we explicitly avoid referring to the 

class membership function as a logit model, because we do not interpret it under maximum utility theory. We 

avoid employing maximum utility theory due to the presence of non-utility maximiser classes. 
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Table 6-11 Three heuristic class membership function 

 RUM EBA SS 

𝜃� 0 0.581 -0.674 

𝜃D 0 -1.000 1.200 

 

The conditional probability of choosing each heuristic is giving in Table 6-12. The results 

of it are obtained by applying (6.3) with parameters given in Table 6-11.  

 

Table 6-12 Conditional probability of choosing each heuristic in the three heuristics 

experiment 

 RUM EBA SS 

With trait 29.9% 19.6% 50.5% 

Without trait 30.3% 54.2% 15.5% 

 

Regarding the sensitivities for the attributes of each heuristic, we used the same values used 

for the two heuristics’ experiment in Section 6.1 (Table 6-2). Nonetheless, we simulated no 

correlation between the probability of choosing a heuristic and the individual sensitivity for 

attributes, since the degree of correlation simulated was not shown as a crucial element. 
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6.2.2. Analysis of results 

 

Table 6-13 presents the identifiability of the three heuristics case for the 20 estimations. 

Although the results are consistent with the two heuristics experiment, they are not directly 

comparable. This is because in the two heuristics case, in one scenario the SS heuristic was 

clearly dominant, whilst in the other it was in a lower proportion; but in this case, the SS 

heuristic is slightly dominant in the sample. Results suggests that the sample of 20 thousand 

DMs has a size for which the model is transitioning from non-identifiable to identifiable. In 

40% of the cases, the model was completely identified and in one case only SS was identified 

alone. Regarding the RUM and EBA heuristics, they were successfully identified in most 

cases. The four parameters that determine the class membership function were also identified 

in nine of the ten cases. 

Table 6-13 Identifiability of the three heuristics case 

Sample size RUM identifiability EBA identifiability SS identifiability 

 1
D�

 identified 1
D�

 identified Î
D�

 identified 

20,000   Î
D�

 weakly identified 

 D
D�

 no identification 

identified 

D
D�

 no identification  

    
 Weak balance detected 

    
40,000 D�

D�
 identified D�

D�
 identified D�

D�
 identified 

 

 

   
 Balance detected 

No balance detected 
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The 40 thousand sample is consistent with the two heuristics case: all heuristics are 

identified. This case shows that even though the model consumes numerous degrees of 

freedom (39 in total), it can identify all parameters. Moreover, note that the model could 

identify the different heuristics sensitivities based only in the different way individuals 

integrate the attributes in their decision heuristics. This demonstrates that it is possible to 

identify heuristics without confounding attribute sensitivity with attribute processing. 

We present the results of several estimations of the RUM, EBA, and SS heuristics 

respectively. We show the mean estimator and t-test statistic of the mean against the target 

value. First, we show cases where weak or no identifiability was achieved for the 20 

thousand estimations. Then, we show results with strong identification for the 20 and 40 

thousand samples respectively. In some cases, only a single model falls in the category of 

non-identified; whereas in most cases, several models fall in their respective category.  

In the case where more than one experiment had available results (with a maximum of ten), 

we calculated the mean of the estimators and the standard deviation of such mean from which 

the t-test is calculated. Therefore, the interpretation of the t-tests is different: in the former 

case with one estimation, we analyse if the confidence interval of the parameter contains the 

target estimate; whilst in the latter with several estimations, we analyse if the confidence 

interval of the mean of the parameter contains the target estimate. 

Table 6-14 shows the RUM estimation in each of the twenty models. The single case where 

RUM was not identified is shown first. This estimation is characterized by large standard 
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deviation15, justifying relatively small t-tests (up to 3.80) compared to the magnitude of the 

bias and serves as an example of the magnitude of bias obtained in an unidentified heuristic. 

 

Table 6-14 Estimation results for RUM in the RUM-EBA-SS model 

 20 thousand observations 40 thousand observations 

 Non identified cases Identified cases All cases identified 

Cost 5.11 (1.51) -0.42 (-0.45) -0.49 (-2.71) 

In-vehicle time -31.13 (-2.35) -5.33 (-0.37) -5.10 (-0.15) 

Waiting time -141.38 (-3.03) -16.08 (1.00) -18.71 (0.51) 

Walk time 6.05 (0.70) -7.00 (-0.49) -6.71 (-0.35) 

ASC1 6.27 (2.37) 0.18 (-1.62) 0.43 (-0.40) 

ASC2 0 0 0 

ASC3 0.63 (0.24) -0.08 (-0.60) 0.07 (-0.32) 

ASC4 -1.11 (-0.36) 0.44 (-0.91) 0.70 (-0.40) 

ASC5 4.89 (2.02) 0.55 (-0.94) 0.68 (-0.12) 

ASC6 1.67 (0.22) 0.28 (-1.00) 0.59 (-0.05) 

ASC7 -1.58 (-0.34) -0.04 (-1.00) 0.13 (-0.50) 

ASC8 2.67 (0.86) 0.07 (-0.68) 0.26 (-0.20) 

ASC9 7.32 (3.80) 0.05 (-1.32) 0.42 (-0.10) 

                                                

15 Recall that in a t-test, the higher the standard deviation, the smaller the t-test value. Therefore, even if the 

bias of a parameter is large, it may be statistically non-different from the target due to even larger variance. 



164 

  

In the identified cases, either in the 20 thousand or 40 thousand estimations, most of the 

means of the estimates are within the 95% confidence interval (the critical value of a t-

student with 9 degrees of freedom is 2.26). In the case of the 40 thousand estimations only 

the cost parameter presents a high bias, which is coincident with the bias in the SS heuristic 

presented later; we will look at this in more depth in the SS heuristic analysis. 

In the case of the EBA heuristic, presented in Table 6-15, the non-identified heuristic 

presents heavy biases as expected.  In the nineteen identified cases, the model correctly 

identifies the target parameter. Indeed, no t-test statistic is even close to unity, which shows 

the accuracy of the estimation. 

The case of the SS heuristic, presented in Table 6.16, is consistent with the two heuristics 

case presented before. The non-identified cases show high bias as expected, while most of 

the parameters in the identified cases show small and non-significant bias. In this case, the 

only parameters with non-dismissible bias in the identified estimation are associated with 

the cost attribute. This is consistent with the bias in the RUM model; we interpret that there 

could be a confounding, where these models might be capturing variations in cost tastes (or 

cost sensitivity) rather than only a different heuristic. 
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Table 6-15 Estimation results for EBA in the RUM-EBA-SS model 

 20 thousand observations 40 thousand observations 

 Non identified cases Identified cases All cases identified 

Cost 0.42 (-4.53) 1.59 (0.48) 1.28 (-0.45) 

Cost 2 0.45 (-3.84) 1.56 (0.30) 1.38 (-0.02) 

In-vehicle time 0.53 (-4.04) 1.61 (0.43) 1.33 (-0.26) 

Waiting time 1.38 (-3.48) 2.36 (0.49) 2.09 (0.05) 

Waiting time 1.32 (-5.55) 2.49 (0.41) 2.23 (-0.34) 

ASC1 0.53 (-2.57) 0.61 (0.59) 0.44 (0.17) 

ASC2 0 0 0 

ASC3 0.04 (-0.30) 0.02 (-0.17) 0.06 (-0.19) 

ASC4 0.30 (-1.53) 0.82 (0.56) 0.61 (0.14) 

ASC5 0.08 (-2.99) 0.66 (0.43) 0.52 (-0.07) 

ASC6 0.09 (-1.97) 0.63 (0.45) 0.38 (-0.53) 

ASC7 -0.42 (-3.30) 0.33 (0.54) 0.25 (0.38) 

ASC8 -0.16 (-2.44) 0.27 (0.02) 0.18 (-0.50) 

ASC9 -0.14 (-2.94) 0.47 (0.51) 0.28 (-0.34) 
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Table 6-16 Estimation results for SS in the RUM-EBA-SS model 

 20 thousand observations 40 thousand observations 

 Non identified cases Identified cases All cases identified 

Cost -10.96 (-4.53) -9.57 (-2.49) -10.13 (-6.27) 

Cost threshold 0.39 (2.33) 0.43 (16.6) 0.44 (9.25) 

In-vehicle time -12.72 (-0.78) -11.5 (0.45) -12.29 (-0.42) 

MRS waiting time 4.32 (0.81) 3.91 (-0.43) 4.02 (0.17) 

MRS walking time 2.02 (1.63) 1.59 (0.59) 1.58 (0.39) 

Time threshold 0.61 (0.39) 0.57 (-0.93) 0.61 (0.45) 

ASC1 1.18 (1.27) -0.64 (0.69) -0.67 (0.45) 

ASC2 (fixed) 0 0 0 

ASC3 2.22 (1.27) -0.77 (1.04) -0.87 (0.42) 

ASC4 1.53 (1.80) -0.59 (1.23) -0.71 (0.36) 

ASC5 -0.46 (0.86) -0.53 (1.69) -0.77 (0.14) 

ASC6 1.59 (1.42) -0.32 (1.25) -0.74 (0.34) 

ASC7 -0.25 (1.19) -0.68 (3.67) -0.88 (0.25) 

ASC8 3.02 (1.59) -0.55 (0.96) -0.80 (0.35) 

ASC9 2.66 (1.74) -0.41 (1.25) -0.81 (0.26) 
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6.3. Conclusions of the Analysis of Empirical Identifiability 

 

At the start of this Chapter, the link between the theoretical and empirical approaches was a 

graphical analysis exposing the difference in choice heuristics (Figure 6-1). Indeed, in our 

mode choice context, Random Utility Maximisation (RUM) did not differ much from 

Random Regret Minimization (RRM). However, RUM exhibited an important behavioural 

difference from both the Stochastic Satisficing (SS) and Elimination by Aspects (EBA) 

heuristics. This analysis was confirmed by our model estimation using synthetic data, 

confirming the theoretical findings in Chapter 5 and validating this simple diagnosis test. 

Therefore, a worthwhile strategy could be to analyse the heuristics before estimating a 

combined model, and this can be undertaken using the straightforward diagnostic analysis 

presented here. This way, with some testing parameters, the modeller can examine if the 

choice sets are sufficiently rich in their choice behaviour to estimate the desired heuristics. 

When tested using realistic mode choice scenarios, the RUM heuristic was found to be the 

most robust. RUM was identified, even when its proportion in the population was smaller 

than that of the other heuristics.  Indeed, the RUM heuristic frequently outperformed the 

RRM heuristic without generating a balance even when RRM was dominant. Therefore, in 

this specific context, RUM performs well when interpreting RRM results. When the RUM 

heuristic was tested together with either the SS or EBA, the most frequent output was found 

to be a balance between the two heuristics; with greater frequency of coexistence when either 

the SS or the EBA were dominant. This suggests that RUM does not interpret adequately SS 
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or EBA behaviour, but it is only appropriate to include them as second heuristics when their 

proportions are substantial. 

We also tested a scenario with three choices. Our findings indicate that it is possible to 

identify highly explanatory class membership functions even in the case of three heuristics. 

However, identifiability is not straightforward, even in the case tested where the choice 

heuristics propitiated identifiability. Therefore, if another less propitious context is faced, a 

sample size much larger than forty thousand observations might be needed to identify 

heuristics only based on their different behaviour when interpreting the attributes.  

Among the meta-dimensions tested in the experiment, the most important ones were the type 

of heuristic, the sample size, and the proportion associated with each heuristic in the sample. 

Conversely, the degree of correlation tested and the size of the choice set had a smaller 

impact. 

The experiments presented here show that, in principle, it is possible to estimate 

sophisticated class membership functions and choice heuristics simultaneously. The model 

remains identifiable even if some variables affect both the class membership function and 

heuristic sensitivities. Nevertheless, it is necessary to formulate both expressions 

appropriately, which is not always straightforward.  

In this analysis several possible influences on the identifiability of different choice heuristics 

were considered. First, the choice heuristics simulated considered the same variables 

influencing the decision processes. Accordingly, the identifiability detected was due to 

different underlying choice behaviour rather than different influential variables. If the real 
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generation process includes different heuristics and different variables within the heuristics, 

then we expect the combination of choice heuristics to be more readily identifiable. The 

second consideration includes the parameters associated with the influential variables of the 

experiment. We chose parameters so that the model would be readily identifiable, noting 

that greater values of alternative specific constants would decrease the identifiability of the 

heuristics.  

Finally, recall that the empirical analysis was made for a specific context and with limited 

number of alternatives. Our analysis of a mode choice example in transport suggests that the 

data does not contain sufficient richness to identify RUM and RRM simultaneously, but it is 

rich enough to identify RUM simultaneously with either SS or EBA. However, other 

contexts may exploit the behavioural difference between RUM and RRM. Therefore, further 

analysis should be performed to explore the relationship between choice heuristics more 

fully. 

6.4. Publication History 

 

A first version of this chapter was presented at a seminar in the United Kingdom. Later, it 

was presented in the 18th Chilean Transport Engineering Conference (Gonzalez-Valdes et 

al., 2017). Most of this chapter is currently under review for publication in the journal 

Transportation Research Part B: Methodological (Gonzalez-Valdes et al., 2018). The 

seven-choice set case for SS, the 20 and 40 thousand estimation results and analysis for SS 

and RRM, and the three heuristics case remain unpublished. 
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7. IDENTIFYING THE PRESENCE OF HETEROGENEOUS DISCRETE 
CHOICE HEURISTICS AT AN INDIVIDUAL LEVEL 

 

Through Chapters 5 and 6 we have used latent classes (LC) throughout. The LC model has 

two decision levels: in the first, the class membership level, the choice heuristic followed by 

the individuals is modelled. In the second, the choice level, the preferences for alternatives 

are modelled conditional on the choice heuristic followed. Even though we have addressed 

the complete model in Chapters 5 and 6, the focus has been in the choice level. In Chapter 5 

we have shown the conditions that enable identifying LC multiple heuristics models. In 

Chapter 6, we studied the conditions that enhance the possibility of identifying the several 

heuristics involved. In this chapter we focus on the class membership level and how its 

modelling at an individual level gives further insights into the population behaviour, 

allowing to solve several problems.  

Still, there are several challenges that must be addressed when using a LC framework to 

model multiple choice heuristics: i) class membership is hard to model, ii) both LC levels 

must be modelled simultaneously, and iii) there is no certainty that the considered choice 

heuristics are actually present within the population.  

Class membership is usually modelled using the inverse Logit function. As addressed in 

Section 2.4, the most frequent formulations assume that all individuals in the population 

have the same probability of following a specific choice heuristic. This simple formulation 

is unfortunately necessary, since more general and informative formulations have been 
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found to be unidentifiable in practice. To the best of our knowledge, only two studies have 

been reported where a non-constant population-wide class membership function has been 

estimated (Leong and Hensher, 2012b; Hess and Stathopoulos, 2013). Leong and Hensher 

(2012b) work with a class of RUM and another of RRM individuals. In their experiment, 

some parameters of the RUM and the RRM class had to be fixed (as one equal to minus the 

other) for the model to be identifiable. Hess and Stathopoulos (2013) also worked with RUM 

and RRM; in their experiment, they had to use latent variables to explain the class 

membership function and choices to estimate the heuristics' parameters, otherwise, 

identifiability could not be obtained just from the choices of the individuals. Therefore, 

identifying heuristics and class membership function simultaneously is not straightforward. 

Modelling the class membership level and the choice level simultaneously has further 

complications apart from identifiability. If modelling DMs choices following a single choice 

heuristic is challenging (as it has been a research topic for decades), modelling their choices 

through multiple choice heuristics is even harder, since each of them must be modelled. 

Moreover, as additionally a class membership level needs to be modelled, the complexity of 

the model increases even more. This issue is further complicated by the interaction between 

the two levels, since modifying one of them affects the other. 

Selecting the choice heuristics to be considered is also a significant challenge. Even though 

in practice RUM models are the most popular alternative, there are numerous alternative 

choice heuristics to model individuals' behaviour. Ideally, a large number of choice 

heuristics could be considered, and a LC model would indicate if a given heuristic is present 
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or not in the population by assigning a low probability to it. However, in practice, LC models 

have identifiability problems even when simply modelling two classes. Therefore, a limited 

number of choice heuristics must be properly selected beforehand, or different combinations 

of heuristics can be tested. 

It is important to consider that these three challenges interact with each other. The LC model 

could be used to test the presence or absence of a particular choice heuristic within a 

population. However, if the model results indicate the absence of a heuristic, this could be 

due to an erroneous class membership function, to a misspecification of the choice heuristic 

itself in the choice level, or to its real absence. 

We propose a model that addresses the three challenges of the LC approach. The Mixed 

Heuristic Model (MHM), can help identify the presence of choice heuristics by giving higher 

flexibility to the class membership function. This flexibility is given by a random variable 

that allows to capture heterogeneity in decision rules. This heterogeneity is confirmed by 

analysing the class membership probability at an individual level. 

7.1. The Mixed Heuristics Model 

 

When applying LC models to the context of multiple choice heuristics, each class represents 

an independent heuristic. This way, the probability of individual 𝑞 ∈ 	𝑄 choosing alternative 

𝑖, 𝑃K. has two components. The first is the probability of individual 𝑞 following choice 

heuristic ℎ ∈ 𝐻, defined by the class membership function 𝜋K,É. The second is the 
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probability of individual 𝑞 choosing alternative 𝑖 conditional on following choice heuristic 

ℎ, 𝑃K,.(ℎ). Then, the probability of individual 𝑞 choosing alternative 𝑖 (𝑃K,.) is given by the 

total probability presented in (7.1). 

𝑃K,. = 6 𝑃K,.(ℎ)
É∈Ê

· 𝜋K,É (7.1) 

In (7.1), the functional form of 𝑃K,.(ℎ) depends on the specific choice heuristic ℎ. For 

example, if the classic RUM model is one of the considered heuristics, then its probability 

𝑃K,.(ℎ) is given by the well-known ratio of the exponential of the utility functions. 

The probability of individual 𝑞 following choice heuristic ℎ, 𝜋K,É, is typically given by the 

inverse Logit function (7.2). To explain the fact that different individuals may follow 

different choice heuristics, this probability takes as an input a 𝛾K,É function that varies across 

heuristics and individuals. 

𝜋K,É =
expy𝛾K,Éz
∑ 𝛾K,Éx∈Ê

 (7.2) 

The main difference between the current approach to model heterogeneous discrete choice 

heuristics and the proposed MHM lies in the specification of the	𝛾K,É function. This new 

functional form handles the three challenges discussed previously and presented below. 
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7.1.1. The current approach 

 

The 𝛾K,É function may include variables such as socio-demographic characteristics, 

experimental conditions, or latent traits. Let 𝑟 be the set of such variables and 𝜃� the DMs' 

sensitivities to such variables. The 𝛾K,É function could be a linear expression of the variables 

and their sensitivities, as shown in (7.3). However, the most traditional structure includes 

only the constant 𝜃x terms (Araña et al., 2008; Hess et al., 2012; Adamowicz and Swait, 

2013). 

𝛾K,É = 𝜃É +6𝜃�
�

· 𝑥K,� (7.3) 

7.1.2. The proposed approach and its advantages 

 

The MHM gives complete flexibility to the 𝛾K,É function by treating class membership as a 

random variable (7.4): 

𝛾K,É~𝑁(𝜇K,É, 𝜎) (7.4) 

Like any mixed model, from the MHM we may compute the density functions of the class 

membership probabilities at an individual level by conditioning the population distribution 

on the DMs' choices. By exploiting this feature, this flexible 𝛾 function can be adapted to 

represent different phenomena. The simpler case is when the same individual follows the 
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same choice heuristic across different choice situations. This case is obtained by 

simultaneously conditioning class membership on all the choices of the individual. The 

function could be also adapted so that the same individual can follow different choice 

heuristics in each choice situation. This case is obtained by independently conditioning the 

class membership on each of the choices of the individual. 

In principle, any probability distribution could be used and in this research we consider a 

Normal distribution. The model estimates the mean of the distribution and its variance. The 

mean explains the overall proportions of the choice heuristics in the population and the 

variance adjusts the heuristic selection to the heterogeneity across individuals. 

The MHM structure addresses the three challenges previously mentioned as follows: 

× The variance of the random 𝛾K,É function handles the modelling of the class 

membership level, without the need to propose a specification of explanatory 

variables such as (7.3). 

× By giving higher flexibility to the class membership level, the MHM focuses on 

modelling the choice level. This avoids the challenge of modelling the class 

membership level and the choice level simultaneously. 

× By conditioning the population class membership distribution on the DMs' choices, 

we compute their probabilities of using each heuristic. This way, it is possible to 

analyse whether a choice heuristic is followed by an individual with a non-negligible 

probability. 



176 

  

7.2. Testing the Mixed Heuristics Model with Synthetic Data 

 

In this section we apply the MHM to a synthetic database to test the accuracy of the MHM 

in terms of identifying the individual probabilities of following a given choice heuristic. For 

the different scenarios considered we analyse the impact of: i) the sample size and ii) the 

number of observations per individual on the accuracy of the MHM. 

The analysis is as follows. First, simulated choice sets are obtained from a real dataset. Then, 

choices of fictitious individuals are simulated according to one of the two choice heuristics. 

Later, the MHM is estimated. Finally, we analyse the probability that the model assigns, at 

an individual level, to the choice heuristic actually followed. 

7.2.1. Experimental design 

 

We use the Las Condes – CBD, San Miguel – CBD dataset detailed in Section 3.1; however, 

we do not restrict the choice set size, as it was not shown in Chapter 6 as a key element of 

identifiability. We considered total sample sizes of 1,000 and 5,000 observations. 

Regarding the synthetic population, we considered that DMs face 1, 10, and 25 choice 

scenarios; each choice scenario is decided with the same heuristic. To avoid the issue of 

identifiability, we consider that DMs choose under the two heuristics with higher 

identifiability shown in Chapter 6: RUM and EBA. 
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Once more, we introduced a socio-demographic characteristic 𝑧 for each simulated 

individual, simply named trait. This variable has, again, 70% probability of being present 

in the population. Conditional on trait, DMs’ probabilities of following RUM or EBA is 

obtained accordingly to Table 7-1. This results in an overall 51% probability of following 

RUM.  

Table 7-1 Heuristic proportions in the simulated experiment 

 RUM EBA 

With trait 60% 40% 

Without trait 30% 70% 

 

Once the choice heuristic is defined, the individual chooses accordingly. The target 

parameters for both heuristics are presented in Table 7-2. Note that the alternative specific 

constants (ASC) are relatively low –in contrast to the attributes– to highlight the heuristic's 

behaviour rather than the preferences toward the alternatives themselves. In fact, when the 

ASC importance dominates other attributes, the different choice heuristics might not be 

identified since any of them could be able to recover the observed market shares. 

The RUM heuristic has a linear utility function on the monetary and temporal attributes. The 

EBA choice heuristic is defined by weights (which are estimated) and thresholds (which are 

imposed). Two thresholds for the cost (60 and 100 CLP) and one for the travel time (15 min), 

walking time (8 min) and waiting time (5 min) are considered. 
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Table 7-2 Simulation parameters for the synthetic population 

Parameter EBA weight RUM value Parameter EBA weight RUM value 

Cost 1 2.08 -0.50 ASC 3 0.10 0.10 

Cost 2 3.00 - ASC 4 0.59 0.80 

In-vehicle time 2.08 -5.00 ASC 5 0.53 0.70 

Waiting time 2.77 -20.00 ASC 6 0.47 0.60 

Walking time 3.33 -6.5 ASC 7 0.18 0.20 

ASC1 0.41 -0.50 ASC 8 0.26 0.30 

ASC2 (fixed) 0 0 ASC 9 0.34 0.40 
 

We estimate a MHM and a LC model using Bayesian estimation with the JAGS package for 

R software. To sample the joint posterior distribution of the parameters, we used Gibbs 

sampling. In our study, 5,000 burn-in samples were needed to reach the stationary state of 

the Markov Chain. Finally, additional to the burn-in samples, 10,000 samples were analysed 

with a thinning parameter of two. The specification of the model was divided into the two 

aforementioned levels: class membership level and choice level. For the former, the MHM 

considers the random specification of (7.4), whilst, the LC considers a constant population-

wide. Therefore –and because it is hard to model–, the real specification with the trait is not 

estimated in either case. For the choice level, in both cases the real underlying choice 

heuristics is estimated. The 𝛾's mean and the choice heuristics parameters prior follow a flat 

Normal distribution with mean zero and standard deviation 100. The 𝛾 standard deviation 

has a uniform prior between zero and three. 
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7.2.2. Analysis of results of the synthetic data experiment 
 

Results are analysed in two ways. First, we show how the model can identify the choice 

heuristic that each individual follows a posteriori and compare this with the a posteriori 

performance of the LC approach. Then, we present how the MHM recovers the target 

parameters of each choice heuristic. 

To analyse the identification of choice heuristics at an individual level, two dimensions were 

considered: the total sample size (either 1,000 or 5,000 total observations) and the number 

of observations per individual (either 1, 10 or 25). As we know which heuristic RUM or 

EBA– was followed by each simulated individual, we can compute the posterior probability 

of each individual following their actual choice heuristic.  The posterior probability for both 

the LC and MHM models was calculated using (7.5). In the case of the MHM model, the 

population distribution of the heuristic is conditioned in the choices of the individual. In the 

case of the LC model, the constant probability of choosing a heuristic is the prior of the 

individual probability of using a specific heuristic. In both cases, once the heuristic is chosen 

(which is constant for all choices of the same individual) the individual’s choices are 

independent from each other. Therefore, the calculation of Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑠|ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐) is 

straightforward; under independence, the probability of all choices is just the product of the 

probabilities of each choice. 

Pr(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐|𝑐ℎ𝑜𝑖𝑐𝑒) =
Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑠|ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)Pr(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)

∑ Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑠|ℎ)Pr(ℎ)É∈Ê
 (7.5) 
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Table 7-3 presents the average choice heuristic success probabilities (i.e. the average 

probabilities of choosing the correct heuristic) and their standard deviation for the traditional 

LC approach and the proposed MHM. For the MHM the quintiles of these probabilities are 

also provided. 

Table 7-3 LC and HMH success in identifying the chosen heuristic 

Choices per 
individual Heuristic LC Success 

Prob% (sd) 
MHM Success 

Prob% (sd) 
MHM Success Probability 

Quantiles 

 Sample size = 1,000 responses  

25 
RUM 28.8 (42.7) 88.0 (9.1) [81.5, 88.6, 92.0, 94.3] 

EBA 82.1 (33.0) 73.7 (17.4) [62.3, 71.5, 80.9, 86.5] 

10 
RUM 44.8 (49.3) 75.7 (9.7) [71.5, 75.9, 78.9, 81.5] 

EBA 59.9 (49.6) 53.3 (17.2) [36.9, 47.8, 58.0, 68.2] 

1 
RUM 44.5 (38.1) 41.0 (7.1) [35.1, 39.4, 43.6, 47.0] 

EBA 63.6 (32.5) 62.2 (6.7) [56.1, 61.0, 63.7, 68.7] 

 Sample size = 5,000 responses  

25 
RUM 85.9 (25.5) 90.5 (10.5) [87.4, 92.9, 95.3, 96.7] 

EBA 74.0 (21.4) 87.9 (13.4) [81.7, 91.0, 94.3, 96.2] 

10 
RUM 83.9 (4.8) 83.4 (18.3) [75.7, 88.2, 92.7, 95.0] 

EBA 82.4 (4.4) 76.0 (22.6) [59.1, 80.4, 89.3, 93.3] 

1 
RUM 57.4 (5.9) 51.0 (9.0) [42.5, 47.3, 53.3, 60.2] 

EBA 56.5 (7.3) 55.1 (7.7) [48.8, 54.3, 57.9, 61.6] 
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For the MHM, as expected, as the sample size increases the predicted choice heuristic 

success probability also increases. As the number of observations per individual increases, 

the predicted choice heuristics success increases significantly. This higher success is 

obtained because the MHM has more information, as in the simulation each individual 

follows the same heuristic across choices. Regarding the success of each heuristic, EBA has 

a higher success than RUM when there is only one response per individual, but it is 

outperformed by RUM as the number of observations per individual increase. 

For the traditional LC approach, there is no clear tendency for the performance as either the 

sample size or the number of choices per individual increases. At an individual level, the 

estimation results indicate that in most cases only one of the heuristics is present a posteriori. 

The favoured heuristic is not the same across the different simulations; therefore, the success 

probability exhibits high standard deviation (similar to a Bernoulli process). The unbalance 

of the heuristics –recall Chapter 6– implies that only one is identified. Then, the model 

always guesses for the individuals choosing the identified heuristic; whereas for the others, 

the LC model never identifies the chosen heuristic. These results suggest that the LC 

approach, at least when the class membership function is constant, does not achieve the 

objective of identifying the presence of choice heuristics consistently. In contrast, the MHM 

can identify the presence of different choice heuristics and infer, with high probability when 

the individual chooses several times, the heuristic actually followed by the individual. 

Moreover, the overall variance of the success, considering the aggregate standard deviation 

of the success probability of RUM and EBA, is smaller in most cases for the MHM compared 

with the LC model. 
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The best average case is achieved with total sample size of 5,000 and 25 responses per 

individual, where the MHM can identify the heuristic used by each individual with an 

accuracy around 90% for both heuristics (while the traditional LC approach has nine points 

less of accuracy and double the standard deviation). Furthermore, the quintiles show an 

accuracy of over 90% for at least four of the five quintiles. For this best case, the model can 

recover the RUM parameters with high accuracy and the EBA parameters with only slight 

bias. Model parameters and the t-value against target values are presented in Table 7-4. Even 

though these results are satisfactory, they must be considered with prudence, since an 

individual being consistent through 25 choice scenarios might not be realistic. Nevertheless, 

these results validate the capabilities of the MHM in terms of identifying both the considered 

choice heuristics and the parameters that define the decision making process. 

Table 7-4 Average estimation bias for the best MHM case: 5,000 total sample with 25 

observations per individual 

Parameter EBA weight RUM value Parameter EBA weight RUM value 

Cost 1 2.36 (1.25) - 0.43 (0.53) ASC 3 0.14 (0.19) 0.15 (0.41) 

Cost 2 4.00 (1.93) - ASC 4 0.61 (0.00) 0.80 (0.02) 

In-vehicle 
time 

2.43 (1.81) -5.22 (0.35) ASC 5 0.62 (0.57) 0.69 (0.10) 

Waiting time 3.12 (0.33) -22.42 (0.94) ASC 6 0.55 (0.45) 0.66 (0.40) 

Walking time 3.78 (2.29) -6.06 (0.76) ASC 7 0.30 (0.68) 0.19 (0.03) 

ASC1 0.23 (1.03) 0.53 (0.23) ASC 8 0.38 (0.62) 0.36 (0.35) 

ASC2 (fixed) 0 (fixed) 0 (fixed) ASC 9 0.42 (0.39) 0.50 (0.57) 
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7.3. Searching for Heterogeneous Choice Heuristics in an Air Travel Context 

 

In real choice experiments, the underlying choice heuristics are unknown and therefore 

identifying (and then modelling) them is not always straightforward. We use the MHM to 

analyse if a non-RUM choice heuristic can be detected on the Singapore air travel survey. 

Air travel is an attractive market to test the presence of non-RUM choice heuristics since, to 

the best of our knowledge, only RUM have been reported in the literature (Chin, 2002; Adler 

et al., 2005; Bekhor and Freund-Feinstein, 2006; Theis et al., 2006; van Eggermond, 2007; 

Carrier, 2008; Wen and Lai, 2010; Rezaei et al., 2011; Drabas and Wu, 2013). Another 

attractive feature of air travel is how consumers generally access to a set of alternatives from 

which to choose: using search engines or inspecting directly on the airlines' website. In this 

section, we check whether people using search engines may follow different choice heuristic. 

We start by describing the experiment and briefly recalling the database. Then, we analyse 

several possible choice heuristics that could be present in the sample. Finally, we discuss the 

conclusions of this empirical experiment. 

7.3.1. Experiment design and estimation 

 

We analyse DMs choosing from the Singapore air travel dataset detailed in Section 3.2. The 

two approaches for modelling heterogeneous choice heuristics, described in Section 7.1, are 

tested for this database. First, the traditional LC approach is used to analyse the behaviour 
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at a population level. Then, the MHM is estimated to characterise DMs individually. Finally, 

we compare the models’ results and extract the conclusions. 

Five choice heuristics were individually tested as alternatives to RUM: EBA, two-stage 

EBA-RUM (detailed in Subsection 2.2.7), RRM, and SS. As this section does not have the 

objective of characterizing the population deeply, but rather analysing the possible presence 

of alternative choice heuristic, only simple and robust specifications of each heuristic are 

considered.  

The RUM choice heuristic has a linear and additive structure and considers fare, flying time, 

and stop time. Even though individuals were given the airline name, given the number of 

airlines, no alternative specific constants were estimated for them. 

The EBA choice heuristic considers the number of stops, fare, and if the carrier is regular or 

low-cost. As in EBA models all aspects are desirable, an alternative has the first aspect if the 

flight has no stops. The alternative has the second aspect if the fare is not much higher than 

the cheapest alternative (two thresholds were set at 13% and 65% price difference with the 

cheapest alternative). Finally, the alternative has the last aspect if it is a regular carrier. 

In the two-stage EBA-RUM, two types of models were estimated; the first screens 

alternatives with high fare (EBA-RUM fare), while the other screens alternatives with stops 

(EBA-RUM stops). The specification of the subsequent RUM choice is the same as in the 

pure RUM model. 
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The RRM choice heuristic is linear and additive considering fare, flying time and stop time. 

The formulation implemented is the one proposed by Chorus (2010), also known as RRlog 

(Jang et al., 2017) which we detail in Subsection 2.2.3. With the objective of increasing the 

profundity of regret (van Cranenburgh et al., 2015), the fare attribute was scaled by 0.1. 

Finally, the SS choice heuristic considers two attribute acceptability functions. The first 

acceptability function analyses cost and the other analyses flying time and stop time; in the 

latter, the marginal rate of substitution (i.e. the valuation of one hour at a layover in terms of 

one hour flying) is estimated. 

Each of the non-RUM choice heuristics is tested individually as an alternative to the RUM 

choice heuristic. As the objective of this study is to identify the presence of heterogeneous 

choice heuristics, the analysis focuses on the class membership level. The detailed results of 

the choice level for each combination of heuristics are presented in Appendix C.  

7.3.2. Analysis of results 

 

Table 7-5 presents the non-RUM probabilities according to the traditional LC approach and 

the MHM, for all the considered combinations of heuristics. We also present the Deviance 

Information Criterion (DIC) which is a measure of fit that penalises for additional 

parameters.  We present the traditional LC constant class membership probability for the 

entire population. For the MHM we present the mean and maximum values of the class 

membership probability within the population. 
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Table 7-5 Non RUM probability and estimation fit of the LC and MHM models 

 Non-RUM probability (%) DIC 

Second heuristic LC MHM Mean MHM Max LC MHM 

EBA 6.2 6.4 11.5 2829 2829 

EBA-RUM stops 9.5 14.5 44.8 2831 2829 

EBA-RUM fare 4.3 6.8 12.4 2830 2831 

RRM 2.3 2.5 3.3 2828 2827 

SS 15.8 29.7 72.2 2820 2819 

None - - - 2830 

 

The traditional LC results suggest that the probability of following a non-RUM choice 

heuristic is low, except for SS. Over the five non-RUM choice behaviours presented, the SS 

seems to be the most likely alternative behaviour, with a population-wide probability of 

15.8%. For all combinations of heuristics, the traditional LC approach systematically results 

in a lower mean non-RUM probability than the MHM, possibly underestimating their 

presence. This is an interesting result, which we believe might occur due to the simplistic 

specification of the LC class membership function (i.e. only a population constant is used). 

The LC and MHM models tend to coincide when the non-RUM choice heuristic is 

negligible, since both models assign a very low probability to it. As the behavioural 

heterogeneity –in terms of choice heuristics followed– rises, the traditional LC approach and 

the MHM differ, probably due to the incapacity of the traditional LC model to capture the 

heterogeneity across individuals in the sample. 
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In terms of model fit, the MHM model tends to slightly outperform the LC model by one 

DIC point. Note that even though the MHM has one additional parameter, the DIC 

incorporates a penalisation for the effective number of parameters. Results also suggests that 

incorporating a second heuristic could improve the overall fit when compared to the single 

heuristic RUM model. 

Analysing whether the alternative choice heuristic is actually present or not is not 

straightforward. First, the non-RUM probability –or any probability– does not distribute 

Normal. This way, testing a null hypothesis for the probability being zero (generally by using 

a t-test), which is the boundary of the feasible values, is not possible. If the model were 

estimated via maximum likelihood, a likelihood ratio test could be used; in our case a DIC 

comparison could serve the same purpose. However, this type of test does not deny the 

presence of an alternative choice heuristic; it only indicates that it is not worth considering 

it in the model. 

The traditional LC approach presents another problem if the objective is analysing whether 

a choice heuristic is present or not. The results of Chapter 7.2 suggest that the LC model 

presents an unstable behaviour regarding the precision of the results. For this, the proposed 

MHM is used to determine the plausibility of having any of the alternative heuristics in the 

sample. 

To analyse the individual behaviour within our population, we test the MHM approach and 

compute the posterior probability of choosing the non-RUM choice heuristic. Following the 

results obtained in Section 7.3, if the non-RUM probability is high for a non-negligible 
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proportion of the population, then the presence of a non-RUM choice heuristic is highly 

plausible. 

As in the traditional LC approach, the most plausible alternative choice heuristic is the SS 

model. Any other choice heuristic presents a posterior maximum probability that does not 

surpass the RUM probability. Therefore, the MHM suggests that the SS might be present in 

the sample. 

Several reasons could explain the absence of other non-RUM choice heuristics apart from 

the SS. First, RRM behave too similar to RUM as demonstrated in Chapter 6. It is also likely 

that the search engines eliminate the alternatives that are not attractive, so individuals might 

not need to choose by EBA. Indeed, the search engine could be the eliminator by aspects 

itself. 

7.4. Conclusions on the Mixed Heuristics Model 

 

Latent classes are the traditional approach for modelling multiple choice heuristics within a 

population. When applying this approach to a given context, there are three main challenges: 

i) class membership is hard to model, ii) the class membership level and the choice level 

must be modelled simultaneously, and iii) there is no certainty that the choice heuristics 

considered are being followed in the population. To tackle these challenges, we propose the 

Mixed Heuristic Model (MHM). The MHM can identify the presence of a choice heuristic, 

focusing only on the specification of the choice level, without modelling the class 

membership level.  
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We tested the properties of the MHM with synthetic data, showing how it can properly 

identify the choice heuristic followed by individuals. As the sample size and/or number of 

observations per individual increases, the MHM accuracy increases. Nevertheless, the model 

needs to be tested furthermore, by applying it to different contexts, to guarantee that this 

desirable behaviour holds across different samples. 

The MHM was applied to analyse a real air travel SP survey. Five heuristics where tested as 

a complement to RUM. The MHM indicates that the presence of four of them in the sample 

is unlikely. Only the Stochastic Satisficing heuristic seems to be a plausible complement to 

RUM in this context. The MHM is more explicative than traditional LC models when 

indicating the potential presence of a choice heuristic: the MHM provides the distribution of 

the probabilities of the alternative choice heuristics. Additionally, unlike the traditional 

latent class approach, the MHM does not need to formulate a class membership function 

(one might argue that such a function does not exist on a real application), and as a result 

indicates that the alternative non-RUM heuristics are more plausible. 

Finally, the MHM addresses the three stated challenges for considering multiple choice 

heuristics through a latent class approach but does not relate the individual characteristics to 

the probability of following a specific heuristic. Thus, the MHM does not replace the LC 

model –since it does not describe why heuristics are followed–, but it is an important 

complement for traditional approaches that may be used beforehand to select the most 

appropriate choice heuristics to be considered. 
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8. IDENTIFICATION VERSUS FORECASTING: COMPARING THE 
PERFORMANCE OF ALTERNATIVE MULTIPLE HEURISTICS MODELS 
UNDER WEAK AND STRONG IDENTIFIABILITY 

 

Through the different chapters of this thesis, we have discussed the possibility of capturing 

the behaviour of individuals in a discrete choice model. First, in Chapters 5 and 6 we 

discussed the possibility of estimating the multiple heuristics model. Then, in Chapter 7 we 

studied the heuristic followed by DMs at an individual level. Indeed, Chapter 7 provided a 

methodology to identify the presence of different heuristics. However, we have not 

discussed, yet, how to select a model among several alternative models when the difference 

between them lies in the choice heuristic. 

Several objectives might be pursued when estimating a model; for example, depending on 

the objective (explaining or forecasting) the metric used to choose the model may vary. In 

this chapter, we study the different techniques for model selection addressed in Section 2.3. 

These techniques evaluates the Bias-Variance trade-off (Hastie et al., 2001; McElreath, 

2012), which indicates that more complex models might forecast worse if they present higher 

variance in their estimates. Our objective is to assess the usefulness of these techniques when 

several multiple heuristics models are available. Specifically, we analyse the case of the 

RUM and RRM heuristics.  

In Chapter 6 we showed that the RUM and RRM behaved similarly. Therefore, it is not hard 

to find contexts in which any of those heuristics may perform with equally high likelihood. 

If there is a second heuristic available in the model, it might be even easier for the model to 
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fill the gap that RUM or RRM fails to fill when interpreting the other heuristic. In this 

chapter, we analyse what statistical tools are required to identify the real underlying model 

in finite samples and how to evaluate its forecasting performance in the context of multiple 

choice heuristics. We analyse two multiple heuristics models, one containing RUM and SS, 

and the other RRM and SS. We chose SS because it is readily estimable unlike EBA.  

In our experiment we test several in sample and out of sample statistical techniques to test 

the performance of the models in a simulated sample. The meta-experiment varies several 

dimensions to try and obtain conclusions as general as possible. 

8.1. Experimental Design 

 

We use the findings of the previous chapters to design an experiment where identifiability 

of the common class, SS, is not an issue. We fix several dimensions that promote the 

identifiability of the model either in relation to the individuals’ behaviour and the choice 

scenario. Fixing these dimensions allows us to increase the dimensionality of the meta-

experiment in the dimensions of the econometric tools; this way, we study in more depth 

these techniques to test their performance for different sample sizes and degrees of 

identifiability. 

The behaviour simulated was designed to maximise the identifiability of the SS class, whilst 

also keeping interesting scenarios. The first meta-dimension is the heuristics simulated: we 

used either RRM-SS or RUM-SS. The simulation parameters are those used in Chapter 6 

and detailed in Table 6-2. 
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The second meta-dimension was sample size. We tested three different sample sizes of ten, 

twenty, and forty thousand observations. For each combination of the meta-experiment, ten 

experiments were performed.  

In all cases we maintained the same proportion between SS and the alternative heuristic; this 

was designed to slightly promote SS over the other heuristic. Since identifiability of SS 

requires larger sample sizes than RUM, we considered that the DMs used SS with 60% 

overall probability and either RUM or RUM with 40%. No correlation among the levels of 

the LC model was simulated. 

As in previous experiments, we also considered a sociodemographic characteristic named 

trait that allowed variation of the probability of selecting a heuristic. The proportion of the 

characteristic in the sample was kept identical as in our previous experiments (i.e. fixed at 

70%). The presence of trait implied a 64.3% propensity of selecting SS and of 50% if it was 

not present. These probabilities were designed to match the total probability of selecting SS 

with the desired 60% overall proportion explained above.  

In all experiments we considered choice sets of size three coming from the “Las Condes – 

CBD, San Miguel – CBD” dataset. We also tested three in-sample and two out of sample 

techniques. In the former group we analysed the selection of the model based in the 

estimation likelihood and two information criteria: DIC and BIC. In the latter group of 

techniques, we tested out of sample validation and response analysis. Finally, regarding 

response analysis, nine different choice scenarios were analysed. 
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In estimation, we contrasted the performance of the RUM-SS and the RRM-SS models. We 

employed Bayesian estimation using the Gibbs sampling algorithm with 5,000 burn-in 

iterations and 10,000 samples per parameter in each of the two Markov chains employed. 

8.2. Analysis of Results 

 

Our objective was to test the performance of models that compete in terms of goodness of 

fit measures. Through the analysis of the model performance when using several measures, 

numerous conclusions may be extracted. First, we analysed in sample techniques; with these, 

we study how they can inform about the real underlying model in the case of weakly 

identified and strongly identified models. Then, we analysed out of sample techniques. 

These allow to elaborate conclusions regarding the forecasting performance of the models. 

8.2.1. Model identifiability 

 

Most of the results we will present and the conclusions regarding the performance of the 

models under the different testing scenarios find its origin in the quality of the estimation in 

each case. In a series of tables below we present model estimation results for each sample 

size: the mean estimator and the mean standard deviation of the parameters; no t-tests against 

the target parameters are presented, because in half of the cases the estimated heuristic does 

not correspond to the underlying heuristic, so no target parameters exist.  

The results are separated by degree of identifiability. The RUM-SS cases present only strong 

identifiability. The RRM-SS model present two degrees of identifiability: weak and strong; 
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we present each identifiability case separately. Moreover, in the weak identifiability case we 

recognize two subdivisions: very weak and weak identifiability. In both cases the model 

parameters of the RRM class are non-identifiable. However, in the former group the 

posterior distribution of the parameters covers the whole prior distribution, whereas, in the 

latter (weak identifiability), the posterior distribution of the parameters also presents extreme 

variance (thus unidentifiable) but do not cover the whole posterior feasible range. 

Table 8-1 presents the results of the RRM-SS and the RUM-SS models estimated for the 

10,000 sample size experiment, with DMs actually choosing using the RRM-SS heuristic. 

In the case of the RRM-SS estimations, only extremely weak identifiable models were 

obtained. Conversely, the RUM-SS models always present strong identifiability. When 

contrasting both estimations for the SS class, both models exhibit similar estimates which 

are unbiased in comparison with the real underlying model (Table 6-2). 

Recall that in the 𝜇-RRM model, all parameters are multiplied by the reciprocal of 𝜇. 

Therefore, the parameter value and the already important variance in the parameters is 

further increased on average 12.5 times due to the low value of the 𝜇 parameter. 

Table 8-2 presents the results of the RRM-SS and RUM-SS estimated on the 10,000 sample 

size experiments with RUM-SS as the underlying behaviour. Surprisingly, the results of the 

RRM-SS model exhibit less identifiability issues than in the case where the underlying 

heuristic was RRM-SS. 
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Table 8-1 Parameters for the 10,000 sample experiment with RRM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters (standard deviation) Very weak 
identifiability Strong identifiability 

SS class 

Cost sensitivity -9.56 (0.89) -10.18 (1.03) 

Cost threshold 0.43 (0.03) 0.45 (0.03) 

In-vehicle time sensitivity -11.65 (1.00) -12.22 (1.14) 

Time threshold 0.59 (0.03) 0.6 (0.04) 

MRS Vehicle - Waiting time 4.00 (0.28) 4.01 (0.29) 

MRS Vehicle – Walking 1.68 (0.31) 1.67 (0.32) 

Non-SS class 

𝜇 0.08 (0.05) - 

Cost sensitivity -0.80 (0.53) -1.09 (0.20) 

In-vehicle Time sensitivity -2.82 (1.77) -3.51 (0.72) 

Waiting time sensitivity -13.27 (8.79) -12.84 (2.77) 

Walking time sensitivity -5.22 (3.27) -6.24 (0.96) 

Class membership function  

SS base desirability 0.08 (0.18) -0.05 (0.20) 

Trait desirability for SS 0.59 (0.12) 0.61 (0.12) 

Cases 10/10 10/10 

 

Most cases present weak identifiability, whereas one case was non-identifiable at all. Like 

the previous case, the SS heuristic in both models presents similar parameter values. In the 

case of the RUM-SS the model is always strongly identified. 
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Table 8-2 Parameters for the 10,000 sample experiment with RUM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Very weak 
identifiability Weak identifiability Strong identifiability 

SS class 

Cost sensitivity -9.01 (0.82) -9.16 (0.81) -10.18 (1.03) 

Cost threshold 0.46 (0.03) 0.42 (0.04) 0.45 (0.03) 

In-vehicle time sensitivity -10.84 (0.81) -11.29 (0.94) -12.22 (1.14) 

Time threshold 0.57 (0.03) 0.6 (0.04) 0.6 (0.04) 

MRS Vehicle - Waiting time 3.86 (0.26) 4.06 (0.29) 4.01 (0.29) 

MRS Vehicle – Walking 1.45 (0.25) 1.79 (0.33) 1.67 (0.32) 

Non-SS class 

𝜇 0.20 (0.26) 0.54 (0.23) - 

Cost sensitivity -0.56 (0.63) -0.28 (0.37) -1.09 (0.2) 

In-vehicle Time sensitivity -9.36 (6.63) -4.51 (4.41) -3.51 (0.72) 

Waiting time sensitivity -45 (32.87) -20.42 (20.82) -12.84 (2.77) 

Walking time sensitivity -14.05 (10.33) -5.8 (5.64) -6.24 (0.96) 

Class membership function  

SS base desirability 0.21 (0.17) 0.12 (0.18) -0.05 (0.2) 

Trait desirability for SS 0.68 (0.12) 0.58 (0.12) 0.61 (0.12) 

Cases 2/10 7/10 10/10 

 

Tables 8-3 and 8-4 present the results of the twenty thousand sample experiment. These 

results mirror the ones obtained in the ten thousand sample experiment, but with a higher 

balance for less extreme variances. In the case of the RRM-SS, results suggest the second 
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kind of weak balance is more prevalent in the sample, showing increased identifiability. 

Strong identifiability is achieved in only one of the estimations. 

Table 8-3 Parameters for the 20,000 sample experiment with RRM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Very weak 
identifiability 

Weak 
identifiability 

Strong 
identifiability 

Strong 
identifiability 

SS class 

Cost sensitivity -9.68 (0.61) -9.89 (0.68) -9.88 (0.67) -10.18 (1.03) 

Cost threshold 0.43 (0.02) 0.46 (0.02) 0.44 (0.02) 0.45 (0.03) 

In-vehicle time 
sensitivity -11.68 (0.68) -11.11 (0.72) -12.2 (0.75) -12.22 (1.14) 

Time threshold 0.6 (0.02) 0.59 (0.03) 0.6 (0.02) 0.6 (0.04) 

MRS Vehicle - Waiting 
time 4.07 (0.2) 4.02 (0.21) 3.94 (0.2) 4.01 (0.29) 

MRS Vehicle – Walking 1.62 (0.21) 1.71 (0.23) 1.67 (0.22) 1.67 (0.32) 

Non-SS class 

𝜇 0.05 (0.03) 0.15 (0.1) 0.21 (0.09) - 

Cost sensitivity -0.64 (0.27) -1.08 (0.89) -0.68 (0.35) -1.09 (0.2) 

In-vehicle Time 
sensitivity -2.51 (1.02) -3.36 (2.88) -2.13 (1.1) -3.51 (0.72) 

Waiting time sensitivity -11.08 (4.74) 
-13.61 
(11.78) -11.77 (6.58) -12.84 (2.77) 

Walking time sensitivity -4.68 (1.93) -6.55 (5.54) -4.63 (2.4) -6.24 (0.96) 

Class membership function  

SS base desirability 0.02 (0.12) 0.04 (0.13) 0.01 (0.13) -0.05 (0.2) 

Trait desirability for SS 0.61 (0.08) 0.6 (0.09) 0.54 (0.08) 0.61 (0.12) 

Cases 7/10 2/10 1/10 10/10 
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In these results, note that the 𝜇 parameter is higher in the case when the underlying heuristic 

is RUM-SS (Table 8-4) instead of RRM-SS (Table 8-3), this is consistent with the behaviour 

of the model. Recall that higher 𝜇 parameters are related to less “regretted” behaviour. Also, 

note that in the case of the RRM-SS underlying heuristic, the trend is that as the model is 

more identifiable, the 𝜇 value increases until it reaches the real underlying value of 0.2. 

Finally, mirroring the results of the ten thousand sample size estimations, the parameters of 

the SS class are similar in all models and close to the real underlying parameters. Therefore, 

we could infer that in these models the identified class is not biased due to the non-

identification of the RRM class. 

Tables 8-5 and 8-6 present the results of the forty thousand sample estimation experiment. 

This experiment is the first one that exhibits an important number of strong identifiable 

RRM-SS models. Indeed, six of the estimations were strongly identifiable. In the case of the 

RUM-SS model, the results show high identifiability with low standard deviations. 

8.2.1. In sample techniques 

 

We analyse three metrics that evaluate the goodness of fit of the estimated models. We study 

the likelihood in the estimation sample, the deviance information criterion, and the Bayesian 

information criterion. The latter two criteria penalise the likelihood depending on the number 

of estimated parameters. The RRM-SS model has one more parameter than the RUM-SS 

model due to the extra 𝜇 parameter in the RRM class. 
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Table 8-4 Parameters for the 20,000 sample experiment with RUM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Weak identifiability Strong identifiability 

SS class 

Cost sensitivity -9.86 (0.63) -10.05 (0.65) 

Cost threshold 0.44 (0.02) 0.44 (0.02) 

In-vehicle time sensitivity -11.69 (0.66) -11.87 (0.68) 

Time threshold 0.6 (0.02) 0.6 (0.02) 

MRS Vehicle - Waiting time 4.07 (0.2) 4.07 (0.2) 

MRS Vehicle – Walking 1.6 (0.22) 1.59 (0.21) 

Non-SS class 

𝜇 0.74 (0.74) - 

Cost sensitivity -0.33 (-0.33) -0.52 (0.13) 

In-vehicle Time sensitivity -3.38 (-3.38) -5.07 (0.53) 

Waiting time sensitivity -13.49 (-13.49) -18.66 (2.15) 

Walking time sensitivity -4.31 (-4.31) -6.45 (0.58) 

Class membership function  

SS base desirability 0.02 (0.11) -0.02 (0.11) 

Trait desirability for SS 0.58 (0.08) 0.58 (0.08) 

Cases 10/10 10/10 
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Table 8-5 Parameters for the 40,000 sample experiment with RRM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Very weak 
identifiability 

Weak 
identifiability 

Strong 
identifiability 

Strong 
identifiability 

SS class 

Cost sensitivity -10 (0.42) -9.65 (0.46) -9.86 (0.47) -10.1 (0.49) 

Cost threshold 0.44 (0.01) 0.45 (0.02) 0.45 (0.02) 0.46 (0.02) 

In-vehicle time 
sensitivity -11.99 (0.46) -11.45 (0.5) -12.16 (0.51) -12.25 (0.53) 

Time threshold 0.57 (0.02) 0.61 (0.02) 0.61 (0.02) 0.61 (0.02) 

MRS Vehicle - Waiting 
time 3.84 (0.13) 4.08 (0.14) 4.01 (0.14) 3.98 (0.14) 

MRS Vehicle – Walking 1.61 (0.14) 1.67 (0.15) 1.56 (0.14) 1.62 (0.14) 

Non-SS class 

𝜇 0.04 (0.02) 0.1 (0.06) 0.21 (0.08) - 

Cost sensitivity -0.03 (0.01) -0.93 (0.68) -0.71 (0.27) -1.13 (0.1) 

In-vehicle Time 
sensitivity -0.09 (0.04) -3.2 (2.38) -2.37 (0.92) -3.44 (0.34) 

Waiting time sensitivity -0.45 (0.18) -14.77 
(11.35) -10.94 (4.44) -13.24 (1.28) 

Walking time sensitivity -0.21 (0.08) -5.88 (4.35) -4.45 (1.68) -6.25 (0.44) 

Class membership function 

SS base desirability 0.07 (0.08) 0.1 (0.09) -0.04 (0.09) -0.06 (0.09) 

Trait desirability for SS 0.59 (0.06) 0.54 (0.06) 0.61 (0.06) 0.6 (0.06) 

Cases 1/10 3/10 6/10 10/10 
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Table 8-6 Parameters for the 40,000 sample experiment with RUM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Strong identifiability Strong identifiability 

SS class 

Cost sensitivity -9.88 (0.44) -10.05 (0.65) 

Cost threshold 0.45 (0.01) 0.44 (0.02) 

In-vehicle time sensitivity -11.85 (0.46) -11.87 (0.68) 

Time threshold 0.6 (0.02) 0.60 (0.02) 

MRS Vehicle - Waiting time 4.04 (0.13) 4.07 (0.2) 

MRS Vehicle – Walking 1.55 (0.14) 1.59 (0.21) 

Non-SS class 

𝜇 0.88 (0.09) -0.52 (0.13) 

Cost sensitivity -0.31 (0.07) -5.07 (0.53) 

In-vehicle Time sensitivity -3.32 (0.47) -18.66 (2.15) 

Waiting time sensitivity -13.34 (1.98) -6.45 (0.58) 

Walking time sensitivity -4.07 (0.55) -0.52 (0.13) 

Class membership function  

SS base desirability 0.03 (0.08) -0.02 (0.11) 

Trait desirability for SS 0.57 (0.06) 0.58 (0.08) 

Cases 10/10 10/10 

 

Table 8-7 shows two pieces of information. In the first column, the number of cases where 

each metric chose the correct underlying heuristics. In the last column, the difference of each 

metric in terms of its mean and standard deviation. In the last column, we include the most 
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frequent category of each RRM-SS model.  In the case of underlying RRM-SS heuristics, 

for each sample size the categories analysed were the very weakly identified, very weakly 

identified, and strongly identified respectively. In the cases of underlying RRM-SS, we 

analysed for each sample size the cases were weakly identifiability, weakly identifiability, 

and strongly identifiability was obtained respectively.  

Table 8-7 shows the difference of every metric between the RRM-SS and the RUM-SS. 

Therefore, as higher likelihood is desirable, positive differences in the likelihood metric 

promotes the RRM-SS model. Conversely, as lower DIC and BIC is desirable, negative 

differences in the DIC and BIC metric promotes the RRM-SS model. Results suggests that 

even though we compare very weakly identifiable models against a strongly identifiable one, 

the likelihood and DIC tend to promote the real underlying heuristic. BIC penalises much 

harder the additional parameter of the RRM-SS which only selects the real underlying 

heuristic at larger sample sizes. 

We further explore the mean and standard deviation of the difference of the different metrics 

in Table 8-8. For this, we assume normal distributed differences of the different metrics and 

indicate the probability of choosing the wrong underlying model under each. We assume a 

null hypothesis of choosing a RRM-SS model. Therefore, the type I error indicates the 

probability of choosing RUM-SS when the underlying model is RRM-SS. The type II error 

indicates the probability of choosing RRM-SS model when the underlying one is RUM-SS. 
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Table 8-7 Goodness of fit for the ten, twenty and forty thousand sample size experiments 

 Cases actual heuristic is chosen Mean (SD) of the difference of 

Sample size Likelihood DIC BIC Likelihood DIC BIC 

  Underlying heuristic: RRM and SS   

10,000 
7
10 

6
10 

3
10 2.39 (5.78) -4.11 (12.5) 4.43 (11.5) 

20,000 
10
10 

10
10 

4
10 7.97 (4.50) -15.6 (8.98) -6.04 (9.09) 

40,000 
10
10 

10
10 

10
10 12.07 (3.87) -22.7 (7.81) -13.6 (7.74) 

  Underlying heuristic: RUM and SS   

10,000 
10
10 

10
10 

10
10 -4.74 (2.68) 10.6 (6.36) 18.7 (5.37) 

20,000 
10
10 

10
10 

10
10 -3.33 (1.25) 6.83 (2.37) 18.7 (5.4) 

40,000 
10
10 

10
10 

10
10 -7.32 (2.44) 14.8 (4.94) 25.2 (4.89) 

 

The degrees of freedom of the t-distribution vary depending on the number of experiments 

falling in the analysed category. Finally, to complement the analysis, the identifiability of 

the RRM-SS is presented (RUM-SS is always strongly identified). 

Consistent with the results of Table 8-7, the error distribution of Table 8-8 indicates that the 

likelihood and DIC metrics report a similar error. These metrics support the real underlying 

heuristic even if it is very weakly identified; whereas, BIC only supports the RRM-SS for 

important differences in the likelihood. As expected, the error of all metrics decreases as the 
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sample size increases. From these results, we conclude that likelihood and DIC could be 

useful in identifying the real underlying heuristic when two different models are available.  

 

Table 8-8 Errors type I and II of the in sample metric studied 

 Type I error (False negative) Type II error (False positive) 

Metric \ Sample size 10,000 20,000 40,000 10,000 20,000 40,000 

Likelihood 34.4% 6.4% 1.4% 5.5% 1.2% 0.7% 

DIC 37.5% 6.6% 1.6% 6.5% 1.0% 0.8% 

BIC 64.5% 26.3% 7.0% 0.4% 0.1% 0.01% 

t distribution’s 
degrees of freedom 9 6 5 6 9 9 

Identifiability of 
RRM-SS Very weak Very weak Strong Weak Weak Strong 

8.2.2. Out of sample techniques 

 

In the previous subsection we analysed how in sample techniques may identify the real 

underlying heuristic. However, even though estimations may present higher likelihood, 

weakly and very weakly identifiable models present higher variances that may cause the 

model to underperform in forecasting. In this section we assess the forecasting performance 

of the models either in the same context estimated or in context variations through cross 

validation and response analysis techniques. 
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Both cross validation and response analysis were used with validation samples of size of 

10,000 observations. As shown in section 2.3, large validation samples (as the one used here) 

reduce the variance of the estimation of the assessed metric. For testing cross validation and 

response analysis, the same estimations as those used in Table 8-8 are analysed. These are 

the most frequent outcome in each sample size. Therefore, in the case of cross validation up 

to ten different datasets were used for each sample size used in estimation; for each of them, 

the RRM-SS and RUM-SS models were tested. In the case of response analysis, for each 

combination of sample size used in estimation and response scenario, up to ten datasets were 

used. In these experiments, the metric calculated was the likelihood of the validation sample. 

Table 8-9 presents the results of the cross validation. First, we present the average likelihood 

across the ten datasets for each of the models and, then, the likelihood difference.  

Table 8-9 Cross validation results 

Estimation 
Sample size 

RRM-SS Likelihood 
(standard deviation) 

RUM-SS Likelihood 
(standard deviation) 

Likelihood difference 
(standard deviation) 

Underlying heuristic: RRM and SS 

10,000 -8,522 (346) -8,408 (85.3) -114 (335) 

20,000 -8,408 (104) -8,394 (103) -13.9 (18.3) 

40,000 8,317 (86.0) 8,318 (84.8) 1.39 (3.27) 

Underlying heuristic: RUM and SS 

10,000 -8,446 (154) -8,363 (92.0) -83.0 (114) 

20,000 -8,343 (82.2) -8,339 (80.7) -4.09 (3.10) 

40,000 -8,298 (86.1) -8,297 (85.5) -0.94 (1.11) 
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The results of Table 8-9 suggest that only the strongly identified RRM-SS outperforms the 

RUM-SS model when the underlying heuristic is, indeed, RRM-SS. When contrasted against 

Table 8-8, we note that even though very weakly identified results present higher likelihood 

when they coincide with the underlying heuristics, their forecasting performance may be 

worse. As forecasting performance may not be a good measure to identify the real underlying 

heuristic, the selected model may vary depending on the objective of the modeller.  

To further analyse the forecasting performance of the models, we used the response analysis 

technique (Williams and Ortúzar, 1982a). Other studies have also used response analysis 

with the “Las Condes – CBD, San Miguel – CBD” dataset (Munizaga, 1997; Cantillo, 2004). 

We performed similar policy variations as these previous studies as detailed in Table 8-10. 

Table 8-10 Policies for response analysis 

Scenario Cost private 
alternatives 

Time private 
alternatives 

Cost semi- private 
alternatives 

Time semi -private 
alternatives 

1 +25% - +12.5% - 

2 +50% - +25% - 

3 +100% - +50% - 

4 +25% -15% +12.5% -7.5% 

5 +50% -15% +25% -7.5% 

6 +100% -15% +50% -7.5% 

7 +25% -30% +12.5% -15% 

8 +50% -30% +25% -15% 

9 +100% -30% +50% -15% 



208 

  

The objective of these policies is to identify how the model reacts against contextual 

variations through increases and decreases of attributes. Recall that the “Las Condes – CBD, 

San Miguel – CBD” datasets involve three types of modes: pure private, private and public 

combinations, and pure public modes. We tested policies (Table 8-10) that impact the cost 

and travel time of alternatives involving private modes. The cost policy increased the cost 

of private modes, whereas the time policies reduced the time of private modes. Mixed -

modes were affected 50% less than pure private modes. 

Table 8-11 presents the results of the response analysis for each policy. The base scenario 

with no policy shows the results of the cross validation; whereas, the rest shows the result of 

the respective policy. Each result considers between six to ten estimations according to the 

number of estimations that falls in the analysed category.  

The results of the response analysis further exploits the findings of the cross validation. In 

the cases where the RRM-SS is the underlying heuristic and the sample size is either ten 

thousand or twenty thousand, the RRM-SS analysed is very weakly identified and the 

RUM-SS is strongly identified. The likelihood in the estimation sample promoted RRM-SS 

(which is the real underlying heuristic) over RUM-SS. Conversely, cross validation indicates 

that, despite RUM-SS not being the underlying heuristic, RUM-SS performs better when 

forecasting than RRM-SS. The reason behind this behaviour is the large variances obtained 

in the estimation of this last model. Therefore, we may conclude that the RUM-SS is more 

robust than the RRM-SS. 
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Table 8-11 Likelihood difference of the cross validation and response analysis 

  Likelihood difference (standard deviation) 

Scenario \ Underlying 
heuristic RRM-SS RUM-SS RRM-SS RUM-SS RRM-SS RUM-SS 

Cost Time 10,000 20,000 40,000 

- - -114 
(335) 

-83.0 
(114) 

-13.9 
(18.3) 

-4.09 
(3.10) 

1.39 
(3.27) 

-0.94 
(1.11) 

+25 - -126 
(359) 

-85.3 
(109) 

-13.4 
(18.7) 

-4.56 
(3.73) 

5.04 
(4.72) 

-0.34 
(1.23) 

+50 - -131 
(382) 

-87.0 
(109) 

-13.4 
(16.4) 

-5.06 
(4.01) 

4.21 
(2.46) 

-0.27 
(1.27) 

+100 - -139 
(417) 

-93.5 
(113) 

-9.69 
(13.6) 

-5.52 
(3.55) 

-0.32 
(3.62) 

-0.87 
(1.70) 

+25 -15 -124 
(350) 

-86.8 
(108) 

-14.8 
(19.7) 

-4.78 
(3.24) 

5.51 
(4.29) 

-0.51 
(1.19) 

+50 -15 -130 
(374) 

-85.7 
(101) 

-13.2 
(17.8) 

-4.43 
(3.83) 

4.00 
(2.15) 

-0.74 
(1.26) 

+100 -15 -137 
(414) 

-94.5 
(109) 

-10.2 
(13.5) 

-5.54 
(3.67) 

-0.81 
(2.64) 

-0.86 
(1.56) 

+25 -30 -129 
(363) 

-79.7 
(92.4) 

-14.4 
(21.6) 

-4.45 
(2.92) 

5.34 
(5.08) 

-0.77 
(0.82) 

+50 -30 -133 
(379) 

-83.4 
(92.8) 

-13.4 
(20.0) 

-4.20 
(3.62) 

5.33 
(2.67) 

-0.69 
(1.42) 

+100 -30 -134 
(406) 

-91.4 
(101) 

-8.47 
(13.6) 

-5.25 
(3.52) 

0.68 
(2.08) 

-1.25 
(1.42) 

 
For larger sample sizes, i.e. forty thousand samples, the strongly identified RRMSS 

competes against the strongly identified RUM-SS. In the case of the RRM-SS underlying 

heuristic, the model that estimates the real underlying heuristic presents higher likelihood, 
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however larger deviations in the estimates (see Table 8-5) than the RUM-SS model. This 

may justify that as the policies present more extreme variations, the RRMSS performance 

decreases. 

We further analysed the difference in likelihood in Table 8-12. Assuming that the likelihood 

difference distributes Normal, we examine the probability of Type I and Type II errors for 

each policy. We also show the degrees of freedom of the t distribution. 

Table 8-12 Type I and Type II error probability for each response policy 

  Error probability 

Scenario Type I Type II Type I Type II Type I Type II 

Cost Time 10,000 20,000 40,000 

- - 62.8 24.6 76.2 11.7 34.5 21.7 

+25 - 63.2 23.3 75 13.3 16.7 39.7 

+50 - 62.9 22.8 77.7 12.6 7.4 41.8 

+100 - 62.6 22.1 74.9 8.5 53.4 31.4 

+25 -15 63.3 22.6 76.1 9.5 12.8 34.3 

+50 -15 63.1 21.6 75.7 14.5 6.2 29.0 

+100 -15 62.5 20.9 76.1 9.0 61.5 30.2 

+25 -30 63.4 21.0 73.6 8.9 17.1 19.6 

+50 -30 63.2 20.1 73.7 14.5 5.2 32.2 

+100 -30 62.4 20.0 72.2 9.3 37.6 20.9 

t distribution’s 
degrees of freedom 9 6 6 9 5 9 
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The error distributions reported in Table 8-12 are consistent with the analysis done 

throughout this Chapter. Type I errors are high for the very weakly identifiable classes. Yet, 

surprisingly, the Type II errors (probability of choosing RRM-SS under RUM-SS) is non-

dismissible even for these weakly identifiable cases. 

The error distribution for the identifiable cases shows that even when identifiability is strong, 

smaller standard deviations (in the case of the RUM-SS) may generate smaller bias when 

forecasting. This is similar to the Bias-Variance trade-off  phenomenon discussed in Section 

2.3.2 (Hastie et al., 2001; McElreath, 2012). Even though the RUM-SS model might be 

biased, since it does not consider the real underlying heuristic, its smaller variance in the 

estimates generates more accurate forecasts. Our results suggest that this effect is enhanced 

in forecasting when the context changes. 

8.3. Conclusions on Identification versus Forecasting 

 

We analysed the Bias-Variance trade-off in the case where two models entailing different 

heuristics might compete in goodness of fit. In particular, we analysed the case where 

RUM-SS and RRM-SS are plausible candidates. To analyse the performance of the models 

three in-sample metrics (likelihood, DIC and BIC) and two out of sample techniques (cross 

validation and response analysis) were used. 

In relation to the Bias-Variance trade-off, the likelihood only assesses the bias component; 

whereas DIC penalises the variance but weaker than BIC. Indeed, the former two exhibit 

similar behaviour given that the RRM-SS model has only one additional parameter; whereas 
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BIC penalised heavier the additional parameters given the sample sizes considered. The 

likelihood and DIC tended to identify the real underlying heuristic even when the model 

exhibited weak identifiability. On the other hand, BIC only identified the correct heuristic 

for the strong identifiability cases.  

The out of sample techniques evaluate the Bias-Variance trade-off in different contexts. 

First, we performed a cross validation to evaluate the performance of the models in the same 

context where the model was estimated. In this case, the weakly identified models (RRM-SS) 

performed worse, even when they modelled the real underlying heuristic, when compared to 

its strongly identified model counterpart with the wrong heuristics (RUM-SS). When both 

models where strongly identified, each of them performed better when the underlying 

heuristic was coincident with the evaluated model. Therefore, the conclusions of the cross 

validation are consistent with those of the BIC analysis.  

In the case of response analysis, we tested several different contexts varying positively and 

negatively different attributes. We conclude that as the context changes, the variance element 

in the Bias-Variance trade-off increases in importance. Indeed, the more the context 

changed, worse was the performance of the model with higher variance in its estimates (in 

our case the RRM-SS). Therefore, if the context changes importantly, a model with small 

deviations in its estimates might be preferable than a strongly identifiable model with the 

correct heuristics (identified due to higher likelihood) but with larger variance.  

Our main conclusion relates the purpose of the model to the type of model selected and, 

therefore, the metric to be tested. If the objective is understanding the underlying process, 
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then, less robust but more insightful models could be chosen. The associated metric to 

choose this kind of model is one that penalises less the extra parameters, like DIC. However, 

even if the underlying behaviour is correctly captured but the estimates pose big uncertainty, 

the forecasting performance might not be adequate. Therefore, if the objective is forecasting, 

our results suggest that more robust models should be chosen, even if it means not capturing 

the underlying mechanisms. To identify these models, ideally out of sample analysis should 

be performed; if not available due to data constraints, then, our analysis indicates that BIC 

could be a good candidate metric. 

Even though our analysis gives interesting insight of the Bias-Variance trade-off 

phenomenon in multiple heuristic models, it should be taken cautiously given its limitations. 

We studied exclusively two combinations of choice heuristics. Indeed, given that the 

difference in the number of parameters was only one, few conclusions were obtained in the 

difference between likelihood and DIC. Further analysis must be done to completely 

understand the behaviour of multiple heuristics models in forecasting; this has only been the 

first step. 
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9. CONCLUSIONS 

 

Discrete choice modelling is a powerful econometric tool designed for understanding and 

forecasting individual choices upon discrete choice sets. The kernel of a discrete choice 

model is its choice heuristic; understanding it is crucial to represent adequately decision 

makers’ behaviour.  

An extensive list of different choice heuristics has been proposed in the literature. To 

organise this list, we developed a framework that allows to organise the choice heuristics 

around three concepts: (i) how individuals process the numerous attributes of the 

alternatives, (ii) how they work with multiple alternatives, and -upon these two elements- 

(iii) how they build preferences. This framework enables us to understand the degree of 

similarity of various choice heuristics across different dimensions and to organise any choice 

heuristic around these three concepts, understanding how it relates to other choice heuristics. 

The heuristics analysed in this thesis were organised according to this framework. 

Among the heuristics examined, we developed two contributions related with Elimination 

by Aspects (EBA) and Satisficing. EBA estimation is not straightforward; the best 

estimation procedure proposed in the literature considers the simulation of choice 

probabilities. In this thesis we developed an analytical approach that is exact - not as the 

current approach - and faster for low to mid complexity choice sets. Another important issue 

in the EBA model is the estimation of thresholds for continuous attributes. We presented a 

methodology that allows to estimate such thresholds. Although it does not guarantee finding 
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the global optimum, we show that it gives good solutions which might perform even better 

than the underlying heuristic. 

The Satisficing heuristic is a long standing one with clear principles stated in the work of 

Simon (1955). Surprisingly, before our work there was no model that wholly implemented 

the Satisficing principles exclusively with data about the alternative’s profiles and the chosen 

alternative. We developed the Stochastic Satisficing (SS) model, which manages to use this 

normally available data and wholly implement Simon’s principles. We analytically 

developed the SS model and explored its useful properties. This model allows to explain 

attribute saturation, attribute non-attendance, and estimates either constant or flexible 

marginal rates of substitution. Hence, this model is a now a new alternative in the 

practitioner’s toolkit. 

The core of this thesis was understanding the estimation of multiple heuristics discrete choice 

models. In practice, multiple heuristics models have shown several identifiability issues, 

which are even more extreme when the class membership function is more explicative than 

a simple constant population-wide (as in current practice).  

To understand the identifiability phenomenon, we developed a theoretical framework which 

allows us to explain the empirical findings of our experiments. We start by analysing the 

first order condition of the optimization problem that produces the maximum likelihood 

estimates. Our analysis mathematically represents that to be able to identify several choice 

heuristics it is necessary that the increase in likelihood due to the incorporation of a new 
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heuristic surpasses the loss of likelihood of decreasing the proportion of the previous 

heuristics. If this necessary condition is met, then the model might be estimated.  

If the necessary condition of the framework is met, then the optimal point contains more 

than one heuristic; however, this does not guarantee that the optimal point is unique. To 

obtain unique and, therefore, identifiable estimates, the hessian matrix of the model must be 

non-singular and, ideally, with a large determinant. Our analysis indicates that the higher is 

the behavioural difference of the choice heuristics in the data, higher is identifiability of the 

model. Moreover, the higher the proportion of one choice heuristic and the larger is the 

sample size, higher is the plausibility of identifying it in the model. Finally, we were able to 

relate these three elements and quantify them into an expression that is readily interpretable.  

The connection between the theoretical analysis and identifiability in practice was a 

graphical analysis. We analysed the behavioural difference of the tested choice heuristics in 

our dataset assuming parameter values for them. Our analysis indicated that in our choice 

context, the popular random utility maximization (RUM) heuristic’s behaviour does not 

differ importantly from random regret minimization (RRM). On the other hand, EBA and 

SS have significant behavioural differences. Indeed, our graphical analysis correctly 

identified the identifiability of the multiple heuristics model analysed later. 

We tested identifiability empirically for models considering RUM and either RRM, EBA, 

or SS heuristics. We analysed these models across several dimensions considering different 

proportion of choice heuristics, correlation structures and sample sizes. The theoretical 

analysis indicated the importance of the behavioural difference and the proportion of choice 
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heuristics, which we confirmed as key precursors of identifiability. The correlation structure 

tested did not have an important influence in identifiability. Across all experiments RRM 

could never be identified from RUM, SS was highly identifiable under favourable 

conditions, and EBA was identifiable from RUM across all contexts. We finally tested a 

context where EBA, SS, and RUM were present simultaneously. We showed that in our 

favourable context tested, the three heuristics model can be correctly identified even with 

explicative class membership functions. 

The latent class approach is useful for modelling the multiple heuristics case because it 

allows to understand the factors affecting the probability of choosing each heuristic and its 

sensitivities. However, the latent class model requires that the heuristics are properly 

selected and that both the class membership function and the heuristic’s formulation are 

properly modelled; failing in formulating one of these elements may affect the performance 

of the whole model. We proposed the Mixed Heuristics Model as a way of understanding 

the heuristics present in the dataset and finding the correct formulation for them. The Mixed 

Heuristics Model was capable to successfully identify the underlying heuristics if they were 

properly modelled without modelling the class membership functions. Indeed, its accuracy 

is significantly higher than the latent class model approach. 

Once several successful models are available, a criterion must be used to choose one among 

them. We concluded that depending of the objective of the modeller a different criterion 

must be chosen. If the objective is understanding underlying behaviour, a criterion that 

penalises weakly the additional parameters, such as DIC, might be desired. Whereas if the 
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objective is forecasting, ideally an out of sample validation should be performed. If it is not 

possible due to the amount of data or further complexities, then BIC might be used. 

Through our work, we show that it is possible to estimate multiple heuristics models. Also, 

we provide tools that allow to find the most explicative models and, among them, choose 

the most useful one. Therefore, after this thesis, the complexity surrounding the use of 

multiple heuristics models should decrease. 

However, even though the thesis provides useful insights into multiple heuristics model 

estimation, it does not handle every aspect entailing this type of models. We did not explore 

complicated class membership functions in depth nor test extreme and diverse degrees of 

correlation between class membership level and choice level. Furthermore, more research 

should be done to understand the degree of identifiability in different contexts, so that 

general conclusions regarding the selection of heuristics can be obtained.  

Finally, we expect that this thesis contributes to the use of models better suited for the wide 

variety of individuals in society. This way, by better representing people with different 

behaviour, public policy will be more effective. 
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Appendix A Glossary of terms 

In this thesis the nomenclature used is presented in Table A-1. 

Table A-1 Nomenclature 

Term Meaning 

𝑞, 𝑄 DM or set of DMs 

𝑖, 𝐼 Alternative or set of alternatives 

𝑗, 𝐽 Secondary alternative or set of secondary alternatives 

𝑘,𝐾 Alternative’s attribute or set of attributes 

𝑠, 𝑆 Simulation or set of simulations 

ℎ,𝐻 Choice heuristic or set of heuristics 

𝛽 Choice heuristic’s parameters 

𝜃 Class membership function parameters 

𝑐, 𝐶 Choice set or sets of choice sets. 
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Appendix B Identification of the EBA model 

 

In this thesis we analyse the identification of multiple choice heuristic models. To study it, 

the identification of a single choice heuristic should not be a problem. Unfortunately, the 

identifiability of some choice heuristics is not straightforward which is the case of the EBA. 

Different phenomena can cause non- identifiability of a model such as correlated variables 

or an inefficient design. For the most common models, such as linear regression models, the 

relationship between correlation and identification has already been studied (Greene, 

chap. 4, 2003); however, for the EBA model the phenomenon under the identifiability is 

blur. In the case of the EBA model we do not expect to develop a methodology, rather show 

different EBA structure tested showing that the one used is an identifiable one. 

For this analysis, we estimate the EBA model using Bayesian estimation. In this framework 

the non-identifiability is identified as obtaining posterior distributions extremely biased and 

with high coefficient of variation. The diagnosis is evident when plotting the density function 

of the parameters. For example, Figure B-1 shows the estimated posterior density function 

of a parameter. The left panel shows an identified parameter, whereas the right panel shows 

a non-identified parameter which range tends to infinity. When the parameter is identifiable, 

the density function is described in a reasonable range. Conversely, when the parameter is 

not identifiable the posterior samples through a big scope of unfeasible values. 
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Figure B-1 Posterior density function of the estimated parameters 

 

We run several EBA models finding no identifiability. Correlation between the aspects was 

discarded since no correlation out bounded the 40%. Moreover, higher correlation among 

parameters had no relationship with the identified parameters. Several EBA experiments 

where done to determine the reason of certain non-identifiability as stated in Table B-1. The 

last model was simulated starting only from alternative specific constants and then gradually 

incorporating additional parameters. Results suggests that the nature of the identifiability is 

that certain weights were oversized.  
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Table B
-1 EB

A
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odel param
eters and m
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ean identifiability of param
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Appendix C Detailed results on Singapore travel models 

 

In this appendix the detail of the results of Singapore air travel model are presented. The 

model that considers EBA and RUM heuristics are presented in Table C-1. The results of 

the second and third model, considering EBA-RUM stops and EBA-RUM fare as alternative 

mechanisms to RUM are presented in Tables C-2 and C-3 respectively. The fourth model 

that contains RRM and RUM is presented in Table C-4. The results of the fifth model 

containing SS and RUM are presented in Table C-5. Finally, the sixth and last model is the 

base RUM model, which results are presented in Table C-6. 
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Table C-1 Model parameters for the latent class and mixed heuristic models. Heuristics 

RUM and EBA being represented. 

 LC MH 

Parameter Value SD Value SD 

RUM – Cost -7.63 0.62 -7.61 0.64 

RUM – Time -0.35 0.11 -0.36 0.11 

RUM – Stop time -0.71 0.08 -0.70 0.08 

EBA – No stops 4.13 0.46 4.17 0.43 

EBA – Cost 1 2.13 1.54 1.87 1.56 

EBA – Cost 2 3.37 1.00 3.32 1.01 

EBA – Regular carrier (fixed) 0 - 0 - 

RUM - 𝜇	 base 2.88 0.61 3.09 0.58 

RUM - 𝜎	 standard deviation - - 0.83 0.53 
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Table C-2 Model parameters for the latent class and mixed heuristic models. Heuristics 

RUM and EBA-RUM stops being represented. 

 LC MH 

Parameter Value SD Value SD 

RUM – Cost -8.31 0.75 -7.74 1.04 

RUM – Time -3.26 1.19 -0.33 0.12 

RUM – Stop time -7.10 0.87 -0.65 0.10 

EBA – RUM Cost -5.35 7.18 -12.45 8.70 

EBA – RUM Time 0.38 9.07 0.01 0.73 

RUM - 𝜇	 base 2.64 0.09 2.54 0.92 

RUM - 𝜎	 standard deviation - - 1.87 0.80 
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Table C-3 Model parameters for the latent class and mixed heuristic models. Heuristics 

RUM and EBA-RUM fare being represented. 

 LC MH 

Parameter Value SD Value SD 

RUM – Cost -8.20 0.63 -7.71 1.02 

RUM – Time -3.54 1.11 -0.36 0.11 

RUM – Stop time -7.70 0.91 -0.70 0.08 

EBA – RUM Cost -1.13 2.90 4.17 0.43 

EBA – RUM Time -0.86 2.95 1.87 1.56 

EBA – RUM Stop time -1.52 2.65 1.87 1.56 

RUM - 𝜇	 base 3.28 0.59 3.09 0.58 

RUM - 𝜎	 standard deviation - - 0.83 0.53 
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Table C-4 Model parameters for the latent class and mixed heuristic models. Heuristics 

RUM and RRM fare being represented. 

 LC MH 

Parameter Value SD Value SD 

RUM – Cost -8.70 1.16 -8.71 0.64 

RUM – Time -0.35 0.12 -0.35 0.12 

RUM – Stop time -0.79 0.08 -0.81 0.08 

RRM – Cost -0.92 1.58 0.81 1.60 

RRM – Time 36.3 32.6 41.6 24.4 

RRM – Stop time  -16.1 13.4 16.5 0.08 

RUM - 𝜇	 base 3.71 0.24 3.79 0.20 

RUM - 𝜎	 standard deviation - - 0.50 0.31 
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Table C-5 Model parameters for the latent class and mixed heuristic models. Heuristics 

RUM and SS being represented. 

 LC MH 

Parameter Value SD Value SD 

RUM – Cost -9.51 0.99 -6.13 1.31 

RUM – Time -0.40 0.13 -0.29 0.12 

RUM – Stop time -0.88 0.11 -0.70 0.10 

SS – Cost sensitivity -1.93 2.02 -0.38 0.76 

SS – Cost threshold 0.11 3.26 0.17 3.20 

SS – Time sensitivity 3.83 2.05 -1.08 1.01 

SS – MRS Time & Stop time 2.35 0.81 2.45 1.15 

SS – Time threshold 1.39 2.37 -0.83 2.77 

RUM - 𝜇	 base 2.34 0.44 2.63 3.60 

RUM - 𝜎	 standard deviation - - 2.37 0.47 

 

Table C-6 Model parameters for the RUM model 

Parameter Value SD 

RUM – Cost -8.11 0.57 

RUM – Time -3.27 1.04 

RUM – Stop time -7.34 0.73 
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Appendix D Constants of the experiment of identifiability versus forecasting 

 

In this Appendix, we detail the alternative specific constants of the models detailed in 

Chapter 8.  

Table D-1 Model alternative specific constants and degree of identifiability for the 10,000 

sample size experiment with RRM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Very weak 
identifiability Strong identifiability 

 SS class 

ASC1 -0.23 (0.75) -0.33 (0.66) 

ASC2 -1 (fixed) -1 (fixed) 

ASC3 -0.49 (0.7) -0.64 (0.67) 

ASC4 0.35 (1.1) 0.63 (1.22) 

ASC5 -0.5 (0.37) -0.59 (0.36) 

ASC6 0.16 (1) -0.13 (0.86) 

ASC7 -0.66 (0.35) -0.72 (0.4) 

ASC8 0.11 (1.08) -0.21 (0.86) 

ASC9 0.01 (0.84) -0.16 (0.69) 

 Non-SS class 

ASC1 0.03 (0.02) 0.6 (0.24) 

ASC2 0 (0) 0 (0) 

ASC3 0 (0.01) 0.18 (0.2) 
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ASC4 0.05 (0.02) 0.57 (0.25) 

ASC5 0.05 (0.01) 0.77 (0.19) 

ASC6 0.04 (0.02) 0.69 (0.23) 

ASC7 0.01 (0.02) 0.22 (0.33) 

ASC8 0.01 (0.02) 0.35 (0.23) 

ASC9 0.01 (0.02) 0.47 (0.23) 

 

Table D-2 Model alternative specific constants and degree of identifiability for the 10,000 

sample size experiment with RUM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Very weak 
identifiability Weak identifiability Strong identifiability 

 SS class  

ASC1 -0.22 (0.42) -0.4 (0.76) -0.33 (0.66) 

ASC2 -1 (0) -1 (0) -1 (0) 

ASC3 -0.8 (0.33) -0.68 (0.6) -0.64 (0.67) 

ASC4 -0.52 (0.37) -0.7 (0.47) 0.63 (1.22) 

ASC5 -0.58 (0.26) -0.66 (0.35) -0.59 (0.36) 

ASC6 -0.6 (0.35) -0.56 (0.67) -0.13 (0.86) 

ASC7 -0.69 (0.28) -0.81 (0.4) -0.72 (0.4) 

ASC8 -0.81 (0.33) -0.44 (0.88) -0.21 (0.86) 

ASC9 -0.52 (0.34) -0.36 (0.74) -0.16 (0.69) 

 Non-SS class  
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ASC1 0.02 (0.04) 0.2 (0.13) 0.6 (0.24) 

ASC2 0 (0) 0 (0) 0 (0) 

ASC3 -0.06 (0.04) -0.02 (0.11) 0.18 (0.2) 

ASC4 0.15 (0.05) 0.47 (0.15) 0.57 (0.25) 

ASC5 0.06 (0.04) 0.34 (0.1) 0.77 (0.19) 

ASC6 0 (0.05) 0.27 (0.13) 0.69 (0.23) 

ASC7 -0.09 (0.06) 0.02 (0.18) 0.22 (0.33) 

ASC8 -0.06 (0.05) 0.05 (0.14) 0.35 (0.23) 

ASC9 -0.06 (0.05) 0.1 (0.14) 0.47 (0.23) 

 

Table D-3 Model alternative specific constants and degree of identifiability for the 20,000 

sample size experiment with RRM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Very weak 
identifiability 

Weak 
identifiability 

Strong 
identifiability 

Strong 
identifiability 

 SS class  

ASC1 -0.61 (0.26) -0.75 (0.24) 0.05 (0.03) -0.81 (0.25) 

ASC2 -1 (fixed) -1 (fixed) 0 (fixed) -1 (fixed) 

ASC3 -0.72 (0.25) -0.96 (0.23) -0.02 (0.03) -0.94 (0.24) 

ASC4 -0.43 (0.26) -0.57 (0.25) 0.11 (0.04) -0.38 (0.29) 

ASC5 -0.58 (0.18) -0.62 (0.18) 0.1 (0.03) -0.67 (0.19) 

ASC6 -0.38 (0.28) -0.76 (0.24) 0.08 (0.03) -0.68 (0.26) 

ASC7 -0.86 (0.2) -0.72 (0.21) -0.04 (0.04) -0.84 (0.21) 



254 

  

ASC8 -0.57 (0.25) -0.8 (0.24) 0.03 (0.03) -0.82 (0.24) 

ASC9 -0.57 (0.24) -0.81 (0.22) 0.03 (0.03) -0.78 (0.23) 

 Non-SS class  

ASC1 0.02 (0.01) 0.07 (0.02) -0.67 (0.25) 0.5 (0.16) 

ASC2 0 (fixed) 0 (0) -1 (0) 0 (fixed) 

ASC3 0 (0.01) 0.01 (0.02) -0.71 (0.24) 0.14 (0.13) 

ASC4 0.03 (0.01) 0.08 (0.02) -0.29 (0.29) 0.49 (0.16) 

ASC5 0.03 (0.01) 0.08 (0.02) -0.64 (0.18) 0.67 (0.12) 

ASC6 0.02 (0.01) 0.07 (0.02) -0.74 (0.24) 0.6 (0.15) 

ASC7 0.01 (0.01) 0 (0.03) -0.4 (0.24) 0.21 (0.16) 

ASC8 0 (0.01) 0.01 (0.02) -0.74 (0.23) 0.31 (0.15) 

ASC9 0.01 (0.01) 0.04 (0.02) -0.51 (0.23) 0.45 (0.15) 

 

Table D-4 Model alternative specific constants and degree of identifiability for the 20,000 

sample size experiment with RUM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Weak identifiability Strong identifiability 

 SS class 

ASC1 -0.75 (0.24) -0.72 (0.24) 

ASC2 -1 (fixed) -1 (fixed) 

ASC3 -0.96 (0.23) -0.82 (0.24) 

ASC4 -0.57 (0.25) -0.49 (0.26) 

ASC5 -0.62 (0.18) -0.69 (0.18) 
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ASC6 -0.76 (0.24) -0.65 (0.24) 

ASC7 -0.72 (0.21) -0.81 (0.21) 

ASC8 -0.8 (0.24) -0.71 (0.24) 

ASC9 -0.81 (0.22) -0.64 (0.23) 

 Non-SS class 

ASC1 0.07 (0.02) 0.42 (0.15) 

ASC2 0 (fixed) 0 (fixed) 

ASC3 0.01 (0.02) 0.01 (0.12) 

ASC4 0.08 (0.02) 0.62 (0.16) 

ASC5 0.08 (0.02) 0.6 (0.12) 

ASC6 0.07 (0.02) 0.5 (0.15) 

ASC7 0 (0.03) 0.06 (0.18) 

ASC8 0.01 (0.02) 0.17 (0.16) 

ASC9 0.04 (0.02) 0.28 (0.16) 

 

Table D-5 Model alternative specific constants and degree of identifiability for the 40,000 

sample size experiment with RRM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Very weak 
identifiability 

Weak 
identifiability 

Strong 
identifiability 

Strong 
identifiability 

 SS class  

ASC1 -0.89 (0.15) -0.87 (0.16) -0.82 (0.17) -0.97 (0.16) 

ASC2 -1 (fixed) -1 (fixed) -1 (fixed) -1 (fixed) 

ASC3 -0.87 (0.15) -0.91 (0.16) -0.89 (0.16) -1.03 (0.16) 

ASC4 -0.74 (0.16) -0.68 (0.16) -0.71 (0.16) -0.64 (0.17) 
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ASC5 -0.78 (0.11) -0.8 (0.12) -0.74 (0.12) -0.81 (0.12) 

ASC6 -0.66 (0.16) -0.76 (0.17) -0.81 (0.16) -0.92 (0.16) 

ASC7 -0.9 (0.14) -0.86 (0.14) -0.92 (0.14) -0.94 (0.14) 

ASC8 -0.77 (0.15) -0.8 (0.16) -0.79 (0.16) -0.93 (0.15) 

ASC9 -0.85 (0.14) -0.71 (0.15) -0.78 (0.15) -0.89 (0.15) 

 Non-SS class  

ASC1 
1.03e-3 

(0.22 e-3) 
5.22e-2 

(10.93 e-2) 0.11 (0.02) 0.64 (0.11) 

ASC2 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 

ASC3 
0.26e-3 

(0.18 e-3) 

0.5e-2 

(9.15 e-2) 
0.01 (0.02) 0.25 (0.09) 

ASC4 
1.66e-3 

(0.23 e-3) 
6.98e-2 

(11.37 e-2) 0.16 (0.02) 0.64 (0.11) 

ASC5 
1.36e-3 

(0.16 e-3) 
6.71e-2 

(8.31 e-2) 0.15 (0.02) 0.79 (0.08) 

ASC6 1.1e-3 (0.2 e-3) 5.55e-2 
(10.92 e-2) 0.13 (0.02) 0.8 (0.1) 

ASC7 
0.49e-3 

(0.22 e-3) 

1.46e-2 

(11.63 e-2) 
0.06 (0.02) 0.33 (0.11) 

ASC8 
0.46e-3 

(0.21 e-3) 
2.24e-2 

(10.95 e-2) 0.05 (0.02) 0.43 (0.11) 

ASC9 0.67e-3 (0.2 e-3) 2.99e-2 
(10.75 e-2) 0.07 (0.02) 0.55 (0.1) 
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Table D-6 Model alternative specific constants and degree of identifiability for the 40,000 

sample size experiment with RUM-SS underlying heuristic 

 RRM-SS RUM-SS 

Parameters Strong identifiability Strong identifiability 

 SS class 

ASC1 -0.77 (0.16) -0.82 (0.16) 

ASC2 -1 (fixed) -1 (fixed) 

ASC3 -0.89 (0.15) -0.94 (0.15) 

ASC4 -0.74 (0.16) -0.76 (0.16) 

ASC5 -0.73 (0.11) -0.77 (0.12) 

ASC6 -0.75 (0.16) -0.81 (0.16) 

ASC7 -0.88 (0.13) -0.91 (0.13) 

ASC8 -0.77 (0.15) -0.84 (0.15) 

ASC9 -0.77 (0.14) -0.84 (0.14) 

 Non-SS class 

ASC1 0.4 (0.09) 0.5 (0.11) 

ASC2 0 (fixed) 0 (fixed) 

ASC3 0.03 (0.08) 0.1 (0.09) 

ASC4 0.7 (0.1) 0.8 (0.12) 

ASC5 0.58 (0.07) 0.71 (0.08) 

ASC6 0.47 (0.09) 0.62 (0.11) 

ASC7 0.14 (0.11) 0.24 (0.12) 

ASC8 0.14 (0.1) 0.26 (0.11) 

ASC9 0.27 (0.1) 0.41 (0.11) 

 


