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ABSTRACT

Although RDF graphs have schema information associated with them, in practice it is

very common to find cases in which data do not fully conform to their schema. A promi-

nent example of this is DBpedia, which is RDF data extracted from Wikipedia, a publicly

editable source of information. In such situations, it becomes interesting to study the struc-

tural properties of the actual data, because the schema gives an incomplete description of

the organization of a dataset.

In this work we have approached the study of the structuredness of an RDF graph in

a principled way: we propose a framework for specifying structuredness functions, which

gauge the degree to which an RDF graph conforms to a schema. In particular, we first

define a formal language for specifying structuredness functions with expressions we call

rules. This language allows a user or a database administrator to state a rule to which an

RDF graph may fully or partially conform. Then we consider the issue of discovering a

refinement of a sort by partitioning the dataset into subsets whose structuredness is over a

specified threshold. In particular, we prove that the natural decision problem associated to

this refinement problem is NP-complete, and we provide a natural translation of this prob-

lem into Integer Linear Programming (ILP). Finally, we test this ILP solution with two real

world datasets, DBpedia Persons and WordNet Nouns, and 4 different and intuitive rules,

which gauge the structuredness in different ways. The rules give meaningful refinements

of the datasets, showing that our language can be a powerful tool for understanding the

structure of RDF data.

Keywords: RDF, Semantic Web
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RESUMEN

Aunque grafos RDF tienen información de su esquema asociados a ellos, en la práctica

es muy común encontrar situaciones en que los datos no se conforman totalmente a su

esquema. Un ejemplo conspicuo es el de DBpedia, que son datos RDF extraı́dos desde

Wikipedia, una fuente de información públicamente editable. En tales situaciones, se torna

interesante estudiar las propiedades estructurales de los datos en sı́, dado que el esquema

de una descripción incompleta de la organización de una base de datos.

En este trabajo nos hemos acercado al estudio de la estructura de un grafo RDF desde

primeros principios: proponemos un marco teórico para especificar funciones de estruc-

tura, que miden el grado de conformancia entre un grafo RDF y un esquema. En particular,

primero se define un lenguaje formal para la especificación de funciones de estructura me-

diante expresiones que denominamos reglas. Este lenguaje permite a un usuario o a un

administrador de una base de datos especificar una regla a la cual un grafo RDF puede

conformarse de forma total o parcial. Luego, consideramos el problema de encontrar un

refinamiento de un tipo (sort) mediante la partición de la base de datos en subconjuntos

cuyo valor de estructura debe estar por sobre un valor crı́tico predeterminado. En par-

ticular, demostramos que el problema de decisión natural asociado a este problema de

refinamiento es NP-completo, y diseñamos una reducción natural de este problema a una

instancia de Programación Lineal Entera (ILP). Finalmente, ponemos esta solución ILP a

prueba con dos bases de datos reales, Personas de DBpedia y Sustantivos de WordNet, y 4

reglas diferentes e intuitivas, que miden la estructura de formas diferentes. Las reglas re-

sultas dar refinamientos razonables de las bases de datos, mostrando que nuestro lenguaje

puede ser una herramienta potente para entender la estructura de los datos RDF.

x



Chapter 1. INTRODUCTION

If there is one thing that is clear from analyzing real RDF data, it is that the data rarely

conform to their assumed schema (Duan, Kementsietsidis, Srinivas, & Udrea, 2011). One

example is the popular type of DBpedia persons (in this work, we will use the term sort

as a synonym of type), which includes all the people having an entry in Wikipedia. Ac-

cording to the sort definition, each person in DBpedia has 8 properties, namely, a name, a

givenName, a surName, a birthDate, a birthPlace, a deathDate, a deathPlace, and a de-

scription. There are currently 790,703 people and while we expect that a large portion of

them are alive (they do not have a death date or death place) we do expect that we know at

least when and where these people were born. The statistics however are very revealing:

Only 420,242 people have a birthdate, and only 323,368 have a birthplace, and for only

241,156 we have both pieces of information. There are approx. 40,000 people for whom

we do not even know their last name. And when it comes to death places and death dates,

we only know those for 90,246 and 173,507 people, respectively.

There is actually nothing wrong with the DBpedia person data. The data reflect the

simple fact that the information we have about any domain of discourse (in this case peo-

ple) is inherently incomplete. But while this is the nature of things in practice, sorts in

general go against this trend since they favor uniformity, i.e., they require that the data

tightly conform to the provided sorts. In our example, this means that we expect to have

all 8 properties for every DBpedia person. So the question that one needs to address is

how to bridge the gap between these two worlds, the sorts and the respective data. In

previous work (Duan et al., 2011), sorts are considered as being the unequivocal ground

truth and methods are devised so as to make the data to fit these sorts. Here, we consider a

complementary approach in which we accept the data for what they are and ask ourselves

whether we can devise a sort refinement that better fits our data.

Many challenges need to be addressed to achieve our goal. First, we need to define

formally what it means for a dataset to fit a particular sort. Past work has only introduced
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one such fitness metric, called coherence, but that does not clearly cover every possible

interpretation of fitness. In this work, we propose a new set of alternative and complemen-

tary fitness metrics between a dataset and a sort, and we also introduce a rule language

through which users can define their own metrics.

Second, for a given a RDF graph D and a fitness metric σ, we study the problem of

determining whether there exists a sort refinement T of D with a fitness value above a

given threshold θ that contain at most k implicit sorts, and we show that the problem is

NP-complete. In spite of this negative result, we present in this work several techniques

enabling us to solve this problem in practice on real datasets as illustrated in our experi-

mental evaluation section. Our first attack to the problem is to reduce the size of the input

we have to work with. Given that typical real graph datasets involve millions of instances,

even for a single sort, scalability is definitely a concern. We address this challenge by

introducing compressed representations of our input data that still maintain all the prop-

erties of the data in terms of their fitness characteristics, yet they occupy substantially

less space. Using the compressed representatation, given any fitness metric expressed as a

rule r in our language, we formulate the previously defined problem as an Integer Linear

Programming (ILP) problem instance. Although ILP is also known to be NP-hard in the

worst case, in practice, highly optimized commercial solvers (e.g. IBM ILOG CPLEX)

exist to efficiently solve our formulation of the sort refinement problem (see experimental

evaluation for more details). In particular, we study two complementary formulations of

our problem: In the first alternative, we allow the user to specify a desired fitting value θ′,

and we compute a smallest set of implicit sorts, expressed as a partition {D1, D2, . . . , Dn}

of the input dataset D, such that the fitness of each Di is larger than or equal to θ′. In the

second alternative, we allow the user to specify the desired number k of implicit sorts, and

we compute a set of k implicit sorts such that the minimum fitness across all implicit sorts

is maximal amongst all possible decompositions of the sort that involve k implicit sorts.

Both our alternatives are motivated by practical scenarios. In the former alternative, we

allow a user to define a desirable fitness and we try to compute a sort refinement with the

2



indicated fitness. However, in other settings, the user might want to specify a maximum

number of sorts to which the data should be decomposed and let the system figure out the

best possible sort and data decomposition.

Finally, a clear indication of the practical value of this work can be found in the ex-

perimental section, where we use different rules over real datasets and not only provide

useful insights about the data themselves, but also automatically discover sort refinements

that, in hindsight, seem natural, intuitive and easy to understand. We expore the correla-

tions between alternative rules (and sort refinements) over the same data and show that the

use of multiple such rules is important to fully understand the nature and characteristics of

data.

1.1. Summary of contributions

Our key contributions in this work are fourfold:

(i) We propose a language for specifying structuredness functions, which measure

the degree to which an RDF graph conforms to a schema. This language has

a boolean logic-like syntax and allows a user or a database administrator to

specify a rule to which an RDF graph may fully or partially conform. The

variables of a rule represent cells of the horizontal table corresponding to the

RDF graph and the syntax of the language allows for specifying relationships

between different subjects and properties of the RDF graph.

(ii) We study the problem of discovering a refinement of a sort by partitioning the

dataset into subsets whose structuredness is greater than a given threshold and

show that the decision problem associated with this sort refinement problem is

NP-complete. This constitutes the main theoretical result of our work. The NP-

hardness of the decision problem we define is proven by means of a reduction

from a known NP-complete problem (3-coloring of graphs, in this case).

3



(iii) We provide a natural translation of an instance of the sort refinement problem

into an ILP problem instance. This result allows us to tackle an otherwise dif-

ficult problem and the translation works for an arbitrary rule written in our

language. This allows us to present a framework in which the description of

rules is separated from the details of how to solve the sort refinement problem.

(iv) Finally, we successfully test our ILP approach on two real world datasets and

four different structuredness functions. The sort refinements produced by the

commercial ILP solver give meaningful partitionings of the subjects of datasets

studied.

1.2. Related work

Our work is most related to efforts that mine RDF data to discover frequently co-

occurring property sets that can be stored in separate so-called ’property tables’. A recent

example of this approach is exemplified in (Lee et al., 2013), “Attribute Clustering by

Table Load” where the authors consider the problem of partitioning the properties of an

RDF graph into clusters. Each cluster defines the columns of a property table in which

each row will represent a subject. A cluster is valid insofar as the table load factor remains

above a threshold. The table load factor Lee et. al. defined is equivalent to the coverage

value defined in (Duan et al., 2011) (Cov metric as per the notation of this work). Their

approach, however, differs from ours in the following way: while they seek to partition

the properties of an RDF graph for the purpose of generating property tables, we seek to

discover sets of subjects which, when considered together as an RDF graph, result in a

highly structured relational database. The sub-sorts generated by our algorithm may use

overlapping sets of properties.

Similarly, (Ding, Wilkinson, Sayers, & Kuno, 2003) and (Levandoski & Mokbel,

2009) use frequent item set sequences (Agrawal & Srikant, 1995) data mining techniques

to discover, in a RDF dataset, properties that are frequently defined together for the same
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subject (e.g., first name, last name, address, etc.). Such properties represent good candi-

dates to be stored together in a property table. Although the goal of (Ding et al., 2003) and

(Levandoski & Mokbel, 2009) is to improve performance by designing a customized data-

base schema to store a RDF dataset, a property table can also be viewed as a refined sort

whose set of instances consists of all resources specifying at least one of the properties of

the table. In (Ding et al., 2003) and (Levandoski & Mokbel, 2009), various important pa-

rameters controlling the sort refinement approach are chosen in an ad-hoc manner (e.g., in

(Ding et al., 2003) the minimum support used is chosen after manually inspecting partial

results produced by an handful of minimum support values, and, in (Levandoski & Mok-

bel, 2009), it is explicit specified by the user); whereas, in our approach, key parameters

(e.g., k and θ) are selected in a principled way to reach an optimal value of a user defined

structuredness metric.

Other than the property tables area, our work can be positioned in the broader con-

text of inductive methods to acquiring or refining schema-level knowledge for RDF data

(Völker & Niepert, 2011; d’Amato, Fanizzi, & Esposito, 2010; Lehmann, 2010; Delteil,

Faron-Zucker, & Dieng, 2001; Maedche & Zacharias, 2002; Grimnes, Edwards, & Preece,

n.d.). Prior works have typically relied on statistical or logic programming approaches to

discover ontological relations between sorts and properties. However, to the best of our

knowledge, our work presents the first principled approach to refine the sort by altering

the assignment of resources to a refined set of sorts in order to improve some user defined

measure of structuredness.

In the area of knowledge discovery in general, the work by Yao (Vinh, Epps, & Bailey,

2010) offers a nice overview of several information-theoretic measures for knowledge

discovery, including, attribute entropy and mutual information. A common characteristic

of all these measures is that they focus on the particular values of attributes (in our case,

predicates) and attempt to discover relationships between values of the same attribute, or

relationships between values of different attributes. As is obvious from Section 3, our work

focuses on discovering relationships between entities (and their respective schemas) and

5



therefore we are only interested in the presence (or absence) of predicates for particular

attributes for a given entity, therefore ignoring the concrete values stored there. Hence the

our measures are orthogonal to those discussed by Yao (Vinh et al., 2010).

1.3. Organization of this document

The remainder of the work is organized as follows. After a brief introduction of RDF

data representation and a presentation of some examples of structuredness functions in

Chapter 2, the syntax and the semantics of the language for specifying structuredness

functions are formally defined in Chapter 3. In Chapter 4, we introduce the key concepts

of signatures and sort refinements. After presenting the main computational complexity

result of the sort refinement problem in Chapter 5, Chapter 6 describes the formulation of

the problem as an ILP problem. In Chapter 7, we present the results of an experimental

evaluation of our ILP based approach on two real world datasets (DBpedia Persons and

WordNet Nouns). Finally, we conclude in Chapter 8.
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Chapter 2. PRELIMINARIES

2.1. A schema-oriented graph representation

We assume two countably infinite disjoint sets U and L of URIs, Literals, respectively.

An RDF triple is a tuple (s, p, o) ∈ U×U×(U∪L), and an RDF graph is a finite set of RDF

triples. Given an RDF graph D, we define the sets of subjects and properties mentioned in

D, respectively denoted by S(D) and P (D), as:

S(D) = {s ∈ U | ∃p∃o s.t. (s, p, o) ∈ D},

P (D) = {p ∈ U | ∃s∃o s.t. (s, p, o) ∈ D}.

Given an RDF graph D and s, p ∈ U, we say that s has property p in D if there exists

o ∈ U such that (s, p, o) ∈ D.

A natural way of storing RDF data in a relational table, known as the horizontal data-

base (Pan & Heflin, 2004), consists in defining only one relational table in which each row

represents a subject and there is a column for every property. With this in mind, given an

RDF graph D, we define an |S(D)| × |P (D)| matrix M(D) (or just M if D is clear from

the context) as follows: for every s ∈ S(D) and p ∈ P (D),

M(D)sp =

1 if s has property p in D

0 otherwise.

In an RDF graph, to indicate that a subject s is of a specific sort t (like person or

country), the following triple must be present: (s, type, t), where the constant type =

http://www.w3.org/ 1999/02/22-rdf-syntax-ns#type (note that type ∈

U).

Given a URI t, we define the following RDF subgraph Dt ⊆ D: Dt = {(s, p, o) ∈

D | (s, type, t) ∈ D}. This subgraph consists of all triples whose subject s is explicitly

7



declared to be of sort t in D. With this subgraph Dt, we can mention its set of subjects,

S(Dt), which is also the set of subjects of sort t in D, and its set of properties P (Dt),

which is the set of properties set by some subject of sort t. We will use the term sort to

refer to the constant t, the RDF subgraph Dt, and sometimes the set S(Dt).

2.2. Sample structuredness functions

As there are many alternative ways to define the fitness, or structuredness, of a dataset

with respect to a schema, it is convenient to define structuredness initially in the most

general way:

DEFINITION 2.2.1. A structuredness function σ is a function which assigns to every

RDF graph D a rational number σ(D), such that 0 ≤ σ(D) ≤ 1. �

Within the context of our framework a structuredness function will only produce rational

numbers. In what follows, we offer concrete examples of structuredness functions which

gauge the structuredness of RDF graphs in very different ways.

2.2.1. The coverage function

Duan et. al. defined the COVERAGE function (Duan et al., 2011) σCov to test the fitness

of graph data to their respective schemas. The metric was used to illustrate that though

graph benchmark data are very relational-like and have high fitness (values of σCov(D)

close to 1) with respect to their sort, real graph data are fairly unstructured and have low

fitness (σCov(D) less than 0.5). Using the compressed graph data representation intro-

duced in the previous section, the coverage metric of (Duan et al., 2011) can be expressed

as follows: σCov(D) = (
∑

spM(D)sp)/|S(D)||P (D)|. Intuitively, the metric favors con-

formity, i.e., if one subject has a property p, then the other subjects of the same sort are

expected to also have this property. Therefore, the metric is not forgiving when it comes

to missing properties. To illustrate, consider an RDF graph D1 consisting of N triples:

(si, p, o) for i = 1, . . . , N (i.e. all N subjects have the same property p). The matrix

8



M(D1) for D1 is shown in Figure 2.1a. For this dataset, σCov(D1) = 1. Assume we insert

a new triple (s1, q, o) for some property q 6= p, resulting dataset D2 = D1 ∪ {(s1, q, o)}

whose matrix is shown in Figure 2.1b. Then, the structuredness of σCov(D2) ≈ 0.5 (for

large N ). This is because the addition of the single triple generates a new dataset D2 in

which most of the existing subjects are missing property q, an indication of unstructure-

ness.

2.2.2. The similarity function

The previous behavior motivates the introduction of a structuredness function that is

less sensitive to missing properties. We define the σSim structuredness function as the

probability that, given two randomly selected subjects s and s′ and a random property p

such that s has property p in D, s′ also has property p in D.

To define the function formally, let ϕSim
1 (s, s′, p) denote the statement “s 6= s′ and

s has property p in D” and let ϕSim
2 (s′, p) denote “s′ has property p in D”. Next, we define

a set of total cases total(ϕSim
1 , D) = {(s, s′, p) ∈ S(D) × S(D) × P (D) | ϕSim

1 holds},

and a set of favorable cases total(ϕSim
1 ∧ϕSim

2 , D) = {(s, s′, p) ∈ S(D)× S(D)×P (D) |

ϕSim
1 ∧ ϕSim

2 holds} (note that total(ϕSim
1 ∧ ϕSim

2 , D) ⊆ total(ϕSim
1 , D)). Finally, define:

σSim(D) =
|total(ϕSim

1 ∧ ϕSim
2 , D)|

|total(ϕSim
1 , D)|

.

Going back to our example, notice that σSim(D1) = 1 but also σSim(D2) is still approx.

equal to 1 (for large N). Unlike σCov, function σSim allows certain subjects to have exotic

properties that either no other subject has, or only a small fraction of other subjects have

(while maintaining high values for σSim). As another example, consider the RDF graphD3

in Figure 2.1c where every subject si has only one property pi, and no two subjects have

the same property. This dataset is intuitively very unstructured. Indeed, σSim(D3) = 0

while σCov(D3) ≈ 0 (for a large value of N).
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
p

s1 1
s2 1
...

...
sN 1


(a) M(D1)


p q

s1 1 1
s2 1 0
...

...
...

sN 1 0


(b) M(D2)


p1 p2 · · · pN

s1 1 0 · · · 0
s2 0 1 · · · 0
...

...
... . . . ...

sN 0 0 · · · 1


(c) M(D3)

FIGURE 2.1. Sample matrixes for datasets D1, D2 and D3

2.2.3. The dependency functions

It is also of interest to understand the correlation between different properties in an

RDF graph D. Let p1,p2 ∈ P (D) be two fixed properties we are interested in. Define the

σDep[p1, p2] function as the probability that, given a random subject s ∈ S(D) such that

s has p1, s also has p2.

In the same way as before, we can define a set of total cases and a set of favorable

cases, and we define the value of σDep[p1, p2] to be the ratio of the sizes of both sets.

A closely related structuredness function is the symmetric version of σDep[p1, p2],

which we call σSymDep[p1, p2]. It is defined as the probability that, given a random subject

s ∈ S(D) such that s has p1 or s has p2, s has both.
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Chapter 3. A LANGUAGE FOR DEFINING STRUCTUREDNESS MEASURES

We have already shown in Section 2.2 some intuitive structuredness measures that

give very different results when applied to the same RDF graphs. As many more natural

structuredness functions exist, we do not intend to list all of them in this article, but instead

our goal is to introduce a general framework to allow users to define their own custom

structuredness measures in a simple way. To this end, we introduce in this section a

language for describing such measures. This language has a simple syntax and a formal

semantics, which make it appropriate for a formal study, and it is expressive enough to

represent many natural structuredness functions, like the ones presented in Section 2.2.

In general, starting from the matrix M(D) of a dataset D, our language can construct

statements that involve (i) the contents of the matrix (the cells of the matrix with 0 or

1 values); (ii) the indices of the matrix, that correspond to the subjects and properties

of the dataset; and (iii) combinations of these basic building components in the form of

conjunctions, disjunctions and negations.

3.1. Syntax of the language

To define the syntax of the language, we need to introduce some terminology. From

now on, assume that V is an infinite set of variables disjoint from U. We usually use c, c1,

c2, . . . to denote the variables in V, as each one of these variables is used as a pointer to

a cell (or position) in a matrix associated with an RDF graph. Moreover, assume that 0, 1

do not belong to (U ∪ V). Then the set of terms in the language is defined as follows:

• 0, 1, every u ∈ U and every c ∈ V is a term, and

• if c ∈ V, then val(c), subj(c) and prop(c) are terms.

If c is a variable pointing to a particular cell in a matrix, then val(c) represents the

value of the cell, which must be either 0 or 1, subj(c) denotes the row of the cell, which

must be the subject of a triple in D, and prop(c) denotes the column of the cell, which
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must be the property of a triple in D. Moreover, the set of formulas in the language is

recursively defined as follows:

• If c ∈ V and u ∈ U, then val(c) = 0, val(c) = 1, prop(c) = u and subj(c) = u

are formulas.

• If c1, c2 ∈ V, then c1 = c2, val(c1) = val(c2), prop(c1) = prop(c2) and

subj(c1) = subj(c2) are formulas.

• If ϕ1 and ϕ2 are formulas, then (¬ϕ1), (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2) are formulas.

If ϕ is a formula, then var(ϕ) is the set consisting of all the variables mentioned in

ϕ. With this notation, we can finally define the syntax of the rules in the language, which

are used to define structuredness functions. Formally, if ϕ1, ϕ2 are formulas such that

var(ϕ2) ⊆ var(ϕ1), then the following is a rule:

ϕ1 7→ ϕ2. (3.1)

3.2. Semantics of the language

To define how rules of the form (3.1) are evaluated, we need to define the notion of

satisfaction of a formula. In the rest of this section, assume thatD is an RDF graph andM

is the |S(D)|×|P (D)|matrix associated withD. A partial function ρ : V→ S(D)×P (D)

is said to be a variable assignment forM , whose domain is denoted by dom(ρ). Moreover,

given a formula ϕ and a variable assignment ρ for M such that var(ϕ) ⊆ dom(ρ), pair

(M,ρ) is said to satisfy ϕ, denoted by (M,ρ) |= ϕ, if:

• ϕ is the formula val(c) = i, where i = 0 or i = 1, ρ(c) = (s, p) and Msp = i.

• ϕ is the formula subj(c) = u, where u ∈ U, and ρ(c) = (u, p).

• ϕ is the formula prop(c) = u, where u ∈ U, and ρ(c) = (s, u).

• ϕ is the formula c1 = c2, and ρ(c1) = ρ(c2).

• ϕ is the formula val(c1) = val(c2), ρ(c1) = (s1, p1), ρ(c2) = (s2, p2) and

Ms1p1 = Ms2p2 .
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• ϕ is the formula subj(c1) = subj(c2), ρ(c1) = (s1, p1), ρ(c2) = (s2, p2) and

s1 = s2.

• ϕ is the formula prop(c1) = prop(c2), ρ(c1) = (s1, p1), ρ(c2) = (s2, p2) and

p1 = p2.

• ϕ is the formula (¬ϕ1) and (M,ρ) |= ϕ1 does not hold.

• ϕ is the formula (ϕ1 ∧ ϕ2), (M,ρ) |= ϕ1 and (M,ρ) |= ϕ2.

• ϕ is the formula (ϕ1 ∨ ϕ2), and (M,ρ) |= ϕ1 or (M,ρ) |= ϕ2.

Moreover, the set of satisfying assignments for a formula ϕ w.r.t. M , denoted by

total(ϕ,M), is defined as follows:{
ρ | ρ is a variable assignment for M such that dom(ρ) = var(ϕ) and (M,ρ) |= ϕ

}
.

We now have the necessary ingredients to define the semantics of rules. Assume that

r is the rule (3.1). Then the structuredness function given by rule r is defined as a function

σr that assigns to every matrix M the value

σr(M) =
|total(ϕ1 ∧ ϕ2,M)|
|total(ϕ1,M)|

if |total(ϕ1,M)| > 0, and 1 otherwise (notice that 0 ≤ σr(M) ≤ 1, as we assume that

var(ϕ2) ⊆ var(ϕ1)). Thus, σr(M) is defined as the probability that a variable assignment

ρ satisfies ϕ2 given that ρ satisfies ϕ1.

Going back to the functions presented in Section 2.2, these can be expressed in our

language as follows: The σCov structuredness measure can be expressed with the rule

c = c 7→ val(c) = 1.

In this case, given a matrixM , total(c = c,M) is the set of all cells ofM and total(c =

c ∧ val(c) = 1,M) is the set of all cells of M containing a value 1 (which is represented

by the condition val(c) = 1). In some cases, it is desirable to compute a structuredness

functions without considering some predicate (or set of predicates), which can be easily
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done in our language. For instance, a modified σCov structuredness measure which ignores

a specific column called p is defined by the following rule:

c = c ∧ ¬(prop(c) = p) 7→ val(c) = 1.

The σSim structuredness measure can be expressed with the rule

¬(c1 = c2) ∧ prop(c1) = prop(c2) ∧ val(c1) = 1 7→ val(c2) = 1,

where ¬(c1 = c2) considers two variables c1 and c2 that should point to different cells,

and prop(c1) = prop(c2) requires that the two variables range over the same property

column, say property p. Taken together, the first two formulas iterate over all pairs of

subjects for each property p. The last part of the formula val(c1) = 1 requires that the

value of the first cell be 1, i.e., the first subject actually has property p. If the consequence

formula is satisfied, then the rule considers the cases where the second cell is also 1,

which translates to the second subject also having property p. Notice that this is exactly

the definition of the function σSim.

Finally, for fixed p1,p2 ∈ U, we can also express the dependency measures. The

σDep[p1, p2] structuredness measure can be expressed with the rule

subj(c1) = subj(c2) ∧ prop(c1) = p1 ∧ prop(c2) = p2 ∧ val(c1) = 1

7→ val(c2) = 1,

while the σSymDep[p1, p2] structuredness measure can be expressed with the rule

subj(c1) = subj(c2) ∧ prop(c1) = p1 ∧ prop(c2) = p2 ∧ (val(c1) = 1 ∨ val(c2) = 1)

7→ val(c1) = 1 ∧ val(c2) = 1.
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Chapter 4. SORT REFINEMENTS AND SIGNATURES

We can use the language from the previous section to define a structuredness measure

for a dataset. If the value of the measure for the dataset is high, say 0.9 or even 1.0,

then this is probably a positive indication for the current state of the data, and the measure

computation can be repeated at a later stage, as the data change. Of most interest, however,

is what happens if this value is relatively low, say, 0.5 or even 0.1? Then, we know that

the dataset does not have the desired characteristic, as expressed by the measure, and the

question is whether there is anything we can do about it. In particular, it is interesting to

investigate if there is a way to convert the existing dataset into one whose measure is high.

In previous work (Duan et al., 2011), the data themselves were changed to fit the

measure, by introducing new triples or removing existing ones. The approach made sense

in the context of benchmarking for which it was introduced, but in any practical setting

one does not want to contaminate their data with dummy triples, or even worse lose real

data by deleting triples just so that the data fit some desired measure. So a more pragmatic

solution is to leave data as they are and try to figure out whether we can refine the sort that

the data is supposed to fit, in an effort to improve structuredness.

To this end, we consider the situation in which one wishes to partition the dataset into

k implicit sorts such that each implicit sort has a high structuredness (as defined by a rule

in our language). For a certain subject s0 ∈ S(D) we are interested in keeping all triples

of the form (s0, p, o) (for some p, o ∈ U) together. We refer to these triples collectively as

the entity s0.

We define an entity preserving partition of size k of an RDF graph D to be a set of

non-empty RDF graphs {D1, . . . , Dk} where (i) Di ⊆ D for every i ∈ {1, . . . , k}, (ii)

Di ∩ Dj = ∅ for every i, j ∈ {1, . . . , k} such that i 6= j, (iii)
⋃k
i=1Di = D, and (iv) for

all s, p1, p2, o1, o2 ∈ U, we have that:

if (s, p1, o1) ∈ Di and (s, p2, o2) ∈ Dj , then i = j.
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While the first three items specify a partition of D, the last item indicates that for every

entity s, we include the full entity in a sort.

A second consideration we shall make is concerned with the grouping of subjects

which have the same properties in D. For this, we define the concept of signature:

DEFINITION 4.0.1. Given an RDF graphD and a subject s ∈ S(D), the signature of s

in D is a function sig(s,D) : P (D)→ {0, 1}, which assigns to every property p ∈ P (D)

a 1 if s has property p in D, and a 0 otherwise. �

We are now ready to define our main objects of study. For the following definition, let

D be a fixed RDF graph and θ be a rational number such that 0 ≤ θ ≤ 1 (the threshold is

required to be a rational number also, and this will be for compatibility with the reduction

to the Integer Linear Programming instance).

DEFINITION 4.0.2. Given a structuredness function σ, a σ-sort refinement T of D

with threshold θ is an entity preserving partition {D1, . . . , Dn} of D such that:

i) σ(Di) ≥ θ for i = 1, . . . , n, and

ii) each Di (1 ≤ i ≤ n) is closed under signatures. That is, for every pair of

subjects s1, s2 ∈ S(D), if sig(s1, D) = sig(s2, D) and s1 ∈ S(Di), then s2 ∈

S(Di). �

In the rest of this work, we will refer to the elements of the sort refinement (i.e. the

elements of the partition of D) as implicit sorts.

We will now be concerned with discovering sort refinements in RDF data. We use

the term signature in two ways: (i) to refer to the binary function described in Definition

4.0.1, and (ii) to refer to the set of all entities in an RDF graph D which share a common

signature. In this second case, the size of a signature is the number of entities (or subjects)

sharing that signature.

Figures 4.1a and 4.1b present a visual representation of an RDF graph’s horizontal

table. Every column represents a property and the rows have been grouped by signature,
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in descending order of signature size. The first 3 signatures in figure 4.1a have been de-

limited with a dashed line, for clarity. The subsequent signatures can be visually separated

by searching for the change in pattern. The black zones represent data (i.e. non-null

values) whereas the white regions represent null cells. The difference between DBpedia

Persons (Fig. 4.1a) and WordNet Nouns (Fig. 4.1b) is immediately visible. DBpedia Per-

sons is a relatively unstructured dataset, with only 3 clearly common properties: name,

givenName, and surName (these three attributes are usually extractable directly from

the URL of a Wikipedia article). On the other hand, WordNet Nouns has 5 clearly com-

mon properties, and the rest of the properties are realtively rare (very few subjects have

them). The values of the structuredness functions show how they differ in judging the

structuredness of an RDF graph.

We shall use this visual representation of the horizontal table of an RDF graph to

present the results of the experimental settings. In this context, a sort refinement corre-

sponds loosely to a partitioning of the rows of the horizontal table into subtables (in all

figures for a given dataset, we depict for easy comparison the same number of columns,

even if some columns are not present in a given subset of the sort refinement).
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(A) The DBPedia Persons dataset has 790,703 subjects, 8 properties and 64 signatures. For this
RDF graph, σCov = 0.54, σSim = 0.77.
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(B) The WordNet Nouns dataset has 79,689 subjects, 12 properties and 53 signatures. For this
RDF graph, σCov = 0.44, σSim = 0.93.

FIGURE 4.1. Signature view of the two real world datasets: (a) DBpedia Persons,
and (b) WordNet Nouns. The datasets are depicted as horizontal tables, where the
columns correspond to the properties of a dataset, the black regions correspond to
data (non-null cells), and the white regions correspond to null cells.
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Chapter 5. FORMAL DEFINITION OF THE DECISION PROBLEM

Fix a rule r. The main problem that we address in this work can be formalized as

follows.

Problem: EXISTSSORTREFINEMENT(r)

Input: An RDF graph D, a rational number θ such that 0 ≤ θ ≤ 1, and a

positive integer k.

Output: true if there exists an σr-sort refinement T of D with threshold θ that

contains at most k implicit sorts, and false otherwise.

We pinpoint the complexity of the problem EXISTSSORTREFINEMENT(r) in the fol-

lowing theorem:

THEOREM 5.0.3.

• EXISTSSORTREFINEMENT(r) is in NP for every rule r.

• There is a rule r0 for which EXISTSSORTREFINEMENT(r0) is NP-complete.

Moreover, this result holds even if we fix k = 3 and θ = 1. �

The first part of Theorem 5.0.3 is a corollary of the fact that one can efficiently check

if a sort refinement is an entity preserving partition of an RDF graph and has the correct

threshold, as for every (fixed) rule r, function σr can be computed in polynomial time.

The second statement in Theorem 5.0.3 shows that there exists a (fixed) rule r0 for which

EXISTSSORTREFINEMENT(r0) is NP-hard, even if the structuredness threshold θ and the

maximum amount of implicit sorts k are fixed. The proof of this part of the theorem relies

on a reduction from the graph 3-coloring problem to EXISTSSORTREFINEMENT(r0) with

θ = 1 and k = 3. In this reduction, a graph G (the input to the 3-coloring problem)

is used to construct an RDF graph DG in such a way that a partition of the nodes of G

can be represented by an entity preserving partitioning of the corresponding RDF graph.
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Although the rule r0 will not be shown explicitly here, it is designed to calculate the

probability that 2 subjects in a subset of the entity preserving partitioning of DG represent

2 nodes of G which are not adjacent in G. This probability will be 1 only when said

subset represents an independent set of G. Therefore, setting the threshold θ = 1 ensures

that each subset of DG will represent an independent set of G. Finally, setting k = 3

ensures that at most 3 subsets will be generated. If the graph G is 3-colorable, then it will

be possible to generate the sort refinement of DG in which each subset represents an (an

independent set) of G, and thus will have a structuredness value of 1. Conversly, if there

is a sort refinement of at most 3 subsets, then it is possible to partition the nodes of G into

3 or less independent sets, and thus, is 3-colorable.

Note that the fixed rule r0 used in the reduction does not contain statements of the

form subj(c) = a (where a is a constant URI), although it does use statements of the form

prop(c) = a and other equalities. It is natural to exclude rules which mention specific

subjects, as the structuredness of an RDF graph should not depend on the presence of a

particular subject, but rather on the general uniformity of all entities in the RDF graph.

The decision problem presented in this section is theoretically intractable, which im-

mediately reduces the prospects of finding reasonable algorithms for its solution. The

inclusion of the problem in NP points us to three NP-complete problems for which much

work has been done to produce efficient solvers: the travelling salesman problem, the

boolean satisfiability problem, and the integer linear programming problem.

An algorithm for our problem must choose a subset for each signature, producing a

series of decisions which could in principle be expressed as boolean variables, suggesting

the boolean satisfiability problem. However, for a candidate sort refinement the function

σr must be computed for every subset, requiring non-trivial arithmetics which cannot be

naturally formulated as a boolean formula. Instead, and as one of the key contributions of

this work, we have successfully expressed the previous decision problem in a natural way

as an instance of Integer Linear Programming. It is to this reduction that we turn to in the

next section.
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Chapter 6. REDUCING TO INTEGER LINEAR PROGRAMMING

We start by describing the general structure of the Integer Linear Programming (ILP)

instance which, given a fixed rule r, solves the problem EXISTSSORTREFINEMENT(r).

Given an RDF graph D, a rational number θ such that 0 ≤ θ ≤ 1 and a positive integer

k, we will define in this section an instance of integer linear programing, which can be

represented as a pair (A(D,k,θ),~b(D,k,θ)), whereA(D,k,θ) is a matrix of integer values,~b(D,k,θ)

is a vector of integer values, and the problem is to find a vector ~d of integer values (i.e. the

values assigned to the variables of the system of equations) such that A(D,k,θ)
~d ≤ ~b(D,k,θ).

Moreover, we will prove that (D, k, θ) ∈ EXISTSSORTREFINEMENT(r) if and only if the

instance (A(D,k,θ),~b(D,k,θ)) has a solution.

Intuitively, the ILP instance we will define works in the following way: the integer

variables will decide which signatures are to be included in which subsets, and they will

keep track of which properties are used in each subset. Also, we will group variable as-

signments into objects we call rough variable assignments, which instead of assigning

each variable to a subject and a property will assign each variable to a signature and a

property. In this way, another set of variables will keep track of which rough assignments

are valid in a given subset (i.e. the rough assignment mentions only signatures and proper-

ties which are present in the subset). With the previous, we will be able to count the total

and favorable cases of the rule for each subset.

For the following, fix a rule r = ϕ1 7→ ϕ2 and assume that var(ϕ1) = {c1, . . . , cn}

(recall that var(ϕ2) ⊆ var(ϕ1)). Also, fix a rational number θ ∈ [0, 1], a positive integer

k, and an RDF graph D, with the matrix M = M(D).
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6.1. Variable definitions

We begin by defining the variables of the ILP instance. Recall that our goal when

solving EXISTSSORTREFINEMENT(r) is to find a σr-sort refinement of D with threshold

θ that contains at most k implicit sorts.

All the variables used in the ILP instance will take only integer values. First, we define

the set of signatures of D as Λ(D) = {sig(s,D) | s ∈ S(D)}, and for every µ ∈ Λ(D),

we define the support of µ, denoted by supp(µ), as the set {p ∈ P (D) | µ(p) = 1}. Then

for each i ∈ {1, . . . , k} and each µ ∈ Λ(D), we define the variable:

Xi,µ =

1 if signature µ is placed in implicit sort i

0 otherwise.

These are the primary variables of the ILP instance, as they encode the sort refinement

which is generated. Notice that it could be the case that for some i ∈ {1, . . . , k} value 0

is assigned to every variable Xi,µ (µ ∈ Λ(D)), in which case we have that the i-th implicit

sort is empty.

For each i ∈ {1, . . . , k} and each p ∈ P (D) define the variable:

Ui,p =

1 if implicit sort i uses property p

0 otherwise.

Each variable Ui,p is used to indicate whether the i-th implicit sort uses property p,

that is, if implicit sort i includes a signature µ ∈ Λ(D) such that µ(p) = 1 (p ∈ supp(µ)).

For the last set of variables, we will consider a rough assignment of variables in ϕ

to be a mapping of each variable to a signature and a property. We shall denote rough

assignments with τ = ((µ1, p1), . . . , (µn, pn))) ∈ (Λ(D) × P (D))n. Then for each i ∈
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{1, . . . , k} and each τ ∈ (Λ(D)× P (D))n define the variable:

Ti,τ =

1 if τ is consistent in the i-th implicit sort

0 otherwise.

The rough assignment τ = ((µ1, pn), . . . , (µn, pn)) is consistent in the i-th implicit sort

if it only mentions signatures and properties which are present in it, that is, if for each

j ∈ {1, . . . , n} we have that µj is included in the i-th implicit sort and said implicit sort

uses pj .

6.2. Constraint definitions

Define function count(ϕ, τ,M) to be the number of variable assigments for rule r

which are restricted by the rough assignment τ and which satisfy the formula ϕ. Formally,

if τ = ((µ1, pn), . . ., (µn, pn)), then count(ϕ, τ,M) is defined as the cardinality of the

following set:

{ρ | ρ is a variable assignment for D s.t. dom(ρ) = var(ϕ),

(M,ρ) |= ϕ and for every i ∈ {1, . . . , n},

if ρ(ci) = (s, p) then sig(s,D) = µi and p = pi}.

Note that the value of count(ϕ, τ,M) is calculated offline and is used as a constant

in the ILP instance. We now present the set of inequalities that constrain the acceptable

values of the previously defined variables.
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• The following inequalities specify the obvious lower and upper bounds of all

variables:

0 ≤ Xi,µ ≤ 1 i ∈ {1, . . . , k} and µ ∈ Λ(D)

0 ≤ Ui,p ≤ 1 i ∈ {1, . . . , k} and p ∈ P (D)

0 ≤ Ti,τ ≤ 1 i ∈ {1, . . . , k} and τ ∈ (Λ(D)× P (D))n

• For every µ ∈ Λ(D), the following equation is used to indicate that the signature

µ must be assigned to exactly one implicit sort:

k∑
i=1

Xi,µ = 1.

• For every i ∈ {1, . . . , k} and p ∈ P (D), we include the following equations to

ensure that Ui,p is assigned to 1 if and only if the i-th implicit sort includes a

signature µ ∈ Λ(D) such that µ(p) = 1 (p ∈ supp(µ)):

Xi,µ ≤ Ui,p if p ∈ supp(µ)

Ui,p ≤
∑

µ′∈Λ(D) : p∈supp(µ′)

Xi,µ′

The first equation indicates that if signature µ has been assigned to the i-th

implicit sort and p ∈ supp(µ), then p is one of the properties that must be

considered when computing σr in this implicit sort. The second equation indi-

cates that if p is used in the computation of σr in the i-th implicit sort, then this

implicit sort must include a signature µ′ ∈ Λ(D) such that p ∈ supp(µ′).

• For i ∈ {1, . . . , k}, and τ = ((µ1, p1), . . . , (µn, pn)) ∈ (Λ(D)×P (D))n, recall

that Ti,τ = 1 if and only if for every j ∈ {1, . . . , n}, it holds that Xi,µj = 1 and
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Ui,pj = 1. This is expressed as integer linear equations as follows:

n∑
j=1

(Xi,µj + Ui,pj) ≤ Ti,τ + 2 · n− 1

2 · n · Ti,τ ≤
n∑
j=1

(Xi,µj + Ui,pj)

The first equation indicates that if the signatures µ1, . . ., µn are all included in

the i-th implicit sort (each variable Xi,µj is assigned value 1), and said implicit

sort uses the properties p1, . . ., pn (each variable Ui,pj is assigned value 1), then

τ is a valid combination when computing favorable and total cases (variable Ti,τ

has to be assigned value 1). Notice that if any of the variables X1,µ1 , U1,p1 , . . .,

Xn,µn , Un,pn is assigned value 0 in the first equation, then
∑n

j=1(Xi,µj +Ui,pj) ≤

2 · n − 1 and, therefore, no restriction is imposed on Ti,τ by this equation, as

we already have that 0 ≤ Ti,τ . The second equation indicates that if variable

Ti,τ is assigned value 1, meaning that τ is considered to be a valid combination

when computing σr over the i-th implicit sort, then each signature mentioned in

τ must be included in this implicit sort (each variable Xi,µj has to be assigned

value 1), and each property mentioned in τ is used in this implicit sort (each

variable Ui,pj has to be assigned value 1).

• Finally, assuming that θ = θ1/θ2, where θ1, θ2 are natural numbers, we include

the following equation for each i ∈ {1, . . . , k}:

θ2 ·
( ∑
τ∈(Λ(D)×P (D))n

count(ϕ1 ∧ ϕ2, τ,M) · Ti,τ
)

≥ θ1 ·
( ∑
τ∈(Λ(D)×P (D))n

count(ϕ1, τ,M) · Ti,τ
)

To compute the numbers of favorable and total cases for σr over the i-th implicit

sort, we consider each rough assignment τ in turn. The term
∑

τ∈(Λ(D)×P (D))n

count(ϕ1 ∧ϕ2, τ,M) · Ti,τ evaluates to the amount of favorable cases (i.e. vari-

able assignments which satisfy the antecedent and the consequent of the rule),

25



while the term
∑

τ∈(Λ(D)×P (D))n count(ϕ1, τ,M) · Ti,τ evaluates to the number

of total cases (i.e. variable assignments which satisfy the antecedent of the rule).

Consider the former term as an example: for each rough variable assignment τ ,

if τ is a valid combination in the i-th implicit sort, then the amount of variable

assignments which are compatible with τ and which satisfy the full rule are

added.

From the definition of the ILP instance, it is easy to see that the following result holds.

PROPOSITION 6.2.1. There exists a σr-sort refinement of D with threshold θ that

contains at most k implicit sorts if and only if the instance of ILP defined in this section

has a solution. �

6.3. Implementation details

Although the previously defined constraints are enough to solve the decision problem,

in practice the search space is too large to be manageable because of the presence of

sets of solutions which are equivalent, in the sense that the variables describe the same

partitioning of the input RDF graph D. More precisely, if there is a solution of the ILP

instance where for each i ∈ {1, . . . , k}, µ ∈ Λ(D), p ∈ P (D), and τ ∈ (Λ(D)×P (D))n,

Xi,µ = ai,µ, Ui,p = bi,p, and Ti,τ = ci,τ , then for any permutation (l1, . . . , lk) of (1, . . . , k),

the following is also a solution: Xi,µ = ali,µ, Ui,p = bli,p, and Ti,τ = cli,τ .

In order to break the symmetry between these equivalent solutions, we will define

the following hash function for the i-th implicit sort. For this, consider ` = |Λ(D)| and

consider any (fixed) ordering µ1, . . . , µ` of the signatures in Λ(D). Then:

hash(i) =
∑̀
j=0

2jXi,µj ,

With the previous hash function defined, the following constraint is added, for i =

1, . . . , k − 1:

hash(i) ≤ hash(i+ 1).
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The hash function as defined above uniquely identifies a subset of signatures, and

therefore the previous constraints eliminate the presence of multiple solutions due to per-

mutations of the i index. Care must be taken, however, if the amount of signatures in

the RDF graph is large (64 in the case of DBpedia Persons) as large exponent values will

cause numerical instability in commercial ILP solvers. This issue may be addressed on

a case by case basis. One alternative is to limit the maximum exponent in the term 2j ,

which has the drawback of increasing the amount of collisions of the hash function, and

therefore permitting the existence of more equivalent solutions.
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Chapter 7. EXPERIMENTAL RESULTS

For our experiments, we consider two real datasets: DBpedia Persons and WordNet

Nouns. With each, we consider two settings:

• A highest θ sort refinement for k = 2: This setup can be used to obtain an

intuitive understanding of the dataset at hand. We fix k = 2 to force at most 2

implicit sorts.

• A lowest k sort refinement for θ = 0.9: As a complementary approach, we

specify θ = 0.9 as the threshold, and we search for the lowest k such that

an sort refinement with threshold θ and k implicit sorts exists. This approach

allows a user to refine their current sort by discovering sub-sorts. In some cases

the structuredness of the original dataset under some structuredness function is

higher than 0.9, in which case we increase the threshold to a higher value.

In the first case the search for the optimum value of θ is done in the following way:

starting from the intial structuredness value θ = σr(D) (for which a solution is garanteed)

and for values of θ incremented in steps of 0.01, an ILP instance is generated with k = 2

and the current value of θ. If a solution is found by the ILP solver, then said solution is

stored. If the ILP instance is found to be infeasible, then the last stored solution is used

(this is the solution with the highest threshold). This sequential search is preferred over

a binary search because the latter will generate more infeasible ILP instances on average,

and it has proven to be much slower to find an instance infeasible than to find a solution to

a feasible instance. A similar strategy is used for the second case (the search for the lowest

k), with the following difference: for some setups it is more efficient to search downwards,

starting from k = |Λ(D)| (i.e. as many available sorts as signatures in the dataset), and yet

for others it is preferrable to search upwards starting from k = 1, thus dealing with a series

of infeasible ILP instances, before discovering the first value of k such that a solution is

found. Which of the two directions is to be used has been decided on a case by case basis.
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A final comment on the general experimental settings is in order: the amount of vari-

ables and constraints in each ILP instance depends on the amount of variables of the

rules, on the degrees of freedom given to the variables in the rules (e.g. the two variables

in σDep[p1, p2] lose a degree of freedom when considering the restriction subj(c1) =

subj(c2) in the antecedent), and on the characteristics of the dataset. Here, the enourmous

reduction in size offered by the signature representation of a dataset has proven crucial for

the efficiency of solving the ILP instances.

The previous two settings are applied both to the DBpedia Persons and WordNet

Nouns datasets. Furthermore, they are repeated for the structuredness functions σCov,

σSim, and σDep (the last function is only used on DBpedia Persons). All experiments are

done on a machine with two 2.3 GHz processors, each with 6 cores, and 64 GB of RAM.

The ILP solver used is IBM ILOG CPLEX version 12.5.

7.1. DBpedia Persons

DBpedia corresponds to RDF data extracted from Wikipedia. DBpedia Persons refers

to the following subgraph (where Person is a shorthand for http://xmlns.com/foaf/

0.1/Person):

DDBpedia Persons = {(s, p, o) ∈ DDBpedia |

(s, type,Person) ∈ DDBpedia}.

This dataset is 534 MB in size, and contains 4,504,173 triples, 790,703 subjects, and

8 properties (excluding the type property). It consists of 64 signatures, requiring only

3 KB of storage. The list of properties is as follows: deathPlace, birthPlace,

description, name, deathDate, birthDate, givenName, and surName (note

that these names are abbreviated versions of the full URIs).

For this sort, σCov = 0.54, and σSim = 0.77. We are also interested in studying

the dependency functions for different properties p1 and p2. If p1 = deathPlace and
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p2 = deathDate, for example, then the value of the function σSymDep [deathPlace,

deathDate] is 0.39. This specific choice of p1 and p2 is especially interesting because

it might be temping to predict that a death date and a death place are equally obtainable

for a person. However, the value 0.39 reveals the contrary. The generally low values for

the three structuredness functions discussed make DBpedia Persons interesting to study.

7.1.1. A highest θ sort refinement for k = 2

We set k = 2 in order to find a two-sort sort refinement with the best threshold θ.

Figure 7.1a shows the result for the σCov function. The left sort, which is also the largest

(having 528,593 subjects) has a very clear characteristic: no subject has a deathDate

or a deathPlace, i.e. it represents the sort for people that are alive! Note that without

encoding any explicit schema semantics in the generic rule of σCov, our ILP formulation

is able to discover a very intuitive decomposition of the initial sort. In the next section,

we show that this is the case even if we consider larger values of k. In this experimental

setup, each ILP instanced is solved in under 800 ms.

Figure 7.1b shows the results for the σSim function. In this case, the second sort

accumulates subjects for which very little data is known (other than a person’s name).

Notice that whereas Cov has excluded the columns deathPlace, description, and

deathDate from its first sort, Sim does not for its second sort, since it does not penalize

the largely missing properties in these columns (which was what motivated us to introduce

the σSim function in the first place). Also, notice that unlike the σCov function, the cardi-

nality of the generetic sorts from σSim is more balanced. In this experimental setup each

ILP instance is solved in under 2 minutes, except the infeasible instance (the last insance

to be solved), which was completed in 2 hrs.

Finally, Figure 7.1c shows the results for σSymDep[deathPlace, deathDate],

a structuredness function in which we measure the probability that, if a subject has a

deathPlace or a deathDate, it has both. In the resulting sort refinement, the second

sort to the right has a high value of 0.82. From figure it is easy to see that indeed our ILP
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solution does the right thing. In the sort on the right, the deathDate and deathPlace

columns look almost identical which implies that indeed whenever a subject has one prop-

erty it also has the other. As far as the sort on the left is concerned, this includes all subjects

that do not have a deathPlace column. This causes the sort to have a structuredness

value of 1.0 for σSymDep[deathPlace, deathDate] since the rule is trivially satisfied.

This is because the absence of the said column eliminates all total cases (i.e. there are no

assignments of variables in the rule that represents σSymDep[deathPlace, deathDate]

for which the antecedent is true, because it is never true that prop(c1) = deathPlace).

This setting is completed in under 1 minute.

7.1.2. A lowest k sort refinement for θ = 0.9

We now consider a fixed threshold θ = 0.9. We seek the smallest sort refinement

for DBpedia persons with this threshold. Figure 7.2a shows the result for σCov, where the

optimum value found is for k = 9. As in the previous setting, the Cov function shows a

clear tendency to produce sorts which do not use all the columns (i.e. sorts which exclude

certain properties). People that are alive can now be found in the first, second, third,

fourth, and sixth sorts. The first sort considers living people who have a description (and

not even a birth place or date). The second sort shows living people who are even missing

the description field. The third sort considers living people who have a description and a

birth date or a birth place (or both). The fourth sort considers living people with a birth

place or birth date but no description. Finally, the sixth sort considers living people with

a birth place only. It is easy to see that similarly dead people are separated into different

sorts, based on the properties that are known for them. The eighth sort is particularly

interesting since it contains people for which we mostly have all the properties. This setup

was completed in a total of 30 minutes.

Figure 7.2b shows the result for σSim, where the optimum value found is for k = 4.

Again, the function is more lenient when properties appear for only a small amount of sub-

jects (hence the smaller k). This is clearly evident in the first sort for this function, which
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(A) Using the σCov function, the left sort has 528,593 subjects and 8 signatures, σCov = 0.73,
and σSim = 0.85. The right sort has 262,110 subjects and 56 signatures, σCov = 0.71, and
σSim = 0.78.

1 1

(B) Using the σSim function, the left sort has 387,297 subjects and 37 signatures, σCov = 0.67, and
σSim = 0.82. The right sort has 403,406 subjects and 27 signatures, σCov = 0.42 and σSim = 0.85.

1 1

(C) Using the σ1 = σSymDep[deathPlace,deathDate] function, the left sort has 305,610
subjects and 25 signatures, σCov = 0.66, σSim = 0.80, and σ1 = 1.0. The right sort has 485,093
subjects and 39 signatures, σCov = 0.52, σSim = 0.78, and σ1 = 0.82.

FIGURE 7.1. DBpedia Persons split into k = 2 implicit sorts, using the struc-
turedness functions (a) σCov, (b) σSim, and (c) σDep.

corresponds roughly to the second sort generated for the σCov function (Fig. 7.2a) but also

includes a small number of subjects with birth/death places/dates. This is also verified by

the relative sizes of the two sorts, with the sort for σCov having 260,585 subjects, while the

sort for σSim having 292,880 subjects. This experimental setup is clearly more difficult as

the running time of individual ILP instances is apx. 8 hours.
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(A) DBpedia Persons split into k = 9 implicit sorts, using the σCov function. The threshold of this
sort refinement is θ = 0.9, (i.e. every sort Di has σCov(Di) ≥ 0.9. The sizes of the sorts range
from 260,585 subjects (the second sort) to 10,748 subjects (the seventh sort).

1 1 1 1

(B) A k = 4 σSim-sort refinement with threshold 0.9 for DBpedia Persons. The sizes of the sorts
range from 292,880 subjects (the first sort) to 87,117 subjects (the third sort).

FIGURE 7.2. DBpedia Persons split into the lowest k such that the threshold is
θ = 0.9, using the structuredness functions (a) σCov, and (b) σSim.

7.1.3. Dependency functions in DBpedia Persons

We now turn our attention to the dependency functions. In terms of creating a new

sort refinement using the function σDep[p1,p2], for any constants p1,p2 ∈ U, we can

generate a sort refinement with θ = 1.0 for k = 2, consisting of the following two sorts:

(i) all entities which do not have p1, and (ii) all entities which do have p2. The sort (i)

will have structuredness 1.0 because there are no assignments that satisfy the antecedent

(no assigments satisfy prop(c2) = p1), and sort (ii) has structuredness 1.0 because every

assigment which satisfies the antecedent will also satisfy the consequent (val(c2) = 1

because all entities have p2). On the other hand, σSymDep with constants p1,p2 ∈ U can

generate an sort refinement with θ = 1.0 for k = 3, consisting of the following three sorts:

(i) entities which have p1 but not p2, (ii) entities which have p2 but not p1, and (iii) entites
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dP bP dD bD

deathPlace 1.0 .93 .82 .77
birthPlace .26 1.0 .27 .75
deathDate .43 .50 1.0 .89
birthDate .17 .57 .37 1.0

TABLE 7.1. DBpedia Persons structuredness according to σDep with different
combinations of parameters p1 and p2. The property names are abbreviated in
the column headers.

which have both p1 and p2 or have neither. The first two sorts will not have any total

cases, and for the third sort every total case is also a favorable case.

The dependency functions, as shown, are not very well suited to the task of finding the

lowest k such that the threshold θ is met, which is why these functions were not included

in the previous results. The dependency functions are useful, however, for characterizing

an RDF graph or a sort refinement which was generated with a different structuredness

function, such as σCov or σSim, since they can help analyze the relationship between the

properties in an RDF graph. To illustrate, we consider the σDep[p1, p2] function, and

we tabulate (in Table. 7.1) the structuredness value of DBpedia Persons when replacing

the parameters p1 and p2 by all possible combinations of deathPlace, birthPlace,

deathDate, and birthDate. Recall that σDep with parameters p1 = deathPlace

and p2 = birthPlace measures the probability that a subject which has deathPlace

also has birthPlace.

The table reveals a very surprising aspect of the dataset. Namely, the first row shows

high structuredness values when p1 = deathPlace. This implies that if we somehow

know the deathPlace for a particular person, there is a very high probability that we

also know all the other properties for her. Or, to put it another way, knowing the death

place of a person implies that we know a lot about the person. This is also an indication

that it is somehow the hardest fact to acquire, or the fact that is least known among persons

in DBpedia. Notice that none of the other rows have a similar characteristic. For example,

in the second row we see that given the birthPlace of a person there is a small chance
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p1 p2 σSymDep

givenName surName 1.0
name givenName .95
name surName .95
name birthDate .53
. . . . . . . . .

description givenName .14
deathPlace name .11
deathPlace givenName .11
deathPlace surName .11

TABLE 7.2. A ranking of DBpedia Persons structuredness according to σSymDep

with different combinations of the 8 properties in P (DDBpedia Persons). Only the
highest and lowest entries are shown.

(0.27) that we know her deathDate. Similarly, given the deathDate of a person there

is only a small chance (0.43) that we know the deathPlace.

We can do a similar analysis with the σSymDep[p1, p2] function. In Table 7.2 we

show the pairs of properties with the highest and lowest values of σSymDep. Given that the

name property in DBpedia persons is the only property that every subject has, one would

expect that the most correlated pair of properties would include name. Surprisingly, this

is not the case. Properties givenName and surName are actually the most correlated

properties, probably stemming from the fact that these to properties are extracted from the

same source. The least correlated properties all involve deathPlace and the properties

of name, givenName and surName, respectively.

7.2. For WordNet Nouns

WordNet is a lexical database for the english language. WordNet Nouns refers to the

following subgraph (where Noun is a shorthand for http://www.w3.org/2006/03/

wn/wn20/schema/
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NounSynset):

DWordNet Nouns = {(s, p, o) ∈ DWordNet |

(s, type,Noun) ∈ DWordNet}.

This dataset is 101 MB in size, and contains 416,338 triples, 79,689 subjects, and 12

properties (excluding the type property). Its signature representation consists of 53 sig-

natures, stored in 3 KB. The list of properties is the following: gloss, label, syns-

etId, hyponymOf, classifiedByTopic, containsWordSense, memberMer-

onymOf, partMeronymOf, substanceMeronymOf, classifiedByUsage, cl-

assifiedByRegion, and attribute.

For this sort, σCov = 0.44, and σSim = 0.93. There is a significant difference in

the structuredness of WordNet Nouns as measured by the two functions. This difference

is clearly visible in the signature view of this dataset (fig. 4.1b); the presence of nearly

empty properties (i.e. properties which relatively few subjects have) is highly penalized

by the Cov rule, though mostly ignored by the Sim rule.

7.2.1. A highest θ sort refinement for k = 2

As mentioned, the WordNet case proves to be very different from DBpedia Persons

partly because in this dataset there are roughly 5 dominant signatures which represent a

large portion of the subjects, and yet only use 8 of the 12 properties. This causes difficulties

when partitioning the dataset into 2 sorts.

Figure 7.3a shows the result for σCov. The most notable difference between both

sorts is that the left sort mostly consists of subjects which have the memberMeronymOf

property (the seventh property). The improvement in the structuredness of these two sorts

is very small in comparison to the original dataset (from 0.44 to 0.55), suggesting that

k = 2 is not enough to discriminate sub-sorts in this dataset, and with this rule. This is

mostly due to the presence of many of signatures which represent very few subjects, and
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have different sets of properties. For this setup, all ILP instances were solved in under 1

second.

Figure 7.3b shows the result for σSim. In this case, the clear difference between the

two sorts is gloss, which is absent in the left sort. The placement of the smaller signa-

tures does not seem to follow any pattern, since the Sim function is not sensitive to their

presence. Although the structuredness is high for this partitioning, the improvement is

not large, since the original dataset is highly structured with respect to σSim anyway. A

discussion is in order with respect to the running times of this experiment. Recall that

the ILP instances are solved for increasing values of θ (the increment being 0.01). For all

values of θ lower than 0.95 each ILP instance is solved in less than 5 seconds. For the

value θ = 0.95 however (the first value for which there is no solution), after 75 hours of

running time, the ILP solver was not able to find a solution or prove the system infeasible.

Although there is an enourmous asymmetry between the ease of finding a solution and the

difficulty of proving an instance infeasible, in every instance a higher threshold solution is

found, in which case it is reasonable to let the user specify a maximum running time and

keep the best solution found up to that moment.

7.2.2. A lowest k sort refinement for fixed θ

As with the previous experimental setup, WordNet Nouns proves more difficult to

solve. For the σCov we set the usual threshold of 0.9, however, since the structuredness

value of Wordnet Nouns under the σSim function is 0.93 originally, this exersize would be

trivial if the threshold is 0.9. For that reason, in this last case we fix the threshold at 0.98.

Figure 7.4a shows the first 10 sorts of the k = 31 solution for σCov. The sheer amount

of sorts needed is a indication that WordNet Nouns already represents a highly structured

sort. The sorts in many cases correspond to individual signatures, which are the smallest

sets of identically structured entities. In general, it is probably not of interest for a user or

database administrator to be presented with an sort refinement with so many sorts. This

setup was the longest running, at an average 7 hours running time per ILP instance. This
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(A) Using the σCov function, the left sort has 14,938 subjects and 35 signatures, σCov = 0.55,
σSim = 0.93. The right sort has 64,751 subjects and 18 signatures, σCov = 0.56, σSim = 0.95.

1 1

(B) Using the σSim function, the left sort has 7,311 subjects and 13 signatures, σCov = 0.34, and
σSim = 0.98. The right sort has 72,378 subjects and 40 signatures, σCov = 0.45, and σSim = 0.94.

FIGURE 7.3. WordNet Nouns split into k = 2 implicit sorts, using two different
structuredness functions: (a) σCov, and (b) σSim.

large number is another indication of the difficulty of partitioning a dataset with highly

uniform entities.

Figure 7.4b shows the solution for σSim, which is for k = 4. As with the k = 2

case, there is a sort which does not include the gloss property. The general pattern of

this sort refinement, however, is that the four largest signatures are each placed in their

own sort. Beyond that, the presence of the smaller signatures does not greatly affect the

structuredness value. This setup was completed in apx. 15 minutes.

It is to be expected that a highly structured RDF graph like WordNet Nouns will not

be a prime candidate for discovering refinements of the sort, which is confirmed by these

experiments.
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(A) WordNet Nouns split into k = 31 implicit sorts, using the σCov function and a threshold of
θ = 0.9. Only the first 12 sorts are shown here.

1 1 1 1

(B) WordNet Nouns split into k = 4 implicit sorts, using the σSim function. The threshold of this
sort refinement is θ = 0.98. The sizes of the sorts range from 52,880 subjects (the third sort) to
7,037 subjects (the first sort).

FIGURE 7.4. WordNet Nouns partitioned into the lowest k with a fixed threshold.
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Chapter 8. CONCLUSIONS

The flexibility of the RDF language makes it a good candidate for storing data from

diverse domains, as is the case of the Semantic Web vision. However, it is precisely this

flexibility which permits the divergence of data and schema. As RDF and other similar

languages proliferate, it will become increasingly important to have tools to study the

structure of data and understand how they conform (or fail to conform) to their declared

schemas.

In this work we have presented a framework within which it is possible to study the

structuredness of RDF graphs using measures which are tailored to the needs of the user or

database administrator. This framework includes a formal language for expressing struc-

turedness rules which associate a structuredness value to each RDF graph. Along with this

language, we have proposed several intuitive rules which gauge the structuredness of an

RDF graph in different ways. The language of structuredness rules can be used in a range

of situations; we have considered the problem of discovering a partitioning of the entities

of an RDF graph into subsets which have high structuredness with respect to a specific

structuredness function chosen by the user. Although this problem is intractable in gen-

eral, we define an Integer Linear Programming instance capable of solving this problem

within reasonable time limits using commercially available ILP solvers. Most importantly,

this ILP instance can be generated for an arbitrary rule expressed in our language.

We have used our framework to study two real world RDF datasets, namely DBpedia

Persons and WordNet Nouns, the former ultimately depending on a publicly editable web

source and therefore containing data which does not clearly conform to its schema, and the

latter corresponding to a highly uniform set of dictionary entries. In both cases the exper-

imental results obtained were meaningful and intuitive. In the case of DBpedia Persons,

the structuredness functions (defined via rules) which were used clearly indicate that the

sort Person is too broad, and this can be inferred in two ways: (i) the initial RDF graph of

DBpedia Persons has a low structuredness value under the structuredness functions, and
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(ii) the sort refinement problem (via its ILP instance) was able to find a partitioning of

DBpedia Persons which have higher structuredness and which are readily interpretable.

For example, we may conclude that defining a subsort of Live People would allow for a

more precise description of the data, since a subsort was created in which no subject has

information about their deaths. Our framework, then, proves to be a powerful tool for

producing a more accurate description of the structure of an RDF graph.

The obvious next goal is to better understand the expressiveness of structuredness

rules (i.e. to explore which structuredness functions cannot be expressed in our language,

or to find properties shared by functions which can be expressed in our language). Also,

an extremely interesting goal would to explore the existence of rules for which a high

structuredness value can predict good performance for certain classes of queries. Since

the evaluation of the structuredness value of an RDF graph under a certain rule is very

efficiently computable, such a query performance predicting rule may open avenues of

research on query optimization.
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APPENDIX A. ADDITIONAL PROOFS

A.1. Proof of Theorem 5.0.3

Recall the definition of the decision problem, where r is a rule:

Problem: EXISTSSORTREFINEMENT(r)

Input: An RDF graph D, a rational number θ such that 0 ≤ θ ≤ 1, and a

positive integer k.

Output: true if there exists a σr-sort refinement T of D with threshold θ

that contains at most k implicit sorts, and false otherwise.

We will now prove that EXISTSSORTREFINEMENT(r0) is NP-complete for θ = 1 and

k = 3, where r0 is the rule defined in equation A.1. For this, we will first prove that the

general problem EXISTSSORTREFINEMENT(r) is in NP. Then we will show that fixing

θ = 1 and k = 3 and using rule r0 yields a version of EXISTSSORTREFINEMENT(r) that

is NP-hard.

A.1.1. EXISTSSORTREFINEMENT(r) is in NP

Given an RDF graph D, a rational number θ such that 0 ≤ θ ≤ 1, and a positive

integer k, a Non-Deterministic Turing Machine (NDTM) must guess T1, . . . , Tl with l ≤ k.

The NDTM must then verify that T1, . . . , Tl form a sort refinement with threshold θ. For

each Ti, i ∈ [1, l], the structuredness can be determined in the following way: Consider

that Ti contains Si subjects (rows, if represented as a matrix) and Pi properties (columns).

Let v be the number of variables in r0. Since rule r0 is fixed, v is also fixed. There are

(SiPi)
v different possible assignments of the variables in r0, which is polynomial in the

size of D.

For each assignment, the NDTM must check if (i) it satisfies the antecedent of r0 and

(ii) if it satisfies the antecedent and the consequent of r0, together. Since both checks are

similar, we will focus on checking if the antecedent of r0 is satisfied by an assignment ρ.
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The antecedent of r0 will consist of a number of equalities (or inequalities) bounded

by the size of r0 (which is itself fixed). If ca and cb are variables in r0, each equality will

be of the form x = y, where x may be ca, subj(ca), prop(ca), or val(ca), and y will be

defined accordingly, obeying the syntax of the rules (defined previously). The NDTM can

encode the assignment ρ in the following way: each of the v variables can be encoded

using log(v) bits, and for each variable it must store the subject and property it is assigned

to, using log(Si) and log(Pi) bits, respectively. Since Si and Pi are both bounded by the

size |D| of D, the assignment ρ can be encoded in space which is logarithmic in |D|.

To determine the value of a variable, the NDTM must find the subject-property pair

in the encoded version of the RDF graph D. This lookup will take time at most linear in

|D|. The comparison itself can be done polynomial time.

The entire verification process will take time which is polynomial in the size of the

RDF graph D, although it depends non-trivially on the size of the rule r. Therefore,

EXISTSSORTREFINEMENT(r) is in NP.

A.1.2. EXISTSSORTREFINEMENT(r0) with k = 3 and θ = 1 is NP-hard

To prove that EXISTSSORTREFINEMENT(r0, 1, 3) is NP-hard, we will use a reduction

from 3-COLORABILITY, which is the following decision problem: given an undirected

graph without loops (self-edges) G = (V,E), decide if there exists a 3-coloring of G (i.e.

a function f : V → {1, 2, 3} such that for all pairs of nodes u, v ∈ V , if (u, v) ∈ E then

f(u) 6= f(v)).

Consider a non-directed graph G with n nodes, defined by the n×n adjacency matrix

AG. We will construct an RDF graph DG defined by its accompanying matrix MG =

M(DG) so that G is 3-colorable if and only if there exists a σr0-sort refinement T of D

with threshold 1, consisting of at most 3 implicit sorts.

First, we construct the accompanying matrix MG of DG by blocks, in the following

way:
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MG =


0n×1 0n×1 1n×1 Dn×n Dn×n

0n×1 1n×1 1n×1 Dn×n Dn×n

1n×1 0n×1 1n×1 Dn×n Dn×n

1n×1 1n×1 0n×1 Dn×n ĀG


(4n)×(2n+3)

Here, Dn×n is a n × n unit matrix (i.e. with 1’s in the diagonal and 0’s everywhere

else), 0n×1 is a single column of n zeroes, and 1n×1 is a single column of n ones. The

block ĀG contains the complement of the adjacency matrix AG (ĀG[i, j] = 1− AG[i, j]).

The first 3n rows will be referred to as the upper section of MG, while the last n rows

will be referred to as the lower section of MG. The upper section consists of three sets of

auxiliary rows, which are identical in every column except the first and second. The first

2 columns will be called sp1 and sp2, respectively, the third column will be called the idp

column, the next n columns will be referred to as the left column set and the last n rows

as the right column set. In this way, the complemented adjacency matrix ĀG is contained

in the right column set, in the lower section of MG.

Every row of MG represents a subject and every column represents a property, how-

ever, we will not explicitly mention the names of any subjects or properties, except for the

first three properties: sp1, sp2, and idp.

EXAMPLE A.1.1. Consider the following simple graph G, its adjacency matrix AG

and the complemented matrix ĀG:

1

2 3

AG =


0 1 0

1 0 0

0 0 0

 , ĀG =


1 0 1

0 1 1

1 1 1


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We construct an RDF graph DG as described above. DG is an RDF graph contain-

ing RDF triples, which we will not show explicitly, as only the accompanying matrix is

necessary for the reduction. For increased visibility, zeroes are omitted from matrix MG,

everywhere except in the ĀG block.

left column set︷ ︸︸ ︷right column set︷ ︸︸ ︷

MG =



1 1 1
1 1 1
1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 0 1
1 1 1 0 1 1
1 1 1 1 1 1




upper section

 lower section

�

The next step is to introduce the fixed rule r0 to be used. The variables of r0 are
x, c1, c2, y, d1, d2, z, e, u, f1, and f2, and the rule itself is:
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

prop(c1) 6= ‘sp1’ ∧ prop(c1) 6= ‘sp2’ ∧
prop(c2) 6= ‘sp1’ ∧ prop(c2) 6= ‘sp2’ ∧
prop(d1) 6= ‘sp1’ ∧ prop(d1) 6= ‘sp2’ ∧
prop(d2) 6= ‘sp1’ ∧ prop(d2) 6= ‘sp2’ ∧
prop(e) 6= ‘sp1’ ∧ prop(e) 6= ‘sp2’ ∧
prop(f1) 6= ‘sp1’ ∧ prop(f1) 6= ‘sp2’ ∧
prop(f2) 6= ‘sp1’ ∧ prop(f2) 6= ‘sp2’ ∧
prop(x) = ‘idp’ ∧ val(x) = 1 ∧
c1 6= x ∧ subj(c1) = subj(x) ∧ val(c1) = 1 ∧
c2 6= x ∧ subj(c2) = subj(x) ∧ val(c2) = 1 ∧
c1 6= c2 ∧
prop(y) = ‘idp’ ∧ val(y) = 0 ∧
subj(d1) = subj(y) ∧ prop(d1) = prop(c1) ∧
subj(d2) = subj(y) ∧ prop(d2) = prop(c2) ∧
prop(z) = ‘idp’ ∧ subj(z) = subj(e) ∧
prop(e) = prop(c1) ∧ e 6= c1 ∧ val(e) = 1 ∧
prop(u) = ‘idp’ ∧ val(u) = 0 ∧
subj(u) = subj(f1) ∧ prop(f1) = prop(c1) ∧
subj(u) = subj(f2) ∧ prop(f2) = prop(c2) ∧
val(f1) = 1 ∧ val(f2) = 1



7→ (val(d1) = 1 ∨ val(d2) = 1) ∧
val(z) = 0

(A.1)

Rule r0 is constructed as follows:

(i) The subexpression

prop(c1) 6= ‘sp1’ ∧ prop(c1) 6= ‘sp2’ ∧
prop(c2) 6= ‘sp1’ ∧ prop(c2) 6= ‘sp2’ ∧
prop(d1) 6= ‘sp1’ ∧ prop(d1) 6= ‘sp2’ ∧
prop(d2) 6= ‘sp1’ ∧ prop(d2) 6= ‘sp2’ ∧
prop(e) 6= ‘sp1’ ∧ prop(e) 6= ‘sp2’ ∧
prop(f1) 6= ‘sp1’ ∧ prop(f1) 6= ‘sp2’ ∧
prop(f2) 6= ‘sp1’ ∧ prop(f2) 6= ‘sp2’

ensures that no variables can be assigned to columns sp1 or sp2 (i.e. the set

of total cases will only consider assignments where the variables are mapped to
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cells whose columns are not sp1 or sp2). It is not necessary to include variables

x, y, z and u here, as their columns are fixed.

(ii) The subexpression prop(x) = ‘idp’ ∧ val(x) = 1 forces variable x to point to

a cell in the upper section of the idp column.

(iii) The subexpression c1 6= x ∧ subj(c1) = subj(x) ∧ val(c1) = 1 ∧ c2 6=

x ∧ subj(c2) = subj(x) ∧ val(c2) = 1 ∧ c1 6= c2 defines variables c1 and

c2, which share their row with x. Both must point to an element of the diagonal

of the Dn×n blocks (since their value must be 1) and since x, c1, and c2 are all

distinct, c1 and c2 must each point to a different Dn×n block. From here on, and

without loss of generality, we will assume c1 points to the left column set and

c2 points to the right column set.

(iv) The subexpression prop(y) = ‘idp’ ∧ val(y) = 0 ∧ subj(d1) = subj(y) ∧

prop(d1) = prop(c1) ∧ subj(d2) = subj(y) ∧ prop(d2) = prop(c2) defines

variables y, d1, and d2. Variable y will point to the lower section of the idp

column, and d1 will point to a cell whose row and column are determined by y

and c1, respectively. On the other hand, d2 will point to a cell whose row and

column are determined by y2 and c2, respectively. With this configuration (and

the assumption given in the previous item), d1 will point to the Dn×n in the left

column set, lower section, and d2 will point to the ĀG block.

(v) The subexpression prop(z) = ‘idp’∧subj(z) = subj(e)∧prop(e) = prop(c1)∧

e 6= c1 ∧ val(e) = 1 defines z, which points to the idp column, and e, whose

position is fixed by the row of z and column of c1. Note that the rows of z and

e are not fixed by the antecedent of the rule.

(vi) The subexpression prop(u) = ‘idp’ ∧ val(u) = 0 ∧ subj(u) = subj(f1) ∧

prop(f1) = prop(c1) ∧ subj(u) = subj(f2) ∧ prop(f2) = prop(c2) defines

u, which points to the lower section of the idp column, f1 is fixed by the row of

u and the column of c1, and f2 is analogous to f1.
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(vii) The subexpression val(f1) = 1 ∧ val(f2) = 1 ensures that the values of f1 and

f2 are 1 (in an assignment that is to be included in the set of total cases).

(viii) The subexpression (val(d1) = 1 ∨ val(d2) = 1) ∧ val(z) = 0 constitutes the

consequent of the rule and states the additional conditions that must be met by

an assignment ρ for it to be included in the set of favorable cases.

EXAMPLE A.1.2. We can visualize the positioning of the variables assigned to cells
in MG:



x c1 c2

z e

y d1 d2

u f1 f2


The (x, c1, c2) trio must be located in the upper section as explained previously (items

2 and 3). The (y, d1, d2) trio and the (u, f1, f2) trio must be located in the lower section

(items 4 and 6, respectively). The (z, e) duo is shown in the upper section, although it may

be assigned to the lower section also (item 5).

�

Now that RDF graph DG and rule r0 have been defined, we will give an intuition as

to how the existence of an implicit σr0-sort refinement T of DG with threshold 1 implies

that graph G is 3-colorable.

An implicit σr0-sort T of DG with threshold 1 can be understood as a subset of the

rows of MG, which themselves form an RDF graph which we will call DT , with accompa-

nying matrix MT = M(DT ). We must be careful, however, with the following condition:

an implicit σr0-sort T must be closed under signatures, that is, if a row is present in MT ,

then all other identical rows must be included in MT as well. This condition has been
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made trivial with the creation of columns sp1 and sp2, whose sole purpose is to ensure

that there are no two identical rows in matrix MG. Since each row of matrix MG has its

own unique signature, we have no need to discuss signatures for this reduction.

The problem of deciding if there exists an implicit σr0-sort refinement T of DG with

threshold 1 and with at most 3 sorts is the problem of partitioning the rows of MG into

at most 3 implicit σr0-sorts T1, T2, and T3 such that each Ti satisfies σr0(Ti) = 1 (i.e. the

value of the structuredness of Ti is 1 when using r0).

EXAMPLE A.1.3. Given matrix MG of our working example, we show a possible
partitioning of rows:

MT1 =


0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
1 1 1 1 0 1
1 1 1 1 1 1

 , MT2 =


0 1 1 1 1
0 1 1 1 1
0 1 1 1 1
1 1 1 0 1 1



MT3 =

1 0 1 1 1
1 0 1 1 1
1 0 1 1 1


Note thatMT1 includes two rows in the lower section which represent the set {1, 3} of

nodes of G and, analogously, MT2 includes rows which represent the set {2}. In this case,

each implicit σr0-sort Ti has included one set of auxiliary rows from the upper section of

matrix MG. Also, the first sort, T1, has included the first and the third row from the lower

section of MG, while sort T2 has included the second row from the lower section of MG.

Sort T3 has not incuded any additional rows. We will later see that this choice of sorts

represents a possible partitioning of the nodes of graph G into independent sets.

�

We will now see how an implicit σr0-sort refinement T of DG with threshold 1 parti-

tions the rows of MG in such a way that each sort represents an independent set of graph

G. Given an implicit sort T , we will explain how the rows from the lower section which
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have been included represent nodes of graph G. These nodes form an independent set in

G if and only if the structuredness of sort T under the structuredness function σr0 is 1.

For every pair of nodes included in T , r0 must check that they are not connected, using

the adjacency submatrix ĀG. The simplest way to do this would be to select a row from the

lower section to represent the first node, a column from the right column set to represent

the second node, and to check that the appropriate cell in ĀG is set to 1 (recall that ĀG

is the complement of the adjacency matrix AG of graph G). However, when building the

implicit sort T for each row, all columns are included (i.e. full rows are included). The

effect of this is that, while the rows included in MT only represent a subset of the nodes

in G, all nodes of G are represented in the columns of MT . Rule r0 must first ensure that

only nodes included in T will be compared.

We now briefly review the role of the different variables in r0. The (z, e) pair serves

to ensure that only one copy of the auxiliary rows is present in each implicit sort. To

illustrate this, consider that, in a given assignment ρ, the triple (x, c1, c2) will occupy an

auxiliary row. If this auxiliary row is duplicated in T , then it is possible to assign (z, e) to

the duplicate auxiliary row. This assignment will satisfy the antecedent of r0, but will not

satisfy the consequent, since val(z) = 0 will not hold. This will cause the structuredness

of T to be less than 1 (see example).

EXAMPLE A.1.4. Using the same working example, consider the following subset T
of DG where two copies of an auxiliary row have been included (more precisely, the two
copies of the auxiliary rows which are included are equal in every column except sp1 and
sp2):

MT =


0 1 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
1 1 1 1 0 1
1 1 1 1 1 1

 ,
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A possible assignment ρ of the variables is shown as superscripts (note that only the
variables relevant to the example are shown):


0 1 1z 1e 1
0 0 1x 1c1 1c2

0 0 1 1 1
0 0 1 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1


The assignment shown will cause the structuredness to be less than 1. This is because

the assignment satisfies the antecedent but not the consequent, as val(z) = 0 is false. This

example illustrates how variables (z, e) serve to ensure only one set of auxiliary rows can

be included in a sort.

�

Next, the (u, f1, f2) triple ensures that c1 (and, by association, c2) is assigned to a

column of MT which represents a node of G that is also represented by a row of MT . To

understand this better, recall that a sort T of DG is represented by its matrix MT , which

is itself built by selecting a subset of the rows of MG. When including a row from the

lower section of MG in MT , we are also selecting the appropriate node of G. In this way,

the rows of the lower section of MT represent a certain subset of the nodes in G. This

is not true for the columns in MT , which are all included indiscriminatedly. We will use

variables (u, f1, f2) to only consider only the columns which represent the appropriate

nodes.

EXAMPLE A.1.5. Consider matrix MT1 as was defined in example A.1.3:
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MT1 =


0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1


Because of the inclusion of the first and third rows from the lower section of matrix

MG, sort T1 represents the subset V1 = {1, 3} of the nodes of G.

Consider the following assignment ρ of the variables in r0 (shown as superscripts):


0 0 1 1 1
0 0 1x 1c1 1c2

0 0 1 1 1
1 1 1 1 0 1
1 1 0u 0f1 1 1 1f2 1


Here, c1 is assigned to the column which represents node 2 of G. This is undesired,

since node 2 is not present in V1. This assignment will not be included in the set of total

cases because val(f1) = 0. Furthermore, it is not possible to build an assignment which

assigns c1 to the column representing node 2 and which also satisfies the antecedent, since

there is no 1 valued cell to be found in the lower section of that column.

In contrast, the following assignment does satisfy the antecedent:


0 0 1 1 1
0 0 1 1 1
0 0 1x 1c1 1c2

1 1 1 1 0 1
1 1 0u 1f1 1 1 1f2


As a final comment, note that there are two possibilities for discarding a variable

assignment ρ: (i) it may be that the variable assignment does not satisfy the antecedent

of rule r0, in which case it will never be counted (as is the case in this example), or (ii)
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it may be that a variable assignment, if valid in a subgraph, will cause the structuredness

to be less than 1, as it does satisfy the antecedent but not the consequent (as is the case in

example A.1.4).

�

Finally, the trio (y, d1, d2) serve to assure that the node represented by the row of y and

the node represented by the column of c1 (and c2) are not connected in G. The y variable

is free to be assigned to any cell whose row is in the lower section of MT and whose

column is idp (i.e. any cell representing a node which is included in T ). Also, d1 and d2

are already assigned cells whose columns represent a node in NT (possibly different to

the node represented by the row of y). While one of d1, d2 point to the lower section, left

column set, the other of the two points to the adjacency submatrix. In the consequent of r0,

it would be enough to ask that the di variable which points to the adjacency matrix point

to a 1 valued cell. However, it is not possible to distinguish d1 from d2, therefore, both

are checked in a symmetrical fashion, with the subexpression val(d1) = 1 ∨ val(d2) = 1.

Momentarily, let us assume that d1 points to the left column set and d2 points to ĀG and

let n be the node represented by y and m be the node represented by the column of c1. In

this case, if val(d1) = 1, then n = m and d2 will necessarily point to the cell (n, n) of ĀG,

which will always contain a 1 (recall thatG does not have self-edges). If val(d1) = 0, then

d2 will point to the cell (n,m) of ĀG. This last cell must contain a 1 for the assignment to

satisfy the consequent (meaning n and m are not connected).

EXAMPLE A.1.6. Using the same matrix MT1 once again, consider the following
assignment ρ of the variables in r0 (shown as superscripts):


0 0 1 1 1
0 0 1 1 1
0 0 1x 1c1 1c2

1 1 0y 1 0d1 1 0 1d2

1 1 0 1 1 1 1


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Here, the row of y represents node 1 and the column of c1 represents node 3. This

assigment satisfies the antecedent of r0. As such, both nodes are in V1, so we must now

check if they are connected in G. This is done with the subexpression val(d1) = 1 ∨

val(d2) = 1 of the consequent of r0. Here, the consequent is also satisfied by ρ, since

val(d2) = 1, which tells us that nodes 1 and 3 are not connected in G.

�

We will now prove that graph G is 3-colorable if and only if RDF graph DG has a

σr0-sort refinement T with threshold 1 consisting of at most 3 implicit sorts.

A.1.2.1. G is 3-colorable if and only if the sort refinement exists

If the graph G = (V,E) is 3-colorable, then let f : V → {1, 2, 3} be the coloring

function, with the property that for every pair of nodes u, v ∈ V , if (u, v) ∈ E then

f(v) 6= f(u). This property can also be expressed with the adjacency matrix AG: for

every pair i, j ∈ {1, . . . , n}, if AG[i, j] = 1 then f(i) 6= f(j). Let n be the number of

nodes in G.

The RDF graph DG, constructed as was previously specified, has three sets of n aux-

iliary rows (upper section) and one set of n rows (lower section). The right column set of

the lower section contains the complemented adjacency matrix ĀG.

We construct a sort refinement with three sorts, T1, T2 and T3, as follows. The first set

of auxiliary rows is assigned to T1, the second set of auxiliary rows is assigned to T2 and

the third set of auxiliary rows is assigned to T3. The last set of rows range from 3n+ 1 to

3n + n. For every row 3n + i with i ∈ [1, n], we assign this row to the sort Tf(i). That is,

the row 3n+ i is assigned to the sort given by the color of the corresponding node in G.

We now argue that the sort refinement T = {T1, T2, T3} has threshold 1 using rule

r0. For this, consider a assignment ρ of the variables (x, c1, c2, y1, d1, d2, z, e, u, f1, f2)

in r0 to the cells in the sort T1. To be included in the set of total cases, the assignment

must satisfy the antecedent of r0. We will now consider the restrictions produced by this
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fact (without loss of generality, we assume that the rows of MT1 are ordered in the same

fashion as presented previously).

Considering the subexpression prop(x) = ‘idp’∧val(x) = 1 of r0, let ρ(x) = (ix, 3),

where ix ∈ [1, n]. That is, the variable x is assigned to a cell in row ix and column 3 (recall

that column idp is the third column).

With the subexpression c1 6= x ∧ subj(c1) = subj(x) ∧ val(c1) = 1 ∧ c2 6= x ∧

subj(c2) = subj(x) ∧ val(c2) = 1 ∧ c1 6= c2 we can restrict the assignment of c1 and c2.

Without loss of generality, assume that:

ρ(c1) = (ix, 3 + ix) and ρ(c2) = (ix, 3 + n+ ix)

Both c1 and c2 are assigned to the same row as x and furthermore, since the auxiliary rows

contain diagonal matrices (Dn×n), the row ix restricts the possible columns to only two,

given by the cells with value 1.

Given that the subexpression prop(y) = ‘idp’ ∧ val(y) = 0 ∧ subj(d1) = subj(y) ∧

prop(d1) = prop(c1) ∧ subj(d2) = subj(y) ∧ prop(d2) = prop(c2) holds, we have:

ρ(y) = (n+ iy, 3), ρ(d1) = (n+ iy, 3 + ix), and ρ(d2) = (n+ iy, 3 + n+ ix).

where iy ranges from 1 to the number of nodes with color 1.

Next, the subexpression prop(z) = ‘idp’∧subj(z) = subj(e)∧prop(e) = prop(c1)∧

e 6= c1 ∧ val(e) = 1 sets:

ρ(e) = (n+ αix , 3 + ix) and ρ(z) = (n+ αix , 3).

Since the value of the cell assigned to e must be 1, it must share columns with c1, and

e 6= c1, we must assign e to a cell of the diagonal of the lower section, left column set.

However, note that this block is incomplete: only the rows corresponding to nodes in color

1 have been included. If there is no node which provides a value 1 on column 3 + ix, then

this assignment cannot be considered as a total case. We therefore assume that this node
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is present. In that case, we define n+ αix to be the row at which node ix has been placed.

Furthermore, if this subset is empty (i.e. no nodes ofG have been included) then there will

be no total cases. In this case, by definition the structuredness is assigned value 1.

The last subexpression of the antecedent is prop(u) = ‘idp’∧val(u) = 0∧subj(u) =

subj(f1)∧prop(f1) = prop(c1)∧subj(u) = subj(f2)∧prop(f2) = prop(c2)∧val(f1) =

1 ∧ val(f2) = 1. Since the variables u, f1, and f2 do not appear in the consequent, this

subexpression acts only as a restriction to the total cases. It allows us to write:

ρ(u) = (n+ iu, 3), ρ(f1) = (n+ iu, 3 + ix), and ρ(f2) = (n+ iu, 3 + n+ ix)

This restriction has the effect of only considering, in the set of total cases, the assigments

where column 3 + n + ix (and column 3 + ix also) refers to a node of G which has been

included in color 1. This is because the value of the cell assigned to f1 must be 1. Variable

f2 will be restricted to the cell which represents the edge (ix, ix) of the graph G, which,

since there are no self-edges, will be 1 (when complemented).

We now turn our attention to the consequent of r0. Given an assignment ρ of the

variables in r0 as seen before, we shall show that it will also satisfy the consequent.

Consider the subexpression val(d1) = 1 ∨ val(d2) = 1. Variable d2 will be assigned

to a cell of the complemented adacency matrix. Since column 3 + n + ix of d2 is fixed,

d2 will point to a cell which corresponds to the edge (iy, i
′
x) of G, where we define i′x to

be the node represented by row ix (recall that the index ix actually ranges from 1 to the

number of nodes included in the subset). If it is the case that i′x = iy, then val(d1) = 1

will hold. Now, we know node i′x is included in color 1. Since color 1 is an independent

set, the complemented adjacency must contain a 1 in the corresponding cell. Therefore,

the value of the cell assigned to d2 will be 1.

The subexpression val(z) = 0 will be true because we have included exactly one copy

of the n auxiliary rows in T1. More precisely, since the column of e is fixed and e 6= c1,

e must point to the only other cell in that column which has value 1, for the value of z to

59



be 0. If any auxiliary row had been included twice, then z could be assigned to a cell with

value 1.

We have shown that every assignment which satisfies the antecedent (is a total case)

also satisfies the consequent (is a favorable case). Therefore, the structuredness value

for color 1 is 1. The same reasoning can be applied to T2 and T3. Therefore, the sort

refinement constructed has threshold 1.

The proof of the other direction (if the sort refinement exists then G is 3-colorable) is

analogous and will not be shown explicitly here.
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