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OUTLINE  

Chapter 1 – Introduction 

This section introduces the pressing issue of climate change and its impacts on 

groundwater resources in arid regions, which is the focus of this dissertation. We outline 

the hypothesis formulated to address the identified research gaps, encapsulating the 

objectives of this study, the methodology employed, and a concise summary of the main 

findings. 

Chapter 2 – Potential impacts of climate change on an aquifer in the arid Altiplano, 

northern Chile: the case of the protected wetlands of the Salar del Huasco basin  

This chapter delved into the future conditions contributing to significant changes in 

groundwater discharges and water levels in natural basins (Paper 1), by employing 

synthetic hybrid climate scenarios to investigate potential impacts on the Salar del Huasco 

aquifer. Findings on the role of groundwater discharge mechanisms in balancing the future 

inputs are presented and discussed in this chapter.  

Chapter 3 - Evaluating the contribution of satellite-derived evapotranspiration in the 

calibration of numerical groundwater models in remote zones using the EEFLUX tool 

The focus of this chapter is directed to the potential of satellite products based to enhance 

local-scale models and better support numerical groundwater modeling (Paper 2). We 

present in this chapter the results on the ability of the EEFlux method in representing 

evaporation over the Altiplano, along with the discussion on the utility of satellite imagery 

as a tool for calibrating groundwater models and broaden the potential applications of 

EEFlux beyond agriculture. 
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Chapter 4 – Groundwater response to climate change and the time of emergence of 

anthropogenic signals in aquifer levels: Are groundwater-fed wetlands resilient to climate 

change in natural basins? 

Chapter 4 examines the role of groundwater in mitigating the effects of climate change on 

dependent ecosystems, specifically, the Salar del Huasco wetlands (Paper 3). Results on 

the changes in climatic variable and how are they expected to affect the timing of 

groundwater recharge and discharges are presented. We evaluate the magnitude of these 

changes based on the natural variability of the basin as well as the time when the wetlands 

may be affected. 

Chapter 5 – Conclusions  

This chapter provides a comprehensive summary of the key findings derived from this 

study, organized according to the research questions they aimed to address and the 

corresponding hypotheses that were either validated or rejected. The main conclusions 

drawn from the research are presented, highlighting the significant outcomes of the study. 

Finally, the implications of the results are discussed, highlighting the potential impacts on 

dependent ecosystems. The significance of these findings in guiding future research 

endeavors related to the impact of climate change on groundwater and implications in arid 

ecosystems is emphasized. 
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RESUMEN  

El agua subterránea es la mayor fuente de agua dulce a nivel global. En regiones áridas, 

donde el agua superficial es limitada, el agua subterránea es la principal fuente de agua. El 

continuo avance del cambio climático y el crecimiento acelerado de la población generarán 

un aumento en la demanda de dicho recurso. Por lo tanto, es esencial comprender cómo 

podrían verse afectados los sistemas de agua subterránea y así gestionar sustentablemente 

los recursos hídricos y preservar ecosistemas. 

Motivada por dichas proyecciones, esta investigación se enfoca en el estudio de la cuenca 

del Salar del Huasco en el árido Altiplano chileno, mediante la simulación del agua 

subterránea bajo diferentes escenarios de cambio climático. 

La primera parte de la investigación examina la respuesta del acuífero del Salar del Huasco 

ante escenarios extremos de cambio climático. Los resultados indican que el acuífero se 

adapta a diversas condiciones externas mediante la regulación de sus descargas, con la 

evaporación como el principal mecanismo de descarga que mantiene estable el nivel 

freático alrededor de los humedales. La segunda parte evalúa la aplicabilidad de productos 

satelitales en la modelación del agua subterránea en áreas con monitoreo limitado. La 

integración de EEFlux en el modelo mejoró la representación espaciotemporal del nivel 

freático y la calibración de parámetros específicos, confirmando el potencial de estos 

productos en la modelación del agua subterránea. Finalmente, se explora el papel del agua 

subterránea en la mitigación de los efectos del cambio climático en ecosistemas 

dependientes, con enfoque en los humedales del Salar del Huasco. A pesar de los cambios 

climáticos proyectados, los humedales se mostraron resistentes a cambios debido a la 

influencia del agua subterránea. Esto sugiere que el agua subterránea podría amortiguar 

parte de los impactos del cambio climático en ecosistemas dependientes en regiones áridas. 

 

Palabras Claves: Modelación de aguas subterráneas, cambio climático, ecosistemas 

dependientes de aguas subterráneas, altiplano chileno, regiones áridas, conjuntos de 

modelos climáticos. 
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ABSTRACT  

Groundwater is the largest source of freshwater globally, sustaining a significant portion of 

the world's population and maintaining critical ecosystem functions. In arid regions, where 

surface water resources are often limited, groundwater serves as the principal water source. 

Given the progression of climate change and escalating global population growth in arid 

regions, reliance on groundwater is intensifying, understanding how climate change may 

impact groundwater is essential for water resources management and ecosystem 

preservation. Our research is centered on addressing this critical concern, focusing its study 

on the arid Salar del Huasco basin located in the Chilean Altiplano, led by the pivotal 

research question: How will climate change affect groundwater dynamics in arid regions? 

We explore this through simulating groundwater under various climate change scenarios.  

First, we examined the response of the Salar del Huasco aquifer under extreme climate 

scenarios. We found that the aquifer adjusts to diverse external conditions by modulating 

its water discharge, with evaporation the dominant discharge mechanism that balances 

recharge inputs, keeping the water table around the wetlands generally stable. 

Subsequently, recognizing the challenging access and conditions inherent to remote arid 

ecosystems, we focused on assessing the potential of satellite products in supporting 

groundwater modeling in areas with limited monitoring. The integration of EEFlux 

revealed to enhance the representation of spatiotemporal water table dynamics and the 

calibration of specific yield parameters, highlighting the potential of remote sensing 

techniques in groundwater modeling. Finally, we explored the role of groundwater in 

mitigating the effects of climate change on dependent ecosystems, focusing on the 

wetlands of the Salar del Huasco. Despite anticipated shifts in climatic patterns, we found 

that these ecosystems exhibited substantial resilience due to the influence of groundwater, 

with the water table expected to remain stable in time. This implies a natural capacity of 

these ecosystems to buffer some climate change impacts, suggesting that groundwater 

plays a crucial mitigating role for dependent ecosystems in arid regions. 
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A unique aspect of this work is the examination of a natural system, undisturbed by human 

intervention. The findings can thus provide valuable insights for similar ecosystems 

globally, as well as inform the development of adaptive strategies for sustainable 

groundwater management in the face of climate change. 

 

Keywords: groundwater modeling, climate change, groundwater-dependent ecosystems, 

Chilean Altiplano, arid regions, climate model ensembles. 
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1. INTRODUCTION  

As the primary source of freshwater worldwide, groundwater plays a pivotal role in not 

only sustaining the majority of the global population, but also in supporting diverse 

ecosystems (Atawneh et al., 2021; Cuthbert et al., 2019; McDonough et al., 2020). As 

climate change continues to alter the Earth's environment, fluctuations in the amount and 

distribution of groundwater recharge are anticipated, impacting groundwater storage, water 

table levels, and, consequently, the interactions between groundwater and surface water 

(Amanambu et al., 2020; Condon et al., 2020; Cuthbert et al., 2019). Considering these 

potential consequences, it is imperative to examine the ramifications of climate change on 

groundwater dynamics.  

These potential changes take on intensified significance in arid regions, where surface 

water resources are limited and groundwater serves as the primary source of water 

(Scanlon et al., 2006). Alarmingly, the geographic expanse of these arid regions is 

predicted to envelop half of the Earth's surface by the century's close, an outcome that will 

further exacerbate global warming due to diminished carbon sequestration (Huang et al., 

2015; Koutroulis, 2019; Prăvălie et al., 2019). Furthermore, the use of groundwater in arid 

regions is already increasing worldwide in response to a growing global population. Thus, 

assessing the long-term viability of the water resource is crucial, for which accurate water 

budgets must be developed (Shanafield et al., 2015). This nexus of escalating demands, 

changing climatic conditions, and the critical reliance on groundwater in arid regions 

prompts the following research question: How will climate change affect groundwater 

dynamics in arid regions?  

Driven by this research question, this dissertation investigates the Salar del Huasco aquifer 

as a study area, located in the extremely arid Chilean Altiplano. In this basin, groundwater 

feeds wetlands that constitute the habitat of flora and fauna particular to the area, which is 

why it was declared a RAMSAR site of protected wetlands. The particularity of studying 

this basin resides in the natural state in which it is preserved due to its protected quality. In 
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their natural state prior to development, aquifers typically maintain a dynamic equilibrium, 

wherein the average influx of water (recharge) equals the average outflow, resulting in 

almost no net change in the average volume of water stored within the aquifer (Scanlon et 

al., 2023). Therefore, the hydrogeological response of the Salar del Huasco basin could be 

attributed to the system's own elements, serving as a baseline site to basins with similar 

characteristics and thus contribute to the global knowledge of groundwater behavior in arid 

zones. Considering this, a more specific question arises: What future conditions will 

contribute to significant variations in groundwater discharges and water levels in 

natural basins? 
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Figure 1-1: Salar del Huasco basin, used as a case study in this dissertation. Panel a) General 

location of the study site; b) Salar del Huasco basin, where observation wells are depicted as 

orange circles, Collacagua meteorological station is shown as a red pentagon and springs as 

blue circles near the wetlands at the salt flat nucleus; and c) shows some of the fauna and flora 

that inhabits the wetlands within the salt flat nucleus. 
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1.1 Challenges of groundwater modeling in remote locations   

Numerical groundwater models provide crucial insights into hydrogeological 

systems, acting as an indispensable decision-support tool for local and governmental 

institutions striving for water security (Aghlmand & Abbasi, 2019; Post et al., 2019; 

Rabemaharitra et al., 2022). Developing a robust numerical groundwater model 

requires gathering hydrometeorological and hydrogeological data over a certain 

period. However, the utility of many regions' monitoring networks is often hampered 

by their sparsity and periods of inactivity, rendering them inadequate for real-time 

decision-making (Sheffield et al., 2018). Hence, remote sensing products have 

emerged as an increasingly popular auxiliary source, furnishing hydrological, 

hydrogeological, and meteorological data to support the development and calibration 

of hydrological and hydrogeological models, thereby offsetting the scarcity of in-situ 

data (Li et al., 2009; Sun et al., 2012; Sun et al., 2018). 

Arid regions present a distinct context where remote sensing can compensate for the 

paucity of in-situ data (Adams et al., 2022; Smith et al., 2019). c. However, its 

measurement is challenging due to the spatiotemporal multiscale nature of the 

process (Lobos-Roco et al., 2022; Lobos-Roco et al., 2021). Consequently, several 

remote sensing tools have evolved in recent decades to estimate ET using satellite 

images, regardless of soil condition or crop type (Losgedaragh & Rahimzadegan, 

2018).  

While ET data derived from remote sensing has been used in numerous water 

management studies, only a handful have incorporated this information into 

numerical groundwater models for enhancing model calibration (Boronina & 

Ramillien, 2008; Carroll et al., 2015; Li et al., 2009; Sun et al., 2012; Sutanudjaja et 

al., 2014). Although these studies were a novel contribution towards improving 

groundwater model calibration, their applicability has certain limitations, such as: 

been oriented to regional modeling, high dependency on local vegetation (which 
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limits its reproducibility in heterogeneous zones); low temporal frequency of images 

for representing ET, and reduced capacity to calibrate multiple parameters. Given 

these considerations, the following research questions arise: Could satellite products 

based on energy balance models, e.g., EEFlux, contribute to improve local-scale 

models? How can they better support numerical modeling of hydrogeological 

systems? 

1.2 Groundwater response under climate change scenarios and potential 

consequences on groundwater-dependent ecosystems 

As the slowest flowing component of the terrestrial hydrologic cycle, groundwater 

often acts to buffer variability in both the water and energy cycles (Condon et al., 

2021). Extremes such as droughts can be buffered by groundwater-surface water 

exchanges that provide relatively stable flow to rivers during low flow periods and 

allow roots to take up water released from the groundwater storage. This potential 

buffering capability of groundwater has been noticed across various environmental 

settings, indicating a degree of potential stability in the advent of climate change 

(Cuthbert et al., 2019a; Erler et al., 2019; Marchionni et al., 2020; Somers et al., 

2019). 

In arid regions, groundwater significantly sustains ecosystems by directly providing 

a water source for vegetative uptake and indirectly maintaining soil moisture for ET 

(Yao et al., 2018). This critical link between groundwater and ecosystem health is 

especially vital in the context of wetlands, which provide crucial services, including 

climate change mitigation (Huang et al., 2021; Ma et al., 2022; Salimi et al., 2021). 

They regulate the atmospheric concentrations of greenhouse gases that contribute to 

global warming, such as methane, carbon dioxide and nitrous oxide. These 

ecosystems store about a third of the global soil carbon and more than half of the 

carbon in the atmosphere, being thus a crucial long-term carbon sink (Cuthbert et al., 

2019b;  Huang et al., 2021; Ma et al., 2022; Mitsch et al., 2013; Moomaw et al., 
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2018). However, the response of wetlands to changing climate scenarios is not yet 

fully understood (Gallego-Sala et al., 2018; Ma et al., 2022; Salimi et al., 2021).  

Research suggests that wetlands in arid regions would be more resilient than those in 

temperate or tropical climates, due to their ability to adapt to extreme climatic events 

and recover more effectively from disturbances (Cuthbert et al., 2019b; Cuthbert et 

al., 2019a; Sandi et al., 2020; Yao et al., 2018). A significant portion of this 

resilience might be attributed to the supporting role of groundwater. Yet, as climate 

change progresses, we are confronted with an impending question: will this 

resilience be enough to safeguard groundwater-dependent wetlands against 

intensifying climate change effects? This question translates into examining the 

impacts of climate change on groundwater levels near the wetlands. Groundwater, 

being the life-sustaining force of these ecosystems, any changes in its levels could 

potentially disrupt the delicate balance, threatening the survival and functionality of 

these wetland habitats. 

Recent studies have drawn attention to the repercussions of shifts in groundwater 

levels on wetland health and functionality (Chen et al., 2021; Froend et al., 2016; 

House et al., 2016; Ma et al., 2022; Paquis et al., 2023; Sandi et al., 2020; Scanlon et 

al., 2023; Stirling et al., 2020; Zhu et al., 2020).  Moreover, the timing of these shifts 

may critically determine the ability of these ecosystems to adapt and survive under 

increasing environmental pressures. Therefore, investigating the time at which 

significant changes in groundwater levels occur due to climate change is of 

paramount importance as it would allow anticipating potential challenges these 

ecosystems may face and to plan effective conservation strategies accordingly. 

Hence, this dissertation aims to address the following pressing questions: What role 

does groundwater play in mitigating the effects of climate change on dependent 

ecosystems in arid regions? Are the Salar del Huasco wetlands naturally resilient 
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to climate change due to groundwater’s influence, and can this resilience persist 

through the century? 

1.3 Hypotheses 

This research was developed around the following hypothesis, each of them 

generated from a research question: 

RQ1: How will climate change affect groundwater dynamics in arid regions? More 

specifically, what future conditions will contribute to significant variations in 

groundwater discharges and water levels in natural basins? 

H1) Climate change will induce changes in groundwater recharge within arid regions, 

subsequently affecting groundwater dynamics. However, any potential impacts on the 

water table are expected to be moderated by the compensatory response of 

groundwater discharge through evaporation. 

RQ2: Could satellite products based on energy balance models, e.g., EEFlux, 

contribute to improve local-scale models? How can they better support numerical 

groundwater modeling? 

H2) By incorporating remotely sensed EEFlux data in local-scale groundwater 

models, it is possible to achieve better characterization of aquifer properties and 

promote sustainable groundwater management in remote regions with limited 

monitoring capabilities. 

RQ3: What role does groundwater play in mitigating the effects of climate change on 

dependent ecosystems in arid regions? Particularly, are the wetlands of Salar del 

Huasco naturally resilient to climate change due to groundwater’s influence, and can 

this resilience persist through the century? 
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H3) In arid regions, groundwater will be able to partially mitigate the impacts of 

climate change on dependent ecosystems, however, this buffering capacity will 

decline over the course of the century under extreme climate change scenarios. 

1.4 Objectives 

The overarching goal of this research was to evaluate the potential impacts of climate 

change on groundwater dynamics in an arid-zone basin, in terms of water levels and 

mass balance components, to enhance the existing understanding of these complex 

systems in arid regions. This goal will contribute to a better management of their 

groundwater resources, thereby supporting sustainable human use in crucial areas and 

preserving groundwater-dependent ecosystems. 

The specific objectives (SO) defined for the completion of this work are the 

following: 

SO1: To simulate the hydrological and groundwater processes of the Salar del 

Huasco basin, through the development of a hydrological model and a groundwater 

numerical model. 

SO2: To evaluate the response of groundwater dynamics to climate change, in terms 

of changes in water levels and mass balance components, in the Salar del Huasco 

basin, under different future scenarios.  

SO3: To improve the calibration of the numerical model of the Salar del Huasco 

aquifer using remote sensing products as ancillary data to support groundwater level 

records. 
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SO4: To explore the range of potential impacts on groundwater levels by employing 

two diverging future scenarios represented by SSP2 4.5 and SSP5 8.5 in the CMIP6 

ensemble, while accounting for the inherent uncertainty within climate projections. 

SO5: To identify the point in time at which climate change will start to affect the 

groundwater levels that sustain the protected wetlands of Salar del Huasco.  

1.5 Methodology 

To achieve the specific objectives of this dissertation, a methodological framework 

was designed and is presented in Figure 1-2. First, recharge processes were simulated 

with a rainfall-runoff hydrological model (Uribe et al., 2015) generated and 

calibrated for the Salar del Huasco basin. Then, groundwater processes were 

simulated with a MODFLOW model (Harbaugh et al., 2000) constructed as scripts 

with the FloPy Python library (Bakker et al., 2016). This scripting approach has the 

advantage of allowing multiple models to be efficiently created and modified, which 

is crucial for assessing diverse climate change scenarios. As part of SO3, the model 

was then calibrated using remotely sensed evapotranspiration (ET) data in the Salar 

del Huasco basin derived from the EEFlux platform.  

The groundwater response to climate change in the Salar del Huasco basin was 

assessed by: (1) bias-adjustment of climate model projections, (2) defining the future 

scenarios under which the changes were to be studied, (3) simulating the recharge 

and groundwater processes under the previously defined scenarios, and (4) 

quantifying the projected changes in groundwater discharges and water table with 

respect to a reference period. 

Finally, the time of emergence (ToE) of the climate change signal on groundwater 

levels was estimated in the Salar del Huasco basin using water level records. 
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Figure 1-2: Methodological framework, presented according to the specific objectives 

defined in this dissertation. The dashed black rectangles indicate the methods required 

for achieving the subsequent objective. The dashed grey bracket points to paper 4 

(APPENDIX A), which although it not comprised in the general objective, applies the 

methodology developed for achieving SO4. 
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In an endeavor to diversify the context and enhance the robustness of the 

methodology, this dissertation incorporates a supplementary component: the impacts 

of climate change on the Western New York aquifer. This additional work 

(conducted as part of the international internship) applies the same analytical 

framework used for Salar del Huasco to the Western New York aquifer. While this 

work is not aligned with the goals of this dissertation, the publication that resulted 

from it was incorporated in APPENDIX A, as it allows validating the versatility and 

applicability of the methodology across different settings and conditions. 

1.6 Preview of results 

Results derived from SO1 and SO2 indicate that higher precipitation would 

contribute to larger groundwater recharge rates (Figure 1-3a). The Salar del Huasco 

aquifer responds to the different external conditions by discharging and storing water 

accordingly, with groundwater evaporation as the main discharge mechanism that 

counterbalances the recharge inputs (Figure 1-3b). Low precipitation scenarios 

project slightly drier surface conditions in the wetlands (Figure 1-4). The analysis of 

the scenarios reveals that the equipotential map at 2100 m A.S.L., projected under 

extreme increases in temperature and precipitation, is the one that closely mirrors the 

2010 map, which is depicted in the extreme-high map. Not far behind in resemblance 

is the cross-wet map, which shows the outcome of moderate temperature increase 

coupled with high precipitation surges. Therefore, the water table in the aquifer 

would remain stable in future scenarios that project 38% increase in precipitation, 

while decreases in precipitation of 15% onwards would result in lower future 

groundwater levels in the Salar del Huasco. Although there are changes in 

groundwater levels in the wetlands area, these changes are small, and the overall 

behavior of the spring discharge is stable over time. 
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Figure 1-3: a) Future groundwater recharge estimates in the Salar del Huasco and, b) 

boxplot of groundwater discharge flows across hybrid scenarios. Extreme-high and 

Extreme-low scenarios represent extreme shifts in temperature and precipitation in the 

same direction, positive and negative, respectively. Cross-wet and Cross-dry scenarios 

project opposing trends of change in temperature and precipitation, with the former the 

scenario projecting increasing precipitation with slight temperature rises, and the latter 

projecting opposing conditions. Finally, the Median scenario projects intermediate shifts 

in both variables. 
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Figure 1-4: Future contour maps near the wetlands by December 2100, in comparison to 

baseline period (December 2010). Extreme-high and Extreme-low scenarios represent 

extreme shifts in temperature and precipitation in the same direction, positive and 

negative, respectively. Cross-wet and Cross-dry scenarios project opposing trends of 

change in temperature and precipitation, with the former the scenario projecting 

increasing precipitation with slight temperature rises, and the latter projecting opposing 

conditions. Finally, the Median scenario projects intermediate shifts in both variables. 

 

The groundwater model initially developed to meet SO1 and SO2 was further 

enhanced using remotely sensed data. Specifically, ET data was derived from 

EEFlux (hereafter EEFlux – ET), which is a tool based on the METRIC surface 

energy balance model. The EEFlux – ET estimates served as ancillary data to support 

groundwater level records during the calibration phase, ultimately facilitating the 

realization of SO3. The results of the calibrations showed that best performance 

metrics were obtained when both EEFlux – ET and heads were used as observations 

to calibrate the hydraulic properties (normalized root mean square error = 4.1%). 
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Moreover, it was found that calibrating with EEFlux – ET has a direct effect on 

specific yield parameters, which regulate the fluctuations of the water table over 

time.  

The groundwater model calibrated with EEFlux data was used for evaluating the 

impacts of climate change on groundwater levels under SSP2 4.5 and SSP5 8.5 

scenarios, while accounting for the uncertainty of climate projections, according to 

SO4. It was found that warming temperatures may augment winter recharge up to 

three times higher than in the reference period, leading to a slight rise of the water 

table. Under ensemble SSP2 4.5, a basin-wide mean groundwater level change of 

around 5 – 9 m is projected between December 2025 (near future) and December 

2100 (end of the century), while changes of ~3 – 12 m are expected under SSP5 8.5 

between the same time-periods (Figure 1-5).  

 

Figure 1-5: Spatial variations of the projected changes in the water table between 

December 2025 and December 2100 across ensemble members of scenarios SSP2 4.5 (a 

to f) and SSP5 8.5 (g to l). The columns separate the ensemble members representing a 

specific percentile of precipitation change (indicated at the top of each column). 

 



15 

  

Finally, this research revealed a 20-year difference in the ToE when different extents 

of natural variability were accounted for, demonstrating that accounting for both 

interannual and interdecadal variabilities under natural conditions leads to earlier 

ToEs (≥ 2080) (Figure 1-6) and achieving SO5. More specifically, when considering 

the multidecadal variability as part of the natural variability, the impacts of climate 

change are expected earlier on the water table, affecting thus the groundwater-

dependent ecosystems from ~10 – 20 years before the end of the century.  

 

Figure 1-6: Time of emergence (ToE) of the climate change signal in monitoring wells 

under different approaches to account for the natural variability. 
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2. POTENTIAL IMPACTS OF CLIMATE CHANGE ON AN AQUIFER 

IN THE ARID ALTIPLANO, NORTHERN CHILE: THE CASE OF 

THE PROTECTED WETLANDS OF THE SALAR DEL HUASCO 

BASIN  

2.1. Introduction 

Groundwater is a vital global resource that provides one third of the planet’s fresh water 

for domestic, agricultural and industrial uses (Bloomfield et al., 2019; Taylor et al., 2013; 

Velis et al., 2017). Predicted climate change poses a threat for groundwater resources, most 

of which are non-renewable on meaningful timescales for humans and ecosystems (Kløve 

et al., 2014). Future projections predict an increase in the mean global temperatures as well 

as an increase in the magnitude and frequency of extreme precipitation events (IPCC, 

2014; Nkhonjera & Dinka, 2017). On one hand, Central Chile (latitude 30ºS) has 

experienced a drying trend since the mid-20th century, which is expected to continue in the 

future, leading to a reduction in average annual precipitation of up to 40% relative to 

current values (Garreaud et al., 2020). This region has experienced a significant decrease in 

rainfall since the late 1970s, which has been evidenced by more frequent drought events 

(Rivera et al., 2020). On the other hand, increasing trends have been found in average 

annual precipitation in the Bolivian Altiplano (Torres-Batlló & Martí-Cardona, 2020), and 

in annual precipitation in northern Chile (DGA, 2017; Souvignet et al., 2012). However, 

there is still great uncertainty concerning future precipitation changes across the Andes 

(Urrutia & Vuille, 2009), while there is general agreement on future increasing temperature 

trends in the region (DGA, 2017). Given these projections, understanding the effects of 

climate change on groundwater becomes of utmost importance.  

Different studies have evaluated potential consequences of climate change on groundwater. 

Decreased snowpack, given a reduction in snow accumulation due to more precipitation in 

the form of rain, is likely to reduce river flow in summer months and greater evaporation 

rates will increase water demand of crops, thus increasing groundwater extraction and 
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leading to its depletion (Alam et al., 2019; Amanambu et al., 2020; Nkhonjera & Dinka, 

2017; Taylor et al., 2013). Water shortage problems derived from changes in perception 

lead to groundwater depletion, which is particularly critical in arid and semi-arid 

environments where groundwater discharge dominates the water balance (Rossman et al., 

2018; Velis et al., 2017), and becomes even more crucial since population and groundwater 

demand in arid regions are expected to increase (Huang et al., 2015; Nkhonjera & Dinka, 

2017; Scanlon et al., 2006; Taylor et al., 2013). Additionally, arid zones are projected to 

expand to cover up to half of the terrestrial surface by the end of the century, which will 

diminish the natural retention (or sequestration) of carbon (Huang et al., 2015; Koutroulis, 

2019; Prăvălie, 2016; Prăvălie et al., 2019).  

General circulation models (GCMs) have become the primary tool for the study of 

projected climate change impacts on hydrological systems (Persaud et al., 2020). GCMs 

simulate the behavior and interaction of flow systems in the biosphere, hydrosphere, 

cryosphere, atmosphere and geosphere in the climate system (Green et al., 2011; Huang et 

al., 2015; Scanlon et al., 2006; Taylor et al., 2013). Climate change scenarios established in 

the fifth report of the Intergovernmental Panel on Climate Change (IPCC) are expressed in 

terms of Representative Concentration Pathways (RCP), which provide quantitative 

information of the concentration in time of contaminants associated to climate change. 

However, the coarse resolution of GCM outputs prevents them from being used directly 

with local (basin-scale) models because they do not represent processes taking place at 

scales finer than their own grids, which are generally of the order of ~200 km (Fowler et 

al., 2007; Green et al., 2011; Persaud et al., 2020; Wilby et al., 1998). Therefore, 

downscaling techniques are required to bring the GCM’s raw data into the local scale for 

them to be applicable in basin scale models. 

Previous studies have used GCM projections to evaluate potential effects of climate 

change on hydrogeological systems through different approaches. Studies by Crosbie et al. 

(2011, 2013), Hartmann et al., (2017), Hashemi et al. (2015), Holman (2006); McKenna & 

Sala (2018), Rossman et al. (2018), Tillman et al. (2016) and Zhang et al. (2019) focused 
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on groundwater recharge or unsaturated zone processes, but differed in the number of 

GCMs and scenarios considered for future projections, as well as in the methodology 

applied for estimating recharge. Other studies have assessed groundwater recharge 

uncertainty under future conditions (Goderniaux et al., 2015; Shen et al., 2018; Xie et al., 

2018). Groundwater modeling has been applied to investigate future impacts of climate 

change on aquifers and their interaction with surface waters (Persaud et al., 2020; Scibek et 

al., 2007; Scibek & Allen, 2006; Taheri Tizro et al., 2019; Usman et al., 2020), and remote 

sensing has been used to study historical climate change impacts on groundwater resources 

(e.g., Usman et al., 2020; Xu & Su, 2019). Nevertheless, there will always be uncertainty 

associated with climate models, particularly in mountainous regions such as the Central 

Andes where the topography changes abruptly, hindering its correct representation in 

models with large grids (Vuille et al., 2008). Therefore, studies that incorporate multiple 

scenarios to investigate hydrological and hydrogeological systems in arid catchments with 

complex topography, such as the Chilean Altiplano, are still scarce.  

Recent studies have investigated the hydrological processes occurring in the Andean 

Chilean altiplano to evaluate groundwater recharge (Herrera et al., 2016, 2021; Uribe et al., 

2015; Urrutia et al., 2019), to assess evaporation (de la Fuente et al., 2021; 

Hernández‐López et al., 2014; Mosre & Suárez, 2021; Suárez et al., 2020); water table 

fluctuations (Viguier et al., 2019) and wetland dynamics (de la Fuente & Meruane, 2017; 

de la Fuente et al., 2021). Additionally, numerical groundwater modeling has been used to 

study the impacts of anthropogenic exploitation (Marazuela et al., 2020; Marazuela et al., 

2019b, 2019a; Samuel et al., 2020; Scheihing & Tröger, 2018; Scheihing et al., 2017). 

Nonetheless, to the best of the authors’ knowledge, there are no studies that have used 

numerical groundwater modeling to study and quantify the impacts of climate change in 

the Chilean Altiplano, despite this being essential to manage water resources in a 

sustainable way and to ensure the survival of groundwater-dependent ecosystems. 

The main objective of this research is to develop a methodology that allows a proper 

management of groundwater resources in the Chilean Altiplano by: (1) accounting for 
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future uncertainty of climatic variables through ensemble scenarios, and (2) assessing 

potential impacts of climate change on groundwater recharge, groundwater levels, and 

groundwater discharge fluxes. To achieve this objective, this research uses statistical 

downscaling techniques to process GCM outputs, from different RCPs, to the local scale in 

an arid region in northern Chile. The downscaled outputs are used as input to a 

hydrological model for groundwater recharge estimation, which is then used in a 

hydrogeological model to simulate the aquifer’s response to future climate change 

scenarios defined in this study. Our analysis considers two main time spans: a reference 

period (1981-2010) against which a future period (2020-2100) is evaluated. Therefore, 

even when the incidence of climate is important in long-term aquifer recharge in the 

central Andes during the Holocene (Herrera et al., 2018; Sáez et al., 2016), our work 

focuses on time scales on the order of decades. Furthermore, the focus of this research is to 

evaluate potential changes particularly in groundwater resources due to climate change in 

terms of water table changes and flow balance of the hydrogeological system. Therefore, 

even though recharge is a fundamental process related to groundwater, its particular 

aspects, such as timing shifts and intersessional behavior of sub-processes taking place in 

the vadose zone, are not the main focus of this research. 

The Salar del Huasco basin, located in the Chilean altiplano, was chosen as our study site. 

The basin lies in the presence of groundwater-fed wetlands that sustain the life of unique 

flora and fauna (de la Fuente et al., 2021; Johnson et al., 2010). The wetlands are located in 

the boundaries of the salt flat nucleus, where groundwater springs form a shallow lake of 

5-15 cm deep (de la Fuente & Meruane, 2016; Lobos-Roco et al., 2021). The Salar del 

Huasco is ecologically important because it is the home of three out of the six species of 

flamingos that exist in the world (the Andean flamingo, the Chilean flamingo and the 

James’s flamingo), which come to the salt flat to create their nests (CONAF, 2005). It also 

shelters unique species such as Andean foxes, lamas, vicuñas, pumas, among others. As a 

result of this diversity, the salt flat was declared a RAMSAR zone of protected wetlands in 

1996 and a National Park by the Chilean government in 2020. Given the importance of 

these wetlands in the study area, the achieving of our objective is focused on the 
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assessment of groundwater changes that could threaten future life in these groundwater-

dependent ecosystem due to climate change. Groundwater resources in the Salar del 

Huasco basin have had no human intervention, and therefore all results obtained in this 

study represent the natural response of the system to the environmental forcing. 

Consequently, this basin could be considered as a baseline against which to compare other 

basins in the area where intervention exists, and thus be able to quantify the effects of such 

interventions in contrast with the natural response of the Salar del Huasco. Additionally, 

we expect that our results could be further extended and be a helpful reference for 

groundwater assessment in similar areas worldwide.  

2.2. Study area 

The Salar del Huasco is an endorheic basin located in the Andean plateau of northern Chile 

(latitude 20.28°S and longitude 68.85°W) (Figure 2-1). The basin extends over an area of 

1,470 km2 and it has a mean elevation of 4,165 m ASL. Its shallow lake is at the end of a 

well-developed alluvial system draining from the north of the basin, and constitutes the 

main water source that sustains life of unique flora and fauna species under extreme arid 

conditions (de la Fuente et al., 2021; Suárez et al., 2020). 
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Figure 2-1: (a) General location of the study site; (b) the Salar del Huasco basin (outlined in 

black) with the location of fluviometric and meteorological stations, observation wells and 

springs. Nearby basins are also indicated in (b). (Background source: Esri, Maxar, Earthstar 

Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User 

Community).  

 

2.2.1. Geological settings  

The Salar del Huasco basin is bordered to the west by the Altos de Pica plateau, which 

represents the water divide from Pampa del Tamarugal (Viguier et al., 2019), and by the 
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Andes mountain range to the east that separates it from the Bolivian basins of Coipasa and 

Empexa. The Salar del Huasco basin was formed by volcanic activity that caused the 

emergence of Mesozoic and Paleozoic rocks to form the depressed basement area on which 

alluvial and lacustrine sedimentary materials were deposited as basin fill. Subsequently, 

Miocene rhyolitic tuffs with high degrees of welding originated from volcanic eruptions 

and deposited in the basin, being the Huasco ignimbrite the most important geological 

formation due to its extension and volume (Gardeweg & Sellés, 2015; Tapia et al., 2020). 

This volcanic activity gave rise to the Andes mountain range, closing the basin to the east, 

which continued to fill with volcanic debris and pyroclastic materials (DGA, 2009).  

In general, the basin is considered a closed basin with little to no hydrologic connection to 

the neighboring basins. Previous studies, using isotope and geochemical information, have 

discarded a possible connection between the Salar del Huasco and the aquifer of Pica 

(Risacher et al., 1999; Uribe et al., 2015). However, Scheihing et al. (2017) discarded this 

connection arguing that water from Salar del Huasco would have to travel a long way 

under the mountain range, passing through geothermal deposits that would raise the 

temperature of water that discharge to Pica. Since that is not the case, they concluded that 

such connection does not exist. Consequently, in this study the Salar del Huasco is 

considered a hydrogeologically closed basin until there is more evidence to confirm 

otherwise. 

2.2.2. Climate 

Two types of climates can be identified in the Salar del Huasco, according to Köppen 

classification system: the Tundra climate due to high altitudes of the Andes and the Cold 

Desert climate. The former is in the northeastern part of the basin while the latter is mainly 

in the southwestern part. Mean daily temperatures are around 4-14ºC depending on the 

altitude, with great thermal oscillation between day and night. In winter months the lowest 

temperatures reach -20ºC (DGA, 2009). Evaporation is the main water discharge 

mechanism of the basin, with a mean annual potential evaporation of 1,200 mm/year (de la 



23 

  

Fuente & Meruane, 2016). Precipitation in this part of the Altiplano occurs in the austral 

summer (November through March) as heavy convective storms originated by the intense 

surface heating that destabilizes the local troposphere and by the establishment of upper-

level easterly winds that transport moist air from the interior of the continent (Sáez et al, 

2016, Garreaud, 2009; Garreaud et al., 2003). Interannual precipitation is highly variable, 

ranging from 11 to 400 mm/year (Garreaud et al., 2003; Hernández‐López et al., 2014). 

Although marked wet and dry periods can be identified on the millennial time-scales (Sáez 

et al., 2016), the El Niño-Southern Oscillation (ENSO) phenomenon is the major source of 

the interannual variability in the Altiplano (Garreaud, 2009). It directly affects the coasts of 

Ecuador, Perú and northern Chile, causing indirect effects on most of subtropical South 

America and higher latitudes (Garreaud et al., 2009). Given the large-scale nature of this 

phenomenon in terms of its spatial and temporal extents, its assessment is beyond the 

scope of this study. However, note that GCMs used to study climate change do include 

these large-scale phenomena in their formulation (Stocker, 2014). 

2.2.3. Hydrology  

The Collacagua river is the main surface watercourse in the basin (Figure 2-1). It runs from 

north to south with daily flow rates that vary throughout the year in response to 

precipitation. Despite this, the average monthly flow rates do not vary significantly 

throughout the year. The upper section of the river, at the Río Piga en Collacagua 

fluviometric station, has a daily average flow rate of 0.13 m3/s while the downstream 

section, at the Río Collacagua en Peñablanca fluviometric station, has an average of 0.15 

m3/s. The river between these two fluviometric stations gains water during most of the 

year. However, downstream Río Collacagua en Peñablanca, the water from the river 

infiltrates as it gets near the salt flat nucleus. The seasonal river flow dynamics are shown 

in the supplementary material. 

In the topographic lowest point of the basin, a salt flat nucleus that originated due to long-

term phreatic evaporation extends over 50-60 km2, the flow paths of mineral-enriched 
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groundwater converge and are discharged to the atmosphere through evaporation 

(Corenthal et al., 2016). The Salar del Huasco aquifer discharges mainly into four springs 

that feed the wetlands located in the borders of the salt flat nucleus (Figure 2-1). Records at 

gauging stations at these four springs provided by the Chilean National Water Division 

(Dirección General de Aguas, DGA) show relatively stable discharges throughout the year, 

with annual averages ranging from 0.008 to 0.0023 m3/s for the lowest and highest 

discharges, respectively (DGA, 2009) 

2.3. Methods 

The general methodology followed in this study is based on three major steps. The first 

step is to downscale temperature and precipitation outputs from multiple GCMs so they 

can be used at the basin scale. The projected scenarios used for climate change impacts 

assessment are also established in this step to represent different future conditions up to the 

end of the century. The second step is to calculate groundwater recharge using the 

downscaled meteorological data for each projected climate scenario and the hydrologic 

model developed by Uribe et al. (2015). In the third step, the groundwater recharge rates 

are used as inputs in the hydrogeological model of the Salar del Huasco aquifer. The model 

then simulates the behavior of groundwater over time under each projected scenario. 

2.3.1. Climate projections 

Simulations of projected climate scenarios were carried out using the hybrid delta (HD) 

approach with precipitation and temperature offsets based on the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012), multi model ensemble 

output. Ensemble models include all four RCPs scenarios. The HD method combines two 

well-established downscaling techniques: bias correction and spatial downscaling (BCSD) 

(Reclamation, 2014) and the delta method (DM) approach (Tohver & Hamlet, 2014). Here, 

we briefly describe both techniques and how they are applied in the HD statistical 

downscaling.  
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As a first step of the HD approach, the BCSD method is applied. In the BCSD technique, 

statistical properties of the cumulative distribution function (CDF) of climatic simulations 

from the GCMs are adjusted according to the statistical properties of the observed CDF in 

a baseline period. Thus, systematic bias of the GCM relative to the observed probability 

distribution is removed (Tohver & Hamlet, 2014; Wood et al., 2002). 

The second step consists of applying the DM. In the DM, monthly changes of variables 

projected by the GCMs are determined and applied to monthly means of observations. To 

do this, the future is divided into time windows of equal length as the baseline 

observational period. For that purpose, the Collacagua station was chosen given it was the 

only one with enough precipitation and temperature records, in fact, from 1980 to 2010 

there is a complete temperature record, and only one month (February 1992) with no 

precipitation records. In this case, 30-year windows were defined according to the 

available data in the station: 1981-2010 (baseline period), 2011-2040 (near future), 2041-

2070 (mid-future) and 2071-2100 (far future). These windows were defined so there are no 

time gaps between the baseline and the distant future. Therefore, the downscaling results 

are continuously applied in the hydrological processes. The changes or deltas are 

calculated for temperature and precipitation, according to the following equations (Camici 

et al., 2014; Hamlet et al., 2010; Tohver & Hamlet, 2014): 

 

 

(2-1) 

 

 

(2-2) 

 

where T is temperature and P is precipitation. The subindices in equations (2-1)(2-2)  are 

as follows: obs corresponds to the observed variables, DM is related to the variables 

corrected by that method, and GCM base and GCM fut refer to the variables simulated by 

the climate models in the baseline period and in the future, respectively. The overbar 
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reflects that the variables are monthly means. For a step-by-step description of the HD 

method see Hamlet et al. (2010) and Tohver & Hamlet (2014). 

The final step in the HD approach is the temporal disaggregation, from which future daily 

series of the downscaled variables are obtained. Daily time series are then used as input to 

the hydrological model. This temporal disaggregation was performed according to Tohver 

et al. (2014) and Vormoor & Skaugen (2013): 

 
(2-3) 

 

 

(2-4) 

 

where Tfut daily and Pfut daily are the daily future variables; Tobs daily  and Pobs daily are the 

observed daily temperature and precipitation data;  Tfut monthly  and Pfut monthly  are the future 

monthly values obtained by the HD method; and Tobs monthly  and Pobs monthly are the 

observed monthly temperature and precipitation data. 

Consequently, the HD method perturbs the entire CDF, as opposed to the traditional use of 

the DM that only perturbs the monthly means of the observed variable (Tohver & Hamlet, 

2014). Thereby, future time series of temperature and precipitation represent the changes 

projected by the GCM while preserving at the same time its characteristics and behavior 

(e.g. duration, location, interarrival time of storms) given by the observed data at a local 

scale (Hamlet et al., 2010). 

In this study, the HD approach was applied to 219 climate models that include emission 

scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, to cover a larger range of climate 

projections and in the absence of a justification for choosing a particular RCP scenario 

(Hausner et al., 2014). Subsequently, the 10th, 50th and 90th percentiles of the downscaled 

variables were calculated to generate hybrid scenarios of temperature and precipitation that 
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are not subjected to a particular radiative forcing but instead are a compound of different 

emission scenarios simulated by different models (Hausner et al., 2016).  

Table 2-1: Future scenarios configuration. 

Temperature 

percentile 

Precipitation (P) 

percentile 
Scenario 

Tmin Pmin Extreme-low 

Tmax Pmax Extreme-high 

Tmed Pmed Median 

Tmin Pmax Cross-wet 

Tmax Pmin Cross-dry 

 

To have a broader spectrum of possible future scenarios, all precipitation and temperature 

percentiles were combined in the scenario definition, as shown in Table 2-1, where the 10th 

percentile sub index was replaced by “min”, 50th by “med” and 90th by “max”, for 

simplicity. 

In doing so, the hybrid scenarios take into consideration the large uncertainty that comes 

along with projected precipitation in the Altiplano due to the coarse resolution of GCMs 

that hinders an adequate representation of climatic gradients given by complex 

topographies (Urrutia & Vuille, 2009). 

2.3.2. Groundwater recharge estimations 

The semi-distributed hydrological model developed by Uribe et al. (2015) for the Salar del 

Huasco catchment was used to predict groundwater recharge under the climate change 

scenarios previously defined. The model uses as inputs the downscaled mean temperature 
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and precipitation. Estimates of reference evaporation (ETo) at a daily basis are also used to 

obtain groundwater recharge. ETo (mm/day) was calculated using the FAO-modified 

Blaney-Criddle (1950) equation (Doorenbos & Pruitt, 1977). 

 

 

(2-5) 

 

where a and b are fitting parameters, c is the mean annual percentage of daylight hours, 

and Tmean is the monthly mean temperature. The fitting parameters (a and b) were 

estimated using observed monthly pan evaporation data at Collacagua station in the period 

between January 1981 and December 2010, corrected by a pan factor of 0.7 as suggested 

by DGA (2009). Equation (2-5) was selected to estimate future projections of ETo since it 

is a simple approach that uses Tmean as an input variable. In climate ensembles, Tmean is 

more reliable than other variables that are required for estimating ETo with more 

sophisticated models, e.g., the Penman-Monteith, Thornwaite or Hargreaves equations 

(Allen et al., 2011). 

The rainfall-runoff model used in this study was previously developed and validated by 

Uribe et al. (2015) for the Salar del Huasco basin and it is based on the Soil Moisture 

Accounting routine (SMA) of the HEC-HMS model (Feldman, 2000; Hydrologic 

Engineering Center (US), 2001). For its development, they defined five hydrologic 

response units (HRU) (Figure 2-2b) according to the hydrogeological characteristics of the 

basin, whose connectivity was set using a 90 m resolution digital model elevation (DEM) 

from the Shuttle Radar Topography Mission (SRTM). HRU R1 was defined as rocks with 

very low effective porosity and without fractures, R2 represents fractured rocks with 

significant effective porosity; S1 represents lacustrine and evaporite deposits, S2 

corresponds to alluvial and colluvial deposits, and S3 represents fluvial deposits. A set of 

15 parameters were defined for representing the hydrological processes at each HRU, 

which were calibrated and validated using stream flow records between 1978 and 2010 at 



29 

  

station Río Piga en Collacagua.  Here, we provide a brief description of this model. For a 

detailed description of the model structure the reader is referred to section B of the 

supplementary material, and to Uribe et al. (2015) for details on the model configuration 

(such as HRU definition), the parameters involved and their calibration, long-term 

recharge characterization and model performance. 
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Figure 2-2: a) Diagram of the rainfall-runoff model structure that shows a conceptual 

description of the hydrological processes considered in each hydrologic response unit (HRU) 

in the Salar del Huasco basin. In the current work, the groundwater reservoir is represented by 

the groundwater model. The variables that are inside the parenthesis indicate that the 

hydrological process is dependent on these variables, e.g., evapotranspiration depends on 

temperature: ET(T). b) Map of the model configuration that shows the five HRUs defined by 

Uribe et al. (2015) and the 21 subbasins that contribute to the main drainage network of the 

basin. 

 

The rainfall-runoff model simulates the hydraulic processes occurring at the surface and 

soil in HRUs through mass balance relationships in four reservoirs that represent the 

different levels of the system at daily time steps (Figure 2-2a). The reservoirs simulate: (1) 

canopy storage, (2) surface detention, (3) unsaturated soil processes and (4) the saturated 
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zone. The basic mechanism behind the balance in each reservoir is that the incoming water 

can change its storage, evaporate, become runoff, or percolate into the next reservoir 

(Uribe et al., 2015). In the canopy storage reservoir, precipitation intercepted by 

vegetation’s foliage evaporates while the remaining precipitation that was not captured 

passes as input to the next reservoir. Since vegetation species that develop in this arid zone 

have little or no foliage, canopy storage is almost negligible. Modifications made by Uribe 

et al. (2015) to adjust the model to the climatic conditions of the Salar del Huasco 

consisted in the simulation of freezing at the unsaturated zone by introducing a temporal 

lag if the daily mean temperature is below 0 ºC, and the simulation of groundwater routing 

using a series of linear reservoirs to better represent the generated hydrograph. The former 

modification was meant to represent the general behavior of the basin at low temperatures. 

Sublimation or a more detailed representation of snow melting are not included in this 

model. To justify the use of a simplified mechanism instead of a more complex 

representation of snow-related processes, we used Landsat images, acquired from USGS’s 

Earth Explorer (earthexplorer.usgs.gov/), to estimate the number of pixels with snow in the 

months in which it occurs in the baseline period. To do this, we calculated the Normalized 

Difference Snow Index (NDSI) and estimated the percentage of area that the pixels with 

snow represent of the total basin. We found that the average snow coverage between 1986 

and 2010 is of 1.52% of the total basin and the median value is of 0.46%, which supports 

the simplification of Uribe et al. (2015) already validated model. 

The mass balance in the vadose zone reservoir depends on the soil’s storage capacity, the 

percolation rate to the next reservoir, and the meteorological conditions of the day being 

analyzed. Additionally, a temporal lag in evaporation and infiltration processes is 

represented when temperatures are too low. The outputs of the balance in the saturated 

zone are the deep percolation and the baseflow, the latter calculated as a series of linear 

reservoirs to simulate the routing hydrograph through the basin. Groundwater recharge is 

defined as the total amount of water entering the saturated zone, which can become deep 

percolation or baseflow (Uribe et al., 2015). The usefulness of the saturated zone reservoir 
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is that it allows simulating the processes of deep percolation and baseflow separately, 

allowing the latter to be used to calibrate the parameters of the hydrological model.  

In the SMA routine of the HEC-HMS model (Hydrologic Engineering Center (US), 2001), 

the rate of percolation between the soil-profile storage and the saturated zone (i.e., 

groundwater recharge), depends on the volume in the source and receiving reservoirs. It is 

calculated as a function of a maximum percolation rate and the contents of the storage 

from which percolation is occurring (Bennett & Peters, 2004). The maximum percolation 

rate and maximum storage capacity of each reservoir are parameters that are different for 

each HRU of the model. Their values are determined after calibrating the model, and future 

simulations of groundwater recharge are performed under the assumption that they remain 

constant in time. Since changes in vegetation would impact soil parameters (due to root 

uptake and transpiration), it is assumed that variations in vegetation patches in the basin 

does not change dramatically in the future.  

Actual evaporation from the subsurface (Ea) is among the calculations performed by the 

hydrological model to obtain groundwater recharge. This value is further used to calculate 

how much water remains from ETo that is still available to be evaporated in the aquifer, 

which we define as remnant evaporation (Erem). 

Note that recharge resulting from the hydrological model is used as input to the 

groundwater flow model and is therefore considered as actual recharge as it reaches the 

water table (de Silva & Rushton, 2007; Scanlon et al., 2002). 
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Figure 2-3: Configuration of the hydrogeological model developed in Modflow using 

ModelMuse. The “z” axis shows discretization into layers of three main aquifers: an upper 

aquifer made of recent sedimentary deposits and Huasco Ignimbrite, a middle aquifer of clay 

and Collacagua formation (sequence of gravel lacustrine deposits, silt, clay and sand (Acosta, 

2004)) and a lower aquifer of Collacagua formation and Huasco Ignimbrite. A geologic fault 

develops at the bottom of the lower aquifer, represented in the model as a zone of higher 

hydraulic conductivity. 
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2.3.3. Groundwater flow model development 

The groundwater flow model used to simulate the behavior of the aquifer under each 

scenario was developed in MODFLOW (Harbaugh et al., 2000), which is a widely used 

numerical model that solves the groundwater flow equation through a porous media in 

three dimensions, and can represent groundwater and surface water interactions. The main 

focus of our research is to assess the effects of climate change by analyzing changes in 

future simulations with respect a baseline period rather than analyzing absolute values of 

potentiometric surfaces, and therefore, effects of variable density were not considered 

since they are not expected to affect such changes. Furthermore, given the ecological 

importance that exists in the surroundings of the wetlands, we gave especial attention to 

this area. 

The model was built using the open-source interface ModelMuse (Winston, 2009). The 

geometry of the model consists of 270 rows, 253 columns and 10 layers (Figure 2-3) that 

discretize three main aquifers. The vertical discretization of the three aquifers into 10 

layers was defined to avoid convergence problems associated with cell dimensions, which 

was done using the uniform spacing option in ModelMuse (Winston, 2009). No-flow 

boundary condition were set at the edges of the model according to previous 

hydrogeological and geochemical studies (Risacher et al., 1999; Scheihing et al., 2017). 

The model was run under steady state conditions for the baseline period and under 

transient conditions for the future projections. In the latter, monthly stress periods were 

used from 2020 to 2100. The spatially distributed monthly groundwater recharge 

projections, obtained from the hydrological model, were incorporated in the groundwater 

flow model using MODFLOW’s Recharge package (RCH) (Harbaugh et al., 2000). More 

specifically, monthly recharge rates calculated with the rainfall-runoff model (described in 

section 3.2) were imported to ModelMuse using a shapefile to distribute them throughout 

the model domain, according to the sub-basin spatial distribution Figure 2-2b. The 

Collacagua river was represented in the groundwater model using the River package (RIV) 

(Harbaugh et al., 2000). An average river depth of 10 cm and conductance of 0.06 - 0.12 



35 

  

m2/s were assigned along the course of the Collacagua river. These values were defined 

after the steady state calibration to represent the flux interacting with the aquifer (Acosta, 

2004).  

The four springs located near the wetlands were represented in the model using the Drain 

package (DRN) (Harbaugh et al., 2000). The stage and conductance of each drain were 

defined and calibrated using DGA’s records of fluviometric stations at the springs, which 

are available at www.dga.cl. Groundwater evaporation was modeled with the 

Evapotranspiration package (EVT) (Harbaugh et al., 2000), and was defined near the 

wetlands and streambed of the Collacagua river, where the water table is shallow enough 

to allow groundwater evaporation. A potential evaporation of 6.3 mm/day was defined in 

the steady state simulation, according to pan evaporation records in Collacagua 

meteorological station, between April 1994 and May 2007 (Acosta & Custodio, 2008; 

Uribe, 2012). In the transient simulations, monthly evaporation rates were introduced, 

corresponding to the simulated Erem, which represents the water available for evaporation 

in the aquifer. The extinction depth was set to 3 m beneath the surface, typical for arid 

saline soils (Shanafield et al., 2015), and in agreement with ET measurements performed 

in the basin with the portable chamber method (DGA, 2009; Johnson et al., 2010). To 

avoid confusion, in the rest of the document we use the term "groundwater evaporation" to 

refer to this discharge, while the term “groundwater recharge” refers to the output of the 

hydrological model, which includes the evaporation at the subsurface (i.e., Ea). 

http://www.dga.cl/
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Figure 2-4: Observed and simulated groundwater levels obtained in the steady state 

calibration. The map on the left shows the level of adjustment of the simulated heads in wells 

distributed throughout the basin, where blue circles denote simulated levels lower than 

observed and red circles denote simulated levels higher than observed. The size of the circles is 

proportional to the difference between the observed and simulated level. The chart on the right 

shows the adjustment of simulated levels to observations, where the same color notation as in 

the left map is used, with red and blue markers that represent simulated levels higher and lower 

than observed, respectively. 

 

2.3.4. Groundwater flow model calibration and simulations 

A steady state simulation was performed to represent the long-term historical (last 40 

years) behavior of the aquifer. To ensure the adequate representation of conceptual model 
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inflows and outflows of the groundwater system according to previous studies (Acosta & 

Custodio, 2008; DGA, 2009; Johnson et al., 2010; Uribe et al., 2015), a manual calibration 

of hydraulic conductivity was performed using observed levels at 44 monitoring wells 

(Figure 2-4), using the minimum of the mean absolute error (MAE) as objective function 

(Bennett et al., 2013). An ideal model would achieve a MAE of 0, nevertheless, the model 

is considered accurate if the MAE is less than 5% of the largest difference of observed data 

(SEA, 2012). The performance of the model was then evaluated with the root mean square 

error (RMSE) and the coefficient of determination (R2) indicators (Bennett et al., 2013).  

Due to the state of conservation that protects the Salar del Huasco basin from human 

intervention, there is little data on aquifer levels over the baseline period, which are 

required to perform a transient calibration. Thus, hydraulic conductivities were calibrated 

through a steady state calibration and storage values in the aquifer were assigned based on 

previous studies (Acosta & Custodio, 2008; DGA, 2009). Despite not having long time 

series of groundwater level information over the baseline period, records from 2005 and 

2014 (SEA, 2019), along with isolated records from November 2018 (Suárez et al., 2020) 

were used to validate the model. The available groundwater levels are presented in section 

A of the supplementary material. 

The groundwater model was used to simulate the aquifer’s behavior in the baseline period: 

January 1981- December 2010; and in different future scenarios starting in the near future 

until the end of the century: January 2020 – December 2100. The results of this simulation 

characterized the aquifer behavior in a reference period against which future climate 

change simulations were compared. 
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2.4. Results 

2.4.1. Climate projections 

Future precipitation and temperature scenarios (10th percentile: denoted by subscript min, 

50th percentile: med, and 90th percentile: max) projected with the HD approach are 

compared at a daily basis with observations in the baseline period (Table 2-2). Scenarios 

percentile from min to max are chosen to set guidelines for determining the system 

sensitivity to climate change. Future temperature scenarios, in all three-time windows, 

project a daily increasing trend in maximum, mean and median temperatures in 

comparison with the baseline period. Differences can be noted between scenarios though, 

where projected values increase from Tmin to Tmax. 

Table 2-2: Comparison of projected future variables in the Near, Mid- and Far future 

periods with observations in the baseline period at a daily basis. 

 Baseline  Near future  Mid-future  Far future 

  1981-2010  2011-2040  2041-2070  2071-2100 

 (°C) Obs  

   

 

   

 

   

minimum -8  -5.50 -5.07 -4.57  -4.90 -4.01 -2.85  -4.61 -3.04 -0.60 

maximum 14.1  14.66 15.13 15.90  15.18 16.28 17.70  15.43 17.09 20.09 

mean 4.46  5.04 5.44 5.96  5.61 6.44 7.68  5.78 7.16 9.88 

median 4.4  4.91 5.31 5.84  5.48 6.32 7.55  5.66 7.01 9.77 

standard deviation 3.56  3.35 3.32 3.27  3.34 3.26 3.25  3.30 3.20 3.19 

 (mm) Obs  
   

 
   

 
   

minimum 0  0 0 0  0 0 0  0 0 0 

maximum 31  28.5 34.87 65.94  28.5 41.35 81.68  28.5 39.69 87.82 

mean 0.36  0.17 0.30 0.53  0.16 0.29 0.58  0.13 0.32 0.64 

median 0  0 0 0  0 0 0  0 0 0 

standard deviation 1.82  0.96 1.63 3.03  0.92 1.64 3.43  0.78 1.77 3.75 
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Unlike temperatures, projected precipitation behaves differently in each scenario. 

Substantial differences are observed in the mean and maximum statistics, where in all three 

future windows, Pmax’s mean and maximum exceed those in the baseline period, while in 

Pmin the opposite occurs. Increasing and decreasing trends can also be easily distinguished 

between scenarios at monthly basis (Figure 2-5), where all temperature scenarios project a 

total increase, while precipitation varies throughout the scenarios defined in Table 2-1. 
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Figure 2-5 Temporal evolution of temperature, T, (top three charts) and precipitation, P, 

(bottom three charts) for the minimum, median and maximum scenario at monthly basis. In all 

charts, the dashed dark blue line represents the observations between 1981 and 2010 registered 

in Collacagua meteorological station. 
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2.4.2. Groundwater recharge 

2.4.2.1. Baseline period 

The hydrological model was run first for the baseline period to simulate historical 

groundwater recharge. The model took approximately seven years to stabilize, and after 

this spin-up period groundwater recharge is relatively stable in time, with an estimated 

value of 42.9 ± 27.9 mm/yr (mean ± standard deviation) (Figure 2-6) over the model 

domain. Groundwater recharge varies with seasons with peaks occurring mostly during 

summer months, which means that summer precipitation is transformed almost 

immediately into groundwater recharge. 

 

Figure 2-6: Groundwater recharge estimated for the baseline period presented as monthly 

averages. Monthly observed precipitation data are also presented in right axis. 
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2.4.2.2. Future projections 

Scenarios that project an increase in recharge represent those with the highest precipitation 

input (Pmax), corresponding to the cross-wet and extreme-high scenarios (Figure 2-7). Both 

scenarios differ in their temperature inputs, which greatly affects seasonal variability of 

recharge. Higher temperatures in the extreme-high scenario allow for higher percolation in 

winter months in comparison with the cross-wet scenario, reducing the differences between 

summer and winter recharge as opposed to what occurs in the cross-wet scenario. 

However, an overall greater recharge is generated in the cross-wet since the higher 

temperatures of the extreme-high scenario produce higher evaporation rates in the surface, 

reducing the amount of water that infiltrates and transforms into recharge. 

Temperature effects can also be observed in scenarios with the lowest precipitation input 

(Pmin). As mentioned before, higher temperatures mean that groundwater recharge does not 

decrease as much in winter months due to the relatively warmer temperatures. As a result, 

the cross-dry scenario has an overall greater recharge in comparison with extreme-low, 

which is the scenario that projects the lowest recharge rates. 
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Figure 2-7: Groundwater recharge estimated for the different scenarios evaluated in this study. 

The Median scenario (black line) is plotted in both charts in order to compare median 

conditions with both cross and extreme scenarios. 

 

Table 2-3 shows projected changes in groundwater recharge for the mid- and far-future 

periods with respect to the baseline period (the near-future period was not included in the 

table since future simulations start in 2020). Positive changes are projected in both periods 

in scenarios with increasing recharge, while negative changes are projected otherwise. 
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Table 2-3: Comparison of groundwater balance components for the mid-future (2041–2070) and 

far-future (2071–2100) periods with respect to the baseline (1981–2010) as fluxes percentiles. 

Baseline shows absolute values, while future periods show the projected changes (future values 

minus baseline value). The percentages of change that each delta represents are in parenthesis. 
 

 Baseline Median 
Extreme-

High 

Extreme-

Low 
Cross-Dry Cross-Wet 

Recharge 

(mm/yr) 

25th 

Mid-future 

15.3 

-4.02  
(-26.3%) 

16.2 
(105.9%) 

-9.95 
(-65%) 

-3.70 
(-24.2%) 

23.5 
(153.7%) 

Far-future 
-2.10 

(-13.7%) 
20.27 

(132.5%) 
-11.86 

(-77.5%) 
-4.40 

(-28.7%) 
29.30 

(191.6%) 

50th 
Mid-future 

22.61 

-10.33 

(-45.7%) 
10.29 

(45.5%) 
-16.81 

(-74.4%) 
-10.41 

(-46.1%) 
18.69 

(82.6%) 

Far-future 
-8.98 

(-39.7%) 
15.34 

(67.8%) 
-18.61 

(-82.3%) 
-10.91 

(-48.3%) 
26.59 

(117.6%) 

75th 
Mid-future 

34.19 

-21.53 
0.17 

(0.5%) 
-27.19 

(-79.5%) 
-20.19 
(-59%) 

9.31  
(27.2%) 

Far-future -19.91 
5.71 

(16.7%) 
-29.37 

(-85.9%) 
-20.69 

(-60.5%) 
16.91 

(49.5%) 

Groundwater 

evaporation 

(mm/yr) 

25th 
Mid-future 

0 
0 0 0 0 0 

Far-future 0 0 0 0 0 

50th 
Mid-future 

0 
0 0 0 0 0 

Far-future 0 0 0 0 0 

75th 

Mid-future 

14.5 

-2.49 
7.59 

(52.3%) 
-7.64 

(-52.7%) 
-4.85 

(-33.5%) 
14.45 

(99.6%) 

Far-future -1.85 
5.87 

(40.5%) 
-8.93 

(-61.6%) 
-5.71 

(-39.4%) 
17 

River 

discharge 

(mm/yr) 

25th 
Mid-future 

20.3 

-13.3 
(-65.4%) 

7.4 
(36.2%) 

-21.3 
(-105%) 

-15.6 
(-76.8%) 

16.6  
(81.6%) 

Far-future 
-13.2 

(-65.1%) 
8.0 

(39.4%) 
-21.2 

(-104.4%) 
-15.4  

(-75.7%) 
17.9  

(88%) 

50th 
Mid-future 

20.7 

-13.5 
(-65.1%) 

7.2  
(35%) 

-21.5 
(-104.2%) 

-15.7 
(-76.1%) 

16.5 
(79.6%) 

Far-future 
-13.4  

(-64.7%) 
7.9  

(38.1%) 
-21.4 

(-103.7%) 
-15.7 

(-76.1%) 
17.7 

 (85.9%) 

75th 

Mid-future 

21.8 

-14.3 
(-65.6%) 

6.5  
(29.8%) 

-22.6 
(-103.4%) 

-16.7 
(-76.8%) 

15.7  
(72.1%) 

Far-future 
-14.3 

(-65.6%) 
7.2  

(32.8%) 
-22.5 

(-103%) 
-16.7  

(-76.4%) 
17.0  

(78%) 

Spring 

discharge 

(mm/yr) 

25th 
Mid-future 

3 
-0.2 (-7.1%) 0.4 (12.9%) -0.4 (-12.9%) -0.3 (-9.3%) 0.4 (12.9%) 

Far-future -0.3 (-9.2%) 0.3 (9.8%) -0.5 (-15.1%) -0.4 (-12%) 0.3 (10.2%) 

50th 
Mid-future 

3.1 
-0.3 (-8.5%) 0.3 (9.6%) -0.5 (-15.4%) -0.4 (-11.9%) 0.3 (10.3%) 

Far-future -0.3 (-9.2%) 0.3 (9.8%) -0.5 (-15.1%) -0.4 (-12%) 0.3 (10.2%) 

75th 
Mid-future 

3.1 
-0.3 (-9.2%) 0.3 (9.4%) -0.5 (-15.4%) -0.4 (-12%) 0.3 (9.4%) 

Far-future -0.3 (-9.2%) 0.3 (9.8%) -0.5 (-15.1%) -0.4 (-12.0%) 0.3 (10.2%) 
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Finally, Figure 2-8 shows seasonal changes projected per each scenario by the end of the 

century in terms of monthly mean recharge throughout the year over the far-future period 

(2071 – 2100) in comparison with the baseline simulation (blue dashed line). Figure 2-8  

allows assessing groundwater recharge changes not only in magnitude, but also in terms of 

its behavior between seasons. Taking that into account, the groundwater recharge behavior 

in the cross-wet scenario is the one that most closely resembles that of the baseline, but 

with higher magnitudes. Regarding magnitudes, recharge in the median and cross-dry 

scenario are closest to the baseline in winter months (May through August), while in 

summer recharge in the extreme-high scenario is the closest. Also, the effect of 

temperature in recharge in winter in scenarios with higher temperatures (cross-dry and 

extreme-high) mentioned above can also be observed in Figure 2-8, where less variations 

between winter and summer can be observed. 
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Figure 2-8: Mean monthly recharge over the far-future period (2071 – 2100). The blue dashed 

line shows the recharge rate simulated in the baseline period (1981 – 2010). 

 

2.4.3. Groundwater model simulation 

2.4.3.1. Steady state simulation 

The MAE in the steady state simulation was of 6.4 m, which corresponds to 4.2% of the 

largest observed difference. RMSE and  values, of 9.55 m and 0.98 m, respectively, 

indicate a good model performance, with an overall good fit (simulated levels close to the 

1:1 line). The map in Figure 2-4 shows the spatial distribution of the calibration 

performance at each well given by the size of the circular marker, that increases along with 
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the difference between observations and simulations. It can be thus noted that groundwater 

levels are being better represented at lower altitudes in the basin, which includes the area 

of the wetlands and their surroundings.  Using the groundwater levels registered in nine 

observation wells in the November 2018 field campaign, a MAE of 9 m (which 

corresponds to 5.8% of the largest observed difference) and a R2 of 0.90 were obtained. 

2.4.3.2. Baseline period 

Water discharge from the springs and the river are the fluxes that remain most stable in 

time, while evaporation is the discharge with the largest variation (Figure 2-9). The median 

evaporation rate is null, signifying half of the time water is not being discharged through 

this process, but when evaporation occurs its magnitude varies greatly, reaching up to 1.8 

m3/s (38.6 mm/yr). Zero groundwater evaporation means that the water table is below the 

extinction depth of evaporation and consequently the aquifer is not discharging by 

evaporation in the stress periods when that occurs. Thus, despite the high magnitudes that 

can be reached by evaporation, its average is below that of groundwater recharge. 

 

Figure 2-9 Boxplot of mass balance components of the baseline period simulation (1981-

2010). Medians correspond to the red lines. Groundwater recharge component corresponds to 

an input of the MODFLOW model estimated with the rainfall-runoff model. 
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2.4.3.3. Future projections 

The groundwater model was used to simulate future behavior of the system using the 

projected recharge for each scenario. The obtained results are analyzed in terms of mass 

balance components and equipotential contours. 

Groundwater recharge corresponds to the only (external) source of water entering the 

aquifer. Groundwater-surface water interactions vary along the river course, starting from 

the northern-most elevated alluvial parts of the basin, where the river has a gaining reach, 

until the river reaches the lowest elevations near the salt flat nucleus, where it becomes a 

losing river. However, the net interaction between the river and the aquifer results in a 

groundwater discharge towards the river (referred to from here on as river discharge) in 

most scenarios. 

Changes projected in mass balance components with respect to the baseline period in the 

mid- and far-future periods are presented in Table 2-3, which shows 25th, 50th and 75th 

percentiles of flow changes. Note that the 25th and 50th percentiles of groundwater 

evaporation are zero, which means that most of the time evaporation is not from the 

aquifer, but it is only occurring at ground surface both in the baseline and future scenarios. 

Positive changes in the 75th percentile result from the scenarios that project an increase in 

recharge, while negative changes are observed in the ones where recharge decreases (see 

section C of the supplementary material). Additionally, despite the slight projected changes 

reported in Table 2-3, spring discharge is the most stable flux in both future periods, with 

the lowest percentage of change with respect the baseline period. Scenarios with increasing 

recharge are the ones that project greater changes in all discharge fluxes, showing the 

buffering behavior of the basin (Table 2-3). 

Figure 2-11 shows the simulated equipotential contours of climate change scenarios by the 

end of the year 2100, as well as the contours resulting from the baseline simulation by the 

end of 2010, in the sector of the wetlands. Looking at the shape of this equipotential line, it 
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is possible to observe that the 2100 equipotential map of the extreme-high scenario is the 

one that most closely resembles that of 2010 in the baseline simulation, while the rest of 

the future maps show changes in the shape of this contour. 

2.4.4. Discussion  

2.4.5. Groundwater recharge: future projections 

Precipitation occurs mainly at higher altitudes and thus infiltration is greater in higher 

areas (higher subbasins), contributing thus to the overall increase in the total groundwater 

recharge. Temperature also plays a role, although minor, on groundwater recharge since 

the process of evaporation from the soil depends on it. When higher temperatures are 

projected at higher elevations (where temperatures are lowest within the basin) more water 

is evaporated in the root zone, increasing the space available in the soil reservoir for the 

incoming infiltration. This increases the potential infiltration rate, enhancing infiltration in 

areas where low temperatures normally limit the process. Nevertheless, the effect of 

temperature on groundwater recharge is smaller than that of precipitation. More details on 

the groundwater recharge produced in higher and lower subbasins and their contribution to 

the total recharge can be found in section D of the supplementary material. Other studies 

have also concluded that warmer temperatures reduce the amount of ground frost, allowing 

more water infiltration that leads to increased groundwater recharge in cold regions 

(Jyrkama & Sykes, 2007; Kovalevskii, 2007).  

Evaporation depends on two aspects: the amount of precipitation entering the system and 

the ET0 defined for each scenario (calculated with Equation (2-5) for the three temperature 

percentiles). As expected, scenarios with higher precipitation, i.e., cross-wet and extreme-

high, produced the largest Ea rates, since not all precipitation can be transformed into 

groundwater recharge in the same time step. 
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2.4.6. Groundwater model: steady state simulation 

Elevated parts of the basin, as shown in Figure 2-4, is where the greatest differences 

between observed and simulated heads occur. The steady state simulation underestimates 

the observed head in these elevated areas. Consequently, river discharge is likely to be 

underestimated in elevated areas. 

2.4.7. Groundwater model: future projections 

Groundwater evaporation is the main discharge mechanism that balances recharge inputs, 

being thus a major contributor in the equilibrium of the basin. Consequently, when 

recharge increases, groundwater evaporation increases due to a higher water table, 

eliminating the excess of water entering to the system. However, as shown in Figure 2-10d, 

across all model runs the median evaporation rate was zero, signifying that during half the 

simulation period no groundwater evaporation was occurring, but during the other half of 

the period groundwater evaporation is occurring with greater variability than the other 

mass balance discharge components. Therefore, although groundwater evaporation reaches 

the highest discharge, half of the time it has a null value. When evaporation is zero, river 

discharge is the main mechanism with which the basin stabilizes the recharge input.  
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Figure 2-10: Box plot of mass balance components of (a) groundwater recharge (estimated 

with the rainfall-runoff model), (b) spring discharge; (c) river discharge and (d) groundwater 

evaporation, for the entire simulated period for each future scenario. The blue box indicates 

where the 50% of the results are concentrated, the red line is the median, whiskers extend to 

minimum and maximum values. 

 

Results show that river and spring discharge are strongly related to the amount of recharge 

entering the system in each scenario (Figure 2-10). Groundwater recharge is higher in the 

most elevated parts of the basin, where river discharge occurs. Therefore, when 

groundwater recharge increases, the aquifer discharges more water into the river to 

maintain its balance. Consequently, scenarios with higher groundwater recharge project an 

increase in the median of this flux in comparison with the baseline period, whereas river 

discharge decreases as a result of a reduction in groundwater recharge. However, only in 

the extreme-low scenario does the river becomes a water source for groundwater, thus 

maintaining the balance in the system. Spring discharge shows a similar behavior, but with 
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much less variation between scenarios. This result implies that groundwater evaporation 

and river discharge balance groundwater recharge without significant changes in springs 

discharge, thus protecting this area from potentially big impacts. Table 2-3 shows that 

scenarios projecting greater changes in recharge are the ones that also project greater 

changes in all discharge fluxes, evidencing thus the buffering capacity of the groundwater 

system. 

Future changes in the water table at the wetlands are analyzed in detail given the ecological 

interest of this area (de la Fuente et al., 2021; Suárez et al., 2020). By analyzing how the 

shape of the 3,780.6 m ASL equipotential line changes between scenarios (Figure 2-11), 

direct comparisons can be made of their forecasts in terms of wetter or drier conditions in 

the wetlands. This equipotential line represents the minimum value of the water table 

simulated in all scenarios and in the baseline period. Note the surface enclosed by this 

equipotential line (referred to herein as water table surface of lowest level) is not 

necessarily the lake surface since topography might be higher. In fact, a larger surface 

enclosed by this contour represents a lowering of the water table across the wetlands 

leading to a drier surface condition across the study site. On the contrary, when the surface 

enclosed by this contour is smaller, the water table is on average higher across the wetlands 

leading to wetter surface conditions and an increase in lake levels. The changes in the 

extension of this surface will surely affect the size of the wetlands and therefore the fauna 

and plant communities that depend on groundwater. As our focus is related to potential 

impacts of climate change on aquifer dynamics (i.e., impacts on potentiometric surface and 

water balance), it is critical to monitor how ecosystems can be impacted as the wetlands 

size changes, we refer the reader to the work of others (Fu et al., 2020; Mao et al., 2020; 

Mu et al., 2020; Peng et al., 2020; Shen et al., 2019; Weise et al., 2020; Wu & Zheng, 

2020). 
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Figure 2-11 Simulated equipotential contours, i.e., contour maps, near the wetlands for the last 

stress period in the future projections (i.e., December 2100) and the baseline period (i.e., 

December 2010). 

 

Low precipitation scenarios (Pmin and Pmed) project an increase in the water table surface of 

lowest level, i.e., deeper water table, forecasting slightly drier surface conditions in the 

wetlands. In comparing these scenarios, the 2100 equipotential map that most closely 

resembles that of 2010 is the extreme-high map, followed closely by the cross-wet map. 

This means the water table in the aquifer would remain stable (with slight increases) in 

future scenarios that project 38% increase in precipitation, while decreases in precipitation 

of 15% onwards would result in lower future groundwater levels in the Salar del Huasco. 
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Although there are changes in groundwater levels in the wetlands area, these changes are 

slight, and the overall behavior of the spring discharge is stable over time (Figure 2-10). 

These projections are in accordance with the stable behavior of the water levels observed 

in the basin between 2000 and 2016 (Figure A1 in Supplementary material), from which 

the buffering capacity maintained its balance despite the climatic changes (i.e., increasing 

temperature trends mostly). This is consistent with other studies such as that of Cuthbert et 

al. (2019), who found that groundwater fluxes in arid regions, and particularly groundwater 

discharge to wetlands in dry landscapes, are unaffected by climate change, showing lower 

response to climate variability than humid regions. 

Regarding the groundwater modeling approach, our model does not consider variable 

density flow. Therefore, in reality, the absolute value of the potentiometric surface is likely 

to be affected in the salt flat margin, where a fresh-salt water interface develops 

(Marazuela et al., 2019c). However, as this occurs in a system with no anthropogenic 

perturbation, for the timescales investigated in this research the projected changes between 

the baseline and future simulations, which are the focus of assessment in our research, 

should not be affected. 

As a final remark, model results are subject to the imposed boundary conditions, as well as 

to the mechanisms defined to represent the system’s sinks and sources through which 

water exchange between the aquifer and its surroundings takes place. The quality of the 

representation of sinks and sources will depend on the available information in the study 

area and the objective of the modeling. In this case the main purpose of the model was to 

quantify the behavior of the groundwater system in the basin and its potential future 

changes. Therefore, further improvements may consider using additional remote sensing 

resources to fill the scarce available in-situ information in the study site to better represent 

such elements that simulate important water balance components such as evaporation, river 

infiltration and river discharge. 
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2.4.8. Future work 

As part of future work regarding future groundwater recharge, it would be valuable to 

assess not only changes in its magnitude but also in its interannual variability and potential 

timing shifts. Additionally, it would be interesting to assess potential impacts of climate 

change using the new future scenarios of CMIP6.  

2.5. Conclusions 

This study investigated potential impacts of climate change by the end of the century in the 

aquifer of the Salar del Huasco basin, located in the high mountains of the Chilean 

Altiplano, characterized by its arid climatic conditions. The main conclusions of this work 

are: 

- Future climate scenarios in the Salar del Huasco basin project an increasing 

trend in mean temperature, while precipitation shows varying trends between 

scenarios. However, all scenarios agree that there will be an increase in the 

magnitude of extreme events.  

- Precipitation is the main driver of larger groundwater recharges resulting in 

higher groundwater evaporation rates. Additionally, the expected increase in 

future temperatures would likely lead to recharge with less seasonal 

variability. 

- Groundwater evaporation is the main discharge mechanism that 

counterbalances the recharge inputs, being thus a key element in the system’s 

balance. 

- The aquifer responded to the different external conditions represented in each 

scenario by discharging and storing water accordingly, which results in 

different potentiometric levels. In scenarios where a lower groundwater 
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recharge is projected, results in lower groundwater levels and drier surface 

conditions near the wetlands; wetter surface conditions are expected when 

larger groundwater recharge is projected. However, these changes in the 

potentiometric surface are almost negligible in the area of the wetlands, 

where the groundwater-dependent systems are located, as a result of the 

balance between recharge and discharge fluxes, which manages to keep the 

water table generally stable in this area.  

Results from this research demonstrate the Salar del Huasco aquifer would be able to 

buffer the impacts of climate change by balancing the inputs with outputs, maintaining the 

levels in the lake and wetlands, thus ensuring the conservation of unique ecosystems in the 

Chilean Altiplano. It is important to note, however, that the resilient capacity of the aquifer 

may be due to its protected status, and different results could be obtained if anthropogenic 

factors were interfering with the response of the system. Therefore, the advantages of 

being able to carry out this type of study in a protected area of the arid Altiplano are that 

(1) it could contribute to better manage the exploitation of other Altiplano groundwater-

dependent ecosystems and even to define if any protection measures are necessary; (2) it 

could serve as a baseline of systems without anthropogenic action, allowing it to be 

compared with developed basins such as those used in the mining industry to distinguish 

the effects purely associated with climate change and those intensified by anthropogenic 

effects; and finally, (3) the results obtained could be generalized to regions of similar 

characteristics, which would contribute to a wider knowledge of what will happen in these 

areas and thus be able to manage groundwater resources more efficiently. 
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3. EVALUATING THE CONTRIBUTION OF SATELLITE-DERIVED 

EVAPOTRANSPIRATION IN THE CALIBRATION OF 

NUMERICAL GROUNDWATER MODELS IN REMOTE ZONES 

USING THE EEFLUX TOOL  

3.1. Introduction 

Numerical groundwater models are useful tools for representing aquifer dynamics at 

different spatiotemporal scales. They allow understanding of hydrogeological systems, 

making them a critical decision-making support tool for local and governmental 

institutions to achieve water security (Aghlmand & Abbasi, 2019; Post et al., 2019; 

Rabemaharitra et al., 2022). In a changing climate, it becomes even more pressing to 

understand the processes that govern aquifer dynamics to improve their management and 

mitigation of adverse consequences of overexploitation, for which groundwater modeling 

is key (Ezquerro et al., 2020). 

To develop a robust numerical groundwater model that represents well the hydrogeological 

system, it is relevant to gather hydrometeorological and hydrogeological data over a 

certain period. However, in many regions monitoring networks are often sparse and have 

large inactivity, which makes them impractical for real-time decision-making (Sheffield et 

al., 2018). This issue is particularly true in developing regions, where the need for 

information is possibly greatest, and the lack of investment on infrastructure and human 

training has declined the number of monitoring networks (Fay et al., 2017; Lorenz & 

Kunstmann, 2012; Sheffield et al., 2018). 

Remote sensing products are increasingly being used as a complementary source to 

provide hydrological, hydrogeological and meteorological information at multiple 

spatiotemporal scales, regardless of geopolitical boundaries (Karthikeyan et al., 2020). 
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Therefore, remote sensing products have increasingly been used in the construction and 

calibration of hydrological and hydrogeological models to balance the lack of in-situ 

information ( Li et al., 2009; Sun et al., 2012; Sun et al., 2018). Different approaches have 

been followed to incorporate satellite images into hydrological/hydrogeological numerical 

models, such as incorporating land use and land cover images for investigating 

groundwater resources variability (Usman et al., 2020); using vegetation indexes for 

identifying groundwater areas of interest (Crossman et al., 2012; White et al., 2016; Xu & 

Su, 2019); calibrating or improving hydrological and hydrogeological  models (Boronina 

& Ramillien, 2008; Ezquerro et al., 2020; Li, Brunner et al., 2009; Sun et al., 2018); and 

assessing groundwater recharge (Fallatah et al., 2019; Gemitzi et al. , 2017), among other 

applications. 

Arid regions are particular locations in which remote sensing can contribute to filling the 

lack of in-situ data, where new and emerging advances in remote sensing hold significant 

promise for overcoming past challenges of dryland remote sensing, improving our ability 

to monitor these ecosystems across spatiotemporal scales (Smith et al., 2019). The use of 

groundwater in arid regions is increasing worldwide in response to a growing global 

population. Thus, assessing the long-term viability of the water resource is crucial, for 

which accurate water budgets must be developed (Shanafield et al., 2015). 

Evapotranspiration (ET) is a fundamental component in the water cycle in these regions, 

and in endoreic basins it is the basin’s main outflow (de la Fuente et al., 2021; 

Hernández‐López et al., 2014; Lobos-Roco et al., 2022; Su et al., 2022; Suárez et al., 2020; 

Zhang & Wang, 2021). Therefore, being able to quantify it is essential for assessing 

groundwater resources in these areas. However, quantifying ET is difficult since it is a 

spatiotemporal multiscale process (Lobos-Roco et al., 2022; Lobos-Roco et al., 2021), 

whose relationship with meteorological parameters, soil and vegetation properties, and the 

available water for ET is complex (Boronina & Ramillien, 2008). To overcome these 

difficulties, several remote sensing tools have evolved in recent decades to estimate ET 
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using satellite images, regardless of soil condition or crop types (Losgedaragh & 

Rahimzadegan, 2018).  

The ET information derived from remote sensing has been used in numerous water 

management studies. However, only few investigations have incorporated this information 

into numerical groundwater models to improve model calibration (Boronina & Ramillien, 

2008; Carroll et al., 2015; Li et al., 2009; Sun et al., 2012; Sutanudjaja et al., 2014). For 

example, Li et al. (2009) used head data and evaporation patterns calculated from remote 

sensing-derived ET from the Advanced Very High-Resolution Radiometer (NOAA-

AVHRR) to calibrate five parameters of a groundwater model. Sun et al. (2012) used 

Gravity Recovery and Climate Experiment (GRACE) data to calibrate a regional 

groundwater model through constraining model-predicted groundwater storage changes. 

Carroll et al. (2015) calibrated a groundwater model to groundwater ET derived from 

Landsat estimates of the Enhanced Vegetation Index (EVI). Although these studies were a 

novel contribution towards improving groundwater model calibration, their applicability 

have certain limitations, such as: been oriented to regional modeling, high dependency on 

local vegetation (which limits its reproducibility in heterogeneous zones); low temporal 

frequency of images for representing ET, and reduced capacity to calibrate multiple 

parameters.   

The Earth Engine Evapotranspiration Flux (EEFlux) is one of the available remote sensing 

tools for estimating ET that has gained attention. EEFlux applies the Mapping 

EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model to 

Landsat images to estimate ET using the Google Earth Engine (GEE) cloud-based platform 

(Allen et al., 2011; Gorelick et al., 2017; Irmak et al., 2012). The GEE platform offers 

access to high-performance computing resources, as well as a large and growing curated 

repository of publicly available geospatial datasets (Gorelick et al., 2017). Hence, GEE has 

assumed a leadership role in the geospatial and remote sensing community (Smith et al., 
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2019). Many studies have used EEFlux (Carrasco-Benavides et al., 2022; de Oliveira Costa 

et al., 2020; Fadel et al., 2020; Salgado & Mateos, 2021). Fadel et al. (2020) estimated 

evaporation with EEFlux over a Mediterranean lake and assessed its correlation to other 

lake variables such as thermal stratification and turbidity; Salgado & Mateos (2021) 

estimated crop coefficients to assess irrigation schemes over fields in Argentina using 

EEFlux and other remote sensing techniques; and Carrasco-Benavides et al. (2022) 

evaluated the potential application of actual evapotranspiration ( ) derived from EEFlux 

and ancillary field data to obtain the water footprint in commercial vineyards in the central 

Chile. However, EEFlux has not been applied for improving or supporting groundwater 

model calibration yet. 

The aim of this investigation is to develop a methodology that uses ET information derived 

from EEFlux to support groundwater model calibration in regions with limited in-situ 

information. For this purpose, this work estimates monthly evapotranspiration using 

EEFlux in the Salar del Huasco basin, which is located in the arid Chilean Altiplano. The 

Salar del Huasco is a RAMSAR protected zone due to its wetlands that sustain 

groundwater-dependent ecosystems (Blin et al., 2022). Due to its protected quality and 

remote location, there is limited in-situ ET information, which is still incomplete and 

concentrated only in some specific locations within the basin (de la Fuente et al., 2021; 

Johnson et al., 2010; Lobos-Roco et al., 2021; Suárez et al., 2020).. 

3.2. Methods 

3.2.1. Study site and its groundwater flow model 

The Salar del Huasco basin is located in the extremely arid Chilean Altiplano between 

19.98 ºS and 20.43ºS of latitude and between 68.94°W and 68.7°W of longitude (Figure 

3-1). Previous studies have discarded a hydrogeological connection of the basin with its 
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neighbors (Risacher et al., 1999; Scheihing et al., 2017; Uribe et al., 2015) and it is thus 

considered an endorheic basin where the main groundwater discharge mechanism is ET 

(Blin et al., 2022). The high ET rates cause salt accumulation in the topographic lower part 

of the basin, generating a salt flat (Duffy & Al-Hassan, 1988). In this basin, the shallow 

water table feeds wetlands that support the habitat of a varied flora and fauna (Muñoz-

Pardo et al., 2004; Suárez et al., 2020). For this reason, wetlands of the Salar del Huasco 

were protected by the RAMSAR convention (CONAF, 2005), and the site was recently 

declared National Park. In this basin there is few in-situ instrumentation to monitor 

hydrological variables. Therefore, it is important to investigate the use of satellite images 

to fill the lack of hydro(geo)logical information. 
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Figure 3-1: Study site. Panel a) Salar del Huasco basin, where observation wells are depicted 

as orange circles, Collacagua meteorological station is shown as a red pentagon and springs as 

bright green circles near the wetlands at the salt flat nucleus. b) Location of the Salar del 

Huasco basin (enclosed by a rectangle) in the Atacama Desert, northern Chile, which is 

colored in light orange to show its location within South America. c) Elevation profile from the 

Pacific Ocean (left) to the Salar del Huasco basin (right) in the Altiplano. It can be observed 

from c) that the basin is located in a remote area, where access is difficult due to its complex 

topography. X-axis is presented in UTM coordinates. 
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The groundwater flow dynamics of the aquifer were previously studied through numerical 

models (Acosta, 2004; Blin et al., 2022) using the software MODFLOW (Harbaugh et al., 

2000), which simulates flow through saturated porous media: 

 

 

 

(3-1) 

where S is the storage term (-), Kx, Ky and Kz are the hydraulic conductivities along the x, 

y and z coordinate axes (L/T), and h is the hydraulic head (L). The S term varies depending 

on the type of aquifer layer, where specific storage (Ss) is used when the layer is confined 

throughout the simulation, while specific yield (Sy) is used for unconfined layers under 

water table conditions (heads below the top of a cell). 

The present research develops a methodology to support the calibration of groundwater 

models using remote sensing products, for which it uses a previously constructed model 

(Blin et al., 2022). Nonetheless, the proposed methodology can be applied to any 

groundwater model. Therefore, here we only provide a brief description of the model, and 

we refer the reader to the work of Blin et al. (2022) for further details. The geometry of the 

model consists of 270 rows, 253 columns and 10 layers that discretize three main aquifers. 

No-flow boundary conditions were set along the edges of the model according to previous 

hydrogeological and geochemical studies (Risacher et al., 1999; Scheihing et al., 2017). 

Recharge is incorporated in the model using the Recharge package (abbreviated as RCH in 

MODFLOW) (Harbaugh et al., 2000), which applies recharge rates calculated with a 

rainfall-runoff model which was specifically developed, calibrated and validated for the 

Salar del Huasco basin (Uribe et al., 2015). Additionally, the groundwater model accounts 

for evaporation from the water table that is not represented in the rainfall-runoff model. 

Groundwater evaporation is simulated with the Evapotranspiration package (abbreviated as 
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EVT in MODFLOW) (Harbaugh et al., 2000), which establishes a linear relation between 

the surface of the model and the extinction depth (EXDP). In the EVT package, the 

maximum potential rate evaporates if the head at a cell is equal to or greater than the 

surface, whereas no ET occurs if the head is below EXDP. ET at cells in between these 

extremes varies linearly with depth. The EVT region defined by Blin et al. (2022) as the 

area where the water table is shallow enough to evaporate, was modified in this research to 

account for two ET zones. These zones represent different conditions of water table depth 

according to their EXDP. Thus, the EVT was defined inside a region of 375 km2 (Figure 

3-2) that corresponds to the surroundings of surface water bodies that interacts with 

groundwater, such as springs and lagoons in the salt flat nucleus (Zone 1) and the riverbed 

(Zone 2). EXDP was set to 3 and 4 m in Zones 1 and 2, respectively, according to different 

investigations in the study site (Acosta & Custodio, 2008; DGA, 2009; Hernández‐López 

et al., 2014; Johnson et al., 2010). The purpose of defining this ET region is twofold: i) to 

reduce simulation times by not using the EVT package in locations where groundwater is 

deep and thus no groundwater ET is expected; and ii) to simulate groundwater evaporation 

that is not being fully represented by the hydrological model since it is not necessarily a 

result of direct precipitation.  

Given the importance of ET flows in the Salar del Huasco basin (Blin et al., 2022), satellite 

products were used to better characterize the way ET is being represented in the 

groundwater model developed by Blin et al. (2022), and to support the calibration of the 

EXDP parameter. 
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Figure 3-2: ET region defined in the groundwater flow model, represented by the EVT 

package in MODFLOW. The region is divided into two zones of different values of the EXDP 

parameter. The colormap indicates the altitude (m ASL) of the terrain inside the model 

domain. 

3.2.2. Surface Energy Balance method: METRIC model  

The ET in the basin was estimated using the METRIC model (Allen et al., 2011; Allen et 

al., 2007). METRIC uses the surface energy balance equation (Eq. (3-2)) to calculate the 
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latent heat flux, λET [Wm-2], as the residue of the surface energy balance, which is 

estimated using satellite imagery and meteorological data products according to: 

 

 

(3-2) 

where Rn is the net radiation [Wm-2], G is the soil heat flux [Wm-2], and H is the sensible 

heat flux [Wm-2]. Energy balance-based models have advantages over other methods, such 

as crop coefficient-based methods in that knowledge of crop development stages is not 

required, nor do specific crop types (Allen et al., 2007; Allen et al., 2013; Zhao et al., 

2020). Additionally, models based on the energy balance can detect reduced ET caused by 

water shortage, salinity or frost, as well as increased ET caused by bare soil evaporation 

(Allen et al., 2011). 

The most critical factor in the physically based models is the estimation of H that can lead 

to significant errors in estimations of ET (Irmak et al., 2012). To overcome this problem, 

METRIC uses a near-surface temperature gradient that is indexed to radiometric surface 

temperature, eliminating the need for absolute surface temperature calibration, which has 

been the major impediment to operational satellite ET. Unlike other surface energy balance 

models, such as SEBAL (Bastiaanssen, 2000), which considers H = 0 Wm-2 at the cold 

pixel, METRIC uses the reference ET (ETr) estimated with the Penman-Monteith equation 

(Monteith, 1965; Penman, 1948)  for the estimation of H to account for impacts of 

advection in the system that are generally well represented with the Penman-Monteith 

equation (Allen et al., 2011; Irmak et al., 2012). Heat and moisture advection from land 

surfaces is strongly affected by aerodynamic processes including wind speed and 

turbulence which are basically invisible to satellites (Irmak et al., 2012). Thus, METRIC 

performs corrections on wind speed and turbulence to better represent the aerodynamic 

processes in mountainous regions, which are associated with local and regional-scale 

interactions (Allen et al., 2011; Lobos-Roco et al., 2021). Lobos-Roco et al. (2021) found 
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that local- and regional-scale processes govern diurnal evaporation cycles from Salar del 

Huasco’s lagoon. Thus, accounting for impacts on these processes is particularly important 

in the study area. Consequently, the METRIC model was used in this research because: (1) 

it accounts for impacts of regional advection by using Penman-Monteith equation in the 

calibration of H, and (2) it makes corrections in aerodynamic processes in mountainous 

regions. 

3.2.3. Processing EEFlux images 

EEFlux was recently developed for operating the METRIC model on the GEE platform. 

EEFlux (https://eeflux-level1.appspot.com/) has the advantage of being a user friendly 

open-source platform, completely based on remote sensing, since it uses grided 

meteorological products for the calibration of the surface energy balance. Thus, it can be 

used in almost every part of the world. The use of GEE also enables a fast fetching of the 

satellite datasets and faster processing due to supercomputers on the Google cloud 

(Gorelick et al., 2017). 

EEFlux processes individual Landsat scenes from any period from 1984 until present. 

From each Landsat image, EEFlux utilizes the thermal band to drive the surface energy 

balance and short-wave bands to estimate albedo, the amounts of vegetation and surface 

roughness to calculate λET, according to Eq. (3-2). λET is then transformed into the 

instantaneous actual ET (ETa) by dividing it by the latent heat of vaporization. In EEFlux, 

the resulting ETa at the moment of satellite passage is converted to an index called 

reference evapotranspiration fraction (ETrF): 

 

(3-3) 
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where ETrF represents ET as a fraction of ETr, similar to the traditional crop coefficient 

(Kc), which enables the conversion of the instantaneous ET into monthly or seasonal ET. 

In Eq. (3-3), ETr is calculated using the “tall” alfalfa reference (ASCE – EWRI, 2005), 

according to the Standardized Penman-Monteith equation (Allen et al., 1998). EEFlux uses 

North American Land Data Assimilation System (NLDAS) (Cosgrove et al., 2003; 

Mitchell et al., 2004) gridded weather data in the US and Climate Forecast System version 

2 (CFSV2) of NOAA (https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/climate-forecast-system-version2-cfsv2) gridded weather data globally for the 

computations of λET. 

EEFlux calculates the ETrF at the desired location on the globe and generates a processed 

image that has different values of the ETrF at each pixel. The ETrF computed at the image 

time is assumed to be the same as the average value over 24 hours hours (Irmak et al., 

2012), which has been demonstrated to be consistent in various studies  (Allen et al., 2007; 

Colaizzi et al., 2006; Romero, 2004).. From a series of images available at the passing of 

the satellite every 16 days, the monthly ETrF can be derived by daily interpolating them to 

calculate the average of the interpolated values over a specific month (Fadel et al., 2020; 

Irmak et al., 2012). In this research, images from both Landsat 5 and Landsat 7 were used 

to have more information on ETrF in a month for the interpolation, which was performed 

using a spline method that better fits the typical oscillating pattern of crop coefficients 

during a growing season, similarly to the construction of a seasonal Kc curve (Allen et al., 

1998; Allen et al., 2007; Dhungel et al., 2016; Hankerson et al., 2012; Irmak et al., 2012; 

Semmens et al., 2016; Wright, 1982). Consequently, the monthly ETrF [-] can be derived 

according to Eq. (3-4): 

 

 

(3-4) 
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where ETrFi [-] are the daily interpolated values in a specific month and ETri are daily 

reference ET [mm d-1]. Since Eq. (3-4) is a dimensionless ET, ETr i can be estimated with 

meteorological data or records of pan evaporation in that same month. Mean monthly ET 

can be then obtained from: 

 

 

(3-5) 

where ETmonth is the mean monthly ET [mm d-1] and ETr month [mm d-1] is the average daily 

ETr of that month. 

For the Salar del Huasco basin, EEFlux images were downloaded over the period between 

2002 and 2012 for the calibration of the groundwater model (i.e., calibration period). The 

methodology described above was applied to the images, using daily records of pan 

evaporation at the Collacagua meteorological station (Figure 3-1) for estimating ETr i. ETr 

in Eq. (3-4) was calculated at each pixel with the Blaney-Criddle (Doorenbos & Pruitt, 

1977) equation, considering that temperature varies with elevation, as described in Blin et 

al. (2022). Using the Blaney-Criddle equation allows having pixel-wise estimates of 

monthly ETr with which a more representative average value can be obtained for the ET 

region than using pan evaporation only at the location of the meteorological station. 

3.2.4. Validation of EEFlux-ET estimates using Eddy Covariance 

measurements 

To corroborate that magnitudes of EEFlux-ET estimates are comparable with observations, 

we used Eddy Covariance (EC) measurements recorded in the Salar del Huasco between 

November 15 and 23rd of 2018 as part of the E-DATA field campaign (Suárez et al., 

2020). According to Lobos-Roco et al. (2021), the EC stations were located in three points 

in the basin’s sink (Figure 3-3), one in the north part of the saline lake (EC-water station; 



71 

 

 

1.0 m height), other in the wet salt of the salt crust (EC-wet salt station; 1.5 m height), and 

other in the desert, ~5 km south of the salt flat nucleus (EC-desert station; 2.0 m height). A 

detailed description of the sites where the EC stations were deployed is provided in the 

Supplementary Material.  

 

Figure 3-3: Location of the 3 EC stations with records between November 15 and November 

23, 2018. The panels 1 and 2 show a zoom of each station and its surroundings, in order to 

show the heterogeneity at each location. 

 

To compare the fluxes measured at these stations with estimations based on the EEFlux 

method, ETrF images available within the dates of the EC records were interpolated in time 

to have daily interpolated values of ETrF at each pixel of the image. To estimate daily ET 

at the three locations of the EC stations, a representative footprint of the EC measurement 
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field was defined for each of them (Figure 3-3), where the average of ETrF in the pixels 

within it was calculated. The definition of the footprints was based on delimiting zones 

with relatively homogeneous characteristics that represent each zone measured by the 

stations. With the average daily ETrF of the areas surrounding the stations, the ETr as then 

calculated using daily measurements of meteorological variables obtained from the 

CEAZA (available at http://www.ceazamet.cl) station (Figure 3-3), according to 

Standardized Penman-Monteith equation (Allen et al., 1998). Unlike the image processing 

showed in section 2.3, Penman-Monteith was used for the validation since the CEAZA 

station provided daily data on more meteorological variables. Finally, daily ET at each 

station’s footprint was calculated by multiplying ETrF and ETr. 

Considering the few available ET data in the study area (only 8 days of continuous EC 

measurements), four additional zones with yearlong records were used to improve the 

quality of the validation of the EEFlux method for estimating ET. These zones were also 

located in the Altiplano of the Atacama Desert in northern Chile (see Supplementary 

Material), at about the same altitude, and have similar climatic and physical characteristics 

than those of the EC stations in Salar del Huasco.  Thus, a comparison can be established 

to assess the capability of the method in representing evaporation fluxes in the Altiplano. 

As data from some of these stations were previously used by Mosre & Suárez (2021), we 

maintained the names given to their EC stations, and new stations were named following 

said nomenclature. Station CH-AT2 was installed over alluvial deposits of a transboundary 

river basin on a site covered by native vegetation at 4,330 m ASL, and CH-AT3 was set in 

a wetland at 4,250 m ASL; station CH-AT4 was located in a wetland at 4,075 m ASL, and 

CH-AT5 was deployed within a salt flat (with a cyclical ephemeral lagoon) at 4,235 m 

ASL. Similar to the EC stations at Salar del Huasco, footprints of the EC measurements 

were defined to enclose homogeneous pixels from EEFlux images with surfaces ranging 

between 0.4 -2 km2.  
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The validation performance was assessed with the root mean square error (RMSE) and the 

Nash-Sutcliffe efficiency (NSE) coefficient. The optimal values of RMSE and NSE are 

zero and one, respectively (Bennett et al., 2013). 

3.2.5. Calibration of the groundwater flow model 

The calibration of the groundwater model presented in section 3.2.1, was performed under 

various configurations of the calibration process, where different sets of parameters were 

calibrated to different observational data to assess the effect of EEFlux estimations in the 

process. The calibrations were carried out using the Parameter Estimation software (PEST) 

(Doherty, 2004). Python-based scripts were generated to create the inputs for the PEST 

calibration using the pyEMU module (White et al., 2016).  

Since EEFlux accounts for the total water being evaporated from the system as perceived 

by the satellites, ETa calculated by the basin’s rainfall-runoff model (Uribe et al., 2015) 

was subtracted from EEFlux-ET estimates to obtain the groundwater evaporation (hereafter 

referred to as EEFlux-ETgw). Monthly EEFlux-ETgw estimates over the ET region (Figure 

3-2) were used as observations in the calibration of the groundwater model, against which 

monthly evaporation simulated by the model over the same area were compared. However, 

using only EEFlux-ETgw estimates to represent the observations in the PEST calibration 

would not lead to a unique set of parameters of the inverse problem that is to be solved for 

two reasons: (1) using only one monthly value as “observation” for calibrating multiple 

parameters represents an “ill-posed” problem, defined as a problem in which the number of 

estimated parameters is larger than the available data (Golmohammadi et al., 2015; Hunt et 

al., 2007); and (2) it corresponds to an estimation and not a raw observation or 

measurement in-situ. To avoid such problems, water level (heads) records at 42 wells 

(shown in Figure 3-1) were also used in the calibration process. A flowchart of the 

calibration is presented in Figure 3-4. 
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The calibrated parameters correspond to 23 parameters of horizontal conductivity (Kh) and 

16 of vertical conductivity (Kv) distributed along the cells of the entire model domain; 

seven parameters of specific storage (Ss) and seven parameters of specific yield (Sy), 

whereas two EXDP parameters of the EVT package were utilized (one per zone of the ET 

region, according to Figure 3-2). This methodology is not restrictive to this set of 

parameters, and therefore users are encouraged to define different sets according to their 

specific hydrogeological settings. The calibrations were performed over the period 

between 2002 and 2012, using monthly MODFLOW stress periods. 

As mentioned before, different configurations of set of parameters and observational data 

to calibrate them were defined to assess the role of EEFlux-ETgw fluxes in the calibration: 

- Calibration 1: only observed heads were used to calibrate hydraulic properties 

parameters. 

- Calibration 2:  only observed heads were used to calibrate hydraulic properties and 

EXDP parameters. 

- Calibration 3: estimates of EEFlux-ETgw and observed heads were used to calibrate 

hydraulic properties parameters. 

- Calibration 4: estimates of EEFlux-ETgw and observed heads were used to calibrate 

hydraulic properties and EXDP parameters. 

Although in some approaches greater weights are assigned to the more reliable data (e.g. 

head records), in this study both types of observations were considered to have the same 

contribution to the objective function in Calibrations 3 and 4 to simplify their subsequent 

analysis. To achieve this, however, EEFlux-ETgw estimates were weighted to account for 

differences between flow and head data. 
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Figure 3-4: Flowchart of the calibration methodology. EEFlux-ETgw estimates and observed 

heads are used as observations in the calibration. Heads and ET simulated by the groundwater 

model are compared against observations in the calibration process based on the objective 

function (ϕ), which minimizes the square of residuals, and parameters are updated in each 

PEST iteration. The dashed line refers to the different calibration configurations, in which half 

of them incorporate EEFlux-ETgw estimates as additional data to support head observations. 

Data corresponding to evaporation flows are shown in orange, as opposed to heads data shown 

in black. 

 

A simulation named Sim0 was performed using the initial values of the calibrated 

parameters to represent a baseline of the groundwater system (before the calibration of its 

hydraulic properties and EXDP parameters) with respect to which changes produced in the 

basin by the calibrated parameters were evaluated. The hydraulic properties parameters 

used in the Sim0 simulation correspond to the parameters used by Blin et al. (2022). Once 

each of the calibrations were performed, four simulations were carried out using the 

respective calibrated parameters obtained in the four calibrations, hereafter referred to as 

Sim1, Sim2, Sim3, and Sim4. These simulations differ from the four calibrations in that 
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their initial water table conditions were calculated using the calibrated parameters in a 

steady state simulation. To assess the performance of the four calibrations, the RMSE and 

mean absolute error (MAE) of heads were calculated in the four simulations and compared 

to the metrics obtained in Sim0 simulation. Normalized metrics (NRMSE and NMAE) 

were also calculated to account for large head differences observed in some wells that 

could affect the overall value of RMSE and MAE, as well as the percent bias (PBIAS). 

The optimal value of all these metrics is zero, while low values indicate good performance. 

3.3. Results 

3.3.1. Validation of the EEFlux method in the Altiplano 

A comparison between measured and EEFlux-based evaporation is shown in Figure 3-5 for 

the validation of the EEFlux method at Salar del Huasco. The evaporation in the saline 

lagoon (EC-water) is slightly overestimated by EEFlux, while the almost null evaporation 

in the desert zone is being well simulated with the method; in the wet-salt zone, EEFlux-

ET slightly overestimated the evaporation observations. The bias between measurements 

and EEFlux-ET estimates in the wet-salt zone could be explained by the possible existence 

of water pixels inside the footprint defined for estimating the mean ETrF (since this 

location is particularly heterogenous), which would have immediately increased the ET 

estimates. 
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Figure 3-5: Validation of ET fluxes estimated with EEFlux in the EC stations located in the 

Salar del Huasco basin. ∆max corresponds to the maximum bias between EC records and 

EEFlux-ET produced at each station.  

 

Having less than 10 days of data is not enough to evaluate the method's performance in 

simulating the ET evolution throughout the year. The validation using yearlong records at 

the four additional EC stations, however, allows for such assessment (Figure 3-6). Figure 

3-6a), c), e) and g) show the temporal evolution of the observed and estimated ET rates. 

The EEFlux method represents the seasonal variations of ET across the stations. Moreover, 

it simulates distinctive ET cycles along the year in all stations except CH-AT2. Here, 

Landsat images from September and November were discarded due to their high 

percentage of cloudiness. Nevertheless, the fact that CH-AT2 has the lowest RMSE 
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suggests that EEFlux-ET estimates can correctly represent ET fluxes over areas where 

evaporation is almost zero most of the time. Figure 3-6 b), d), f) and h) show scatter plots 

of EEFlux-ET (y-axis) and observed ET at the EC stations (x-axis), whose relation is 

represented by a linear regression curve in each case. Marginal histograms and kernel 

density estimation (KDE) plots were added at the top and right margins of the scatter plots 

to analyze the probability distribution of the observed ET and EEFlux-ET data, 

respectively. CH-AT4 (Figure 3-6 f)) and CH-AT5 (Figure 3-6 h)) have greater dispersion 

(and therefore are further from the regression curve and have negative NSE s) than the 

other two stations, which can be related to the large day-to-day variability observed in their 

corresponding time series plots (Figure 3-6 e) and g)). The best NSE and R2 are achieved 

at CH-AT3, where less day-to-day variability is observed (Figure 3-6 c)). Therefore, 

EEFlux-ET better explains the variance of the observations at locations with low daily 

variability. However, the histograms and KDE at CH-AT4 show similar distributions of 

observed ET and EEFlux-ET with modes of around 3 and 2.5 mm/d, respectively. 

Although the regression curves indicate that EEFlux is not always capable of representing 

each daily observation, the probability density function curves of both observed ET and 

EEFlux-ET indicate that they have a similar behavior throughout the year. Therefore, the 

method correctly represents the seasonal variations and magnitudes of ET fluxes in 

different environments in elevated arid areas. 
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Figure 3-6: Validation of EEFlux in four additional sites in the Atacama Desert. Results at 

each station are presented by columns, where the upper row shows time series of observed and 

daily EEFlux-ET (panels a), c), e) and g)), and the lower row shows the scatter plots of 

estimated EEFlux-ET values to observations (EC records) (panels b), d), f) and h)), where a 

regression curve of their fit is showed at each station, along with their R2 and NSE. 

Translucent bands around the regression line show the 95% confidence interval. Each scatter 

plot shows how the dependent variable, EEFlux-ET (y-axis) varies with the independent 

variable, observed ET (x-axis). Marginal histograms and KDE are plotted at the top and right 

margins of the scatter plots to show the probability distributions of EEFlux-ET at the right and 

observed ET at the top. 

 

3.3.2. EFlux-ET estimates 

The values of ETrF (average of pixel values over the ET region) over the calibration period 

vary seasonally (Figure 3-7 a)), with averages of 0.24 and 0.21 in summer and winter 
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months, respectively, and an overall average of 0.22 ± 0.07 (mean ± standard deviation). 

The monthly average of the daily EEFlux-ET estimates over the ET region range between 

0.1 and 2.1 mm/d in winter and summer, respectively, within the calibration period (Figure 

3-7 b), with an average of 0.8 ± 0.38 mm/d. 

 

Figure 3-7: a) Monthly values of ETr F and b) monthly values of EEFlux-ET estimates in the 

basin’s ET region. 
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The results shown in Figure 3-7 b) can be compared with previous ET studies performed in 

the Salar del Huasco basin (Table 3-1). The values obtained from EEFlux-ET estimates are 

more similar to bare soil evaporation reported in previous studies. Additionally, the results 

obtained by Johnson et al. (2010), are very similar to those of the present study, in which 

EEFlux-ET was also calculated over areas where different depths to the water table can be 

found. 

Table 3-1: ET and E (evaporation) estimates carried out in previous studies in the wetlands 

and vegetation areas near the salt flat nucleus of the Salar del Huasco basin. 

Previous 

studies 

ET from wetlands and 

vegetated areas near salt 

flat nucleus (mm/d) 

E from bare soil 

(mm/d) 

Methodology for estimating 

ET (E) 

Acosta (2004) 2.09 1.10 

ET: Pan evaporation corrected 

by tank coefficient and crop 

coefficients from previous 

studies 

E: Correction of E  water table 

depth relations at Salar de 

Atacama 

Collahuasi-

GP 

Consultores 

(2008) 

Summer: 3.45 

Winter: 1.91 

Summer: 2.73 

Winter: 0.75 
ET and E: Lysimetry 

DGA (2009) 2.68 0.61 

ET: Pan evaporation corrected 

by tank coefficient and elevation 

gradient 

E: E  water table depth curve 

based on portable chamber 

measurements 

Johnson et al. 

(2010) 

1.64 mm/d when water table depth is 0.11 m  

0.86 mm/d when water table depth is 0.37 m  

0.16 mm/d when water table depth is 0.99 m  

0.10 mm/d when water table depth is 3.34 m 

ET and E: Portable chamber 

method 
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3.3.3. PEST calibrations 

The four simulations show similar performance metrics, all of them outperforming the 

Sim0 simulation by about 2% in the case of NRMSE and 0.7% in the case of NMAE 

(Table 3-2). Both RMSE and MAE are affected by the range in which the observations 

vary within the complex topography basin, where the observed range is 144 m (that is, the 

difference between the maximum and minimum observations of heads). Moreover, the 

NRMSE show that the RMSE of Sim1 to Sim4 is slightly above 4% of this maximum 

range, while the NMAE indicates that the MAE is almost 3% of the range. Among the four 

simulations, Sim3 achieves best performance metrics of heads, which means that better 

values of heads result when only hydraulic properties are calibrated using EEFlux-ETgw in 

addition to water level records.  

Additionally, considering the large observed range of heads, RMSE, NRMSE and PBIAS 

were calculated in four areas distributed throughout the basin to assess the performance of 

the simulations at different altitudes (Figure 3-8). In Sectors B, C and D the four 

simulations improve the model performance, while in Sector A they worsen it. In Sector B, 

Sim2 achieves the best performance, decreasing by 11.4% the RMSE with respect to Sim0, 

while in Sector C and D, Sim3 outperforms the other simulations by decreasing the RMSE 

by 32.2% and 38.9%, respectively. The similar and low-magnitude PBIAS in all sectors 

means that the average tendency of the simulated data to deviate from observations does 

not change greatly with altitude.  
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Table 3-2: Performance metrics of simulations performed using calibrated parameters from the 

four PEST calibrations. Metrics of the entire model are presented in the Global column, while 

metrics of the four sectors shown in Figure 3-8 are presented in the adjacent columns. 

Simulation  Metric Sim0 Sim1 Sim2 Sim3 Sim4 

Global 

RMSE (m) 8.9 6.2 6.1 5.9 6.4 

NRMSE (%) 6.2 4.2 4.2 4.1 4.5 

MAE (m) 5.12 4.16 4.17 4.07 4.24 

NMAE (%) 3.55 2.88 2.89 2.82 2.94 

PBIAS (%) 0.010 0.002 0.010 -0.014 -0.005 

Sector A 

RMSE (m) 2 5.1 4.7 4.9 4.9 

NRMSE (%) 0.050 0.132 0.122 0.127 0.128 

PBIAS (%) 0.036 -0.095 -0.086 -0.099 -0.095 

Sector B 

RMSE (m) 4.4 4.1 3.9 4 4 

NRMSE (%) 0.06 0.054 0.05 0.053 0.052 

PBIAS (%) 0.012 0.031 0.033 -0.011 0.031 

Sector C 

RMSE (m) 5.9 4.1 4.3 4 4.2 

NRMSE (%) 0.13 0.093 0.1 0.092 0.097 

PBIAS (%) 0.073 0.079 0.087 0.068 0.079 

Sector D 

RMSE (m) 19.8 13 12.7 12.1 13.9 

NRMSE (%) 0.17 0.11 0.11 0.1 0.12 

PBIAS (%) -0.23 -0.15 -0.13 -0.13 -0.15 
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Figure 3-8: Sectors used for the assessment of the model performance at different altitudes. 

The ranges indicate the maximum differences in levels recorded during the calibration period 

in the observation wells within each sector. 
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Groundwater levels are directly related to groundwater evaporation. Thus, understanding 

simulated heads is crucial to assess groundwater evaporation in each simulation. A scatter 

plot of simulated and observed heads is shown in Figure 3-9 a), whereas resulting time 

series of groundwater ET are shown in Figure 3-9 b).  On one hand, the highest ET rates 

occur in the Sim0 simulation (Figure 3-9 b)), which means that this simulation is the one 

with the highest water table at the locations where ET occurs in the model. Accordingly, 

overestimation of heads between 3775 and 3840 m ASL in Sim0 (Figure 3-9 a)) suggests 

that this process occurs mainly at lower elevations within the basin (Zone 1 of the ET 

region in Figure 3-2). On the other hand, the water table increases at elevations above 3850 

m ASL in Sim1 through Sim4 with respect to Sim0, thus getting closer to the observations 

(Figure 3-9 a)). However, the highest ET is generated in Sim0, implying that a shallower 

water table at low altitudes will necessarily result in more ET. Furthermore, simulations 

with higher EXDP values in Zone 2 (Sim2 and Sim4 (Table 3-3)) do not generate higher 

ET rates than Sim0, which means that Zone 2 contributes little to the total ET flow. 

 

Figure 3-9: a) Scatter plot of estimated (y axis) versus observed (x axis) heads. The grey line 

represents the perfect fit (1:1), whereas the dash grey lines correspond to 10 m above and 

below 1:1; b) Time series of simulated groundwater evaporation rates from the ET region of 

the model. 
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Table 3-3: Calibrated EXDP parameters by zones of the ET region. The columns of simulations 

are further divided into parameters calibrated (blue), and observations used to calibrate them (red). 

   Sim0 Sim1 Sim2 Sim3  Sim4 

      Heads   Heads + EEFlux  

      
Hydraulic 

prop. 

Hydraulic 

prop.  

+ 

 EXDP 

Hydraulic 

prop. 

Hydraulic 

prop.  

+ 

 EXDP 

EXDP 

Zone 1 

Value (m) 3 3 3.03 3 4.3 

Percentage of 

change with 

respect to Sim0  

- - 1.1% - 42.3% 

EXDP 

Zone 2 

Value (m) 4 4 7 4 7 

Percentage of 

change with 

respect to Sim0  

- - 75% - 75% 

 

When EXDP increases in Zone 1 (Sim4), ET rates do increase. Furthermore, a direct 

contribution of the use of EEFlux can be observed when comparing the values of the 

EXDP parameters in Zone 1 of the ET region in Sim2 and Sim4 (Table 3-3). When using 

only heads as observations in the calibration process (Sim2) the EXDP parameter in Zone 

1 remains practically unchanged; while it increases by more than 40% when EEFlux-ETgw 

estimates are used as observations (Sim4). Therefore, incorporating EEFlux-ETgw estimates 

as observations in the calibration contributes to calibrating the EXDP parameter in areas 

where evaporation occurs and, consequently, to higher ET rates. 

According to Figure 3-9 a) the general trend among the four calibrations is to decrease the 

water table at lower elevations (in the center of the basin) where Sim0 overestimates it, and 
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to increase it at higher elevations (towards the north), where Sim0 underestimates it, by 

changing the hydraulic properties parameters of Kh and storage. Kv parameters experience 

negligible changes of the order of 10-6 %, and since they do not contribute to the 

piezometric changes they are excluded from the analysis. The hydraulic property 

parameters are presented with numerical subscripts according to the zones they represent 

within the model, which corresponds to an arbitrary numbering assigned according to their 

spatial location. 35% of the calibrated Kh parameters experience the exact same percentage 

of change with respect their initial value across the four calibrations, regardless of the 

configuration of observations and parameters defined in each calibration. As these 

parameters are where most of the observation wells are located, observed heads are the 

main data used for correcting the water table in this area.  

Figure 3-9 b) shows that as the simulations develop in time, they gradually converge to 

more similar ET flows as the water table rises and stabilizes. As a result, the EXDP 

parameter ceases to be a relevant factor in the generation of ET, which begins to depend 

solely on the hydraulic properties that govern the water flow equation, and thus the 

hydraulic heads. Therefore, evaluating the effect of changes in these hydraulic parameters 

on the resulting ET across the four simulations is key to understand the contribution of 

EEFlux in the calibration process.  

The remaining parameters experience different percentages of change across the four 

calibrations based on their respective configuration of parameters and observations. We 

searched for common patterns between changes in the observations and parameters used in 

the calibrations to determine if there is a relation between them. For that purpose, 

simulations are grouped firstly according to the observations used in the calibration, i.e., 

heads against heads and EEFlux-ETgw estimates, and secondly, according to their 

calibrated parameters, i.e., only hydraulic properties against hydraulic properties and 

EXDP. In both groups we searched for changes of similar magnitude and direction 
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(positive or negative change) experienced by the parameters. From now on, we will use the 

term “pattern of observations” to refer to common changes in parameters based on 

observations used to calibrate them, while “pattern of parameters” will be used when 

referring to common changes according to the parameters defined in the calibration. 

From the entire set of remaining parameters, only those shown in Table 3-4 present 

changes based on these patterns, whose subscripts correspond to different zones of Kh and 

Sy distributed throughout the basin (more information on the spatial location of these 

parameters can be found in the Supplementary Material, section B). Only two of them 

correspond to Kh (9% of Kh parameters), which suggests that it is difficult to establish a 

direct relation between the adjustments of Kh and the settings of the calibrations. However, 

Kh2 follows the “pattern of parameters”, increasing in 100% in simulations where only 

hydraulic properties are calibrated (Sim1 and Sim3), while decreasing in those that also 

calibrate EXDP (Sim2 and Sim4). Furthermore, the decrease in Kh2 is greater when 

EEFlux-ETgw estimates are used (Sim4). On the contrary, Kh18 follows the “pattern of 

observations”, as it increases in calibrations that use EEFlux-ETgw estimates (Sim3 and 

Sim4), whereas it decreases in those using only head data (Sim1 and Sim2). Therefore, 

despite the general trend, using EEFlux-ETgw estimates as observations contributes to the 

calibration of Kh. 
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Table 3-4: Parameters that behave according to the defined patterns: “pattern of 

observations” or “pattern of parameters”.  The calibrated value of the parameters is 

presented, as well as their percentages of change experienced with respect their initial 

values. The columns of simulations are further divided into parameters calibrated (blue) 

and observations used to calibrate them (red).  

Parameter Sim0 

Sim1 Sim2 Sim3  Sim4 

Heads  Heads + EEFlux 

Hydraulic 

properties 

Hydraulic 

prop. + 

EXDP 

Hydraulic 

properties 

Hydraulic 

prop. + 

EXDP 

 

Value (m/d) 0.03 0.06 0.024 0.06 0.015 

Percentage of change 

with respect to Sim0   - 100% -21.6% 100% -50% 

 

Value (m/d) 3 2.35 3.31 4 5.3 

Percentage of change 

with respect to Sim0   - -21.6% 10.4% 33.5% 76.% 

 

Value (-) 0.03 0.033 0.01 0.032 0.017 

Percentage of change 

with respect to Sim0   - 9% -66.7% 5.5% -43.7% 

 

Value (-) 0.06 0.078 0.011 0.085 0.034 

Percentage of change 

with respect to Sim0   - 29.8% -82.4% 41.6% -42.7% 

 

Value (-) 0.07 0.3 0.3 0.084 0.13 

Percentage of change 

with respect to Sim0   - 328.6% 328.6% 20.3% 90.6% 

 

Value (-) 0.1 0.294 0.186 0.168 0.124 

Percentage of change 

with respect to Sim0   - 193.8% 85.7% 68.2% 23.6% 

 

Value (-) 0.15 0.214 0.3 0.161 0.011 

Percentage of change 

with respect to Sim0   - 42.6% 100% 7% -92.5% 

 

Unlike Kh, storage parameters, particularly Sy, do exhibit changes according to the 

previously defined patterns in five out of the seven Sy zones of the model (Table 3-4). 

Most of them present a “pattern of observations”, where calibrations using EEFlux-ET_gw 
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estimates as observations (Sim3 and Sim4) exhibit a greater decrease (or a lower increase) 

in Sy than those using only head observations (Sim1 and Sim2). This is the case of Sy4 and 

Sy5, which are located inside Zone 1 of the ET region, in the first layer of the model 

(Figure 3-10 a)). Since ET occurs when the water table is shallow (and mainly from Zone 1 

of the ET region), Sy values defined in layer 1 are used to calculate the heads that generate 

ET flows from the water table. Thus, when EEFlux-ETgw estimates are used in the 

calibration as observations, the Sy parameters are adjusted to simulate evaporation flows 

similar to these observations. Greater decreases in Sy suggest that calibrations that use 

EEFlux-ETgw estimates attempt to represent a time-varying water table based on these 

observed ET fluxes. This effect can be observed in Figure 3-10, which shows water table 

fluctuations (WTF) across the four simulations at four points acting as virtual wells (VW) 

located inside Sy4 and Sy5 zones. WTF differences across simulations are difficult to 

observe in Sy4 since its value increased in all of them. However, differences are observed 

in the wells located in Sy5. While slightly larger WTF are observed in Sim3 in comparison 

to Sim1 and Sim2, pronounced WTF are clearly observed in Sim4 since it is the only 

simulation in which Sy5 decreased (Table 3-4). On the contrary, when the water table is 

deeper, there is no groundwater ET and the Sy2 values are adjusted according to heads 

(Table 3-4). It is noteworthy that Sy1’s behavior follows the “pattern of parameters” 

despite being in layer 1, which implies that there is a direct relation between the adjustment 

of Sy in areas where evaporation occurs, and the EEFlux-ETgw estimates are used as 

observations in the calibration. 
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Figure 3-10: a) Location of the virtual wells (VW) in the basin. b) Water table fluctuations at 

virtual wells. 
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3.4. Discussion 

3.4.1. Uncertainties in the application of the EEFlux method 

EEFlux is a worldwide useful and easy-to-use tool that has been applied for different 

purposes. Limitations of its application associated with the uncertainty in the EEFlux-ETgw 

estimates must be considered in each case, according to the purpose for which it is used. In 

this research, the objective was to contribute to the calibration of groundwater models, 

whose stress periods typically have time scales of months or seasons. Therefore, we 

justified the use of EEFlux-ETgw estimates as observational data in the calibration based on 

the capacity of the EEFlux method in reproducing seasonal trends observed in EC stations 

used for its validation. However, since EEFlux-ETgw estimates are not raw observations, 

they inherently carry uncertainty associated with their estimation. Consequently, they were 

not used in the calculation of performance metrics of the four calibrations. Here, we 

identify and discuss the sources of these uncertainties with the aim of contributing to a 

better future application of this tool.  

The frequency with which images are available, according to the passage of the satellites 

over the study area, adds uncertainty to the daily scale EEFlux-ETgw estimates. In this 

study, 315 images from Landsat 5 and 7 were used, which correspond to an average of two 

images per month. According to Irmak et al. (2012), one satellite image per month should 

suffice to construct an accurate ETrF curve for purposes of estimating seasonal ET. 

However, they note that during periods of rapid vegetation change, a more frequent image 

interval may be desirable (Allen et al., 2007; Irmak et al., 2012). de la Fuente et al. (2021) 

studied the spatiotemporal variability of water bodies and vegetation patches at Salar del 

Huasco. They found that these patches vary seasonally, but the magnitude of the increase 

in the area covered by vegetation was not as intense as that observed for open water 

bodies. Accordingly, two images per month are sufficient to represent monthly ET at Salar 
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del Huasco for the purpose of our research. However, it is important to recall this 

limitation as a source of uncertainty that must be analyzed in each case. Cloud cover 

percentage of the available images must also be accounted for, since clouds add noise and 

alter the information used when processing the EEFlux data. Carrasco-Benavides et al. 

(2022) selected images of clear sky conditions (≤30% of clouds) for estimating ETa from 

EEFlux in central Chile, while de Oliveira Costa et al. (2020a) gave priority to images 

without clouds for their selection within the EEFlux platform. Similarly, in this research, 

images with clouds over the Salar del Huasco basin were discarded. 

EEFlux images provide an evaporation factor equivalent to the crop coefficient. The 

obtained ET value is thus a combination of: (1) the ETrF factor; and (2) in-situ ETr 

computations. (1) is calculated as a fraction of instantaneous ETa estimated by METRIC 

and satellite-derived ETr estimated using Penman-Monteith with meteorological data from 

CFSV2 grided products (Eq. (3-2)). The standardized Penman-Monteith method for 

computing ETr assumes that the near-surface profiles for air temperature, humidity, and 

wind speed are in equilibrium with the well-watered surface represented by ETr and it has 

been found that its application over dry areas results in overestimation of ETr (Allen et al., 

2021; Blankenau et al. , 2020). Allen et al. (1983) reported ETr calculated with Penman-

Monteith nearly 17% greater when using weather data from non-irrigated environments, as 

opposed to that collected over irrigated environments. Blankenau et al. (2020) found that 

summer season ETr computed with Penman-Monteith from gridded weather data in 103 

sites exceeded by 10–30% that computed from weather stations. In the case of (2), the 

method and available data used for computing in-situ ETr should also be considered as 

sources of uncertainty in the EEFlux-ET estimates. In this study, the Blaney-Criddle 

equation was used to calculate ETr because it only requires monthly mean temperatures, 

making it especially useful in regions with poor hydrometeorological information. This is 

not only the case of the Salar del Huasco basin, but also that of many other areas where the 

use of EEFlux would be an important contribution to the lack of detailed in-situ 
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information. However, the simplicity of the Blaney-Criddle method also makes it 

inaccurate, especially in extreme climates (Brouwer & Heibloem, 1986). Some studies 

have reported overestimated values of ETr in arid regions (Gao et al., 2017; Hashemi & 

Habibian, 1979; Tabari et al., 2013), whereas other investigations have reported 

underestimated ETr values in arid regions (Brouwer & Heibloem, 1986; Heydari et al., 

2015; Li et al., 2016; Zhan & Shelp, 2009). 

3.4.2. Contribution of  estimates to the calibration of 

hydraulic properties 

The use of heads and EEFlux-ETgw estimates as observations in the calibration process of a 

groundwater model contributes to improving the simulation of aquifer levels both in space 

(through calibration of K) and in time (through calibration of Sy). The Sy parameter is 

defined as the space available for the gain or loss of groundwater associated with the rise 

or fall of a water table, respectively (Liu et al., 2022; Lv et al., 2021). Thus, it is 

responsible for the fluctuations of the water table over time, whose simulation is essential 

to estimate groundwater ET. Multiple water balance studies based on water table 

fluctuations have pointed Sy as one of the main sources of uncertainty in the estimation of 

flows such as recharge and ET (Diouf et al., 2020; Gribovszki, 2018; Gumuła-Kawęcka et 

al., 2022; Jiang et al., 2017; Li et al., 2009; Shah et al., 2007; Su et al., 2022; Yonghong et 

al., 2022), concluding that there is a strong relationship between this parameter and 

groundwater ET, which is consistent with our finding. Therefore, determining and 

calibrating its value has also been the focus of multiple studies (Durand et al., 2017; Gong 

et al., 2021; Liu et al., 2022; Pozdniakov et al., 2019; Su et al., 2022; Sun et al., 2010). 

However, to the best of our knowledge, this is the first study that used satellite 

observations of evaporation fluxes in a numerical groundwater model to calibrate Sy. 
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On the contrary, K did not experience changes that could be directly attributed to the use of 

EEFlux-ETgw estimates in the calibration. This is consistent with the study of Carroll et al. 

(2015), which reported no appreciable link between K and parameters associated to the 

estimation of ET, which suggested that K could be calibrated only to water level records 

while ET-related parameters to EVI-derived ET from Landsat images. In the present work 

however, the fact that Sim3 achieved the bests performance metrics suggests that 

incorporating EEFlux-ETgw estimates contribute to the calibration of K, and thus there is a 

relation between them, which is mostly indirect. 

3.5. Conclusions 

EEFlux images were utilized to assess the applicability of remote sensing products to 

support calibration of groundwater models in an arid zone of complex topography. 

Validation of the EEFlux method indicates that the approach can represent the magnitude 

and seasonal variations of evaporation over the Altiplano. This finding is supported by 

relatively low RMSE’s values ranging between 0.46 and 1.25 mm/d. Therefore, coherent 

ET rates can be obtained in areas of complex topography, where access to them is often 

limited. Thus, this methodology allows supplementing the existing information for the 

calibration of numerical models in remote aquifers. 

The results of this study also show that EEFlux contributes to a better calibration of the 

hydraulic parameters of the numerical groundwater model, as there is more observational 

data used in the calibration process. The groundwater model simulations performed with 

the parameters resulting from the four calibration configurations outperformed the baseline 

simulation Sim0. Nevertheless, the best performance metrics were achieved in Sim3 

(NRMSE = 4.1%), in which only hydraulic properties parameters were calibrated using 

both heads and EEFlux-ETgw estimates. Additionally, EEFlux contributes to the calibration 

of the EXDP parameter in areas where evaporation occurs (e.g., see Sim 3). 
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Although the contribution of EEFlux-ETgw estimates to the calibration of hydraulic 

conductivity is indirect and difficult to distinguish from that of observed levels, a direct 

effect on the calibration of specific yield parameters is observed in 74% of these 

parameters. Calibrations that incorporated EEFlux-ETgw estimates as observations resulted 

in lower values of calibrated Sy inside Zone 1 of evaporation in comparison to those that 

used only heads. Lower values of Sy parameters cause more pronounced fluctuations of the 

water table in time and, as a result, more variations in evaporation fluxes. Therefore, its use 

as additional information in the calibration process contributes to a more complete 

representation of the spatiotemporal water table dynamics. Furthermore, to the best of our 

knowledge, this is the first study to calibrate Sy in a numerical groundwater model using 

satellite observations of evaporation fluxes. 

This research confirms that satellite images can be a valuable tool in the calibration and 

definition of elements in groundwater models. This work not only expanded the uses of 

EEFlux to disciplines different to agriculture, but also developed a methodology that can 

be applied in other areas around the world, thanks to the coverage of the images used by 

EEFlux.   
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4. GROUNDWATER RESPONSE TO CLIMATE CHANGE AND THE 

TIME OF EMERGENCE OF ANTHROPOGENIC SIGNALS IN 

AQUIFER LEVELS: CAN GROUNDWATER SUPPORT 

WETLANDS' RESILIENCE TO CLIMATE CHANGE IN 

NATURAL-STATE BASINS? 

 

4.1. Introduction 

Groundwater is the largest source of freshwater that supplies most of the global population 

and plays a crucial role in supporting ecosystems (Atawneh et al., 2021; Cuthbert et al., 

2019; McDonough et al., 2020). Groundwater is strongly connected to surface waters 

through discharges into springs, floodplains, streams (mainly as baseflow) and wetlands 

(Scanlon et al., 2023). With the ongoing changes in the Earth's climate, the amount and 

distribution of groundwater recharge is likely to fluctuate or change, affecting groundwater 

storage, water table levels, and eventually, the interactions between groundwater and 

surface water (Amanambu et al., 2020; Condon et al., 2020; Cuthbert et al., 2019). 

Consequently, groundwater-dependent ecosystems, such as wetlands and riparian zones, 

will be affected by these changes, which could significantly alter their ecological 

functioning (Havril et al., 2018; Kløve et al., 2014; Salimi et al., 2021). 

Wetlands play a vital role in mitigating climate change (Huang et al., 2021; Ma et al., 

2022; Salimi et al., 2021). They are capable of regulating the atmospheric concentrations 

of greenhouse gases that contribute to global warming, such as methane, carbon dioxide 

and nitrous oxide. These ecosystems store about a third of the global soil carbon and more 

than half of the carbon in the atmosphere, being thus a crucial long-term carbon sink 

(Cuthbert et al., 2019; Huang et al., 2021; Ma et al., 2022; Mitsch et al., 2013; Moomaw et 

al., 2018). However, wetlands are threatened by climate change and human activities, 
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which have led to a loss of approximately 35% of the world's natural wetlands between 

1970 and 2015 (Fluet-Chouinard et al., 2023; Huang et al., 2021).  

It is still unclear how wetlands will respond to climate change (Gallego-Sala et al., 2018; 

Ma et al., 2022; Salimi et al., 2021). Studies suggest that wetlands in arid regions are 

generally more resilient than those in temperate or tropical regions, as they have been 

capable to adapt to extreme climate events, such as drought and flooding episodes, and 

they have a greater capacity to recover from disturbances (Sandi et al., 2020). In these 

regions, most wetlands depend on groundwater, and it has been found that changes in 

groundwater levels significantly impact the hydrology and functioning of wetlands (Chen 

et al., 2021; Froend et al., 2016; House et al., 2016; Ma et al., 2022; Paquis et al., 2023; 

Sandi et al., 2020; Scanlon et al., 2023; Stirling et al., 2020; Zhu et al., 2020). Therefore, 

assessing the groundwater response to climate change is crucial to better understand the 

potential impacts on groundwater-dependent wetlands. 

Recently, the concept of time of emergence (ToE) of the climate change signal has been 

found to be crucial to anticipate and adapt to climate change impacts. The ToE is defined 

as the time at which the signal of anthropogenic climate change is emerging against the 

background of natural climate variability (noise) (Hawkins & Sutton, 2012; Lehner et al., 

2017; Sui et al., 2014). Identifying when the climate change signal will emerge from the 

background could be particularly difficult in environments with large natural variability, 

such as in regions strongly influenced by large-scale oceanic-atmospheric phenomena.  

The ToE of climate change signal in atmospheric variables has been widely explored, 

particularly in temperature and precipitations (Barrow & Sauchyn, 2019; Gaetani et al., 

2020; Hawkins et al., 2020; Hawkins & Sutton, 2012; Li et al., 2021; Sui et al., 2014). 

More recently, its application has expanded to hydrological studies. For example, 

Chadwick et al. (2021) assessed the ToE of climate change in a Chilean reservoir under 



99 

 

 

future streamflow time series to identify when its operational rule will no longer be able to 

maintain its performance. They observed that the signal of climate change would emerge 

earlier in the reservoir’s performance than in precipitations, and therefore they remark the 

importance of identifying the ToE in variables directly related to water resources 

availability. Walker et al. (2022) employed the ToE to examine the timing of the onset of 

modern rates of sea-level rise, both globally and locally. They found that local records in 

the North Atlantic had a larger variability than the global signal, and therefore the spatial 

variability in sea-level rise should be considered when assessing the impacts on coastal 

communities and infrastructure. Recently, John et al. (2023) evaluated the ToE of climate 

change across Australian catchments. Their results showed that signals emerge earlier in 

systems with low natural variability, however, earlier emergence is likely to be observed in 

streamflow than in precipitations. Martínez et al. (2023) studied the ToE of the 

sclerophyllous forest in central Chile to improve the understanding of when the forest will 

be displaced by climate change, which extends the application of ToE into forest 

hydrology. These studies give valuable insights of the importance of studying the ToE in 

hydrological variables for better managing of water resources.  

Given the crucial role that groundwater resources are expected to play in the future, it 

becomes relevant to incorporate the concept of ToE in groundwater studies to gain a better 

understanding of how climate change-induced shifts in groundwater could affect their 

dependent ecosystems. While studies assessing the ToE in variables other than climatic 

have increased, its application in groundwater studies remains largely unexplored. To the 

best of our knowledge, the study by Ascott et al. (2022) was the first to estimate the ToE in 

groundwater levels, and it still stands as one of the few—if not the sole—studies on the 

subject to date. With data from the CMIP5 ensemble, the authors of this study forced a 

lumped conceptual groundwater model to simulate future levels at eight borehole sites in 

Burkina Faso, West Africa, and estimated the ToE using a signal-to-noise approach. They 

found no consistent direction of climate change impact on groundwater levels across the 
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boreholes studied when different climate models were used to force the model, 

highlighting the need for improved GCMs and long-term monitoring.  

Despite the important insights provided by Ascott et al. (2022), the study has some 

limitations, such as employing eight boreholes to represent what could happen in an entire 

region. Also, the use of a lumped conceptual groundwater model may not properly 

represent complex hydrogeological systems, which could lead to inaccurate predictions of 

future groundwater changes for management purposes. Additionally, the study did not 

consider the impacts of extreme climate events on groundwater, nor how human activities 

could affect groundwater recharge. In addition, climate models from CMIP5 may not be 

the most up-to-date or accurate models. Therefore, it is necessary to increase the 

understanding of the ToE in groundwater levels for adaptation strategies by performing 

studies that can more accurately simulate groundwater dynamics, using up-to-date climate 

models. 

Our study focuses on the aquifer of the Salar del Huasco basin, located in the hyper-arid 

Chilean Altiplano. This basin is home to groundwater-dependent wetlands that are 

protected by the Ramsar convention due to their ecological value. These wetlands have 

adapted to extreme climatic conditions, including low annual precipitation and its high 

interannual variability, by relying on groundwater discharges. However, their adaptive 

capacity may be threatened by changes in groundwater levels that exceed their natural 

variability. Therefore, it is crucial to determine when the anthropogenic signals emerge 

from the groundwater response to climate change in order to protect these ecosystems.  

Previous studies in Salar del Huasco have investigated changes in groundwater flows and 

dynamics (Acosta & Custodio, 2008; Blin et al., 2022), wetland dynamics (de la Fuente & 

Meruane, 2017; de la Fuente et al., 2021; Lobos-Roco et al., 2021; Lobos-Roco et al., 

2022; Paquis et al., 2023), adaptation of microbial communities (Dorador et al., 2009; 



101 

 

 

Dorador et al., 2010; Molina et al., 2021), among others. However, no studies have yet 

evaluated the ToE in groundwater levels to identify when wetlands might be affected by 

changes beyond the natural variability. Accordingly, the main goal of this research is to 

evaluate the response of groundwater dynamics to climate change and assess the time in 

which the anthropogenic signal will emerge from the natural variability of groundwater 

levels. To achieve this, we use up-to-date climatic data from the CMIP6 ensemble to drive 

a transient numerical groundwater model of the Salar del Huasco aquifer. Employing a 

groundwater numerical model, previously calibrated by Blin & Suárez (2023) using 

borehole records at 42 wells, we estimate the ToE of the climate change signal in the 

simulated groundwater levels. Since our study site is at its natural state due to its 

RAMSAR protected status, our findings could provide crucial information for developing 

adaptation strategies to preserve wetlands not only in Salar del Huasco, but also in areas of 

similar climatic and hydrogeological properties. 

4.2. Methods 

4.2.1. Study site 

The Salar del Huasco basin is located in the extremely arid Chilean Altiplano within the 

Atacama Desert, between 19.98°S and 20.43°S of latitude and between 68.94°W and 

68.7°W of longitude (Figure 4-1).  The basin extends over 1470 km2 at a mean elevation of 

4165 m ASL. Previous isotopic studies have discarded a possible groundwater connection 

between the Salar del Huasco basin and its neighbors, and it is therefore considered a 

hydrologically closed (endorheic) basin (Risacher et al., 1999; Scheihing et al., 2017; 

Uribe et al., 2015). Accordingly, the aquifer discharges into the basin’s topographic low, 

where a salt flat of 50 – 60 km2 has formed by the long-term evaporation of water enriched 

with salts and brines (Corenthal et al., 2016; Marazuela et al., 2020). Groundwater-fed 

wetlands and lagoons located in the salt flat zone have a great ecological value as they 
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sustain the life of unique species of flora and fauna, for which they are protected by the 

RAMSAR convention (CONAF, 2005), as well as by the Chilean government who 

recently declared the basin a National Park (Blin et al., 2022; Blin & Suárez, 2023). 

 

Figure 4-1: Study site. Panel a) Salar del Huasco basin, where observation wells are depicted 

as orange circles, Collacagua meteorological station is shown as a red pentagon and springs as 

green circles near the wetlands at the salt flat nucleus. b) Location of the Salar del Huasco 

basin (enclosed by a red rectangle) in the Atacama Desert, northern Chile, South America. c) 

Elevation profile from the Pacific Ocean (left) to the Salar del Huasco basin (right) in the 

Altiplano. d) Altitude of the basin’s topography in meters above sea level (m ASL), the 

recharge zones delineated in blue represent the subbasins of the rainfall – runoff model. 
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Depending on the altitude, mean daily temperatures within the Salar del Huasco basin can 

range between 4–14°C, with high daily thermal oscillation (DGA, 2009). Precipitation in 

this part of the Altiplano occurs in the austral summer (November through March) as 

heavy convective storms, with a high interannual variability that ranges from 11 to 400 

mm/year as a consequence of the El Niño-Southern Oscillation (ENSO) phenomenon (Blin 

et al., 2022; Garreaud et al., 2003; Hernández‐López et al., 2014). Additionally, long-term 

climate fluctuations in the Altiplano have been associated to the Pacific Decadal 

Oscillation (PDO) phenomenon, which has a strong influence on decadal and inter-decadal 

variability (Garreaud & Aceituno, 2001; Rojas-Murillo et al., 2022; Torres-Batlló & Martí-

Cardona, 2020). 

In the Salar del Huasco, as in most of the Altiplano basins, groundwater flows mainly 

through fractured volcanic aquifers, unconsolidated sediments, and alluvial fans (Acosta & 

Custodio, 2008; Blin et al., 2022; Herrera et al., 2016; Houston, 2009; Urrutia et al., 2022). 

The hydrogeological system is mainly characterized by a shallow aquifer of recent 

sedimentary deposits, a middle aquifer formed by Collacagua Formation and clay, and a 

deep aquifer formed by Collacagua Formation and Huasco Ignimbrite (Acosta & Custodio, 

2008; DGA, 2009). 

4.2.2. Groundwater flow model 

The groundwater dynamics were simulated using a numeric groundwater flow model 

developed by Blin et al. (2022) and later modified by Blin & Suárez (2023). The model 

was built in MODFLOW (Harbaugh et al., 2000) using FloPy (Bakker et al., 2016), a 

python library for building, running and processing MODFLOW-based models. The model 

of the Salar del Huasco basin discretizes the three main aquifers of the hydrogeological 

system into 10 layers, 253 columns and 270 rows. No-flow conditions were defined in the 



104 

 

 

boundaries of the domain to represent the hydrogeological disconnection between the basin 

and its neighbors. 

Recharge was estimated with the rainfall-runoff model developed by Uribe et al. (2015) for 

the Salar del Huasco basin, which is based on the HEC-HMS  model’s routines. For each 

hydrological response unit (HRU) within the model domain, mass balance equations are 

applied to reservoirs that represent processes occurring at the surface and the subsurface. 

The model uses daily precipitation, temperature, and potential evapotranspiration to 

calculate surface runoff, actual evaporation and deep percolation, i.e., groundwater 

recharge. Future potential evapotranspiration is estimated using the Blaney-Criddle 

modified equation (Doorenbos & Pruitt, 1977), whose parameters were calibrated by Blin 

et al. (2022) for the Salar del Huasco basin. Groundwater evaporation is thus the difference 

between the potential evapotranspiration and the actual evaporation from the subsurface 

estimated by the rainfall-runoff model, to represent what can still be evaporated from the 

groundwater system. For a more detailed description of the rainfall-runoff model we refer 

readers to the works of Uribe et al. (2015) and Blin et al. (2022).  

The resulting recharge is simulated as a specified flux in the MODFLOW model using the 

Recharge Package (RCH) (Harbaugh et al., 2000), where different recharge rates are 

applied to zones that represent the rainfall-runoff model’s subbasins (Figure 4-1d). 

Groundwater evaporation is simulated as a head-dependent boundary condition using the 

EvapoTranspiration package (EVT) (Harbaugh et al., 2000) package. The EVT package 

establishes a linear relationship between heads and evaporation rate: no evaporation occurs 

if heads are below a specific extinction depth (EXDP parameter), while evaporation 

increases linearly as heads increase from that depth to the surface. The maximum 

evaporation rate that occurs at the surface results from the rainfall runoff model (as the 

difference between the potential evapotranspiration and the actual evaporation). The EVT 

package is applied where the water table is shallow, which occurs in the topographic low 
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of the basin and in the riparian surroundings of the Collacagua river (zones 1 and 2 in 

Figure 4-1d). The EVT area is divided into zones 1 and 2, where different values of the 

EXDP parameter were defined and calibrated by Blin & Suárez (2023). 

The interaction between the aquifer and the Collacagua river was simulated with the River 

Package (RIV) (Harbaugh et al., 2000). The RIV package is a head-dependent boundary 

condition in which water can be exchanged between the river and the aquifer based on the 

water table height. Finally, the groundwater discharge to the springs was simulated using 

the Drain package (DRN) (Harbaugh et al., 2000) which is also a head-dependent 

boundary condition in which only discharge from the aquifer can occur when heads are 

above the spring’s elevation. Four drains represent the main springs in the wetland area 

(Figure 4-1a). 

Simulation time was discretized into monthly stress periods in the historical and future 

simulations. The historical simulation covers the period between 1980 and 2014, while 

future simulations cover continuously the period between 2014 and 2100. However, the 

period between 2014 and 2024 is considered as a warm-up period, and thus future analysis 

of groundwater dynamics begins from 2025. 

4.2.3. Climate change data 

4.2.3.1. Bias-adjustment of climate model data 

We used the climQMBC package (https://github.com/saedoquililongo/climQMBC) for the 

bias- adjustment of monthly precipitation and temperature projections of CMIP6 models. 

This climQMBC package offers five quantile-mapping based methods to adjust systematic 

biases in the future variables to historical observations. 

https://github.com/saedoquililongo/climQMBC
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While preserving the absolute changes in quantiles of temperature through the regular 

Quantile Mapping (QM) (Panofsky & Brier, 1968; Wood et al., 2002), is a straightforward 

process, maintaining the relative changes or trends projected by the GCMs is more 

challenging for precipitation than for temperature. Consequently, in this study, we chose 

different bias- adjustment methods for temperature and precipitation given their different 

nature: the Quantile Delta Mapping (QDM) method was used for precipitation as it 

performs a QM method that preserves model-projected relative changes in the quantiles, 

and the Detrended Quantile Mapping (DQM) (Bürger et al., 2013) was used for adjusting 

systematic biases in temperature means (Cannon et al., 2015). 

The climQMBC package applies the QDM method according to Cannon et al. (2015). The 

method begins with detrending future model outputs by quantile and bias-adjusting to 

match observations using QM with the inverse of the cumulative distribution function 

(CDF) of observations over the historical period ( ), according to: 

 

 

(4-1) 

where τ𝑚,𝑝(t) is the non-exceedance probability of a particular precipitation event modeled 

at a time t in the future (𝑥𝑚,𝑝(t)); and is the historical bias-adjusted value of 

𝑥𝑚,𝑝(t). An independent probability distribution function is assigned to each month and 

projected period, which is selected by using the Kolmogorov-Smirnov test (for more detail 

see Chadwick et al., 2023).   

Next, the relative changes in quantiles between the historical period and a future time t 

(Δm(t)) are calculated as the ratio between 𝑥𝑚,𝑝(t) and the model’s CDF over the historical 

period ( ): 
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(4-2) 

These Δm(t) are subsequently superimposed (multiplicatively) to the historical bias-

adjusted value ( ): 

 

 

(4-3) 

Biases in temperature data were adjusted using the DQM method, preserving the model's 

projected changes in temperature means. This is achieved by examining the difference 

between the long-term trends of the modeled temperature data in the historical and future 

periods as the model-projected changes: 

 

 

(4-4) 

where  and  are, respectively, estimates of the long-term modeled mean over 

the historical period and at time t in the projected period p, respectively.  

Finally, the bias-adjusted temperature and precipitation were disaggregated from monthly 

to daily basis using a K-Nearest Neighbors (KNN) approach, according to Chadwick et al. 

(2021). 

4.2.3.2. Selection of ensemble members 

We We evaluated the potential implications of climate change on the Salar del Huasco 

basin by considering the SSP2 4.5 and SSP5 8.5 scenarios from the sixth phase of the 

Coupled Model Intercomparison Project (CMIP6). These scenarios are a combination of 

the Socio Economic Pathways (SSP, O’Neill et al., 2020) and the Representative 
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Concentration Pathways (RCP, Moss et al., 2010). The SSP scenarios offer insights into 

various societal factors, including demographics, political shifts, and economic 

development, and are structured as narratives that emphasize future challenges of both 

adaptation and mitigation. In CMIP6's framework, greenhouse gas concentrations from 

CMIP5's RCP (Moss et al., 2010) are incorporated, facilitating its use in comprehensive 

studies (O’Neill et al., 2020). SSP2 4.5 projects a future where social, technological, and 

economic trajectories follow historical patterns, resulting in moderate challenges in 

mitigation and adaptation. On the contrary, the SSP5 8.5 scenario anticipates a future 

defined by rapid economic growth through the extensive use of fossil fuels, posing high 

mitigation challenges (O’Neill et al., 2017). The projected warming under these scenarios 

by the century's end varies between 2 – 2.9℃ for SSP2 4.5, and 4 – 4.3℃ for SSP5 8.5 in 

the GISS-E2.1 GCM (Nazarenko et al., 2022).  

In the current study, small ensembles of six bias-adjusted GCMs were generated for each 

scenario. Their respective members were selected from a set of 45 GCM projections 

according to the GCM changes between the future period (2015-2100) and the historical 

period (1980 – 2014). Subsequently, six models projecting climate change signals 

corresponding to 10th, 25th, 50th, 75th, 90th and 100th percentiles were selected to generate 

ensembles of SSP2 4.5 and SSP5 8.5 scenarios. Thus, both scenarios comprise different 

magnitudes of change in the future. 

Since precipitation and temperature behave differently, the signal that a model projects for 

precipitation is not the same as that for temperature and so percentiles of ∆P differ from 

percentiles of ∆T. Taking that into account, the models of both ensembles were selected 

based on ∆P since precipitation has a direct effect on the aquifer’s incoming recharge. 

Table 4-1 presents the models used as ensemble members for the SSP2 4.5 and SSP5 8.5 

climate change scenario. 
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Table 4-1: Models used as ensemble members of the two SSP climate change scenarios 

used in this research. The rip indexes (which indicate the realization, initialization method, 

physics version and forcing index of the model run) are showed inside parenthesis to 

identify different realizations of a same model for the corresponding scenario. 

Scenario 
Ensemble-

member 
Model 

  

SSP2 4.5 

 

CESM2_WACCM 0.89 0.93 

 

KACE_1_0_G  0.92 1.09 

 

GDL_ESM4 0.97 0.64 

 

CanESM5 (r3i1p1f1) 1.01 1.15 

 

INM_CM4_8 1.04 0.55 

 

CanESM5 (r2i1p1f1) 1.13 0.99 

SSP5 8.5 

 

ACCESS_CM2 0.81 2.30 

 

MPI_ESM1_2_LR 0.89 1.75 

 

KACE_1_0_G  0.97 2.04 

 

MIROC6 1.05 1.29 

 

CanESM5  1.10 2.59 

 

FIO_ESM_2_0 1.13 1.67 

 

4.2.4. Estimation of the time of emergence of the climate change signal on 

groundwater levels 

Unlike the water budget flows of the basin, which have a seasonal and decadal variability, 

the water level records observed in the Salar del Huasco basin have been characterized by 

remaining relatively steady between 1980 and 2014 (Acosta & Custodio, 2008; Blin et al., 

2022; DGA, 2009). Therefore, we seek to understand when the projected increase or 
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decrease in aquifer heads ceases being a natural response of the aquifer to natural climate 

variability and begins to be a consequence of climate change.  

A signal-to-noise approach was used to estimate the ToE of the climate change signal on 

groundwater heads to assess when and where the climate change signal is emerging from 

the background noise of natural variability (Ascott et al., 2022; Gaetani et al., 2020; 

Hawkins et al., 2020). The signal-to-noise approach assumes that the variable, i.e., 

groundwater levels, is composed of a low-frequency (LF) component, which represents the 

externally forced climate signal, and a high-frequency (HF) component representing 

natural variability (Gaetani et al., 2020; Hawkins et al., 2020; Hawkins & Sutton, 2012). 

The time at which the LF signal exceeds the HF threshold uninterruptedly until the end of 

the century is considered as the ToE (Gaetani et al., 2020).  

In this research, we used two approaches for estimating the LF component: (1) we applied 

a 4th-degree polynomial smoothing to the time series to accommodate the long-term trend 

and multi-decadal variability within the LF component, thereby constraining the natural 

variability to interannual changes. A smoothing fit is often used to account for interannual 

variability because it is capable of capturing more complex patterns that might exist within 

the data over shorter time scales. Yet, considering the substantial role of the decadal 

variability ascribed to the Pacific Decadal Oscillation (PDO) in the Altiplano (Rojas-

Murillo et al., 2022), (2) we used a linear fit of the time series to account for the decadal 

variability as the HF component (Gaetani et al., 2020). By fitting a linear trend, we are 

considering that, over the long term, many of the short-term fluctuations tend to cancel 

each other, and what remains visible is a longer-term trend. 

The procedure for estimating the ToE at each well is as follows: 
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• Estimate the LF component in the historical period (1980 – 2014), LFhist, by fitting 

a polynomial function to the levels simulated at each well. The polynomial degree 

can vary depending on the nature of the data, here, we used a 4th-degree polynomial 

or smoothing, and a linear trend.  

• Calculate the residuals as the difference between the simulated groundwater levels 

and the fitted polynomial. These residuals represent the variability in historical 

groundwater levels that LFhist does not capture. The well’s HF component 

corresponds to the standard deviation of these residuals, which represents the short-

term fluctuations in the historical groundwater levels.  

• Estimate the LF component in the future period (2025 – 2100), LFfut, by fitting the 

polynomial to future simulated heads.  

• Estimate the climate change signal, S, by subtracting LFhist to LFfut. 

• The signal-to-noise ratio is calculated as the ratio of S and the HF component. The 

ToE corresponds to the year of the onset in which the signal-to-noise ratio is 

uninterruptedly greater than 1:  

 

 

(4-5) 

Following the approach of Gaetani et al. (2020), we define a robust multi-model ToE as 

the median ToE for models that concur on the trend direction, assuming this agreement 

involves at least 50% of the ensemble. Given the use of six ensemble members in this 

study, a multi-model ToE is established when a minimum of three members are in 

concurrence. Without such consensus, climate change emergence is not determined. 
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4.3. Results 

4.3.1. Bias-adjusted temperature and precipitation projections 

Under both future scenarios the mean temperatures are projected to increase along with the 

minimum and maximum temperatures (2015-2100 period) with respect to the historical 

period (1980-2014 period) (Table 4-2). Among the statistics of precipitation, however, 

only the maximum monthly event projects a clear increasing change with respect to the 

historical period in both scenarios, forecasting thus more intense precipitation events. In 

addition, a larger range of the mean precipitation within the ensembles (~4 mm in SSP2 

4.5 and ~8 mm in SSP5 8.5) is projected in comparison to temperatures (~2℃ in both 

ensembles). Accordingly, there is currently more uncertainty related to the forecasting of 

future precipitations than temperatures. 

Table 4-2: Maximum and minimum threshold of main statistics of bias-adjusted mean 

monthly temperature and total monthly precipitation projected by ensembles SSP2 4.5 and 

SSP5 8.5 between 2015 to 2100. Statistics from historical variables (period 1980 – 2014) are 

presented in the bottom row, shaded in grey. 

Future period Mean monthly temperature  Total monthly precipitation (mm)  

Scenario 

ensemble 

Ensemble 

range 
Mean Std. Min. Median Max. Mean Std. Min. Median Max. 

SSP2 4.5 
lower 6.1 2.9 -1.3 6.1 12.3 9.4 21.6 0.0 0.0 176.2 

upper 8.0 3.3 0.1 8.0 14.9 13 26.5 0.0 0.7 242 

SSP5 8.5 
lower 7.2 3.1 -1.6 7.5 14.5 7.2 17.9 0.0 0.0 191.2 

upper 9.6 3.5 1.1 9.9 17.3 15.5 30.9 0.0 0.4 315.2 

Historical period 4.71 3.09 -3.76 4.72 11.2 11.47 25.3 0.0 0.0 154.5 
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As observed in Figure 4-2, although statistics reveal increasing temperatures in both 

scenarios, their trends suggest that the increasing rate in SSP2 4.5 will eventually diminish 

by around 2040, whereas temperatures will increase until the end of the century in SPP5 

8.5. Figure 4-2 also shows that the uncertainty in future precipitations can be clearly noted 

from the extent of the shaded area encompassing the individual trends projected by the six 

members of each ensemble over time. The larger the extent of this area, the larger the 

disagreement in precipitation projections among ensemble members. Even though similar 

areas (and thus uncertainty of ensemble forecasts) are projected for precipitations under 

both scenarios in the near future, the uncertainty of future precipitations slightly diminishes 

under SSP2 4.5 by the second half on the century as the shaded area slightly contracts 

around the ensemble mean. Contrarily, in SSP5 8.5 the uncertainty increases by the second 

half on the century, reaching a 16.5 mm difference between the minimum and maximum 

trends of the ensemble. The uncertainty surrounding these projections reinforces the 

importance of using ensembles to provide ranges of future changes for better assessing 

their potential impacts. 
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Figure 4-2: Temperature trends (a and b) and precipitation trends (c and d)) estimated over a 

15-year window. The first and second row represent the future trends projected in SSP2 4.5 

and SSP5 8.5, respectively. Trends in the historical reference period (delimited by dashed 

vertical lines) are presented in blue in all a) – d) plots. The shaded areas encompass the 

individual trends projected by the six members of each ensemble, representing thus the range 

of projections covered by the ensembles. 

The ensemble means presented in Figure 4-3 indicate that mean temperatures are expected 

to increase in average by ~1.5 and ~2.5°C in SSP2 4.5 and SSP5 8.5, respectively, 

throughout the year in the future projections (between 2025 and 2100) with respect to the 
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reference period. In addition, both ensemble means of total monthly precipitation project a 

slight increase (of ~3 mm in both ensemble means) in winter precipitations (particularly in 

June and August), and a larger increase (of ~20 mm in both ensemble means) in summer 

precipitations in January and February. However, the ensemble ranges depicted in Figure 

4-3c-d suggest that the greater the projected increase in the ensemble mean of total 

monthly precipitation, the more uncertain the magnitude of such increase within the 

ensemble.  

 

Figure 4-3: Comparison between the monthly means of temperature and total monthly 

precipitation observed in the reference period (1980 – 2014) and projected in the future (2025 

– 2100) by ensembles SSP2 4.5 ( a and c) and SSP5 8.5 (b and d). The reference period means 

are presented in dashed blue lines, and ensemble means in dash-dotted red lines. Boxplots 
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show the distribution of the ensemble members’ projections for each month, while the red 

shaded area represents their range (maximum difference between projections). 

4.3.2. Projected changes in the groundwater balance flows 

As it is the main discharge mechanism of the Salar del Huasco basin (de la Fuente et al., 

2021; Lobos-Roco et al., 2022; Lobos-Roco et al., 2021; Suárez et al., 2020), assessing 

groundwater evaporation is crucial to understand the future response of the water table. 

Recharge trends (Figure 4-4) are primarily driven by precipitation. Although the pattern of 

groundwater evaporation trends is more similar to that of precipitation than that of 

temperature, there is less variability among the members of the evaporation ensembles.  
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Figure 4-4: Groundwater recharge (a and b) and groundwater evaporation (c and d) estimated 

over the future period (2025 2100). Panels a) and c) presents results of SSP2 4.5, while b) and 

d) those of SSP5 8.5. The monthly projections of ensemble members are depicted in grey to 

show the short – term fluctuations within each ensemble. The long – term fluctuations are 

represented by the shaded area, which encompasses all individual trends projected by the 

ensemble, while the dashed black line corresponds to the mean ensemble trend (estimated with 

a 15-year window). 

It is anticipated that future recharge rates will be significantly impacted by changes in 

climatic variables in winter moths (Figure 4-5). Specifically, the most substantial changes 

in recharge relative to the reference period are expected to occur during winter (from May 
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until October) due to warmer temperatures. In fact, winter recharge may increase by 

around 9 – 192% in SSP2 4.5 and 7 – 223% in SSP5 8.5, being July the month of largest 

increase, more than three times compared to the reference period. The results also suggest 

that under the SSP5 8.5 scenario, more extreme recharge episodes are likely to occur, as 

reflected by the large ensemble range (Figure 4-5b). By contrast, as the increasing summer 

temperatures enhance surface evapotranspiration, recharge is likely to decrease during 

summer by around 3 – 18% in SSP2 4.5 and 2 – 11% in SSP5 8.5.  

The ensemble range of evaporation in both scenarios is much thinner than the range of 

recharge, and the difference between the ensemble means of both scenarios is negligible, 

which suggest that the groundwater response through evaporation is expected to be less 

uncertain than that of recharge. Despite of the slight recharge decrease in summer, the 

higher temperatures are expected to enhance groundwater evaporation, which is to increase 

in ~15 – 75% regarding the evaporation of the reference period due to the higher 

temperatures. As groundwater evaporation is a linear function of the depth to the surface, 

then it could be derived that groundwater levels could be rising. 
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Figure 4-5: Comparison of future groundwater recharge and groundwater evaporation rates (in 

mm/d) of ensembles SSP2 4.5 (panels a and c) and SSP5 8.5 (panels b and d) throughout the 

year against the reference period (1980 – 2014), portrayed as blue dashed lines. The red dashed 

line represents the ensemble mean and the boxplots depict the monthly behavior of the 

ensemble for each month of the year simulated over the entire future period (2025 – 2100), 

while the shaded area corresponds to the ensemble range, given by the whiskers of the 

boxplots (depicting 1.5 times the interquartile range (IQR)). Panels a and b show groundwater 

recharge, which is the sole flux entering to the aquifer in the MODFLOW model, while panels 

c and d show the groundwater’s response through evaporation. 

Although groundwater discharges into the Collacagua river and into the springs are smaller 

in magnitude than evaporation, their monthly mean statistics are expected to increase 
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according to Table 4-3. The monthly maximum discharge of groundwater to the springs is 

projected to have the most significant increase, with a change of 370% under both 

scenarios. The similarity in changes projected by both scenarios suggests that the system is 

not highly sensitive to differences between the climate scenarios above a certain threshold, 

which could be beneficial for the development of management and adaptation plans since 

the system's response is likely to be similar to possible extreme events between climate 

change scenarios.  

Table 4-3: Percentual change projected in the future period (2025 – 2100) in monthly mean 

groundwater (GW) discharge to the springs and the Collacagua river with respect to the 

reference period (1980 – 2014). 

 Change in mean GW discharge to 

the springs (%) 

Change in mean GW discharge to 

the river (%) 

Monthly statistic SSP2 4.5 SSP5 8.5 SSP2 4.5 SSP5 8.5 

Min. 63% 72% 44% 47% 

Median 81% 83% 64% 66% 

Max. 370% 370% 174% 181% 

 

4.3.3. Spatial variations projected in groundwater levels and ToE of the 

climate change signal at observation wells   

Under ensemble SSP2 4.5, a basin-wide mean groundwater level change with increasing 

levels of around 5 – 9 m is projected between December 2025 (near future) and December 

2100 (end of the century), while changes with increasing levels of ~ 3 – 12 m are expected 

under SSP5 8.5 between the same time-periods (Figure 4-6). Nevertheless, future changes 

in groundwater levels will vary spatially with topography and geological features, which 

are represented in the modeling by HRUs (and thus recharge subbasins) and hydraulic 
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properties of the aquifer. Moreover, groundwater levels are expected to drop in both 

scenarios at the northeast of the basin by the end of the century by approximately 1 – 20 m 

in SSP2 4.5, and 5 – 20 m in SSP5 8.5. Even though most of precipitations occur at higher 

elevations in the north of the basin, the water table at the northeast will be prone to decline 

under lower recharge conditions projected from January to May (Figure 4-6a, b, c, g and h)  

Contrarily, groundwater levels at the basin’s lowlands will likely increase, according to the 

heads simulated across all models within the current study. The high permeability of the 

sedimentary materials deposited in the salt flat nucleus area and around the Collacagua 

river (DGA, 2009) will contribute to the increase in aquifer levels under future conditions 

in which recharge is expected to be more evenly distributed throughout the year (Figure 

4-5). Additionally, wells near the river are not likely to respond to climate change as the 

water table is controlled by the river stage. 

 

Figure 4-6: Spatial variations of the projected changes in the water table between December 

2025 and December 2100 across ensemble members of scenarios SSP2 4.5 (panels a to f) and 

SSP5 8.5 (panels g to l). 
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The significance of water table variations in the Salar del Huasco aquifer can be interpreted 

using the multi-model ToEs at local wells (Figure 4-7), in terms of where and when the 

climate change signal departs from natural variability. When accounting for interannual 

fluctuations as natural variability in the basin, as represented by the smoothing (4th-degree 

polynomial) approach (Figure 4-7a). the climate change signal does not emerge. 

Conversely, when accounting for interannual and interdecadal fluctuations within the 

natural variability with the linear approach (Figure 4-7b), the signal of climate change is 

expected to emerge by 2034 in SSP2 4.5 and in 2035 in SSP5 8.5. A positive climate 

change signal (water table rise) was identified under both scenarios in all the wells with 

multi-model ToE.  

 

Figure 4-7: Time of emergence (ToE) of the climate change signal when: a) only interannual 

fluctuations are accounted for the natural variability (4th-degree polynomial smoothing 

approach), and b) interannual and interdecadal fluctuations are accounted for (linear approach) 
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in each monitoring well in the basin. The wells are depicted in the y-axis from south to north, 

with black dotted lines delimitating zones of wells and their location within the basin at the 

left. 

Our analysis demonstrates a spatially consistent relationship between the ToE and the 

specific location of the wells within the basin, regardless of the varying well depths, with a 

sooner emergence for the southern wells (Figure 4-7b). This finding suggests that the ToE 

values observed in proximate wells are likely to exhibit strong similarities. When 

analyzing the correlation between the ToE and the average historical level in each well 

Figure 4-8, no discernible correlation between these two variables is observed. 

Consequently, our research posits that that climate change emergence is not primarily tied 

to the groundwater level itself. Instead, we predict a spatially consistent emergence of 

climate change signals across the entire basin.  
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Figure 4-8: Time of emergence (ToE) of the climate change signal according to the average 

historical levels of the wells when interannual and interdecadal fluctuations are accounted for 

(linear approach) in each monitoring well in the basin. 

Based on these results, groundwater-dependent ecosystems would not be endangered by 

water table fluctuations beyond the natural variability of the system until the end of the 

century if only interannual fluctuations are considered as natural variability. However, if 

interdecadal variabilities are also accounted for, climate change-induced fluctuations are 

expected up to 60 years earlier.  
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4.4. Discussion 

4.4.1. Considerations on the estimation of the ToE of the climate change 

signal in groundwater levels   

The two approaches employed to estimate the ToE of climate change in groundwater levels 

depict the low-frequency (LF) and high-frequency (HF) components of the signal 

differently based on the extent to which natural variability is accounted for in the system. 

The availability and dynamics of water resources in the Altiplano are strongly influenced 

by the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), 

which are large-scale oceanic-atmospheric phenomena (Garreaud, 2009; Garreaud & 

Aceituno, 2001; Garreaud et al., 2003; Rojas-Murillo et al., 2022). ENSO is a shorter-term 

phenomenon with a cycle of about 3-7 years that has been mainly associated to interannual 

variability of summer rainfall (Rojas-Murillo et al., 2022). In contrast, PDO has a longer 

timescale, with a cycle of around 20-30 years and has been associated with decadal and 

interdecadal climatic variability. As crucial components of the natural variability of the 

Altiplano, ENSO and PDO should be accounted for in the HF component of groundwater 

levels. However, the available records in the Salar del Huasco basin are insufficient to 

simulate a reference period that includes several PDO cycles, which may affect the 

accuracy of the linear approach in representing the decadal and interdecadal variability of 

Salar del Huasco climate. By using the linear and smoothing approaches, we aimed to 

address the limitation of the former while contributing to a more comprehensive 

understanding of the ToE of climate change in groundwater levels, particularly when 

different representations of the natural variability are employed.  

The importance of understanding the natural climate variability when employing the ToE 

has also been addressed in previous studies (Chadwick et al., 2021; Collins, 2021; Gaetani 

et al., 2020; John et al., 2023). Hawkins and Sutton (2012) observed that the differences in 
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the magnitude of projected warming and natural variability among climate models within 

an ensemble could lead to uncertainty in ToE estimates. Accordingly, they showed that by 

separating the natural variability of each model it is possible to identify whether the 

variability in projections arises from inter-model differences or from natural climate 

fluctuations, improving thus the accuracy of the ToE estimates. A later research by Lehner 

et a. (2017) accounted for large-scale atmospheric circulation variability within the natural 

variability for estimating the ToE of anthropogenic warming in North America and 

Europe. They found that removing the atmospheric circulation influence resulted in 

delayed or advanced ToE, demonstrating that the influence of natural variability can mask 

the anthropogenic signal when it is not properly isolated. More recently, Gaetani et al. 

(2020) highlighted the challenges in estimating the ToE of climate change in West African 

precipitations due to their complex variability. They found that low-resolution models 

underestimated the ToE as they fail to capture the natural variability of precipitations, 

hampering the detection of the anthropogenic signal from the noise of natural variability.  

In addition, the fact that our findings indicate that the emergence of climate change signals 

is subject to the geographical location of the water table suggests that local properties of 

the aquifer, such as the hydraulic conductivity, could play a role in the ToE. However, this 

might be inherent to the Salar del Huasco aquifer as it has not been subjected to 

anthropogenic pressures, preserving its natural state due to its specific status as a 

RAMSAR protected area. The fact that Ascott et al. (2022) found no direct influence of 

defined hydrogeological properties on the timing of climate change signal emergence in 

their conceptual groundwater models further supports the idea that each ecosystem may 

respond differently based on its unique set of circumstances. Therefore, our results 

underline the importance of considering the unique characteristics and conservation status 

of each ecosystem when developing climate change adaptation strategies.  
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Given these unique circumstances of the Salar del Huasco basin, our research offers 

valuable insights into how groundwater in similar, minimally-disturbed ecosystems may 

respond to climate change. For such regions, the early emergence of climate change signals 

could necessitate specific mitigation measures and proactive management strategies to 

preserve the ecosystem's integrity and resilience in the face of climate change. 

It is important to note that the lack of multi – model ToE results when S/HF ≤ 1 or when 

there is no agreement in either the sign of the change or the year of emergence among 

ensemble members. With the ensembles generated in this study, 100% of the wells with no 

multi-model ToE resulted from model disagreement in both ensembles, and with both 

approaches. Therefore, a larger ensemble would be required to achieve a more robust 

multi-model ToE. Nevertheless, although the ensembles used in this study have only six 

members, these members represent very different projections within a same scenario, and 

so the fact that multi-model ToEs were identified suggests that said ToEs could be 

representative of other intermediate models comprised within range of current ensembles. 

Also, discrepancies between climate projections in an ensemble have shown to have a 

significant impact in the timing of the ToE climatic detection (Chadwick et al., 2019), 

hence, more models per ensemble are recommended for robust results. 

Finally, we utilize the simulated levels yielded from the groundwater model, calibrated 

against actual observations, rather than employing the observations themselves. This 

strategy ensures we mitigate any possible discrepancies stemming from the model's 

imperfect reflection of the observed data. 
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4.4.2. Implications of a positive climate change signal in groundwater 

levels on the key role of wetlands against climate change   

The emergence of a positive climate change signal in groundwater levels at Salar del 

Huasco suggests that the basin’s lagoons and wetlands are not likely to dry out by the end 

of the century, on the contrary, they would experience positive changes that could lead to 

increases in their size, vegetation patches, and water levels. According to de la Fuente et al. 

(2021) the long-term spatiotemporal variability of Salar del Huasco’s wetlands (in terms of 

the size of the wetlands) is mainly regulated by groundwater. Consequently, we estimated 

the changes in the total flooded area (where the water table reaches the surface within the 

salt flat nucleus zone) simulated by the groundwater model compared to the reference 

period to assess the effects of the climate change signal identified at local wells on the size 

of the wetlands (Figure 4-9). According to simulations from ensembles SSP2 4.5 and SSP5 

8.5, the total wet surface area is projected to increase in size, stabilizing around 5.25 – 6.25 

km2 (ensemble mean ± standard deviation) by ~2080, which is also when the earliest ToEs 

were identified in the aquifer. This corresponds to a 10 – 12 % growth in the wet surface 

relative to the reference period, with wetlands and other components such as the salt crust 

potentially contributing to this increase. As a result, it could be posited that wetlands are to 

experience structural changes by the end of the century. 
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Figure 4-9: Projected change of the total flooded area within the salt flat nucleus zone. The 

blue dashed line represents the mean flooded area in the historical period. Flooded areas 

represent wetlands and lagoons. 

 

Under warmer conditions structural changes, e.g., size increase or shrinkage, might alter 

the wetland’s functioning, which could have far-reaching consequences that will affect 

ecosystems and the wetland’s role in carbon and nitrogen cycles (Chen et al., 2021; House 

et al., 2016; Ma et al., 2022; Ren et al., 2022; Salimi et al., 2021). it has been found that in 

wetlands with high water tables, warmer conditions will enhance methane emissions (Chen 

et al., 2021; Huang et al., 2021). and can also lead to waterlogged soils, which could 
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decrease the amount of oxygen available for microbial decomposition, affecting the 

wetland’s function as carbon sink (Salimi et al., 2021). However, it is still uncertain 

whether the future changes in wetlands will lead to positive or negative feedback to climate 

change. Therefore, future studies should take into account the spatiotemporal variability of 

the water levels into the modeling of the wetlands’ dynamics to better understand of the 

implications of the increasing water levels in Salar del Huasco wetlands. 

4.5. Conclusions 

The Salar del Huasco basin is expected to undergo changes in precipitation’s magnitude 

and seasonality throughout the year, and warming temperatures due to climate change. 

These changes are anticipated to affect the timing of groundwater’s recharge and 

discharges, which are expected to occur three months earlier throughout a year. We found 

that during winter (May – September) recharge could increase by up to three times 

compared to the reference period (1980 – 2014). While recharge is likely to decrease in 

summer (November – March), groundwater evaporation will increase between 15% in 

winter, and 75% in summer. Additionally, the steadier trends observed of projected 

groundwater evaporation in comparison to those of recharge suggest that even though 

recharge remains uncertain, the aquifer's response through evaporation will likely be more 

consistent.  

The water table is not expected to suffer major negative changes in areas where 

groundwater discharges to the surface. On the contrary, our results suggest that the water 

table could slightly rise in these areas. We found these changes to be within the 

background noise of natural variability until nearly 2040, year after which ToE of the 

climate change signal are identified. We also demonstrated that different ToE result when 

interannual and interdecadal are accounted in the natural variability. When only 

interannual variability is accounted for natural variability, the climate change signal does 
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not emerge, whereas it emerges nearly 60 years before the end of the century when 

interdecadal variability is also considered.  

Overall, groundwater-dependent ecosystems in Salar del Huasco would not undergo 

significant change at least until ~2040. However, although higher groundwater levels may 

alleviate concerns about the drying out of wetlands, potential structural changes in the 

wetlands could have negative consequences on the environment, such as a positive climate 

change feedback. Further research is required to assess the implication of wetlands’ 

structural changes induced by water levels on the environment.  

Finally, as a protected area, the Salar del Huasco aquifer remains in its natural state. 

Therefore, our findings provide valuable insights into how groundwater in similar 

ecosystems may respond to climate change and guide the development of adaptation 

strategies. 
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5. CONCLUSIONS 

The focal point of this dissertation was to address the overarching question: How will 

climate change affect groundwater dynamics in arid regions? To this end, the Salar del 

Huasco basin, in the arid Chilean Altiplano, was used as a study case. Derived from the 

central question, three specific research questions were developed and addressed within the 

preceding chapters, each focusing on a distinct aspect of groundwater dynamics and their 

interaction with climate change.  

5.1. Distilled insights and main conclusions per research question   

Chapter 2 addressed the first derived research question: How will climate change affect 

groundwater dynamics in arid regions? More specifically, what future conditions will 

contribute to significant variations in groundwater discharges and water levels in 

natural basins? Utilizing synthetic hybrid climate scenarios, we studied the potential 

impacts on the Salar del Huasco aquifer and observed its sensitivity and responses to 

varied extreme conditions. We discovered the aquifer adjusts to external conditions by 

modulating its water discharges. Groundwater evaporation emerged as the primary 

discharge mechanism, effectively balancing the recharge inputs. Notably, we observed that 

although lower projected recharge rates caused a reduction in groundwater levels, the 

water table around the wetlands remained stable. Consequently, the discharge to the spring 

became the most consistent flow from the groundwater system, demonstrating its stability. 

These results support H1, as they confirm the equilibrium between recharge and discharge 

fluxes. 

Chapter 3 engaged with the second research question: Could satellite products based on 

energy balance models, e.g., EEFlux, contribute to improve local-scale models? How 

can they better support numerical groundwater modeling? Validation of the EEFlux 
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method demonstrated its ability to represent both the magnitude and seasonal variations of 

evaporation over the Altiplano. The monthly EEFlux-ET estimates over the Salar del 

Huasco ranged between 0.1 and 2.1 mm/d in winter and summer, respectively, which was 

consistent with previous studies in the basin. We found that simulations performed with 

parameters calibrated with EEFlux outperformed the original simulation by about 2% in 

the case of Normalized Root Square Error (NRMSE). Moreover, the use of EEFlux 

contributed to more accurate representations of spatiotemporal water table dynamics by 

facilitating the calibration of specific yield parameters in regions where evaporation 

occurs. These findings underscore the utility of satellite imagery as a tool for calibrating 

groundwater models, validating thus H2.  

Chapter 4 tackled the third research question: What role does groundwater play in 

mitigating the effects of climate change on dependent ecosystems in arid regions? 

Particularly, are the wetlands of Salar del Huasco naturally resilient to climate change 

due to this groundwater influence, and can this resilience persist through the century? 

Unlike Chapter 1, where we used hybrid scenarios to discern the response of the 

groundwater system, we addressed this question by focusing on the climate change 

projections outlined in the CMIP6 scenarios (SSP2 4.5 and SSP5 8.5). Our analysis 

indicated that the expected shifts in precipitation patterns, combined with warming 

temperatures, will likely alter the timing of groundwater recharge and discharges, 

potentially advancing these events by approximately three months. This shift could result 

in up to a threefold increase in recharge during the winter months. Conversely, in the 

summer, while recharge may decrease, we predict that groundwater evaporation will 

increase, varying between approximately 15 – 75%. Despite these substantial changes, the 

water table in the vicinity of the wetlands is expected to exhibit considerable resilience, 

remaining relatively stable or possibly rising slightly. This suggests that these wetlands 

possess a natural capacity to mitigate some effects of climate change given by 
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groundwater. This resilience, in turn, supports the first part of H3, which posits that 

groundwater plays a mitigating role for dependent ecosystems in arid regions. 

We further examined the time of emergence (ToE) of the climate change signal, taking into 

account both interannual and interdecadal variabilities as part of the natural variability of 

the Salar del Huasco. Interestingly, we found that the second part of H3, which predicts a 

decline of the groundwater’s buffering capacity over the course of the century, could be 

either rejected or confirmed depending on the interpretation of natural variability. If only 

interannual variability is considered, the effects of climate change would not emerge 

within this century, effectively rejecting H3. However, if interdecadal variability is also 

taken into account, the climate change effects would emerge before 2040, thus confirming 

H3. Overall, we found that groundwater-dependent ecosystems in the Salar del Huasco are 

expected to be resilient to climate change at least until nearly 2040. 

5.2. Concluding remarks and future perspectives  

To summarize, this dissertation has offered an in-depth exploration into the complex 

relationship between groundwater dynamics and climate change in arid regions, with a 

focus on the Salar del Huasco basin. Our findings demonstrate the complex balancing act 

of groundwater systems in response to environmental fluctuations and highlighted the 

potential of satellite-based tools, such as EEFlux, in supporting local-scale models in 

remote areas. More importantly, the inherent resilience of wetland ecosystems to climate-

induced changes, due to their connection with groundwater, underlines the significance of 

protecting these groundwater-dependent ecosystems. Through our findings, we hope to 

guide further research and inform policies aimed at preserving these vital ecosystems and 

ensuring sustainable groundwater management in the face of climate change.  
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Nevertheless, our research also highlights that the timing of climate change's impacts on 

these systems can vary significantly, subject to the interpretation of natural variability. As 

the effects of climate change continue to escalate, such estimates become crucial 

information for anticipating its ecological impacts, for which better understanding of the 

natural climate variability is imperative.  

Additionally, the Salar del Huasco basin represents an exceptional study area as it has been 

largely free from direct human intervention. Its relative isolation and its status as a 

protected area has allowed a unique opportunity to examine the influence of climate 

change on groundwater dynamics without the confounding factors of anthropogenic 

pressures often encountered in other regions. This unique setting thereby strengthening the 

value of our results for understanding the pristine processes in play. However, recognizing 

that many similar ecosystems globally do face human-induced pressures, it would be 

beneficial for future studies to explore these influences alongside climate change in other 

settings. Hence, future studies, while leveraging the findings from the Salar del Huasco, 

should also consider the interplay between anthropogenic pressures and climate change in 

regions subject to activities like mining or agricultural expansion, to gain a more 

comprehensive understanding of how these factors shape groundwater dynamics. Such 

insights would be crucial to formulate sustainable management strategies that consider 

both the impending threat of climate change and human-induced challenges in various 

regions.  



136 

 

 

REFERENCES  

Acosta, O, & Custodio, E. (2008). Impactos ambientales de las extracciones de agua 

subterránea en el Salar del Huasco (norte de Chile). Retrieved from 

http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/6525/HUM2-

0035.pdf?sequence=1 

Acosta, Orlando. (2004). Impactos de las extracciones de agua subterránea en el Salar del 

Huasco (norte de Chile). Universidad Politéctica de Catalunya. 

Adams, K. H., Reager, J. T., Rosen, P., Wiese, D. N., Farr, T. G., Rao, S., … Rodell, M. 

(2022). Remote Sensing of Groundwater: Current Capabilities and Future Directions. 

Water Resources Research, 58(10), e2022WR032219. 

https://doi.org/https://doi.org/10.1029/2022WR032219 

Aedo, S., Chadwick, C., González-Leiva, F., & Gironás, J. (2021). climQMBC a new 

package to Bias Correct climatic variables while preserving raw GCM changes in the 

mean and standarsd deviation for R, Python and MATLAB [Poster presentation]. 

AGU Fall Meeting December 13-17. New Orleans, USA. 

Aghlmand, R., & Abbasi, A. (2019). Application of MODFLOW with Boundary 

Conditions Analyses Based on Limited Available Observations: A Case Study of 

Birjand Plain in East Iran. Water 2019, Vol. 11, Page 1904, 11(9), 1904. 

https://doi.org/10.3390/W11091904 

Alam, S., Gebremichael, M., Li, R., Dozier, J., & Lettenmaier, D. P. (2019). Climate 

change impacts on groundwater storage in the Central Valley, California. Climatic 

Change, 157(3–4), 387–406. https://doi.org/10.1007/s10584-019-02585-5 

Amanambu, A. C., Obarein, O. A., Mossa, J., Li, L., Ayeni, S. S., Balogun, O., … Ochege, 

F. U. (2020). Groundwater system and climate change: Present status and future 

considerations. https://doi.org/10.1016/j.jhydrol.2020.125163 



137 

 

 

Atawneh, D. Al, Cartwright, N., & Bertone, E. (2021). Climate change and its impact on 

the projected values of groundwater recharge: A review. Journal of Hydrology, 601, 

126602. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126602 

Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. 

J., … Land, C. (2013). Characterising performance of environmental models q. 

Environmental Modelling and Software, 40, 1–20. 

https://doi.org/10.1016/j.envsoft.2012.09.011 

Bennett, T. H., & Peters, J. C. (2004). Continuous soil moisture accounting in the 

Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). Joint 

Conference on Water Resource Engineering and Water Resources Planning and 

Management 2000: Building Partnerships, 104. 

https://doi.org/10.1061/40517(2000)149 

Bloomfield, J. P., Marchant, B. P., & Mckenzie, A. A. (2019). Changes in groundwater 

drought associated with anthropogenic warming. Hydrol. Earth Syst. Sci, 23, 1393–

1408. https://doi.org/10.5194/hess-23-1393-2019 

Boronina, A., & Ramillien, G. (2008). Application of AVHRR imagery and GRACE 

measurements for calculation of actual evapotranspiration over the Quaternary aquifer 

(Lake Chad basin) and validation of groundwater models. Journal of Hydrology, 

348(1–2), 98–109. https://doi.org/10.1016/J.JHYDROL.2007.09.061 

Camici, S., Brocca, L., Melone, F., & Moramarco, T. (2014). Impact of Climate Change on 

Flood Frequency Using Different Climate Models and Downscaling Approaches. 

Journal of Hydrologic Engineering, 19(8), 04014002. 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0000959 

Carroll, R. W. H., Pohll, G. M., Morton, C. G., & Huntington, J. L. (2015). Calibrating a 

Basin-Scale Groundwater Model to Remotely Sensed Estimates of Groundwater 

Evapotranspiration. JAWRA Journal of the American Water Resources Association, 



138 

 

 

51(4), 1114–1127. https://doi.org/10.1111/JAWR.12285 

Chen, H., Xu, X., Fang, C., Li, B., & Nie, M. (2021). Differences in the temperature 

dependence of wetland CO2 and CH4 emissions vary with water table depth. Nature 

Climate Change 2021 11:9, 11(9), 766–771. https://doi.org/10.1038/s41558-021-

01108-4 

Collahuasi - GP Consultores. (2008). Información sobre evaporación provista por 

Compañía Minera Doña Inés de Collahuasi. Informes inéditos. 

CONAF. (2005). Ficha informativa de los Humedales de Ramsar (FIR). 

Condon, L. E., Atchley, A. L., & Maxwell, R. M. (2020). Evapotranspiration depletes 

groundwater under warming over the contiguous United States. Nature 

Communications 2020 11:1, 11(1), 1–8. https://doi.org/10.1038/s41467-020-14688-0 

Condon, L. E., Kollet, S., Bierkens, M. F. P., Fogg, G. E., Maxwell, R. M., Hill, M. C., … 

Abesser, C. (2021). Global Groundwater Modeling and Monitoring: Opportunities 

and Challenges. Water Resources Research, 57(12), e2020WR029500. 

https://doi.org/https://doi.org/10.1029/2020WR029500 

Corenthal, L. G., Boutt, D. F., Hynek, S. A., & Munk, L. A. (2016). Regional groundwater 

flow and accumulation of a massive evaporite deposit at the margin of the Chilean 

Altiplano. Geophysical Research Letters, 43(15), 8017–8025. 

https://doi.org/10.1002/2016GL070076 

Crosbie, R. S., Dawes, W. R., Charles, S. P., Mpelasoka, F. S., Aryal, S., Barron, O., & 

Summerell, G. K. (2011). Differences in future recharge estimates due to GCMs, 

downscaling methods and hydrological models. Geophysical Research Letters, 

38(11), n/a-n/a. https://doi.org/10.1029/2011GL047657 

Crosbie, R. S., Scanlon, B. R., Mpelasoka, F. S., Reedy, R. C., Gates, J. B., & Zhang, L. 

(2013). Potential climate change effects on groundwater recharge in the High Plains 

Aquifer, USA. Water Resources Research, 49(7), 3936–3951. 



139 

 

 

https://doi.org/10.1002/wrcr.20292 

Cuthbert, M., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., & 

Lehner, B. (2019). Global patterns and dynamics of climate–groundwater interactions. 

Nature Climate Change, 9(2), 137–141. https://doi.org/10.1038/s41558-018-0386-4 

Cuthbert, M., Taylor, R., Favreau, G., Todd, M., Shamsudduha, M., Villholth, K., … 

Kukuric, N. (2019). Observed controls on resilience of groundwater to climate 

variability in sub-Saharan Africa. Nature, 572(7768), 230–234. 

https://doi.org/10.1038/s41586-019-1441-7 

de la Fuente, A., & Meruane, C. (2016). Investigación en el Salar del Huasco: 

Entendiendo los procesos fundamentales que mantienen a los Salares y que explican 

la vida en torno a estos ecosistemas altiplánicos. 

de la Fuente, A., & Meruane, C. (2017). Spectral model for long-term computation of 

thermodynamics and potential evaporation in shallow wetlands. Water Resources 

Research, 53(9), 7696–7715. https://doi.org/10.1002/2017WR020515 

de la Fuente, A., Meruane, C., & Suárez, F. (2021). Long-term spatiotemporal variability 

in high Andean wetlands in northern Chile. 756, 143830. Retrieved from 

https://linkinghub.elsevier.com/retrieve/pii/S0048969720373617 

de Silva, C. S., & Rushton, K. R. (2007). Groundwater recharge estimation using improved 

soil moisture balance methodology for a tropical climate with distinct dry seasons. 

Hydrological Sciences Journal, 52(5), 1051–1067. 

https://doi.org/10.1623/hysj.52.5.1051 

DGA. (2009). Sistema Piloto I Región: Salar del Huasco. In Levantamieno hidrogeológico 

para el desarrollo de nuevas fuentes de agua en áreas prioritarias de la zona norte de 

Chile, Regiones XV, I, II y III. 

DGA. (2017). Actualización del Balance Hídrico Nacional, SIT No 417. Santiago, Chile. 



140 

 

 

Erler, A. R., Frey, S. K., Khader, O., d’Orgeville, M., Park, Y. J., Hwang, H. T., … 

Sudicky, E. A. (2019). Evaluating Climate Change Impacts on Soil Moisture and 

Groundwater Resources Within a Lake-Affected Region. Water Resources Research, 

55(10), 8142–8163. https://doi.org/10.1029/2018WR023822 

Feldman, A. D. (2000). Hydrologic modeling system HEC-HMS: technical reference 

manual. US Army Corps of Engineers, Hydrologic Engineering Center. 

Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to 

impacts studies: recent advances in downscaling techniques for hydrological 

modelling. International Journal of Climatology, 27(12), 1547–1578. 

https://doi.org/10.1002/joc.1556 

Froend, R. H., Horwitz, P., & Sommer, B. (2016). Groundwater Dependent Wetlands BT  - 

The Wetland Book: II: Distribution, Description and Conservation (C. M. Finlayson, 

G. R. Milton, R. C. Prentice, & N. C. Davidson, Eds.). https://doi.org/10.1007/978-

94-007-6173-5_246-1 

Fu, J., Liu, J., Wang, X., Zhang, M., Chen, W., & Chen, B. (2020). Ecological risk 

assessment of wetland vegetation under projected climate scenarios in the Sanjiang 

Plain, China. Journal of Environmental Management, 273, 111108. 

https://doi.org/10.1016/j.jenvman.2020.111108 

Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Prentice, I. C., Friedlingstein, 

P., … Zhao, Y. (2018). Latitudinal limits to the predicted increase of the peatland 

carbon sink with warming. Nature Climate Change 2018 8:10, 8(10), 907–913. 

https://doi.org/10.1038/S41558-018-0271-1 

Gardeweg, M., & Sellés, D. (2015, October). Estratigrafía y evolución estructural del área 

Collacagua-Rinconada, alta cordillera de Iquique, 20 00’-20 30’S–Región de 

Tarapacá. XIV Congreso Geológico Chileno. 

Garreaud, R. D. (2009). The Andes climate and weather. Advances in Geosciences, 22, 3–



141 

 

 

11. https://doi.org/10.5194/adgeo-22-3-2009 

Garreaud, R., Vuille, M., & Clement, A. C. (2003). The climate of the Altiplano: observed 

current conditions and mechanisms of past changes. Palaeogeography, 

Palaeoclimatology, Palaeoecology, 194(1–3), 5–22. https://doi.org/10.1016/S0031-

0182(03)00269-4 

Garreaud, René D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., & 

Veloso‐Aguila, D. (2020). The Central Chile Mega Drought (2010–2018): A climate 

dynamics perspective. International Journal of Climatology, 40(1), 421–439. 

https://doi.org/10.1002/joc.6219 

Garreaud, René D., Vuille, M., Compagnucci, R., & Marengo, J. (2009). Present-day 

South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 

281(3–4), 180–195. https://doi.org/10.1016/j.palaeo.2007.10.032 

Goderniaux, P., Brouyère, S., Wildemeersch, S., Therrien, R., & Dassargues, A. (2015). 

Uncertainty of climate change impact on groundwater reserves - Application to a 

chalk aquifer. Journal of Hydrology, 528, 108–121. 

https://doi.org/10.1016/j.jhydrol.2015.06.018 

Green, T., Taniguchi, M., Kooi, H., Gurdak, J., … D. A.-J. of, & 2011, U. (2011). Beneath 

the surface of global change: Impacts of climate change on groundwater. Elsevier. 

Retrieved from 

https://www.sciencedirect.com/science/article/pii/S0022169411002988 

Hamlet, A., Salathé, E., & Carrasco, P. (2010). Statistical downscaling techniques for 

global climate model simulations of temperature and precipitation with application to 

water resources planning studies. Retrieved from 

https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/38428/2010-

5.pdf?sequence=1 

Harbaugh, A., Banta, E., Hill, M., & McDonald, M. (2000). MODFLOW-2000, The US 



142 

 

 

Geological Survey Modular Ground-Water Model-User Guide to Modularization 

Concepts and the Ground-Water Flow Process. In Open-file Report 00-92. 

wipp.energy.gov. Retrieved from 

http://wipp.energy.gov/library/CRA/2009_CRA/references/Others/Harbaugh_Banta_

Hill_and_McDonald_2000_MODFLOW_2000_Open_File_Report_00_92.pdf 

Hartmann, A., Gleeson, T., Wada, Y., & Wagener, T. (2017). Enhanced groundwater 

recharge rates and altered recharge sensitivity to climate variability through 

subsurface heterogeneity. Proceedings of the National Academy of Sciences of the 

United States of America, 114(11), 2842–2847. 

https://doi.org/10.1073/pnas.1614941114 

Hashemi, H., Uvo, C. B., & Berndtsson, R. (2015). Coupled modeling approach to assess 

climate change impacts on groundwater recharge and adaptation in arid areas. Hydrol. 

Earth Syst. Sci, 19, 4165–4181. https://doi.org/10.5194/hess-19-4165-2015 

Hausner, M. B., Wilson, K. P., Gaines, D. B., Suárez, F., Scoppettone, G. G., & Tyler, S. 

W. (2014). Life in a fishbowl: Prospects for the endangered Devils Hole pupfish ( 

Cyprinodon diabolis ) in a changing climate. Water Resources Research, 50(8), 

7020–7034. https://doi.org/10.1002/2014WR015511 

Hausner, M. B., Wilson, K. P., Gaines, D. B., Suárez, F., Scoppettone, G. G., & Tyler, S. 

W. (2016). Projecting the effects of climate change and water management on Devils 

Hole pupfish (Cyprinodon diabolis) survival. Ecohydrology, 9(4), 560–573. 

https://doi.org/10.1002/eco.1656 

Hernández‐López, M. F., Gironás, J., Braud, I., Suárez, F., & Muñoz, J. F. (2014). 

Assessment of evaporation and water fluxes in a column of dry saline soil subject to 

different water table levels. Hydrological Processes, 28(10), 3655–3669. 

Herrera, C., Custodio, E., Chong, G., Lambán, L. J., Riquelme, R., Wilke, H., … 

Lictevout, E. (2016). Groundwater flow in a closed basin with a saline shallow lake in 



143 

 

 

a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Science of 

the Total Environment, 541, 303–318. https://doi.org/10.1016/j.scitotenv.2015.09.060 

Herrera, C., Gamboa, C., Custodio, E., Jordan, T., Godfrey, L., Jódar, J., … Sáez, A. 

(2018). Groundwater origin and recharge in the hyperarid Cordillera de la Costa, 

Atacama Desert, northern Chile. Science of the Total Environment, 624, 114–132. 

https://doi.org/10.1016/j.scitotenv.2017.12.134 

Herrera, C., Godfrey, L., Urrutia, J., Custodio, E., Jordan, T., Jódar, J., … Barrenechea, F. 

(2021). Recharge and residence times of groundwater in hyper arid areas: The 

confined aquifer of Calama, Loa River Basin, Atacama Desert, Chile. Science of the 

Total Environment, 752, 141847. https://doi.org/10.1016/j.scitotenv.2020.141847 

Holman, I. P. (2006). Climate change impacts on groundwater recharge-uncertainty, 

shortcomings, and the way forward? Hydrogeology Journal, 14(5), 637–647. 

https://doi.org/10.1007/s10040-005-0467-0 

House, A. R., Thompson, J. R., & Acreman, M. C. (2016). Projecting impacts of climate 

change on hydrological conditions and biotic responses in a chalk valley riparian 

wetland. Journal of Hydrology, 534, 178–192. 

https://doi.org/10.1016/J.JHYDROL.2016.01.004 

Huang, J., Yu, H., Guan, X., Wang, G., Change, R. G.-N. C., & 2016, U. (2015). 

Accelerated dryland expansion under climate change. Nature. Retrieved from 

https://www.nature.com/articles/nclimate2837 

Huang, Y., Ciais, P., Luo, Y., Zhu, D., Wang, Y., Qiu, C., … Qu, L. (2021). Tradeoff of 

CO2 and CH4 emissions from global peatlands under water-table drawdown. Nature 

Climate Change 2021 11:7, 11(7), 618–622. https://doi.org/10.1038/S41558-021-

01059-W 

Hydrologic Engineering Center (US). (2001). The Hydrologic Modeling System (HEC-

HMS). 



144 

 

 

IPCC. (2014). IPCC, 2014: climate change 2014:synthesis report. Contribution of Working 

Groups I. II and III to the Fifth Assessment Report of intergovernmental panel on 

Climate Change. In Team, Core Writing Pachauri, Rajendra K. Meyer, L. A. Geneva, 

Switzerland. 

Johnson, E., Yáñez, J., Ortiz, C., & Muñoz, J. (2010). Evaporation from shallow 

groundwater in closed basins in the Chilean Altiplano. Hydrological Sciences 

Journal, 55(4), 624–635. https://doi.org/10.1080/02626661003780458 

Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying 

groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 

338(3–4), 237–250. https://doi.org/10.1016/j.jhydrol.2007.02.036 

Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kværner, J., … 

Pulido-Velazquez, M. (2014). Climate change impacts on groundwater and dependent 

ecosystems. Journal of Hydrology, 518(PB), 250–266. 

https://doi.org/10.1016/J.JHYDROL.2013.06.037 

Koutroulis, A. G. (2019). Dryland changes under different levels of global warming. 

Science of the Total Environment, 655, 482–511. 

https://doi.org/10.1016/j.scitotenv.2018.11.215 

Kovalevskii, V. S. (2007). Effect of Climate Changes on Groundwater. Water Resources, 

34(2), 140–152. https://doi.org/10.1134/S0097807807020042 

Li, H. T., Brunner, P., Kinzelbach, W., Li, W. P., & Dong, X. G. (2009). Calibration of a 

groundwater model using pattern information from remote sensing data. Journal of 

Hydrology, 377(1–2), 120–130. https://doi.org/10.1016/J.JHYDROL.2009.08.012 

Lobos-Roco, F., Hartogensis, O., Suárez, F., Huerta-Viso, A., Benedict, I., de la Fuente, 

A., & Vilà-Guerau de Arellano, J. (2022). Multi-scale temporal analysis of 

evaporation on a saline lake in the Atacama Desert. Hydrology and Earth System 

Sciences, 26(13), 3709–3729. https://doi.org/10.5194/HESS-26-3709-2022 



145 

 

 

Lobos-Roco, F., Hartogensis, O., Vilà-Guerau de Arellano, J., de la Fuente, A., Muñoz, R., 

Rutllant, J., & Suárez, F. (2021). Local evaporation controlled by regional 

atmospheric circulation in the Altiplano of the Atacama Desert. Atmospheric 

Chemistry and Physics Discussions, 1–38. https://doi.org/10.5194/acp-2020-1300 

Ma, L., Zhu, G., Chen, B., Zhang, K., Niu, S., Wang, J., … Zuo, H. (2022). A globally 

robust relationship between water table decline, subsidence rate, and carbon release 

from peatlands. Communications Earth & Environment 2022 3:1, 3(1), 1–14. 

https://doi.org/10.1038/s43247-022-00590-8 

Mao, D., Tian, Y., Wang, Z., Jia, M., Du, J., & Song, C. (2020). Wetland changes in the 

Amur River Basin: Differing trends and proximate causes on the Chinese and Russian 

sides. Journal of Environmental Management, 111670. 

https://doi.org/10.1016/j.jenvman.2020.111670 

Marazuela, M. A. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A., & Palma, T. (2019). 

The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: 

The damping capacity of salt flats. 654, 1118–1131. Retrieved from 

https://www.sciencedirect.com/science/article/pii/S0048969718345522 

Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., & García-Gil, A. (2020). Towards more 

sustainable brine extraction in salt flats: Learning from the Salar de Atacama. Science 

of the Total Environment, 703, 135605. 

https://doi.org/10.1016/j.scitotenv.2019.135605 

Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A., & Palma, T. (2019). 

Hydrodynamics of salt flat basins: The Salar de Atacama example. Science of The 

Total Environment, 651, 668–683. 

https://doi.org/10.1016/J.SCITOTENV.2018.09.190 

Marchionni, V., Daly, E., Manoli, G., Tapper, N. J., Walker, J. P., & Fatichi, S. (2020). 

Groundwater Buffers Drought Effects and Climate Variability in Urban Reserves. 



146 

 

 

Water Resources Research, 56(5), e2019WR026192. 

https://doi.org/https://doi.org/10.1029/2019WR026192 

McDonough, L. K., Santos, I. R., Andersen, M. S., O’Carroll, D. M., Rutlidge, H., 

Meredith, K., … Baker, A. (2020). Changes in global groundwater organic carbon 

driven by climate change and urbanization. Nature Communications 2020 11:1, 11(1), 

1–10. https://doi.org/10.1038/s41467-020-14946-1 

McKenna, O. P., & Sala, O. E. (2018). Groundwater recharge in desert playas: current 

rates and future effects of climate change. Environmental Research Letters, 13(1), 

014025. https://doi.org/10.1088/1748-9326/aa9eb6 

Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., … Brix, 

H. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583–

597. https://doi.org/10.1007/s10980-012-9758-8 

Moomaw, W. R., Chmura, G. L., Davies, G. T., Finlayson, C. M., Middleton, B. A., 

Natali, S. M., … Sutton-Grier, A. E. (2018). Wetlands In a Changing Climate: 

Science, Policy and Management. Wetlands 2018 38:2, 38(2), 183–205. 

https://doi.org/10.1007/S13157-018-1023-8 

Mosre, J., & Suárez, F. (2021). Actual Evapotranspiration Estimates in Arid Cold Regions 

Using Machine Learning Algorithms with In Situ and Remote Sensing Data. Water, 

13(6), 870. https://doi.org/10.3390/w13060870 

Mu, S., Li, B., Yao, J., Yang, G., Wan, R., & Xu, X. (2020). Monitoring the spatio-

temporal dynamics of the wetland vegetation in Poyang Lake by Landsat and MODIS 

observations. Science of the Total Environment, 725, 138096. 

https://doi.org/10.1016/j.scitotenv.2020.138096 

Nkhonjera, G. K., & Dinka, M. O. (2017). Significance of direct and indirect impacts of 

climate change on groundwater resources in the Olifants River basin: A review. 

https://doi.org/10.1016/j.gloplacha.2017.09.011 



147 

 

 

Paquis, P., Hengst, M. B., Florez, J. Z., Tapia, J., Molina, V., Pérez, V., & Pardo-Esté, C. 

(2023). Short-term characterisation of climatic-environmental variables and microbial 

community diversity in a high-altitude Andean wetland (Salar de Huasco, Chile). 

Science of The Total Environment, 859, 160291. 

https://doi.org/10.1016/J.SCITOTENV.2022.160291 

Peng, K., Jiang, W., Deng, Y., Liu, Y., Wu, Z., & Chen, Z. (2020). Simulating wetland 

changes under different scenarios based on integrating the random forest and CLUE-S 

models: A case study of Wuhan Urban Agglomeration. Ecological Indicators, 117, 

106671. https://doi.org/10.1016/j.ecolind.2020.106671 

Persaud, E., Levison, J., MacRitchie, S., Berg, S. J., Erler, A. R., Parker, B., & Sudicky, E. 

(2020). Integrated modelling to assess climate change impacts on groundwater and 

surface water in the Great Lakes Basin using diverse climate forcing. Journal of 

Hydrology, 584, 124682. Retrieved from 

https://linkinghub.elsevier.com/retrieve/pii/S0022169420301426 

Post, V. E. A., Galvis, S. C., Sinclair, P. J., & Werner, A. D. (2019). Evaluation of 

management scenarios for potable water supply using script-based numerical 

groundwater models of a freshwater lens. Journal of Hydrology, 571, 843–855. 

https://doi.org/10.1016/J.JHYDROL.2019.02.024 

Prăvălie, R. (2016). Invited review Drylands extent and environmental issues. A global 

approach. https://doi.org/10.1016/j.earscirev.2016.08.003 

Prăvălie, R., Bandoc, G., Patriche, C., & Sternberg, T. (2019). Recent changes in global 

drylands: Evidences from two major aridity databases. Catena, 178, 209–231. 

https://doi.org/10.1016/j.catena.2019.03.016 

Rabemaharitra, T. P., Zou, Y., Yi, Z., He, Y., & Khan, U. (2022). Optimized Pilot Point 

Emplacement Based Groundwater Flow Calibration Method for Heterogeneous 

Small-Scale Area. Applied Sciences 2022, Vol. 12, Page 4648, 12(9), 4648. 



148 

 

 

https://doi.org/10.3390/APP12094648 

Reclamation. (2014). Downscaled CMIP3 and CMIP5 Hydrology Projections Release of 

Hydrology Projections, Comparison with Preceding Information, and Summary of 

User Needs Bureau of Reclamation Climate Analytics Group Climate Central. 

Retrieved from http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/. 

Risacher, F., Alonso, H., & Salazar, C. (1999). Geoquímica de aguas en cuencas cerradas: 

I, II y III regiones-Chile. 

Rivera, J. A., Arnould, G., & Leal, R. (2020). Evaluation of the ability of CMIP6 models to 

simulate precipitation over Southwestern South America: Climatic features and long-

term trends (1901-2014). https://doi.org/10.1016/j.atmosres.2020.104953 

Rossman, N. R., Zlotnik, V. A., & Rowe, C. M. (2018). Using cumulative potential 

recharge for selection of GCM projections to force regional groundwater models: A 

Nebraska Sand Hills example. Journal of Hydrology, 561, 1105–1114. 

https://doi.org/10.1016/j.jhydrol.2017.09.019 

Sáez, A., Godfrey, L. V., Herrera, C., Chong, G., & Pueyo, J. J. (2016). Timing of wet 

episodes in Atacama Desert over the last 15 ka. The Groundwater Discharge Deposits 

(GWD) from Domeyko Range at 25°S. Quaternary Science Reviews, 145, 82–93. 

https://doi.org/10.1016/j.quascirev.2016.05.036 

Salimi, S., Almuktar, S. A. A. A. N., & Scholz, M. (2021). Impact of climate change on 

wetland ecosystems: A critical review of experimental wetlands. Journal of 

Environmental Management, 286, 112160. 

https://doi.org/10.1016/J.JENVMAN.2021.112160 

Samuel, A., Blin, N., Muñoz, J. F., & Suárez, F. (2020). An unsaturated/saturated coupled 

hydrogeological model for the llamara salt flat, Chile, to investigate prosopis 

tamarugo survival. Geosciences (Switzerland), 10(1). 

https://doi.org/10.3390/geosciences10010001 



149 

 

 

Sandi, S. G., Rodriguez, J. F., Saintilan, N., Wen, L., Kuczera, G., Riccardi, G., & Saco, P. 

M. (2020). Resilience to drought of dryland wetlands threatened by climate change. 

Scientific Reports, 10(1), 13232. https://doi.org/10.1038/s41598-020-70087-x 

Scanlon, B. R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., … 

Zheng, C. (2023). Global water resources and the role of groundwater in a resilient 

water future. Nature Reviews Earth & Environment, 4(2), 87–101. 

https://doi.org/10.1038/s43017-022-00378-6 

Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate technique for 

quantifying groundwater recharge. Hydrogeology Journal, 10, 18–39. 

https://doi.org/10.1007/s10040-0010176-2 

Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & 

Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid 

regions. Hydrological Processes, 20(March), 3335–3370. https://doi.org/10.1002/hyp 

Scheihing, K., & Tröger, U. (2018). Local climate change induced by groundwater 

overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern 

Chile. Hydrogeology Journal, 26(3), 705–719. https://doi.org/10.1007/s10040-017-

1647-4 

Scheihing, K. W., Moya, C. E., & Tröger, U. (2017). Insights into Andean slope 

hydrology: reservoir characteristics of the thermal Pica spring system, Pampa del 

Tamarugal, northern Chile. Hydrogeology Journal, 25(6), 1833–1852. 

https://doi.org/10.1007/s10040-017-1533-0 

Scibek, J., Allen, D., Cannon, A., & Whitfield, P. (2007). Groundwater–surface water 

interaction under scenarios of climate change using a high-resolution transient 

groundwater model. Journal of Hydrology. Retrieved from 

https://www.sciencedirect.com/science/article/pii/S0022169406004069 

Scibek, J., & Allen, D. M. (2006). Modeled impacts of predicted climate change on 



150 

 

 

recharge and groundwater levels. Water Resources Research, 42(11). 

https://doi.org/10.1029/2005WR004742 

SEA. (2019). “Desarrollo de Infraestructura y Mejoramiento de Capacidad Productiva de 

Collahuasi” ADENDA. Elaborado por: SGA. 

SEA, S. (2012). Guía para el uso de modelos de aguas subterráneas en el SEIA. 

Shanafield, M., Cook, P. G., Gutiérrez-Jurado, H. A., Faux, R., Cleverly, J., & Eamus, D. 

(2015). Field comparison of methods for estimating groundwater discharge by 

evaporation and evapotranspiration in an arid-zone playa. Journal of Hydrology, 527, 

1073–1083. https://doi.org/10.1016/j.jhydrol.2015.06.003 

Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., & Verbist, 

K. (2018, December 1). Satellite Remote Sensing for Water Resources Management: 

Potential for Supporting Sustainable Development in Data-Poor Regions. Water 

Resources Research, Vol. 54, pp. 9724–9758. 

https://doi.org/10.1029/2017WR022437 

Shen, G., Yang, X., Jin, Y., Xu, B., & Zhou, Q. (2019). Remote sensing and evaluation of 

the wetland ecological degradation process of the Zoige Plateau Wetland in China. 

Ecological Indicators, 104, 48–58. https://doi.org/10.1016/j.ecolind.2019.04.063 

Shen, M., Chen, J., Zhuan, M., Chen, H., Xu, C. Y., & Xiong, L. (2018). Estimating 

uncertainty and its temporal variation related to global climate models in quantifying 

climate change impacts on hydrology. Journal of Hydrology, 556, 10–24. 

https://doi.org/10.1016/j.jhydrol.2017.11.004 

Smith, W. K., Dannenberg, M. P., Yan, D., Herrmann, S., Barnes, M. L., Barron-Gafford, 

G. A., … Yang, J. (2019). Remote sensing of dryland ecosystem structure and 

function: Progress, challenges, and opportunities. Remote Sensing of Environment, 

233, 111401. https://doi.org/10.1016/J.RSE.2019.111401 

Somers, L. D., McKenzie, J. M., Mark, B. G., Lagos, P., Ng, G. H. C., Wickert, A. D., … 



151 

 

 

Silva, Y. (2019). Groundwater Buffers Decreasing Glacier Melt in an Andean 

Watershed—But Not Forever. Geophysical Research Letters, 46(22), 13016–13026. 

https://doi.org/10.1029/2019GL084730 

Souvignet, M., Oyarzún, R., Verbist, K. M. J., Gaese, H., & Heinrich, J. (2012). Hydro-

meteorological trends in semi-arid north-central Chile (29-32°S): Water resources 

implications for a fragile Andean region. Hydrological Sciences Journal, 57(3), 479–

495. https://doi.org/10.1080/02626667.2012.665607 

Stirling, E., Fitzpatrick, R. W., & Mosley, L. M. (2020). Drought effects on wet soils in 

inland wetlands and peatlands. https://doi.org/10.1016/j.earscirev.2020.103387 

Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I 

contribution to the Fifth assessment report of the Intergovernmental Panel on Climate 

Change. Cambridge university press. 

Suárez, F., Lobos, F., de la Fuente, A., Vilà-Guerau de Arellano, J., Prieto, A., Meruane, 

C., & Hartogensis, O. (2020). E-DATA: A Comprehensive Field Campaign to 

Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano. Water, 

12(3), 745. https://doi.org/10.3390/w12030745 

Sun, A. Y., Green, R., Swenson, S., & Rodell, M. (2012). Toward calibration of regional 

groundwater models using GRACE data. Journal of Hydrology, 422–423, 1–9. 

https://doi.org/10.1016/J.JHYDROL.2011.10.025 

Sun, W., Fan, J., Wang, G., Ishidaira, H., Bastola, S., Yu, J., … Xu, Z. (2018). Calibrating 

a hydrological model in a regional river of the Qinghai–Tibet plateau using river 

water width determined from high spatial resolution satellite images. Remote Sensing 

of Environment, 214, 100–114. https://doi.org/10.1016/J.RSE.2018.05.020 

Sutanudjaja, E. H., Van Beek, L. P. H., De Jong, S. M., Van Geer, F. C., & Bierkens, M. F. 

P. (2014). Calibrating a large-extent high-resolution coupled groundwater-land 

surface model using soil moisture and discharge data. Water Resources Research, 



152 

 

 

50(1), 687–705. https://doi.org/10.1002/2013WR013807 

Taheri Tizro, A., Fryar, A. E., Pour, M. K., Voudouris, K. S., & Mashhadian, M. J. (2019). 

Groundwater conditions related to climate change in the semi-arid area of western 

Iran. Groundwater for Sustainable Development, 9, 100273. 

https://doi.org/10.1016/j.gsd.2019.100273 

Tapia, J., Schneider, B., Inostroza, M., Álvarez-Amado, F., Luque, J. A., Aguilera, F., … 

Bravo, M. (2020). Naturally elevated arsenic in the Altiplano-Puna, Chile and the link 

to recent (Mio-Pliocene to Quaternary) volcanic activity, high crustal thicknesses, and 

geological structures. Journal of South American Earth Sciences, 102905. 

https://doi.org/10.1016/j.jsames.2020.102905 

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012, April 1). An overview of CMIP5 and 

the experiment design. Bulletin of the American Meteorological Society, Vol. 93, pp. 

485–498. https://doi.org/10.1175/BAMS-D-11-00094.1 

Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., … Treidel, H. 

(2013). Ground water and climate change. Nature Climate Change, 3(4), 322–329. 

https://doi.org/10.1038/nclimate1744 

Tillman, F. D., Gangopadhyay, S., & Pruitt, T. (2016). Changes in groundwater recharge 

under projected climate in the upper Colorado River basin. Geophysical Research 

Letters, 43(13), 6968–6974. https://doi.org/10.1002/2016GL069714 

Tohver, I., & Hamlet, A. (2014). Impacts of 21st‐century climate change on hydrologic 

extremes in the Pacific Northwest region of North America. Wiley Online Library. 

Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/jawr.12199 

Torres-Batlló, J., & Martí-Cardona, B. (2020). Precipitation trends over the southern 

Andean Altiplano from 1981 to 2018. Journal of Hydrology, 590, 125485. 

https://doi.org/10.1016/j.jhydrol.2020.125485 

Uribe, J. (2012). Estimación de la recarga del acuífero del Salar del Huasco en base a un 



153 

 

 

modelo de precipitación-escorrentía y una caracterización isotópica. Pontificia 

Universidad Católica de Chile. 

Uribe, J., Muñoz, J. F., Gironás, J., Oyarzún, R., Aguirre, E., & Aravena, R. (2015). 

Assessing groundwater recharge in an Andean closed basin using isotopic 

characterization and a rainfall-runoff model: Salar del Huasco basin, Chile. 

Hydrogeology Journal, 23(7), 1535–1551. https://doi.org/10.1007/s10040-015-1300-z 

Urrutia, J., Herrera, C., Custodio, E., Jódar, J., & Medina, A. (2019). Groundwater 

recharge and hydrodynamics of complex volcanic aquifers with a shallow saline lake: 

Laguna Tuyajto, Andean Cordillera of northern Chile. Science of the Total 

Environment, 697, 134116. https://doi.org/10.1016/j.scitotenv.2019.134116 

Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a 

regional climate model: Temperature and precipitation simulations for the end of the 

21st century. Journal of Geophysical Research: Atmospheres, 114(D2). 

Usman, M., Qamar, M. U., Becker, R., Zaman, M., Conrad, C., & Salim, S. (2020). 

Numerical modelling and remote sensing based approaches for investigating 

groundwater dynamics under changing land-use and climate in the agricultural region 

of Pakistan. Journal of Hydrology, 581, 124408. 

https://doi.org/10.1016/j.jhydrol.2019.124408 

Velis, M., Conti, K. I., & Biermann, F. (2017). Groundwater and human development: 

synergies and trade-offs within the context of the sustainable development goals. 

Sustainability Science, 12(6), 1007–1017. https://doi.org/10.1007/s11625-017-0490-9 

Viguier, B., Daniele, L., Jourde, H., Leonardi, V., & Yáñez, G. (2019, October 1). Changes 

in the conceptual model of the Pampa del Tamarugal Aquifer: Implications for 

Central Depression water resources. Journal of South American Earth Sciences, Vol. 

94, p. 102217. https://doi.org/10.1016/j.jsames.2019.102217 

Viguier, B., Jourde, H., Leonardi, V., Daniele, L., Batiot-Guilhe, C., Favreau, G., & De 



154 

 

 

Montety, V. (2019). Water table variations in the hyperarid Atacama Desert: Role of 

the increasing groundwater extraction in the pampa del tamarugal (Northern Chile). 

Journal of Arid Environments, 168, 9–16. 

https://doi.org/https://doi.org/10.1016/j.jaridenv.2019.05.007 

Vormoor, K., & Skaugen, T. (2013). Temporal Disaggregation of Daily Temperature and 

Precipitation Grid Data for Norway. Journal of Hydrometeorology, 14(3), 989–999. 

https://doi.org/10.1175/JHM-D-12-0139.1 

Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., & Bradley, R. S. 

(2008). Climate change and tropical Andean glaciers: Past, present and future. Earth-

Science Reviews, 89(3–4), 79–96. 

Weise, K., Höfer, R., Franke, J., Guelmami, A., Simonson, W., Muro, J., … Hilarides, L. 

(2020, September 15). Wetland extent tools for SDG 6.6.1 reporting from the 

Satellite-based Wetland Observation Service (SWOS). Remote Sensing of 

Environment, Vol. 247, p. 111892. https://doi.org/10.1016/j.rse.2020.111892 

Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J., & 

Wilks, D. S. (1998). Statistical downscaling of general circulation model output: A 

comparison of methods. Water Resources Research, 34(11), 2995–3008. 

https://doi.org/10.1029/98WR02577 

Winston, R. B. (2009). ModelMuse: a graphical user interface for MODFLOW-2005 and 

PHAST. 

Wood, A. W., Maurer, E. P., Kumar, A., & Lettenmaier, D. P. (2002). Long-range 

experimental hydrologic forecasting for the eastern United States. 107, ACL 6-1. 

https://doi.org/10.1029/2001JD000659 

Wu, H. bing, & Zheng, B. hui. (2020). Wetland area identification and waterbird 

protection management in consideration of lake topography and water level change. 

Global Ecology and Conservation, 23, e01056. 



155 

 

 

https://doi.org/10.1016/j.gecco.2020.e01056 

Xie, Y., Cook, P. G., Simmons, C. T., Partington, D., Crosbie, R., & Batelaan, O. (2018). 

Uncertainty of groundwater recharge estimated from a water and energy balance 

model. Journal of Hydrology, 561, 1081–1093. 

https://doi.org/10.1016/j.jhydrol.2017.08.010 

Xu, W., & Su, X. (2019). Challenges and impacts of climate change and human activities 

on groundwater-dependent ecosystems in arid areas – A case study of the Nalenggele 

alluvial fan in NW China. Journal of Hydrology, 573, 376–385. 

https://doi.org/10.1016/j.jhydrol.2019.03.082 

Yao, Y., Tian, Y., Andrews, C., Li, X., Zheng, Y., & Zheng, C. (2018). Role of 

Groundwater in the Dryland Ecohydrological System: A Case Study of the Heihe 

River Basin. Journal of Geophysical Research: Atmospheres, 123(13), 6760–6776. 

https://doi.org/https://doi.org/10.1029/2018JD028432 

Zamani Losgedaragh, S., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and 

METRIC models in estimation of the evaporation from the freshwater lakes (Case 

study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523–531. 

https://doi.org/10.1016/J.JHYDROL.2018.04.025 

Zhang, H., Wang, B., Liu, D. L., Zhang, M., Feng, P., Cheng, L., … Eamus, D. (2019). 

Impacts of future climate change on water resource availability of eastern Australia: A 

case study of the Manning River basin. Journal of Hydrology, 573, 49–59. 

https://doi.org/10.1016/j.jhydrol.2019.03.067 

Zhu, J., Wang, X., Zhang, Q., Zhang, Y., Liu, D., Cai, A., & Zhang, X. (2020). Assessing 

wetland sustainability by modeling water table dynamics under climate change. 

Journal of Cleaner Production, 263, 121293. 

https://doi.org/10.1016/J.JCLEPRO.2020.121293 

 



156 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 



157 

 

 

APPENDIX A: ASSESSING POTENTIAL IMPACTS OF CLIMATE CHANGE 

ON WATER RESOURCES AND THEIR INTERACTION WITHIN 

THE GREAT LAKES REGION: THE POTENTIAL BUFFERING 

CAPACITY OF GROUNDWATER ON SURFACE WATER 

PROCESSES 

Nicole Blin, Jenny Soonthornrangsan, Christopher Lowry, Jorge Gironás, 

Cristián Chadwick, Francisco Suárez  

To be submitted to: Hydrological processes  

Abstract 

Management of water resources, including evaluating potential impacts of climate change 

in water-rich regions such as the Great Lakes, is critical for long-term sustainability. In 

Western New York (WNY), stream and groundwater discharges to Lake Erie and Ontario 

are major components of the lakes’ water balance. The aim of this research is to assess the 

hydrological response of the WNY basin under climate change to provide useful insight to 

aid stakeholders and policymakers in developing adaptation strategies. To represent the 

uncertainty of future projections, ensembles of scenarios SSP2 4.5 and SSP5 8.5 were used 

to drive a coupled Groundwater and Surface-water FLOW (GSFLOW) model of WNY. 

Our results show variability in projected precipitation across ensemble members. Future 

warming conditions will increase evaporation rates in WNY under both scenarios, 

affecting processes at the soil and unsaturated zones. However, groundwater is expected to 

be less sensitive to climatic changes, acting as a buffer to impacts on surface water and 

stream discharges to the Great Lakes if future recharge increases by ~15% in SSP2 4.5 and 

between ~32 – 37% in SSP5 8.5. Consequently, groundwater could sustain discharges to 

the Great Lakes. Nevertheless, if precipitation increases below ~ 27% and ~80% in the 

respective the resulting recharge will not be enough to sustain groundwater storage, 

limiting thus the buffering capacity of the aquifer. 
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groundwater – surface water interaction 

A 1. Introduction 

Groundwater is essential for the survival of human and natural systems as it provides half 

of the world’s potable water (Amanambu et al., 2020). In the United States, groundwater 

provides up to 40% of the total freshwater supply (Sutton et al., 2021), which is becoming 

increasingly limited, not only in arid regions but also in humid areas where precipitation is 

abundant (Sweet et al., 2017). In humid and arid regions, climate change is impacting 

surface water and groundwater due to changes in precipitation rates and warming 

temperatures (Aygün et al., 2019; Dubois et al., 2022). Projected changes in seasonal 

temperature as well as changes in the timing, magnitude, and distribution of precipitation 

may lead to important water cycle modifications (Meixner et al., 2016; Persaud et al., 

2020; Tabari, 2020). Moreover, in a warming climate, increased evapotranspiration may 

shift recharge patterns, which in the long-term could change groundwater levels, and 

subsequently, groundwater-surface water interactions and soil moisture (Cherkauer & 

Sinha, 2010; Condon et al., 2020; Meixner et al., 2016; Portmann et al., 2013). 

Consequently, potential changes at the surface will likely impact groundwater-dependent 

ecosystems and groundwater use for human consumption, industry, and agriculture 

(Dubois et al., 2022). 

The Great Lakes account for 18% of the world’s and 90% of the United States’ freshwater 

supply (Cherkauer & Sinha, 2010; Kayastha et al., 2022; Niu et al., 2014). Although 

abundant with freshwater, the Great Lakes are not excluded from the stresses being 

imposed upon global water resources, and are expected to be affected by climate change 

(Gronewold et al., 2016a; Seglenieks & Temgoua, 2022; Soonthornrangsan & Lowry, 

2021; Xu et al., 2021). Understanding changes in water budget components and storage is 
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key for assessing the resilience of watersheds under climate change (Niu et al., 2014; 

Tague et al., 2008). This is particularly crucial in the Great Lakes Basin (GLB) as it is 

heavily invested in agricultural production that adds strain on water resources (Cherkauer 

& Sinha, 2010; Persaud et al., 2020). Approximately 4100 km3 are stored in aquifers in the 

U.S. side of the GLB (Costa et al., 2021), and accordingly, groundwater not only plays a 

key role in maintaining its water quality and ecological environment, but it is also a major 

component of the GLB water budget either through direct discharges or indirectly as 

stream baseflow (Grannemann, 2000). Increasing water demands are overburdening 

regional groundwater supplies, in some cases reversing groundwater flows that previously 

recharged the Great Lakes (Cherkauer & Sinha, 2010). Considering the importance of 

groundwater resources in the water balance of the GLB, studying their sensitivity to 

climate change becomes crucial for predicting impacts on its water resources and 

evaluating the resiliency of the basin. This becomes more pressing as changes in the 

magnitude of extreme climatic events and lake levels have already been observed, and 

even more pronounced changes have been predicted (Gronewold et al., 2016a; Kayastha et 

al., 2022; Seglenieks & Temgoua, 2022; Xu et al., 2021).  

Climate change impacts on water resources have been the focus of previous work on the 

Great Lakes (Cherkauer & Sinha, 2010; Cochand et al, 2019; Dubois et al., 2022; Erler et 

al., 2019; Farhadzadeh, 2017; Kayastha et al., 2022; Niu et al., 2014; Notaro et al., 2015; 

Persaud et al., 2020; Seglenieks & Temgoua, 2022; Soonthornrangsan & Lowry, 2021). 

Cherkauer & Sinha (2010) used a large-scale hydrological model to simulate changes in 

the spatial distribution of total runoff and baseflow under climate change scenarios from 

IPCC AR4 in four states surrounding Lake Michigan. Their results showed increasing 

annual stream flow in all rivers by late-century mainly in winter and spring, while more 

variability was observed in summer flows. Cochand et al. (2019) incorporated snowfall 

and melting processes into a fully integrated surface‐ groundwater model of the Saint-

Charles River catchment, in Quebec, to analyze climate change impacts on water resources 
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under three scenarios from IPCC AR4. They found that stream discharges and groundwater 

heads will likely increase as warmer winters are expected, while warmer summers will 

lead to more evaporation, and a subsequent fall in stream discharges and groundwater 

heads. Soonthornrangsan & Lowry (2021) developed a coupled Groundwater and Surface-

water FLOW (GSFLOW) model of the Western New York (WNY) basin to study the 

potential impacts on surface-groundwater interaction, water storage and discharges to the 

Great Lakes under NA-CORDEX outputs of RCP 4.5 and RCP 8.5, and varying the 

percentages of future impervious surfaces. While their results showed no statistically 

significant changes in surface water and groundwater systems under RCP 4.5, substantial 

losses were expected under RCP 8.5. More recently, Dubois et al. (2022) studied future 

changes in groundwater recharge in southern Quebec under RCP4.5 and RCP8.5 using a 

water budget model. They found that the direction and magnitude of the changes will be 

subject to precipitation increases, resulting in higher recharge to the aquifer only when 

precipitation increases over a certain threshold. These studies provide valuable insights for 

better understanding the hydrological response of the Great Lakes region under climatic 

changes. However, given the complexity and spatial extent of the GLB, potential impacts 

on their water resources should be continuously evaluated with new information and 

updated inputs to adapt current management strategies accordingly and thus reduce 

negative impacts in the region. 

Assessment of climate change and its potential impacts has strongly relied on Global 

Climate Models (GCMs), coordinated by the Coupled Model Intercomparison Project 

(CMIP), which has been assisting global change research by making such outputs available 

to the public (Eyring et al., 2016). With its new sixth phase, CMIP responded to the main 

challenges previously identified by integrating climate and societal factors in the 

development of new future scenarios to support the research community and to be 

extendable to a wider range of applications (O’Neill et al., 2020, 2017). However, since 

CMIP6 outputs were recently made available for public use, their application in studies on 
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climate change impacts on water resources is still limited. Therefore, more studies that 

provide information on climate and societal conditions are required to support decision-

making strategies in areas such as the Great Lakes region (O’Neill et al., 2020). 

Additionally, previous studies have concluded that assessing climate change impacts using 

a wide range of possible outcomes reduces the uncertainty of future projections (Chadwick 

et al., 2018). For example, Erler et al. (2019) forced a fully integrated surface 

water‐groundwater model of a watershed within the GLB with a small ensemble of RCP 

8.5. They found that models employing different moist physics led to different simulation 

results, with summer precipitation the main source of future uncertainty. Persaud et al. 

(2020) used a combination of Regional Climate Models (RCM), synthetic, and analogue 

scenarios to drive a HydroGeoSphere (Brunner & Simmons, 2012) model of the Upper 

Parkhill watershed. Comparing simulations forced with RCM against those forced with 

synthetic scenarios contributes to understanding the response and sensitivity of the system. 

However, employing different models of the same scenario (from CMIP5 or CMIP6) 

would serve that purpose and also provide information on the local (or regional) 

performance of models developed by different modeling centers in a particular climate. 

This information could be useful in the selection of the climate models in future climate 

change studies. Moreover, while the studies mentioned constitute a valuable contribution 

towards reducing future uncertainty of climate change impacts, to the best of our 

knowledge none has yet employed the new scenarios of CMIP6 using an ensemble 

approach in the Great Lakes, and therefore, the current research would be the first. 

The main objective of this research is to assess potential impacts of climate change on 

surface and groundwater resources in the WNY basin, within the Lower Great Lakes. More 

specifically, we investigate changes in groundwater and surface water interactions and 

their discharges to the Great Lakes, which are major contributors to the water balance of 

the GLB. To this aim, a previously developed GSFLOW model of the basin is forced with 
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ensembles of scenarios SSP2 4.5 and SSP5 8.5 from CMIP6 defined to represent the 

uncertainty of future projections in the WNY basin. 

A 2. Study site 

The study area of WNY is located between two of the Great Lakes, Lake Ontario and Lake 

Erie, which are connected by the Niagara River (Figure 1c). WNY has a surface area of 

about 7919 km2, comprising eight counties: Cattaraugus, Chautauqua, Erie, Genesee, 

Monroe, Niagara, Orleans, and Wyoming. As shown in Figure 1c), this area is home to the 

metropolitan cities of Buffalo, Rochester, and Niagara Falls, with a population of ~2.2 

million people (2019 Census estimates). The geologic setting consists of Paleozoic rocks 

dipping toward the south and consisting of dolomite with interbedded shale and sandstone. 

The surficial geology and modern drainage network are dominated by pre-glacial erosion 

in the Pleistocene, followed by glaciation. The major geologic feature within the study area 

is the Niagara Escarpment that transverses the model domain from Niagara Falls to 

Rochester. The Niagara Escarpment separates the lowlands of Lake Ontario from higher 

elevations to the south, making up the edge of the Appalachian plateau, which drains to 

Lake Erie and the Niagara River (Eckhardt et al., 2008). 

The climate of WNY is humid, with a mean annual precipitation of about 1016 mm and air 

temperatures moderated by Lake Ontario and Lake Erie (Eckhardt et al., 2008). 

Precipitation patterns across the study site are dominated by lake effect snow and rain 

traveling east off Lake Erie and depositing precipitation across the southern region of the 

model domain. The annual precipitation gradient decreases, moving north toward Lake 

Ontario.  

An important hydrologic connection exists between the Great Lakes, its tributary streams, 

and groundwater, being groundwater a major contributor to both. The shallow water table, 
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which lies between ~ 5 – 60 m below the surface (Eckhardt et al., 2008), also sustains 

abundant surface water that serves as the primary source of drinking water. WNY is 

considered a water-rich environment due to its position between the Great Lakes and 

seasonally consistent precipitation inputs. 

 

Figure A 1: Study site location in a) North America and b) the State of New York (NY). Panel 

c) shows the WNY basin’s boundaries and the location of the meteorological stations used in 

this research. 
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A 3. Methods 

A.3.1. GSFLOW model of the WNY basin 

The coupled surface – groundwater model of WNY used in this research was previously 

developed by Soonthornrangsan & Lowry (2021) using the USGS software GSFLOW 

(Markstrom et al., 2008) that couples the Precipitation-Runoff Modeling System (PRMS, 

Markstrom et al., 2015) model with MODFLOW (Harbaugh, 2005) to simulate the coupled 

surface water and groundwater resources. The model of WNY has a 7,900 km2 domain, 

which was discretized in 1 layer of 105 m thickness below the topography, 418 rows and 

413 columns that form 172,632 finite-difference MODFLOW cells of 300 m by 300 m. 

MODFLOW cells are at the same time the hydrological response units (HRUs) of PRMS, 

and thus, the same spatial discretization is used for the hydrological and hydrogeological 

models. The Great Lakes were represented in the WNY model by constant head boundary 

conditions (CHD package), where 173 m ASL and 75 m ASL heads were defined at Lake 

Erie and Lake Ontario, respectively. The Niagara River was also defined by CHD, with a 

specified head equal to the river elevation. The remaining edges of the model were 

represented by no-flow boundary conditions at the surface water divides to the east and 

south. Discharges towards the Great Lakes are therefore simulated as lateral groundwater 

discharges from the aquifer and stream discharges from surface runoff. Readers are 

referred to the work of Soonthornrangsan & Lowry (2021) for a more detailed description 

of the model’s features. However, here we briefly describe the interaction between surface 

water and groundwater as simulated in GSFLOW. 

PRMS is coupled to MODFLOW through two-way exchanges between surface water and 

groundwater. This exchange at streams and lakes is simulated in MODFLOW by the SFR 

(Niswonger & Prudic, 2005) and LAK (Merritt & Konikow, 2000) packages, respectively, 

which allow these systems to recharge groundwater or receive groundwater discharge. 
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Within the soil zone, water can transfer to the unsaturated or saturated zone through UZF 

package in MODFLOW (Niswonger et al., 2006), depending on the volume of water 

stored in the unsaturated zone and the groundwater heads (Markstrom et al., 2008). Inputs 

to PRMS are daily precipitation, maximum and minimum temperature, and solar radiation, 

from which potential evapotranspiration, sublimation, and snowmelt are computed, which 

were acquired at each of the 12 stations used in the present research. The GSFLOW model 

then incorporates surface processes, including precipitation partitioning, infiltration, actual 

evapotranspiration (Actual ET), interflow, and recharge, as well as surface routing flow 

processes, unsaturated flow, and groundwater discharge (readers are referred to Markstrom 

et al. (2008) for details on the methodologies employed in GSFLOW). 

For analyzing potential changes in the basin by the end of the century, future simulations 

were compared to a reference period simulation, which was driven with observed data 

from 2009 to 2019. Bias-adjusted data from ensembles SSP2 4.5 and SSP5 8.5 were used 

to drive the GSFLOW model of WNY between 2081 – 2100 were used to simulate the 

future period. The water table results of Soonthornrangsan & Lowry (2021) by the end of 

mid-century (December 2050) were used as the initial heads of the aquifer in the far future. 

Consequently, 20-year simulations for the future period were designed so that the first ten 

years of the simulations served as a warm-up period. The projected changes in the WNY 

system were thus assessed by comparing the results of the last decade of the future period 

(i.e., 2091 – 2100), henceforward far-future period, and the reference period (2009 – 

2019). 

A.3.2. Climate records 

Temperature and precipitation data at 12 meteorological stations within the WNY aquifer 

domain (Figure 1c) were retrieved from the National Centers for Environmental 

Information of the National Oceanic and Atmospheric Administration (NOAA) 
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(https://www.ncei.noaa.gov/) for the period between January 1996 and December 2015. 

This period was defined to match the 20-year length of the future GSFLOW simulations, 

and it is limited at the end by the last year accounted as the past in CMIP6 models. To 

extend the records of three stations (Colden, Niagara Buffalo International Airport, and 

Youngstown) back to 1996, we used multiple linear regressions with the two stations that 

showed the highest correlation with the available records to estimate the regression 

coefficients for the corresponding multiple linear regression. 

Given that future changes in hydrological processes are based on a relatively short 

reference period (2009-2019), it is important to analyze the climatic conditions that 

characterize this period to better understand the projected changes. One commonly used 

index for drought characterization and monitoring is the Standardized Precipitation Index 

(SPI) (McKee et al., 1993), which is based solely on precipitation data. The SPI normalizes 

the deviation from the mean of precipitation, allowing for comparisons of dry (water 

deficit) or wet (water surplus) conditions between different locations and time periods 

(Wang et al., 2022). By using the SPI at different time scales, it is possible to relate 

meteorological drought to hydrological processes, such as streamflow and groundwater 

recharge. In our study, we estimated the SPI for 3-month, 6-month, 12-month, and 48-

month periods using the standard_precip Python library (https://github.com/e-

baumer/standard_precip) to better assess the magnitude of the projected changes in 

hydrological processes compared to the reference period. To that end, data available from 

1940 to 2019 at the meteorological stations shown in Figure 1c, were averaged to have SPI 

values representative of the basin. 



167 

 

 

A.3.3. Statistical downscaling of climate model outputs 

A.3.3.1. Downscaling and bias adjustment of climate model outputs 

Climate projections of temperature and precipitation were spatially downscaled to the 

meteorological stations’ resolution using the bilinear interpolation approach. To adjust for 

biases in the future climate data, we implemented a statistical bias adjustment method at 

each meteorological station (Figure 1c) using the climQMBC MATLAB package 

(https://github.com/saedoquililongo/climQMBC). From the five quantile mapping-based 

methods available within the package, we selected the quantile delta mapping (QDM) 

method (Cannon et al., 2015) due to its ability to correct model biases based on 

observations while preserving model-projected relative changes in quantiles. By 

accounting for non-stationarity in climate data, the QDM method overcomes the 

stationarity assumption that limits the applicability of the classic quantile mapping (QM) 

method (Cannon et al., 2015; Chadwick et al., 2023). 

The QDM method combines two steps in sequence: (1) future model outputs are detrended 

by quantile and bias corrected to observations by QM; (2) model-projected relative 

changes in quantiles are superimposed on the bias corrected model outputs (Cannon et al., 

2015). Firstly, Firstly, the method applies the inverse cumulative distribution function 

(CDF) of the projected series, , to estimate the non-exceedance probability associated 

with a precipitation event at a time t, within a projected period p, denoted as  in in 

Eq. (1): 

 

 

 

(0-1) 
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where  is the non-exceedance probability associated with , estimated 

considering a moving projected time window, and  is the time-dependent CDF of the 

projected series . Secondly, the relative change in model quantiles, , is estimated 

as the ratio between the projected event  at a time t, and its corresponding quantile 

in the historical period, , as shown in:  

 

 

 

 

(0-2) 

In which  is obtained by applying the inverse CDF of  to  

in the historical period, denoted as h. Therefore,  is a factor between the projected 

modeled value at time t in the future and the value corresponding to the same modeled 

quantile in the historical period, or in other words, the climate model quantile change. 

Thirdly,  is bias-adjusted with the inverse CDF of observations in the historical 

period, , which is scaled by applying  multiplicatively to obtain the 

corresponding bias-adjusted future projection at time t, , according to: 

 

 

 

 

 

(0-3) 

For temperature,  is calculated as the difference between  and , 

and it is incorporated additively rather than multiplicatively (for further detail the reader is 

referred to Cannon et al., 2015; Chadwick et al., 2023). 
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A.3.3.2. Temporal disaggregation 

The bias-adjusted model projections of temperature and precipitation at monthly basis 

were temporarily disaggregated using a k-Nearest Neighbors (k-NN) approach to obtain 

daily values required to drive the hydrogeological model. The k-NN method originally 

applied for daily generation of climate (Lall & Sharma, 1996), has been adapted and used 

for disaggregating climate before (Barría et al., 2021; Greene et al., 2012). The method 

uses daily records of the variables over the historical period to generate future daily time 

series by applying the changes projected by the model in a certain month to observed daily 

data within that month. These data from the observed month used for the resampling is 

randomly selected from a window of k neighbors with similar behavior to the monthly data 

that is to be disaggregated. In this way, future daily time series are randomly generated 

while preserving the statistical properties of the historical data at the site (Rajagopalan & 

Lall, 1999). In this case, the model uses as input maximum and minimum daily 

temperatures for estimating recharge to the aquifer, however, since mean air temperature is 

the variable that is available in all GCMs we applied the changes projected by the models 

of this variable into daily observations of minimum and maximum temperatures. 

A.3.4. CMIP6 scenarios and model ensembles 

For the assessment of climate change impacts over the WNY aquifer, two Shared 

Socioeconomic Pathway (SSP) scenarios from CMIP6 were used: SSP2 4.5 and SSP5 8.5. 

The SSPs scenarios provide societal factors such as demographic, political orientation and 

economic growth, described as narratives focused on future challenges of adaptation and 

mitigation. The new framework of CMIP6 incorporates the greenhouse gas concentration 

of the Representative Concentration Pathways (RCP) (Moss et al., 2010) from CMIP5 to 

represent how society and climate may change by the end of the century, facilitating their 

application in integrated studies (O’Neill et al., 2020).  
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Scenarios SSP2 4.5 and SSP5 8.5 were chosen for the current research as they give 

continuity to previous studies in the area, which used RCPs 4.5 and 8.5 from CMIP5 

(Soonthornrangsan & Lowry, 2021), and provide information on contrasting plausible 

future outcomes. SSP2 4.5 represents a future in which social, technological, and economic 

trends do not shift drastically from historical patterns, and therefore, moderate challenges 

to mitigation and adaptation will be required (O’Neill et al., 2017). On the other hand, 

SSP5 8.5 represents a future in which rapid economic growth results from the exploitation 

of abundant fossil fuel resources, leading to high challenges to mitigation (O’Neill et al., 

2017). The warming predicted for these scenarios by the end of the century ranges between 

2 – 2.9℃ (SSP2 4.5 ) and 4 – 4.3℃ (SSP5 8.5) (Nazarenko et al., 2022). Note that by 

generating small ensembles, the goal is to determine if models of the same climate change 

scenario can lead to different realizations as a result of the initial conditions and equations 

of physical processes employed in each GCM. However, analyzing the source of such 

difference is beyond our scope. 

 

Datasets of the chosen scenarios were available from 27 climate models from the 

ScenarioMIP intercomparison project of CMIP6 at the CMIP6 Search Interface of the 

World Climate Research Program (WCRP) (https://esgf-node.llnl.gov/projects/cmip6/) for 

the historical and future periods. As some models had more than one run of the same 

scenario, the total number of datasets used in this research was 45 (i.e., climate 

projections), which can be found in Table A1. 

Model ensembles were defined in both scenarios to take into account the uncertainty 

inherent in future projections. Because no method for building ensembles is universally 
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accepted (Crawford et al., 2019; Knutti et al., 2010), and considering the simulation time 

as a limiting factor (24 hours are required to run a 5-year simulation in the hydrogeological 

model), ensembles were generated using four climate models within each scenario. 

Climate models were chosen according to the climate change signal they project into the 

future precipitation, such that members of the ensembles project different magnitudes 

(percentiles) of changes (Chadwick et al., 2018). It is important to note that the change 

projected by a model in precipitation may not the same as the change it projects in 

temperature. Therefore, this selection criteria may result in higher temperatures being 

projected in some members of SSP2 compared to SSP5, despite the latter scenario 

projecting generally higher temperature changes. Preserving the climate change signal of 

the raw models is important to maintain physical scaling relationships between variables 

such as precipitation and temperature (Cannon et al., 2015). With that aim, a single climate 

change signal was calculated for each model as the average of the  of all the quantiles, 

calculated according to (Eq2, which represent the climate change signal reintroduced in the 

bias-corrected series according to the statistical downscaling method. Models selected for 

the ensembles of both scenarios are presented in Table 1. 

Table 0-1: Ensemble members selected for the SSP2 4.5 and SSP5 8.5 scenarios. The first column indicates 

the range of precipitation delta percentile that each model projects within the ensemble. The name given to 

the models in the ensemble, as well as their original names, are presented in the two columns below each 

scenario ensemble. 

Percentile 

range of 

 (%) 

Ensemble SSP2 4.5 Ensemble SSP5 8.5 

Name in 

ensemble 
Model name 

Name in 

ensemble 
Model name 

 1 – 25  A INM_CM5_0 (r1i1p1f) E ACCESS_CM2 (r1i1p1f1) 

 25 – 50  B IPSL_CM6A_LR (r4i1p1f1) F MRI_ESM_2 (r1i1p1f1) 

 50 – 75  C GDL_ESM4 (r1i1p1f1) G MPI_ESM1_2_LR (r4i1p1f1) 
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 75 – 100  D CESM2_WACCM (r2i1p1f1) H MPI_ESM1_2_LR (r5i1p1f1) 

 

A 4. Results 

A.4.1. Analysis of droughts and wet periods within the historical period 

The resulting SPIs show fluctuating cycles of wet and dry periods according to the time-

window used for their estimation (Figure 2). Particularly, lower time-windows lead to SPI 

with more alternating cycles (Figure 2a, b). However, longer time-windows, which are 

associated to groundwater-scale processes, result in positive values of SPI that can be 

clearly noticed during the period between 2009 and 2019 (Figure 2d) used for the reference 

period simulation in GSFLOW. Therefore, the projected changes in groundwater processes 

in the present work are calculated with respect to a relatively wet reference period. 
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Figure 0-1: SPI values calculated between 1940 – 2019 using different time scales: a) 3 months, b) 6 

months, c) 12 months and d) 48 months. The vertical lines mark the beginning of the reference period 

simulation in GSFLOW (2009 – 2019). 

A.4.2. Bias-corrected temperature and precipitation projections in WNY 

Monthly mean temperatures projected across all ensemble members are similar, regardless 

of the scenario, resulting thus in nearly identical projected mean ensembles (Figure 3a, b). 

Although slightly less variability between members is projected in temperature statistics in 

SSP5 8.5 (Table 2), in all models the mean, median, minimum, and maximum monthly 
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values are expected to increase by at least 2.4, 2.4, 1.6, and 2.3℃ , respectively, under both 

ensembles.  

 

Unlike temperatures, noticeable differences are projected in the total monthly precipitation 

of both ensembles (Figure 3d, e). While such projections increase from the models 

representing the lowest to the highest percentiles of change of SSP2 4.5, in SSP5 8.5 a 

large difference of about 100 mm separates the lowest models (ensemble members E and 

F) with the highest (ensemble members G and H). Moreover, results in Table 2 

demonstrate that the changes in precipitation are different from those in temperature 

projected by the same model, which results in this case in the SSP2 4.5 ensemble with 

higher projected temperatures than SSP5 8.5. 
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Figure 0-2: Comparison of projected monthly temperature (top row) and precipitation (bottom row) over 

the far-future (2091 – 2100), with respect to the reference period (2009 – 2019) (third column), averaged 

over the entire study area. The continuous lines graduated shades of green (for SSP2 4.5) and orange (for 

SSP5 8.5) depict the monthly values of the variables, with each shade representing a different model within 

the ensemble. The Ensemble trend (dashed black) line represents the average of all individual trends 

(estimated as 10-year moving means) projected by the members of the ensemble. The trends were estimated 

in the reference period as 5-year moving means given its length. 

Table 0-2: Statistical properties of monthly temperature and precipitation observed in the period of 1996 – 

2015 (defined as historical in the downscaling process) and projected in the future period (2081 – 2100) at 

monthly basis. 

Scenario 
Ensemble 

member 

Temperature Precipitation 

Mean 

( C) 

Std 

( C) 

Min 

( C) 

Median 

( C) 

Max 

( C) 
Mean 

(mm) 

Std 

(mm) 

Min 

(mm) 

Median 

(mm) 

Max  

(mm) 

Historical 8.9 9.2 -11.9 9.0 23.2 118.9 37.8 45.2 113.2 222.4 
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SSP2 4.5 

A 12.8 8.9 -5.0 11.6 26.1 68.2 18.8 27.6 65.4 169.2 

B 12.4 8.4 -3.1 11.5 25.5 100.1 21.8 57.0 97.5 205.6 

C 11.3 9.0 -7.1 10.6 25.5 133.3 24.4 88.0 130.5 214.0 

D 12.1 8.5 -4.6 10.9 26.1 151.2 25.4 99.8 146.1 268.0 

SSP5 8.5 

E 11.7 8.9 -6.9 11.2 26.1 126.5 25.3 79.3 125.1 218.2 

F 11.7 9.0 -6.6 11.9 26.1 122.4 27.4 69.9 118.3 230.7 

G 12.2 8.9 -9.5 12.0 26.0 214.6 34.5 135.9 211.1 364.6 

H 11.4 9.3 -6.8 12.2 26.1 235.1 36.2 165.9 230.5 356.7 

 

Differences in precipitations projected over the future period among ensemble members 

are also observed across the months of the year in both scenarios (Figure 4c, d). The driest 

month will likely shift from March, as observed in the reference period (Figure 4c, d), to 

February. Although the wettest month varies among ensemble members, both scenarios 

project wetter summers as higher precipitations are likely to occur earlier within the year. 

These changes, added to the consistent temperature increase, could lead to potential 

changes in the timings of groundwater recharge, and other processes dependent on climate. 
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Figure 0-3: Average of monthly temperature (a and b) and precipitation(c and d)  projected throughout the 

year under both scenarios for the far-future period (2091-2100), with each shade representing a different 

model within the ensemble, in comparison to the reference period (2009 – 2019), represented by the dashed 

blue line. 

A.4.3. Changes projected in WNY’s water balance and their associated 

impacts on the basin’s discharges to the Great Lakes 

A substantial difference between the projected and reference recharge–precipitation ratio is 

observed in March in both scenarios (Figure 5a, b). While historically very high (i.e., 90%) 

for the driest month of March, this ratio diminishes in the future as higher precipitations 

and temperatures in March are projected by most models (Figure 4a, b), which will likely 
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increase evaporation. Recharge will increase towards mid-summer until mid-winter, where 

temperatures are predicted to increase in average by 3 – 4.9℃ and 2.5 – 3.6℃ between 

July and September, in SSP2 4.5 and SSP5 8.5, respectively (Figure 4 a, c). As a result of 

warmer future conditions, larger evapotranspiration rates are projected (Figure 6d), which 

will likely result in decreasing mean recharge rates if the mean future precipitation were to 

increase below ~ 15% (Table 3). Therefore, both changes projected in temperature and 

precipitation will alter the timing of hydrological processes. 

 

Figure 0-4: Comparison of the mean ratio of groundwater recharge over precipitation (P) (a and b), and 

mean groundwater recharge rate (c and d) projected throughout the year in the far-future period (2091-2100) 
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with respect to the reference period (2009-2019). The continuous lines in green and orange represent SSP2 

4.5 and SSP5 8.5 projections, respectively, with shades representing a different model within the ensemble, 

while the dashed blue line represents the reference period. 
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Figure 0-5: Box plots of monthly variables projected over the far-future period (2091-2100) compared to 

the reference period (2009 – 2019). Panels a and b present climatic variables driving the hydrological 

process, while panels below show the water budget response: c) recharge, d) actual evapotranspiration 

(Actual ET), e) groundwater (GW) storage, and f) unsaturated zone (UZ) storage. Graduated-colored boxes 
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represent the members of the ensembles, the black box depict the ensemble mean (first box of SSP2 4.5 and 

SSP5 8.5 groups), and the blue box represents the reference period. The whiskers of the boxplots depict 1.5 

times the interquartile range (IQR). 

GSFLOW simulates the behavior of the water table in response to changes in recharge 

rates. Accordingly, as recharge rates increase, the water table rises, and water stored in the 

unsaturated zone is added as recharge to the aquifer. As a result, the storage in the 

unsaturated zone decreases, while the storage in the saturated zone increases. Nevertheless, 

stream discharges to the Great Lakes do not decline to the same extent as unsaturated 

storage, as shown in Table 3, which suggests that groundwater storage would be able to 

sustain processes at the surface if the unsaturated storage diminishes. However, as higher 

Actual ET rates are expected in the basin, the average precipitation should increase 

somewhere about ~27.1% in SSP2 4.5 and ~ 80% in SSP5 8.5 (Table 3) so that the 

resulting groundwater recharge is enough to allow the aquifer to alleviate negative changes 

in the unsaturated zone without reducing its storage. The changes projected in the mean 

temperatures are lower in ensemble SSP5 8.5 than in SSP2 4.5, as the minimum and 

maximum temperatures are expected to be more extreme in the former than in the latter. 

However, the percentages of change in the median temperatures range around ~ 18– 28% 

and ~ 23 – 35% in SSP2 4.5 and SSP5 8.5, respectively. 

The response of most of the water balance components varies greatly among ensemble 

members of the same scenario, which reinforces the importance of analyzing them 

individually. Therefore, while analyzing individual models contributes to understanding 

the sensitivity and response of the system under different stresses, the ensemble mean 

provides a range of changes projected in the system under a climate change scenario. 

Table 0-3: Projected percentages of change in mean monthly variables with respect to their monthly means 

in the reference period. The table presents in columns 3 and 4 the changes projected in climatic variables, 

while the following columns present the changes in groundwater recharge and actual evaporation flows that 
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are projected as a consequence of the changes in climatic variables, as well as the changes in the saturated 

(groundwater) and unsaturated zones storages. 

Ensemble 

Change in 

mean 

precipitation 

[%] 

Change in 

mean 

temperature 

[℃] 

Change in 

mean 

recharge 

[%] 

Change in 

mean 

Actual ET 

[%] 

Change in 

mean 

groundwater 

storage 

[%] 

Change in 

mean 

unsaturated 

zone storage 

[%] 

SSP2 4.5 

A 3.9 43.9 -48.9 25.3 -5.4 -0.7 

B 3.5 38.6 -21.1 80.3 -2.2 5.3 

C 2.4 26.6 2.3 87.6 -0.6 3.0 

D 3.2 36.3 14.9 95.0 0.2 -2.6 

SSP5 8.5 

E 2.8 31.7 -5.2 91.7 -1.4 15.5 

F 2.8 31.5 -13.2 83.9 -2.0 4.7 

G 3.3 36.5 34.3 105.9 0.9 -6.5 

H 2.5 28.2 44.1 98.2 1.1 -9.0 

 

The relationship between the WNY basin and the Great Lakes depends on the effect that 

climatic changes will have on the water budget of the basin. There is a pronounced 

seasonal variability in future monthly stream discharges to the Great Lakes in comparison 

to the reference period (Figure 7a, b, c). While the seasonal variability of groundwater 

discharges is also expected to increase, it is two orders of magnitude lower than that of 

stream discharges. This suggests that streams would be more sensitive to climatic changes 

than groundwater. Despite this, the average ensemble trends of both flows discharging into 

the lakes are similar in shape to precipitation trends, represented in the opposite y-axis of 

all panels of Figure 7 by grey lines. This suggests that both flows are mainly driven by 

precipitation, although in different magnitudes. Furthermore, discharges from the streams 

are expected to respond earlier than those from groundwater, which can be observed in the 
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stream discharge response to the 2096 peak in precipitation. Accordingly, groundwater is 

likely expected to be less affected by climatic changes than streams. 

 

Figure 0-6: Stream (first row of plots) and groundwater (second row of plots) discharges towards the Great 

Lakes projected under SSP2 4.5 (a and d) and SSP5 8.5 (b and e) scenarios in comparison to the reference 

period (c and f). The average of all individual trends (estimated as 10-year moving means) projected by the 

members of each ensemble is presented as the Ensemble trend (dashed black) of the variable. The 

precipitation trend (mean of ensemble trends in SSP2 4.5 and SSP5 8.5) is plotted in the right y-axis of each 

panel in grey. 

In models where the mean precipitation is expected to decrease (Table 3), both the stream 

and groundwater discharges to the Great Lakes will also decrease (Table 4), and therefore 

the WNY basin will likely continue to rely on the Great Lakes for water supply. However, 

the projected changes in the mean of discharge fluxes into the Great Lakes indicate that 
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discharges from streams will be more sensitive to precipitation changes than from 

groundwater. This is because streams discharging into the Great Lakes, as well as 

groundwater recharge, result from surface processes that directly depend on climatic 

variables. Nevertheless, groundwater discharges to the Great Lakes are not expected to be 

affected by climatic changes to the same extent as recharge, and therefore, stable head 

gradients between the Great Lakes and the water table are expected near the edges of the 

model. 

Table 0-4: Projected percentages of change in the mean of monthly discharge flows into the Great Lakes 

(GL) in the far-future period (2091 – 2100) with respect to the reference period (2009 – 2019). 

Scenario 
Ensemble 

members 

Change in mean 

stream discharge to 

the GL [%] 

Change in mean 

groundwater discharge to 

the GL [%] 

SSP2 4.5 

A -38.7 -26.0 

B -10.6 -10.9 

C 38.9 1.2 

D 65.1 12.3 

SSP5 8.5 

E 23.0 5.4 

F 21.2 4.1 

G 160.8 35.4 

H 201.2 30.8 

 

A.4.4. Projected groundwater response and spatial variation of water table 

changes 

Under higher recharge rates, groundwater discharges to the Great Lakes, streams (as 

baseflow) and the soil zone are expected to increase (Figure 8b, c, d, respectively). As 

baseflow supports the storage of inland lakes, their increase could sustain water demand in 

agricultural lands. Meanwhile, enhanced surface runoff may support the stream discharge 
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to the Great Lakes when more groundwater discharges into the soil zone. Model H 

exemplifies this scenario, as it projects the highest recharge of the SSP5 8.5 ensemble, and 

consequently, the highest groundwater discharges into the soil and streams are expected. 

While the groundwater discharge to the Great Lakes projected by model H is not the 

largest of the ensemble, it projects the highest groundwater evaporation (ETgw), evidencing 

the influence of the spatial distribution of water table changes on groundwater discharge 

flows. Accordingly, while in model H the water table is not expected to rise near the edges 

of the model as much as in model G (Figure 9-Model H and Figure 9-Model G), the water 

table in model H is likely to increase more in areas where ETgw occurs. 
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Figure 0-7: Boxplots of groundwater (GW) discharge flows as: a) groundwater evapotranspiration (GW 

ET), b) flow into the Great Lakes, c) baseflow, and d) flow towards the soil, estimated for the aquifer of 

WNY across models in both ensembles. Graduated-colored boxes represent the members of the ensembles, 

the black box depict the ensemble mean (first box of SSP2 4.5 and SSP5 8.5 groups), and the blue box 

represents the reference period. The whiskers of the boxplots depict 1.5 times the interquartile range (IQR). 

Furthermore, impacts of different magnitudes are expected on the groundwater discharge 

to the Great Lakes given by the spatial variation of water table changes projected in 2100 

with respect to 2019 (Figure 9). The Lake Ontario Lowlands area is likely to be the most 

sensitive to climate change within the WNY aquifer as different magnitudes (and 

directions) of head changes are projected across all models (Figure 9). These changes 
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could alter the head gradient between the Lake Ontario and the aquifer, thereby affecting 

the groundwater discharging into the lake. In fact, the mean groundwater discharge to the 

Great Lakes of models A and B is projected to be the lowest among all models (Table 4), 

which could be attributed to the substantial water table decreases projected by both models 

in the Lake Ontario Lowlands, as depicted in the corresponding model panels of Figure 9.  

In addition, negligible changes in the water table are expected in the Appalachian Plateau 

area, making it the most resilient to climate change within the WNY aquifer. Conversely, 

the water table in urban areas, particularly in the city of Buffalo, is likely to decrease in the 

SSP2 4.5 scenario due to lower projected precipitations across all ensemble members. In 

the SSP5 8.5 scenario, however, the water table is projected to increase in all models 

except for model F, which is the only one projecting lower precipitation changes. It is 

worth noting that this research does not simulate future changes in impervious surfaces or 

groundwater abstractions in WNY. However, future studies focusing on groundwater 

management for future water availability and allocation should consider these factors, as 

they are likely to affect groundwater recharge and discharge processes. 
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Figure 0-8: Spatial variations of the changes projected in groundwater levels between December 2019 and 

December 2100 in WNY. Inactive cells are represented as white areas surrounding the watershed while 

constant head boundary conditions (Lake Erie, Ontario and the Niagara River) are represented in blue. 

A 5. Discussion 

A.5.1. The role of the groundwater system as a buffer of climate change 

impacts on surface waters   

The response of groundwater presented in section 4.4 suggest that the aquifer would be 

able to buffer the impacts of climate change on surface water through its storage if future 

recharge increases. However, doing so will likely have negative impacts on groundwater 

storage unless the mean recharge increases by ~15% in SSP2 4.5 and somewhere between 

~32 – 37% in SSP5 8.5 as a consequence of ~27.1% and ~ 80% increase of mean 

precipitation in the respective scenarios. This is consistent with previous studies performed 

in watersheds within the Great Lakes region, where it was found that future recharge rates 

and groundwater storage will likely increase as a result of increasing precipitations and 

warmer winters (Cherkauer & Sinha, 2010; Cochand et al., 2019; Dubois et al., 2022; 

Larocque et al., 2022).  

Results on the potential buffering capacity of the groundwater system in WNY are also 

consistent with those of previous works (Costa et al., 2021; Erler et al., 2019; Kayastha et 

al., 2022; Niu et al., 2014; Persaud et al., 2020). Erler et al. (2019), for example, evaluated 

the impacts of climate change on groundwater resources in a watershed in the Great Lakes 

Basin, and found that regions characterized by a shallow water table may be able to rely on 

groundwater resources to supply moisture to soil under drier conditions. Costa et al. (2021) 

reviewed existing research on the potential effects of a changing climate on the quality and 

quantity of groundwater in the Great Lakes Basin. They observed that studies performed 
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on small/medium basins generally project groundwater systems to be resilient to climate 

change impacts, and those performed on larger basins predict an increase in groundwater 

storage. Niu et al. (2014) analyzed water budgets and storage changes in two of the largest 

watersheds in the State of Michigan (the Grand River and the Saginaw Bay watersheds) 

using remotely sensed data and a process-based hydrologic model (PAWS). They 

concluded that water storage was increasing in both watersheds and that subsurface 

components (mainly water in the vadose zone and the unconfined aquifer) are responsible 

for those changes in storage. Soonthornrangsan & Lowry (2021) concluded that surface 

water in the WNY basin will be more sensitive to changes in precipitation than 

groundwater. Unlike said research, we found that groundwater could alleviate changes in 

surface water under future water stress conditions but not vice versa. However, they 

predicted spatial changes in the water table and storage consistent with our findings, 

particularly the decreasing heads and storage in urban areas such as the city of Buffalo. 

A.5.2. Sources of uncertainty in predicting climate change impacts in the 

WNY basin and future work  

Our results indicate that groundwater discharge to the Great Lakes would be severely 

altered under future conditions similar to those projected by models A and B in the WNY 

basin, which could have negative impacts on the water balance of the lakes. In the current 

research, the Great Lakes are represented in the GSFLOW model with a constant head 

boundary condition throughout the entire simulation period (past and future), which means 

that changes in the lakes’ water budget are not being simulated. This modeling assumption 

adds uncertainty to the interpretation of future impacts on WNY, as previous studies have 

shown that factors such as subsurface (unsaturated and saturated zones) contribution to 

lakes, surface runoff and open lake evaporation, among others, are key factors in driving 

changes in levels and storage in the Great Lakes (Kayastha et al., 2022; Niu et al., 2014; 

Seglenieks & Temgoua, 2022; Xu et al., 2021). Moreover, future fluctuations in lake levels 
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are expected to vary over time in the Great Lakes e (Gronewold et al., 2016b; Kayastha et 

al., 2022; Seglenieks & Temgoua, 2022; Xu et al., 2021), which could bring negative 

impacts on their surrounding watersheds, such as flooding, contamination of water quality, 

jeopardize crop production, habitat destruction, among other effects (Cherkauer & Sinha, 

2010). 

In our research, we aimed to represent the uncertainty of future projections in the WNY 

basin by generating ensembles of future scenarios SSP2 4.5 and SSP5 8.5, each with four 

models. While the number of ensemble members in our research was limited by the 

simulation time of the GSFLOW model, previous studies have shown that increasing the 

number of ensemble members can reduce the uncertainty associated with future projections 

(Deser et al., 2012; Lehner et al., 2020). Therefore, we recommend for future work on 

climate change assessment to increase the number of ensemble members to reduce the 

uncertainty in their projections. To that aim, we suggest considering the simulation time as 

an important factor in the construction of their models to achieve a balance between the 

adequate representation of the systems’ processes and the simulation times. 

A 6. Conclusions 

A previously developed integrated surface – groundwater model of the WNY basin (within 

the Lower Great Lakes) was forced under two climate change scenarios from CMIP6 to 

assess the hydrological response of the system and the potential impacts on discharge 

flows to the Great Lakes (Erie and Ontario). To that end, small ensembles of both 

scenarios were generated from four selected models to represent a span of potential 

outcomes and reduce uncertainty of future projections. The models were selected based on 

the precipitation change projected by the raw GCMs. The QDM approach was applied to 

statistically adjust model biases to the WNY area using the climQMBC MATLAB 

package. 
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The bias-adjusted projections of climatic variables show less uncertainty across models of 

ensemble SSP2 4.5 than those of SSP5 8.5. Unlike temperatures, precipitation projections 

are uncertain in both ensembles as their members differ in the magnitudes and changes 

projected throughout the year, particularly in SSP5 8.5. The selection criteria for ensemble 

members based solely on precipitation, which is the main driver of the hydrological 

system, resulted in SSP2 4.5 projecting higher temperatures (~36% mean increase) than 

SSP5 8.5 (~32% mean increase).  

It was found that the soil and unsaturated zones will be highly sensitive to climatic 

changes, while groundwater will be less sensitive to such changes. Furthermore, the WNY 

aquifer would be able to buffer negative impacts of climate change on surface water 

processes if groundwater recharge increases by ~15% and between ~32 – 37% in SSP2 4.5 

and SSP5 8.5, respectively. Consequently, groundwater could sustain discharges to the 

Great Lakes. Yet, if precipitation increases below ~27% and ~ 80% in the respective 

scenarios, the generated recharge will not sustain groundwater storage, and the aquifer will 

lose its buffering capacity.  

These results highlight the importance of evaluating further the response of groundwater to 

climate change to gain more certainty regarding the ability of groundwater to mitigate 

potential impacts on surface water. To that end, incorporating more detailed modeling of 

lake dynamics and levels is crucial in future research, as well as accounting for 

anthropogenic factors, such as projected changes in impervious surfaces and groundwater 

abstractions, which may affect groundwater recharge and discharge processes. Finally, 

increasing members of multi – model ensembles is encouraged to better represent the 

inherent uncertainty of climatic projections, allowing a more comprehensive understanding 
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of the potential impacts of climate change on the WNY aquifer and designing sustainable 

management strategies for the region's water resources. 
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