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Saúl Hernández-Ortiz1, David Valenzuela2, Alfredo Raya1, Saúl
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2Instituto de F́ısica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago
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Abstract. We model the low energy dynamics of graphene in the continuum in terms

of a version of Reduced Quantum Electrodynamics restricting fermions to a (2+1)-

dimensional brane, whilst photons remain within the (3+1)-dimensional bulk. For

charge carriers, besides the Dirac mass gap, we consider a Haldane mass term which is

induced by parametrizing an effective parity P and time-reversal T symmetry breaking

that occurs on the brane when deformations of the honeycomb array are such that the

equivalence between sublattices is lost. We make use of the relativistic Kubo formula

and carry out an explicit calculation of the transverse conductivity. As expected,

the filling factor is a half (in natural units) for each fermion species. Furthermore,

assuming that a sample of this material is radiated perpendicularly with polarized

monochromatic light of frequency ω, from the modified Maxwell’s equations we study

the problem of light absorption in graphene in terms of the said conductivity. We

observe an analog effect to the Faraday Rotation due the Induced Mass (FRIM)–and

not to an external magnetic field– in which light penetrating the sample changes its

angle of polarization solely by effect of the induced mass. This effect might be relevant

for the development of optic filters based on mechanical stretching of graphene flakes.

1. Introduction

Graphene is a two dimensional array of carbon atoms in a hexagonal lattice. It is one

to the most interesting materials in solid state physics nowadays due to its exceptional

properties and its potential nanothechnological applications, one of the reasons perhaps

for which Andrei Geim and Konstantin Novoselov were Laureated with a Nobel Prize

in Physics in 2010. Progress in the experimental isolation of monolayer graphene

samples [1, 2, 3] has led to an extensive exploration of the electronic properties of

this material. Its crystal structure allows an accurate tight-binding description at

low energies, which becomes, in the continuous limit, a version of massless quantum

electrodynamics in (2+1)-dimensions, QED3, for the charge carriers restricted to move
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along a membrane [4], but in which photon are allowed to move throughout space in

such a way that the static Coulomb interaction is still described by a potential that

varies as the inverse of the distance on the plane of motion of quasiparticles. This

model incorporates the most essential and well-established properties of the charge

carrier dynamics: the symmetries of the hexagonal lattice, the linearity of the dispersion

relation, a very small mass gap (if any), and a characteristic propagation velocity which

is 1/300 of the speed of light in vacuum [4, 5, 6].

A remarkable feature of graphene is the visual transparency of its membranes.

Opacity of layers of this crystal has been measured [7] to be roughly 2.3% with

almost negligible reflectance. This observation has opened the possibility of using

monolayer graphene in combination with bio-materials to produce clean hydrogen by

photocatalysis [8] with visible light. The problem of light absorption in graphene can

be addressed from quantum field theoretical arguments [9, 10, 11, 12], considering

the Dirac picture for its charge carriers in terms of the degrees of freedom of QED3

under different assumptions. Parity violating effects were considered in [10], whereas

the influence of a strong and weak magnetic field were considered in [11] and [12],

respectively. Measurements of magneto-optical properties of epitaxial graphene have

been reported in Ref. [13], particularly the polarization rotation and light absorption.

Quantum Faraday and Kerr rotations have also been experimentally determined [14]

and a complete framework based on the equations of motion was presented in [15] to

describe those effects.

In this article we explore an analog to the Faraday effect in deformed graphene.

We consider deformations of the membrane which break parity P and time-reversal

T symmetries, rendering the sublattices inequivalent. Examples of such deformations

are, for instance, strains [16], known to give rise to homogeneous pseudomagnetic

fields. The net effect of deformations is parametrized in terms of a P and T breaking

Haldane mass [17] which plays the role of an external magnetic field. We find that the

mentioned mass term induces a change in the angle of polarization for monochromatic

light passing perpendicularly through the graphene sample. Our key observation is that

the Haldane mass induces a half-filling Quantum Hall Effect (QHE) per fermion species

(see, for instance, [18]), and because the change of the angle of polarization of light

passing through a graphene membrane can be expressed entirely in terms of the Hall

conductivity [9, 10, 11, 12], the effect we propose in this work can be expressed solely in

terms of the mass parameter that accounts for deformations in graphene. The effect we

observe can be the basis of an optical filter based on mechanical deformation of graphene.

To describe our findings, we have organized the remaining of this article as follows: In

Sec. 2 we introduce a continuous model for the charge carriers in graphene and explicitly

show the decomposition of the propagator for two different fermions species according

to their chiralities. We provide a proper meaning of this property in terms of the lattice

structure of graphene. In Sec. 3 we calculate the conductivity tensor through the filling

factor using the Kubo formula and in Sec. 4 we review the problem of light absorption

in graphene through the modified Maxwell’s equations which describe the penetration
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of electromagnetic waves into the sample. From the matching conditions, we calculate

the transmission coefficients and the angle of polarization rotation of transmitted light.

Discussions and conclusions are presented in Sect. 5.

2. A continuous model for graphene

Tight-binding approach to the description of monolayer graphene corresponds in the

continuum to a massless version of quantum electrodynamics in (2+1) dimensions,

QED3, but with a static Coulomb interaction which varies as the inverse of the distance,

just as in ordinary space [4]. The dynamics can be modeled from the action

I[ψ,A] = −
1

4

∫

d4xF 2

µ̂ν̂ +
∫

d3xψ̄ 6Dψ , (1)

with Fµ̂ν̂ = ∂µ̂Aν̂ − ∂ν̂Aµ̂, 6D = iγ̃µ(∂µ + ieAµ), Aµ̂ representing the gauge field that

propagates in (3+1)-dimensions and ψ the quasiparticle fermion field. The symmetry

which exists between the two triangular sublattices allows to merge the fermion content

into a single four-component theory for the charge carriers. In our considerations,

circumflexed greek indices α̂, β̂, γ̂ and so on take the values 0, 1, 2, 3; greek indices

µ, ν, γ, etcetera run from 0 to 2; and latin indices a, b and so on –which label the

spatial coordinates on the graphene layer– take the values 1 and 2. Moreover, the re-

scaled 4×4 Dirac matrices are such that γ̃0 = γ0, γ̃1,2 = vFγ
1,2 and for later convenience,

we also consider the matrices γ̃3 = γ3 and γ̃5 = γ5, where vF is the Fermi velocity of

quasiparticles in the crystal. In the natural units of the system (namely, when vF = 1),

the form of the Lagrangian has been dubbed as Reduced QED and has been proposed

in the context of brane-world scenarios [19]. Explicitly, we consider

γ̃0 =

(

σ3 0

0 −σ3

)

, γ̃i = vF

(

iσi 0

0 −iσi

)

,

γ̃3 =

(

0 I

I 0

)

, γ̃5 = i

(

0 I

−I 0

)

. (2)

Notice that in this case, the free, massless Dirac Lagrangian

L = ψ̄ i6∂ ψ , (3)

is invariant under the two chiral-like transformations

ψ → eiσγ̃
3ψ , and ψ → eiβγ̃

5ψ , (4)

which means that besides the ordinary Dirac mass term, we can introduce a second term

m0ψ̄τψ with τ = i[γ̃3, γ̃5]/2, referred to as the Haldane mass term [17]. Such a term is

invariant under the transformations in Eq. (4). However, it breaks parity P and time-

reversal T symmetries. We stress that the chiral character of the transformations (4)

is not related to the quasiparticle spin, but rather to their pseudospin. The massive

Lagrangian thus becomes

L = ψ̄ (i6∂ −me −m0τ)ψ . (5)
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Introducing the chiral-like projection operators χ± = 1

2
(1± τ) which verify χ++χ− = 1,

and χ2
±
= χ±, we can re-express the Lagrangian (5) in the form

L = ψ̄+ (i6∂ −m+)ψ
+ + ψ̄− (i6∂ −m−)ψ

− , (6)

where m± = me ± m0 and the “left-” and “right-handed” quasiparticle fields are

ψ± = χ±ψ. Hence, the Lagrangian describes two different charge carrier species which

are non degenerated in mass: one of them becomes lighter and the other heavier as

m0 increases. This difference implies that the interaction between the two species in

the reciprocal lattice is different. This type of asymmetry that can be introduced as

a constant deformation on the graphene membrane that modifies the fundamental cell,

but not the periodicity of the sample, which means that as one deforms the graphene

membrane along one direction, m0 grows and in consequence, the differences between

the species is more evident.

The decomposition of the free quasiparticle propagator corresponding to (6) is

S(p) = −

([

6p +m+

p2 −m2
+

]

χ+ +

[

6p+m−

p2 −m2
−

]

χ−

)

= − (S+(p)χ+ + S−(p)χ−) . (7)

We shall use the above expressions for the fermion propagator to discuss the problem

of the Faraday rotation due the induced mass (FRIM) in graphene.

3. Filling Factor

It is well known that the Hall conductivity for the QHE can be expressed as

σ =

(

0 −ν e
2

2π

ν e
2

2π
0

)

, (8)

where ν is a small integer (integer QHE), or a fraction (fractional QHE), the so-called

filling factor. In the absence of magnetic fields, we can still have QHE provided parity

and/or time reversal symmetries are broken in the Lagrangian and one form to achieve

this is to consider the Haldane mass term [18]. A helpful tool for the calculation of

the transverse conductivity via the filling factor is the Kubo formula, which expresses

the linear response of an observable quantity due to a time-dependent perturbation. In

terms of the fermion propagator, the filling factor is found through [18, 20]

ν =
1

24π2

∫

d3pǫµνρTr[(∂µS
−1)S(∂νS

−1)S(∂ρS
−1)S] , (9)

where S is the electron propagator, ǫµνρ the Levi-Civita Symbol and ∂µ = ∂/∂pµ. Using

the chiral-like decomposition of Eq. (7) for the free quasiparticle propagator, the right-

and left-handed projections of the filling factor can be obtained as [18]

ν± =
1

24π2

∫

d3pǫµνρTr[(∂µS
−1

±
)S±(∂νS

−1

±
)S±(∂ρS

−1

±
)S±χ±], (10)

which shows the helpfulness of the chiral-like projectors. Hence, the filling factor is

ν = ν+ + ν− . (11)
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The computation of ν± reduces to calculate a trace

Tr[S±] = Tr

[

γµ
[

6p+m±

p2 −m2
±

]

γν
[

6p +m±

p2 −m2
±

]

γρ
[

6p+m±

p2 −m2
±

]

χ±

]

. (12)

For the representation in Eq (2), the traces of the gamma matrices with the χ± projectors

satisfy:

Tr[χ±] = 2 ,

Tr[γµχ±] = 0 ,

Tr[γµγνχ±] = 2gµν ,

Tr[γµγνγαχ±] = ∓2iǫµνα ,

Tr[γµγνγαγβχ±] = 2
(

gµνgαβ − gµαgνβ + gµβgνα
)

. (13)

Notice that only Tr[γµγνγαχ±] is asymmetric upon contraction with ǫµνρ, and thus the

trace in Eq. (12) reduces simply to

ǫµνρTr[S±] = i
±12m±p

2 ∓ 12m3
±

(p2 −m2
±)

3
. (14)

Then, replacing into the Kubo formula and after Wick rotating to Euclidean space, we

obtain that

ν± = ∓
m±

2π2

∫

d3p

(p2 −m2
±)

2
= ∓

m±

2π2

π2

|m±|
= ∓

1

2

m±

|m±|
,

which for m± → 0 becomes

ν± = ∓
1

2
sign(m±). (15)

Notice that the above result (15) also arises naturally when considering a tight-biding

model for next-to-nearest neighbors; in the continuum, the corresponding effective

Hamiltionian can be straightforwardly diagonalized within a non-conmutative quantum

mechanics framework [21]. Accordingly, from Eq. (11) the filling factor is

ν = −
1

2
sign(m+) +

1

2
sign(m−) , (16)

that gives ν = 0 if m0 = 0, and ν = −1 if me = 0. In the latter case, the Hall

conductivity becomes

σxy = −ν
e2

2π
, (17)

which becomes the key ingredient to address the problem of light absorption in graphene

below.

4. Light absorption

From the action in Eq. (1), we can describe the propagation of electromagnetic waves

through the graphene sample according to the modified Maxwell’s equations

∂µ̂F
µ̂ν̂ + δ(z)Πν̂ ρ̂Aρ̂ = 0 , (18)
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subject to the conditions

Aµ̂

∣

∣

∣

∣

∣

z=0+

− Aµ̂

∣

∣

∣

∣

∣

z=0−

= 0 ,

(∂zAµ̂)

∣

∣

∣

∣

∣

z=0+

− (∂zAµ̂)

∣

∣

∣

∣

∣

z=0−

= Πν̂
µ̂Aν̂

∣

∣

∣

∣

∣

z=0

. (19)

In the above expressions, Πν̂ ρ̂ represents the vacuum polarization tensor, which has the

general form

Πµν = α

[

Ψ(p)

(

gµν −
pµpν

p2

)

+ iΦ(p)ǫµνρpρ

]

, (20)

Ψ(p) and Φ(p) representing polarization scalar functions. The first term describes the

part that preserves parity and has been used to estimate the light absorption [9, 10, 11,

12], while the second part describes the term that breaks parity, which we are interested

to explore in this work.

Following Refs. [9, 10, 11, 12], we interpret the delta function in Eq. (18) as a

current in the plane the graphene membrane. Thus, from Ohm’s law,

ja = σabEb . (21)

Assuming a varying incident electric wave with frequency ω expressed in a temporal

gauge A0 = 0, we can take Eb = iωAb, which from the generalized Maxwell’s

equations (18) allows us to write ja ≃ ΠabAb. Finally, we can identify from Ohm’s

law, the conductivity tensor as

σab =
Πab

iω
. (22)

This expression becomes useful in what follows.

For the FRIM problem, let us consider a plane wave of frequency ω, which travels

along the z-direction from below the graphene layer with a linear polarization along the

êx direction. Moreover, considering that the wave passes through the graphene plane,

the reflected and transmitted waves can be described as

A = e−iωt
{

êxe
ikzz + (rxxêx + rxyêy)e

−ikzz, z < 0,

(txxêx + txyêy)e
ikzz, z > 0,

(23)

where êx,y are the unit vectors along the directions x and y on the membrane. The

boundary conditions (19) simplify to

Aa

∣

∣

∣

∣

∣

z=0+

− Aa

∣

∣

∣

∣

∣

z=0−

= 0 ,

(∂zAa)

∣

∣

∣

∣

∣

z=0+

− (∂zAa)

∣

∣

∣

∣

∣

z=0−

= α
[

Ψ(ω)δab + iωΦ(ω)ǫ ba
]

Ab

∣

∣

∣

∣

∣

z=0

, (24)

such that the transmission coefficients can be straightforwardly obtained [9, 10, 11]

txx =
−2ω(iαΨ+ 2ω)

α2Ψ2 − 4iαωΨ− (4 + α2Φ2)ω2
,

txy =
2αΦω2

α2Ψ2 − 4iαωΨ− (4 + α2Φ2)ω2
. (25)
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The angle of polarization rotation θF is obtained as follows:

θF =
1

2
arg

txx − itxy
txx + itxy

= −
1

2
arg

iαΨ+ 2ω + iαΦω

iαΨ+ 2ω − iαΦω

= −
α

2
Re(Φ) +O(α2)

= −
1

2

Πxy

iω
+O(α2) . (26)

Therefore, in terms of the Hall conductivity, the angle of FRIM θF becomes

θF = −
Re(σxy)

2
+O(α2) . (27)

Substituting the explicit form of σ from the Eq. (8), we finally arrive at the main result

of this article, namely,

θF =

{

0, m0 = 0
e2

4π
≃ α, me = 0

. (28)

Observe that FRIM effect would appear only when the parity and time reversal

symmetries are broken, in consistency with the experimental and theoretical findings for

these quantities in absence of external fields as well as in and the presence of a strong

magnetic field [9, 13, 14, 15].

5. Final remarks

In this work, we have calculated the transverse (Hall) conductivity in a low energy

effective model of graphene within a RQED3 framework, in which we consider an

ordinary mass term mψψ̄ that is invariant under P and T and the Haldane mass

term m0ψτψ̄ that is invariant under pseudo-chiral transformations, Eq. (4), but breaks

parity and time reversal. Those mass parameters might be thought as effective

parametrizations of strains and other distortions in the crystalline structure of pristine

graphene. Considering both the mass terms, the Kubo formula yields a half-filling factor

per fermion species so long P and T symmetries are explicitly broken. In our case, we

obtained ν = 1. From the corresponding Hall conductivity, we have estimated the

Faraday rotation angle θF of an incident wave. Finally, we observe that the angle of

polarization rotation even in the absence of external magnetic fields is θF = 0 when

m0 = 0 and θF = α when me = 0. This opens the possibility to measure that the

polarization rotation with visible light in deformed graphene and might be helpful to

design optical filters.
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