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Abstract
We investigate theoretically the non-adiabatic transitions in a PT -symmetric
lattice subject to a strong ac force. In an optical realization of the lattice,
the curvature of the waveguides along the paraxial propagation direction
plays the role of the external periodic force necessary to drive the system
through an avoided level crossing. Analytical expressions for the transition
probabilities after multiple passages are obtained within an effective two-mode
approximation. We show that gain and losses of the light beam, as well as
the relative occupation probabilities of the bands involved in the transitions,
can be accurately managed upon tuning the parameters of the system and are
particularly sensitive to the amplitude of the non-Hermitian component of the
lattice. Numerical simulations for the complete system are found to agree very
well with the approximate analytical results.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

PACS numbers: 42.25.Hz, 11.30.Er, 05.60.Gg, 73.40.Gk

(Some figures may appear in colour only in the online journal)

1. Introduction

A strongly driven two-level system undergoes a non-adiabatic transition commonly known as
Landau–Zener (LZ) tunneling. If the system is driven periodically through its level crossing, the
phase accumulated between consecutive LZ transitions may lead to constructive or destructive
interference often referred to as Landau–Zener–Stückelberg (LZS) interferometry [1]. Recent
observations of LZS interference include ultracold molecular gases [2], optical lattices [3] and
nitrogen-vacancy centers [4].

Since an important requirement in quantum mechanics is to have Hermitian Hamiltonian
operators, it is in this setting in which LZS interferometry has been studied so far. Such
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restriction is sufficient to guarantee that the system not only has a real spectrum, but also a
unitary evolution conserving probability. Nevertheless, in recent years it has been demonstrated
that the Hermiticity requirement H = H† is not necessary and that it may be replaced by the
physically transparent condition of parity and time reversal (PT ) symmetry [5–7]. Thus, it
becomes possible in principle to describe processes that do not violate the physical axioms of
quantum mechanics by using non-HermitianPT -symmetric Hamiltonians. A proper definition
of an inner product, unitarity, the definition of observables and other important issues related
to PT -symmetric systems have been intensively studied [ 5, 8–12].

On the other hand, new developments in engineered optical waveguides have provided a
fertile ground for the experimental realization of classical analogies for a variety of quantum
coherent phenomena [13]. The analogy lies in the formal equivalence between the temporal
Schrödinger equation for a quantum particle and the wave equation for the spatial propagation
of monochromatic light in the scalar and paraxial propagation. A clear technical advantage
over quantum systems is that in the optical setting, the wavefunction evolution can be
directly observed by simple fluorescence imaging or scanning tunneling optical microscopy.
Furthermore, since driven potentials can be achieved by introducing curvature along the
propagation direction, optical analogues of quantum phenomena such as coherent destruction
of tunneling [14] and Bloch oscillations [15, 16] have been realized experimentally. In this
context, it is also possible to realize the complex optical potentials by introducing loss and
gain distributions. Particularly interesting is the possibility of realizing and experimentally
investigating the aforementioned PT -symmetric systems by using the right combination of
gain and loss regions. Recent experiments have realized a PT -symmetric optical system
consisting of two coupled parallel LiNbO3 optical waveguides [17]. Providing amplification
to only one channel by partially blocking the pump light it is possible to achieve the desired
asymmetric gain. These promising results have paved the way for the future synthesis of
periodic optical systems that could display unusual properties due to the PT -symmetry.

In this paper, we consider the scenario in which a sinusoidal curvature of the waveguide
mimics an ac force applied to a periodic PT -symmetric complex lattice. Recently, driven
periodic complex potentials have proven to be a fertile ground for the study of novel phenomena
in wave mechanics such as non-conventional Bloch oscillations [18] and dynamic localization
[19]. As in Hermitian quantum mechanics, the application of an external force may lead to
interband transitions and interference phenomena. However, the time evolution in a complex
lattice may be non-unitary, making such transitions fundamentally different. Motivated by
these facts, in this work, we provide a detailed study of the non-Hermitian LZS interferometry
for a light beam propagating in a PT -symmetric complex crystal. We investigate the
problem theoretically using first analytical calculations describing the transitions near the
level crossings within a two-mode approximation and then complement those results with
numerical simulations. It is shown that the former not only provide insight into the underlying
physics, but also compare well with the numerical results. The results obtained reveal that the
non-Hermitian part of the Hamiltonian can be used as a novel control parameter to manipulate
the intensity of the light beam along the curved waveguides. In an experiment such as the
one described in [17], where an optical two-wave mixing gain is used, the amplitude of the
imaginary part of the potential can be tuned either by adjusting the intensity of the pump beam
or by modifying the concentration of Fe3+ on the waveguides.

The paper is organized as follows. First, in section 2 we describe the model for light
propagation in a PT -symmetric lattice within the paraxial regime including the curvature
which provides the necessary driving field. In section 3, we derive an effective two-level
system from which we obtain analytical expressions for the transition probabilities. Later,
in section 4 the results for the two-level system are compared to numerical simulations
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Figure 1. Schematic depiction of the refractive index of the waveguides, composed by real and
imaginary parts that vary sinusoidally along the transverse direction (X). The maxima of the real
part are marked in black, whereas the maxima of the imaginary part are marked in gray (green).
After a coordinate and gauge transformation, the periodic curvature in the propagation direction Z
given by X0(Z) results in the alternate driving force F(Z) (see equation (4)).

for the complete PT -symmetric lattice. Finally, some concluding remarks are included in
section 5.

2. The model

Let us consider monochromatic light of vacuum wavelength λ propagating along a guiding
structure having a periodic refractive index along its transverse direction, i.e. n(X ) = n(X +a).
Additionally, the waveguide is sinusoidally curved along the paraxial propagation direction Z
such that n(X, Z) = n(X − X0(Z)), where

X0(Z) = A sin(2πZ/�), (1)

(see figure 1). Within the paraxial approximation and after a suitable reference frame and
gauge transformation, the equation for the (transformed) electric field amplitude becomes [13]

i–λ∂Zψ = −
–λ2

2ns

∂2ψ

∂x2
+ U (x)ψ − F(Z)xψ ≡ H0ψ − F(Z)xψ, (2)

where –λ = λ/2π and x = X − X0(Z) is the transformed transverse axis. The first part of the
potential is given by

U (x) ≈ ns − n(x), (3)

where ns is the refractive index of the substrate and n(x) = n(x + a) is the periodic part of the
refractive index profile with periodicity a. After the transformations, the axis bending along
the paraxial direction results in an alternate driving force

F(Z) = nsAω2 cos(ωZ), (4)

where ω = 2π/�.
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For a complex potential, the imaginary part of U (x) renders H into a non-Hermitian
Hamiltonian. In the following, we shall consider U (x) = U1 cos(2πx/a) + iU2 sin(2πx/a),
which satisfies U (x) = U (−x)∗ and thus H0 is PT -symmetric [18]. For U2 < Ucrit

2 = U1,
the spectrum of H0 has real values; otherwise the bands merge giving place to the pairs
of complex conjugate values [20]. Henceforth, we consider U2 < Ucrit

2 , unless otherwise
specified. The eigenfunctions of H0 are the Floquet–Bloch band mode functions φqn(x) with
Bloch-momentum q, which fulfil the secular equation H0φqn(x) = En(q)φqn(x), where En(q)

are the eigenenergies corresponding to the nth Floquet–Bloch band. While as in real crystals
En(−q) = En(q), the wavefunctions under the parity transformation x → −x and q → −q
obey the general relation φ†

qn(x) = φ−qn(−x), where φ†
qn are eigenfunctions of H†

0. Moreover,
as was shown in [20], the orthogonality condition becomes∫ ∞

−∞
φ†

qn(x)φq′m(x) dx = dqnδ(q − q′)δnm, (5)

with dqn = ±1.
Let us consider as input excitation a plane wave with normal incidence. Hence, the

wavefunction can be written as a superposition of the Floquet–Bloch eigenfunctions having
the same crystal momentum q, i.e. ψq(x, Z) = ∑

n cqn(Z)φqn(x), where φqn(x) = wqn(x)eiqx

and wqn(x + a) = wqn(x). Expanding wqn(x) in a Fourier basis, we can write

ψq(x, Z) =
∑

l

al
q(Z) ei(2kl+q)x, with k = π/a and al

q(Z) =
∑

n

cqnbl
qn.

Here, bl
qn with l = 0,±1,±2, ... are the coefficients of the Fourier expansion for wqn(x).

Substituting this into equations (2) and (3) we obtain the dimensionless equation for the
dynamics of al

q,

i
∂al

q

∂z
= (2l + q̃)2al

q + (V1 + V2)a
l+1
q + (V1 − V2)a

l−1
q , (7)

where z = ZEk/
–λ, q̃ = q/k and Vj = Uj/2Ek, j = 1, 2 with Ek = –λ2k2/2ns. It is convenient to

write the evolution equation in the usual quantum mechanics notation

i∂z|aq(z)〉 = H|aq(z)〉, (8)

where |aq(z)〉 is the vector with components al
q and

H = {Hm,l = (2l + q̃)2δm,l + (V1 + V2)δm,l−1 + (V1 − V2)δm,l+1}. (9)

This Hamiltonian matrix is real but non-symmetric and has a real spectrum for values V1 > V2.
From this expression, it is also clear that changing the sign of the amplitude of the imaginary
part of the potential V2 is equivalent to a transposition of H. Note that the problem becomes
analogous to the dynamics of a particle moving on a discrete chain with non-symmetric
hopping amplitudes (V1 + V2 and V1 − V2) and on-site energies given by (2l + q̃)2. Clearly,
for positive values of V2, the system tends to evolve toward modes with higher energies and
vice versa. This is a manifestation of the fact that there is an energy gain (loss) for the positive
(negative) values of U2 in the optical system (2). A numerical diagonalization of (9) results in
energy bands like the ones shown in figure 2. The diagram of energy versus Bloch-momentum
reveals that increasing V2 causes an approaching of the bands at the avoided crossings, leading
to degeneracies at V2 = V1. In this paper, we study the case where the paraxial axis bending
results in the alternate driving force (4), under which the crystal momentum evolves in time as

q(Z) = q0 + nsAω sin(ωZ). (10)
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Figure 2. Energy bands of the system as a function of Bloch-momentum q. The vertical axis below
the spectrum represents the timelike paraxial propagation direction Z. Curvature along this direction
drives the quasimomentum q several times through the level crossing, according to equation (10).

Furthermore, we will focus on the dynamics around a single (avoided) level crossing between
the ground and first excited states (see figure 2). Thus, the conditions are such that the time
evolution is dominated by an effective two-mode system that we will study further in section 3.

It is important to note that for the PT -symmetric Hamiltonian H0 the power of the
propagating light beam remains constant provided U2 < Ucrit

2 . If in addition we consider
the presence of an external force as in equation (2), then the PT -symmetry is broken and
the power is no longer a conserved quantity. Thus, under the action of the force, transitions
to other bands may occur that do not conserve the power. Recently, the Gaussian wavepacket
dynamics of this system has been analyzed in the presence of a small external force [18]. Also,
the dynamics of a single mode under a constant force F(Z) = F of arbitrary strength was
investigated in [21].

3. LZS interferometry for a non-symmetric two-mode system

To obtain approximate analytical results for the dynamics, we focus our analysis near the
avoided level crossings that appear at the Bragg scattering points q̃ = (2 j + 1) with
j = 0,±1,±2, . . . . For a small energy separation between the modes involved in a given
avoided crossing, one can safely neglect the effects due to any other bands. A suitable
description can then be provided in terms of an effective two-mode Hamiltonian. In particular,
from matrix (9) and considering the two lowest bands it is possible to obtain the corresponding
effective Hamiltonian

H = 1

2

(
ε � + δ

� − δ −ε

)
, (11)
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Figure 3. Energy spectrum of the periodically driven two-level system as a function of time. The
areas labeled by ζi j correspond to the dynamical phases the system acquires during the adiabatic
part of its evolution between zi and z j .

where ε = 4(1 − 2l − q̃), � = 2V1 and δ = 2V2.1 Unlike the Hermitian case, in equation (11)
H1,2 	= H∗

2,1 and the eigenvalues can therefore have complex values. By solving the secular
equation for (11), we obtain

E± = ± 1
2

√
ε2 + (�2 − δ2), (12)

so that for high values of ε the spectrum is real. At ε = 0, the gap between the energy
levels becomes E+ − E− = √

�2 − δ2. On the other hand, when δ2 > �2, purely imaginary
eigenvalues arise in the region ε2 < (δ2 −�2), indicating that the system is beyond the critical
point where the PT -symmetry is broken.

As we mentioned above, the presence of a sinusoidal axis bending along the paraxial
direction in equation (2) mimics an ac force causing a periodic variation of the Bloch-
momentum along the propagation direction as given by equation (10). As a result, the diagonal
elements of matrix (11) can be written as

ε = ε0 − Ã sin(ω̃z), (13)

where ε0 = 4(1 − 2l − q0/k), ω̃ = ω–λ/Ek and Ã = 4nsAω/k = 2Aω̃–λk. The resulting
spectrum is shown in figure 3. To study this periodically driven two-level system, we will
use the adiabatic-impulse model, which is convenient when the system is repeatedly driven
through one of the avoided crossings located at

q̃ = 1 − 2l, (14)

where l is an integer. Basically, the idea of this approximation is to consider the evolution
as adiabatic away from the avoided crossing and introduce the transition matrix N which
captures the non-adiabatic part of the transition. For a detailed treatment of the symmetric (i.e.
Hermitian) case, see for instance [22].

We have generalized the conventional calculation for the Hermitian two-level system to
the asymmetric case, which naturally arises in thePT -symmetric optical waveguides as shown
above. The transition matrix becomes

N =
⎛
⎝

√
�+δ
�−δ

√
1 − PLZ e−iϕS

√
PLZ

−√
PLZ

√
�−δ
�+δ

√
1 − PLZ eiϕS

⎞
⎠ , (15)

1 In what follows we consider � > 0.
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where

ϕS = π

4
+ γ (ln γ − 1) + arg �(1 − iγ ), (16)

PLZ = e−2πγ . (17)

The adiabatic parameter γ = (�2 − δ2)/4v indicates how slow the transition is. Considering
the periodic driving (13), in the present case the velocity at the avoided crossing is given by

v = Ãω̃

√
1 −

(
ε0

Ã

)
. (18)

Let us suppose now that the system is initially prepared in its ground state and then driven
several times across the avoided crossing (see figure 2). Using the transition matrix (15),
together with the dynamical phases the system picks up during the adiabatic part of the
evolution, it is possible to obtain a formula for the probability of encountering the system in
the excited state after a number of crossings. For an even number of crossings we obtain

Peven
+ (n) = 4

(
� − δ

� + δ

)
PLZ(1 − PLZ) sin2(�St )

sin2(nφ)

sin2(φ)
, (19)

where 2n is the number of crossings,

�St = ϕS + ζ24, (20)

is the so-called Stückelberg phase and ζi j is the dynamical phase accumulated during the
evolution between zi and z j (see figure 3). The phase φ in (19) is defined by

cos φ = (1 − PLZ) cos(ζ15 + 2ϕS) + PLZ cos(ζ12 + ζ45 − ζ24). (21)

On the other hand, for an odd number of crossings the probability of finding the system in the
excited state is

Podd
+ (n) = 2Q1

sin2(nφ)

sin2(φ)
− Q2

sin(2nφ)

sin(φ)
+ PLZ cos(2nφ), (22)

where 2n + 1 is the number of crossings and

Q1 = PLZ
[
PLZ sin2(ζ12 + ζ45 − ζ24) + (1 − PLZ)(1 − cos(ζ15 + 2φS) cos(ζ12 + ζ45 − ζ24))

]
,

(23)

Q2 = 2PLZ(1 − PLZ) sin(ϕS + ζ12 + ζ45) sin(ϕS + ζ24). (24)

For both results, (19) and (22), it can be easily checked that the well-known results for an
Hermitian Hamiltonian are recovered when δ → 0.

When the imaginary part of the potential is turned on (δ 	= 0), our results clearly reflect
the non-unitarity of the evolution by admitting P+ > 1. Thus, P+ should not be interpreted as
a probability, but instead as the energy of the excited mode in units of the total initial energy of
the light beam. Moreover, the direction in which the system first passes through the crossing
is important, since it determines the sign of δ. These features are a direct consequence of
the asymmetry of the two-level Hamiltonian (11), which in turn is a manifestation of the
underlying non-Hermiticity of the system. The imaginary part of the PT -symmetric potential
V2 = δ/2 can be used to tune the desired outcome for the power in the excited state after
several crossings as shown in figure 4. It is important to note that interferometry is also crucial
for the control of the transitions. This is reflected in the maxima and minima observed in
figure 4 where constructive and destructive interferences take place depending on the number
of crossings and on the choice of δ.
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Figure 4. As the imaginary part of the PT -symmetric potential is varied from δ = −� to δ = +�,
the resulting energies for the excited state are greatly modified. The chosen parameters are ε0 = 0,
Ã = 2, ω̃ = 0.02 and � = 2V1 = 0.2.

It is interesting to further analyze the critical points where the gap of the system vanishes
(δ2 → �2). One possibility is to take the limit δ → � in (19) and easily obtain

Peven
+ (n) = 0, (25)

Podd
+ (n) = 1. (26)

To understand this result, let us first remember that the system is initially prepared in its ground
state for ε < 0, which in the limit δ2 → �2 is

vini =
(

1
0

)
, (27)

with eigenvalue ε. Since for any value of ε this state is an eigenstate, its evolution will consist
in only a phase factor and the system remains in the same state. Thus, it is easy to see that for
an odd number of crossings ε > 0 and the state corresponds to the excited state; otherwise for
an even number of crossings ε < 0 and the system is found to be in the ground state.

Another way to reach criticality is by making δ → −�:

Peven
+ (n) = 8π�2

v
sin2(�St )

sin2(n(ζ12 + ζ45 − ζ24))

sin2(ζ12 + ζ45 − ζ24)
(28)

Podd
+ (n) = 1. (29)

In this regime, the upper off-diagonal element of the Hamiltonian becomes H1,2 = 0, so that
the dynamics of the first component of the vector becomes independent of the second one.
Actually, only the phase of this first term varies in time, which explains why the energy of
the excited state remains constant for ε > 0, i.e. for an odd number of crossings. On the
other hand, the term H2,1 = � enables a gain process that is evident from the result for an
even number of crossings. Furthermore, the expression for Peven

+ reflects that if the velocity v

diminishes there is more time for the gain process to take place, increasing the accumulated
energy.

8
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4. LZS interferometry in PT -symmetric optical lattice

Advances in the realization of optical waveguide arrays with PT -symmetric properties make
the observation of interband transitions in PT -symmetric periodic lattices a target within
reach in the near future. As explained above, we are interested in interband transitions that are
generated by the presence of a sinusoidal gradient in the refractive index.

In order to compare with the analytical results derived in the previous section, we will
consider conditions such that the system dynamics occurs near one of the avoided energy
crossings of the band structure of the complex lattice (see figure 2). The system is initially
prepared in its ground state and then driven several times through the avoided level crossing.
Beam splitting occurs at these scattering points due to non-adiabatic transitions and the
intensity of the beam is modified in the process. We focus our analysis on the parameter
window 0 < V2 < V crit

2 , where there are no singular or exceptional points, i.e. where two
eigenfunctions coalesce into one [23]. As noted in section 2, the action of the fictitious periodic
force in equation (2) can be effectively replaced in equation (7) by a Bloch-momentum q̃ that
depends on z as

q̃(z) = q̃0 + Ã sin(ω̃z), (30)

with ω̃ = ω–λ/Ek and Ã = 2Aω̃–λk. For simplicity, we will limit our analysis to the case
where the driving is symmetric around the avoided crossing located at q̃ = 1. As the initial
state, we choose an input excitation that populates the lowest band with Bloch-momentum
q̃(zi) = 1 − Ã, at an initial position along the waveguides which we pick as zi = −π/4ω̃.

To obtain the occupation amplitude of the first excited band in our numerical calculations,
the evolved state ψq f needs to be projected onto the eigenstate of the corresponding band.
Since this projection must conform with the orthonormality condition defined in (5), ψq f is
projected onto φ

†
q2, which is an eigenstate of H†. In this regard, the projection coefficients can

be calculated as

cq f 2 =
∫ ∞

−∞
φ

† ∗
q f 2 (x)ψq f (x)dx. (31)

Recalling now that the evolved state with final Bloch-momentum q f can be expanded as
in equation (6) and φ

†
q2 = ∑

l bl†
q2ei(2kl+q)x a straightforward calculation for the occupation

probability of the excited mode yields

P = |cq f 2|2 =
∣∣∣∑

l

bl†∗
q f 2al

q f

∣∣∣2
. (32)

We first consider a regime away from criticality, i.e. with a finite gap, and observe the evolution
of the system both for the Hermitian (V2 = 0) and non-Hermitian (V2 	= 0) cases. The power
or occupation ‘probability’ of the excited mode is measured after each crossing at the points
where the driving reaches its maxima. In figure 5, the results for the numerical simulations
are compared with the corresponding analytical results coming from the two-level analytical
approximation. Excellent agreement is observed between both results when V2 	= 0. Evidently,
when the imaginary part of the potential is absent, the evolution is unitary and the occupation
of the excited state remains below unity. Furthermore, as expected from equation (22), for an
odd number of crossings the results for V2 = V1/2 and V2 = −V1/2 coincide. Comparison of
figures 5(a) and (b) reveals that the results for an even number of crossings depend strongly
on the sign of V2, as predicted by the prefactor (� − δ)/(� + δ) in equation (19). For V2 = 0,
the gap is larger making the analytical approximation less precise as seen in figure 5(c).

Now, let us consider getting very close to the critical limit V 2
2 → V 2

1 . In this regime, the
gap between the lowest bands becomes very small at the Bragg-scattering points q = k(1−2l).
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Figure 5. Energies of the excited state (or occupation ‘probability’) after each crossing away from
criticality. Numerical results for the full system (circles) are compared to the analytical results
obtained from the two-level approximation (crosses). The values chosen for the parameters are
ε0 = 0, Ã = 2, ω̃ = 0.02 and � = 2V1 = 0.2. (a) δ = 2V2 = 0.1. (b) δ = 2V2 = −0.1. (c)
δ = 2V2 = 0.
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Figure 6. Energies of the excited state (or occupation ‘probability’) after each crossing near
criticality. Numerical results for the full system (circles) are compared to the analytical results
obtained from the two-level approximation (crosses). The values chosen for the parameters are
ε0 = 0, Ã = 3, ω̃ = 0.9 and � = 2V1 = 0.2. (a) δ = 2V2 = 1.999. (b) δ = 2V2 = −1.999.

Figure 6 shows the numerical results for the occupation of the excited state after each crossing.
Again, there is excellent agreement with the corresponding analytical results obtained using
the two-level approximation derived in the previous section.
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5. Concluding remarks

We have theoretically investigated the implementation of Landau–Zener–Stückelberg
interferometry in PT -symmetric complex lattices that could be realized in optical
waveguide arrays. We studied first the effective two-mode system using the adiabatic-
impulse approximation deriving analytical expressions for the power in the excited state.
The expressions obtained were later compared with the numerical results for the complete
multi-mode system driven periodically through an avoided crossing. Overall, we found that
the two-mode framework provides accurate predictions and gives a complete understanding
of the main features of the dynamics in the complex crystal under periodic driving.

We observed that the power transferred to the excited state is very susceptible to the speed
of the system as it moves across the avoided level crossings, where the passage time determines
the amount of energy gained/lost by the light beam. Also, the occupation of the excited state
after several passages through one of the Bragg scattering points was shown to be particularly
sensitive to the magnitude and sign of the imaginary part of the PT -symmetric potential
(V2). Furthermore, the results exhibit strong dependence on the dynamical phases accumulated
during the driving process due to the underlying LZS interference mechanism.

In summary, it is found that the LZS interference mechanism can be used as a powerful
tool to control the intensity of the light beam in a complex waveguide array.
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[17] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nature Phys. 6 192
[18] Longhi S 2009 Phys. Rev. Lett. 103 123601
[19] Longhi S 2009 Phys. Rev. B 80 235102
[20] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[21] Morales-Molina L and Reyes S A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 205403
[22] Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
[23] Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455

Graeffe E M, Günter U, Korsh H J and Niederle A E 2008 J. Phys. A: Math. Theor. 41 255206

11

http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1103/PhysRevLett.99.113201
http://dx.doi.org/10.1103/PhysRevLett.105.215301
http://dx.doi.org/10.1103/PhysRevA.82.065601
http://dx.doi.org/10.1103/PhysRevX.1.011003
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1017/CBO9780511976186
http://dx.doi.org/10.1088/0305-4470/39/32/S20
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevLett.93.251601
http://dx.doi.org/10.1088/0305-4470/34/28/305
http://dx.doi.org/10.1088/1751-8113/40/32/R01
http://dx.doi.org/10.1002/lpor.200810055
http://dx.doi.org/10.1103/PhysRevLett.98.263601
http://dx.doi.org/10.1103/PhysRevLett.83.963
http://dx.doi.org/10.1364/OL.31.001651
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevLett.103.123601
http://dx.doi.org/10.1103/PhysRevB.80.235102
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1088/0953-4075/44/20/205403
http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1088/0305-4470/37/6/034
http://dx.doi.org/10.1088/1751-8113/41/25/255206

	1. Introduction
	2. The model
	3. LZS interferometry for a non-symmetric two-mode system
	4. LZS interferometry
	5. Concluding remarks
	Acknowledgments
	References

