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A B S T R A C T

Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of

palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid

oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However,

its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial

metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in

vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-

conjugated palmitate (25 nM free), TMZ (0.1–100 mM), or a combination of both. We evaluated

mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of

mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and

ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence.

Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and

an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume

(39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also

decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic

parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-

induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyo-

cytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects

cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on

patients with different cardiovascular pathologies can be related to modulation of the mitochondrial

morphology and function.

� 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Metabolic syndrome and obesity are characterized by imbal-
anced caloric intake and expenditure, increasing the risk of
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diabetes and cardiovascular diseases, including heart failure [1].
Obese, diabetic and heart failure patients have increased plasma
free fatty acids [2], which can elicit toxic effects (lipotoxicity)
leading to cell death in several models, including cardiomyocytes
[3]. Although the specific mechanism for lipotoxicity is not fully
understood, sphingolipids may play a role because palmitate, the
most abundant saturated free fatty acid, is the obligate substrate
for initiating de novo ceramide synthesis [4]. We have shown that
ceramides induce mitochondrial fission and cell death [5] by
altering mitochondrial function and Ca2+ buffering capacity [6] in
cultured cardiomyocytes. Interestingly, chemical inhibition of
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ceramide synthesis protects adult cardiomyocytes from palmitate-
induced apoptosis [7].

Mitochondrial dynamics control mitochondrial shape and
function by coordinating the opposing processes of mitochondrial
fusion and fission [8,9]. Recent evidence suggests a role for
mitochondrial dynamics in lipotoxicity [10,11]. In pancreatic b-
cells, a complex mixture of free fatty acids (including palmitate)
caused apoptosis [10], and in skeletal muscle palmitate induced
mitochondrial dysfunction and insulin resistance [11]. Interest-
ingly, in both studies the prevention of mitochondrial fission
protected the cells from damage. In cardiomyocytes, lipotoxicity
has been partially addressed but the role of mitochondrial
dynamics in this process is unknown.

The heart uses different metabolic substrates to fuel the
contractile machinery, and the importance of this energetic balance
in the myocardium becomes particularly evident during heart
failure [2]. Trimetazidine (TMZ), an antianginal drug used in Europe
and Asia, has been proposed as a metabolic modulator for heart
failure treatment. TMZ decreases free fatty acid-oxidation probably
by partial inhibition of the b-oxidation enzyme long chain 3-
ketoacyl-CoA thiolase (3-CAT) [12], and carnitine-palmitoyl-
transferase 1 (CPT1) [13], thereby increasing glucose utilization
for ATP production [14]. At the mitochondrial level, TMZ decreases
the activity of complex I of the electron transport chain during
ischemia [15], decreasing oxygen consumption, production of
reactive oxygen species (ROS) [16] and preserving mitochondrial
integrity [17], allowing conservation of mitochondrial membrane
potential (Cmt) [18], thus preventing the opening of the mitochon-
drial permeability transition pore [19] and apoptosis [20].

Lipotoxicity is linked to mitochondrial dysfunction and ROS
production [21], sharing some of the features of ischemic damage.
Because diabetes, heart failure, and other cardiac pathologies are
associated with increased plasma free fatty acids and cardiac
lipotoxicity [1], we sought to evaluate the protective effect of TMZ
on palmitate lipotoxicity using a cultured cardiomyocyte model
system. We evaluated changes in mitochondrial morphology,
metabolism, and ceramide production. To our knowledge, this
corresponds to the first report of protective effects of TMZ on
palmitate-induced lipotoxicity in cardiomyocytes, thus expanding
our understanding of its mechanism of action [22].

2. Materials and methods

2.1. Materials

Antibodies against DRP-1 and HSP70 were from BD Biosciences
and Affinity BioReagents, respectively. Antibodies for MFN-2 and
OPA-1 were from Abcam. Antibodies against C16-ceramide and
FIS-1 were from Enzo Life Sciences. Tetramethylrhodamine-
methyl-ester (TMRM), mitotracker Green-FM (MTG), HCS-Lipid-
TOX Green, Hoechst 33342, the antibodies Alexa-543 conjugated
anti-mouse IgG and Alexa-488 conjugated anti-rabbit IgG, 5-(and-
6)-chloromethyl-20,70-dichlorodihydrofluorescein diacetate acetyl
ester (CM-H2DCFDA), essentially fatty-acid-free BSA and FBS were
from Invitrogen. Sodium palmitate was purchased from Nu-Chek
Prep Inc. Anti-caspase-3 rabbit antibody was from Cell Signaling.
Anti-b-tubulin antibody, propidium iodide (PI), carbonyl cya-
nide m-chlorophenyl-hydrazone (CCCP), Dulbecco’s modified
Eagle’s medium (DMEM), M199 medium, and other reagents
were from Sigma–Aldrich Corp. Protein assay reagents were
from Bio-Rad.

2.2. Cardiomyocyte isolation

Cardiomyocytes were isolated from neonatal Sprague–Dawley
rats as previously described [5,23,24]. Briefly, 2–3 days old pups
were sacrificed by decapitation, and the hearts extracted under
sterile conditions, carefully minced, and digested with type-II
collagenase and pancreatine (37 8C). After digestion, cells were
collected and the cardiomyocytes separated from fibroblasts
before seeding.

Rats were kept at the institutional animal breeding facility.
All studies were performed according to the NIH Guide for the
Care and Use of Laboratory Animals (NIH Publication No. 85-23,
revised 1996) and approved by our Institutional Ethics Commit-
tee.

2.3. Cell culture

Cells were maintained in DME:M199 (4:1) medium supple-
mented with 5% FBS and plated at final density of 1–8 � 103/mm2

on gelatin-coated 35-, 60-mm or 12-, 96-well Petri dishes
according to experimental design. For microscopy experiments,
cells were plated on gelatin-coated glass coverslips. Cells were left
untouched for 24 h after seeding, then the media was changed
every day and cell were cultured in DMEM:M199 (4:1) medium
supplemented with 5% FBS until needed. Sodium palmitate was
added to culture media containing fatty-acid-free BSA in a ratio of
3.3:1 and allowed to conjugate for 30 min at 37 8C. An equivalent
concentration of 500 mM [25] was used, giving an final concentra-
tion of 25 nM free palmitate [26]. TMZ was dissolved in water and
added at concentrations ranging between 0.1 and 100 mM.

2.4. Mitochondrial morphology analysis

Procedure was performed as previously described [5,6,23].
Briefly, mitochondria were stained with Mitotracker green
(400 nM, 30 min) in Krebs solution (containing [in mM]: 145
NaCl; 5 KCl; 1 EGTA; 1 MgCl2; 10 HEPES-Na; 5.6 glucose; pH 7.4) at
37 8C. Confocal Z-stack images were obtained with a Carl Zeiss
LSM-5 Pascal 5 Axiovert 200 microscope, using the LSM 5 3.2 image
capture and analysis software, and a Plan-Apochromat 63�/1.4 Oil
DIC objective. Images were processed and analyzed using the
ImageJ software. Z-stacks were 3D reconstructed and the number
of mitochondria and their individual volume were quantified using
the VolumeJ plug-in for ImageJ. The sum of individual mitochon-
drial volume and the mitochondrial number was used to calculate
the ‘‘mean mitochondrial volume’’, an indicator of mitochondrial
volume used for comparisons. Additionally, the percentage of cells
showing a fragmented mitochondria pattern was determined
manually. Thus, an increase in fragmented appearance and
mitochondrial number, together with a decrease in mean
mitochondrial volume were considered as a fission criteria. The
opposite was considered for fusion [5,6,23]. Each experiment was
performed at least three independent times and 16–25 cells were
analyzed per condition.

2.5. Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde and permeabi-
lized with 0.1% Triton X-100 in ice-cold PBS. Cells were
incubated with primary antibodies against DPR-1 (1:500) and
FIS-1 (1:500). Secondary antibodies were anti-mouse Alexa-543
and anti-rabbit Alexa-488 (1:1000). Effective colocalization was
determined using the Mander’s Coefficient as previously
described [5,27].

2.6. Mitochondrial membrane potential and ROS determination

Mitochondrial membrane potential (Cmt) and ROS were
measured with TMRM (200 nM, 30 min) or CM-H2DCFDA
(10 mM, 30 min), respectively. Mean population fluorescence
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was measured by flow cytometry using a FACScan system (Becton–
Dickinson). CCCP or H2O2 were used as positive control for Cmt loss
or ROS, respectively. Data were analyzed using the Cell Quest (BD)
software.

2.7. Cellular respiration

Cells were suspended in PBS in a sealed chamber (25 8C)
coupled to a 5331 Clark electrode (Yellow Springs Instruments).
Oxygen consumption rates (OCR) were calculated over a 5–10 min
period. CCCP (200 nM) and oligomycin (500 nM) were added to
obtain maximal respiration and proton leak, respectively. Respira-
tion rates were normalized to controls [23]. As a second method,
oxygen consumption was also measured using a fluorescence-
based oxygen sensor (NeoFox, Ocean Optics) connected to a phase
measurement system from the same company. The sensor was
calibrated according to the manufacturer’s instructions.

2.8. ATP measurement

Intracellular ATP levels were determined with a luciferin/
luciferase based ATP detection kit CellTiter-Glo Luminiscent Cell
Viability Assay (Promega) according to the manufacturer’s
instructions. Sample luminescence was quantified in a TopCount
NXT microplate luminescence counter (Perkin-Elmer, Waltham,
MA). Data was normalized as fold over control.

2.9. Cell death determination

A flow cytometry-based assay and a luminescence-based kit
were employed to assess necrosis. To determine cell viability,
cardiomyocytes were suspended and incubated with PI (15 mM)
prior to flow cytometry [6]. Dye incorporation depends on
membrane stability, thus increased fluorescence acts as an
indicator of increased necrosis [6]. H2O2 (175 mM, 30 min) was
used as positive control. Furthermore, a commercial kit for
assessing lactate dehydrogenase (LDH) release (Promega Cyto-
Tox961) was employed following the manufacturers’ indications
[28,29]. In order to measure apoptosis, a flow cytometry-based
assay and an indirect measurement of caspase-3 activity were
performed. DNA fragmentation was assessed in cells permeabi-
lized with methanol overnight (�20 8C), treated with RNase and
analyzed by flow cytometry with PI dye (40 mM) [6]. In this
condition, permeabilization ensures access of the dye to the
DNA of every cell in the sample thus changes in fluorescence
intensity reflect changes in the cellular content of DNA.
Therefore, an increase on the population of lower intensity than
the highest peak (G1 population) corresponds to the SubG1
population and represents increased DNA fragmentation and
apoptosis [6].

2.10. Neutral lipid staining

Intracellular lipid droplets were stained with HCS LipidTOX
Green as indicated by the manufacturer. Briefly, cells were fixed
with 4% paraformaldehyde in PBS containing Hoechst (0.5 mg/ml).
Lipid droplets were stained in PBS using the 1000� HSC LipidTox
working solution provided for at least 30 min and observed
directly (no washing) under a Carl Zeiss LSM-5 Pascal 5 Axiovert
200 confocal microscope with a Plan-Apochromat 63�/1.4 Oil DIC
objective. The number of lipid droplets and lipid droplet area per
cell were determined in the raw images. Due to the low lipid
accumulation capability of cardiomyocytes, the analysis was
performed only in dye-positive cells that showed at least one
lipid droplet (approximately 40% of cells), defined as an object with
an area bigger than 10 pixels2.
2.11. Sphingolipid determination

The cellular content of sphingolipids was measured using a
UPLC/MS/MS approach in whole cell extracts as previously
described [30,31]. Briefly, cells were collected by trypsinization,
washed with ice-cold PBS, centrifuged, and the dry pellet was
flash-frozen in liquid nitrogen and stored at �80 8C until
analysis. Pellets were thawed, homogenized (buffer [in mM]:
250 sucrose, 25 KCl, 50 Tris, and 0.5 EDTA, pH 7.4), and
supplemented with an internal standard solution (17C-sphingo-
sine and 17C-S1P, and 17C16-Cer Avanti Polar Lipids). The
mixture was extracted twice, evaporated under nitrogen flow,
and reconstituted in 100 ml of LC Solvent A (2 mM NH4HCO2,
0.15% HCOOH in methanol) for UPLC/MS/MS analysis on a
Waters Acquity UPLC system coupled with Thermo TSQ
Quantum Ultra mass spectrometer. The results were expressed
as sphingolipid content per mg of protein in the sample.
Additionally, we assessed the production of intracellular
ceramides by indirect immunofluorescence using an antibody
that detects C-16 ceramide forms. Cells were prepared as
described in Section 2.5, and stained using a primary antibody
against C16-ceramide (1:100). Samples were visualized under a
confocal microscope. Total fluorescence was normalized to cell
area before comparison.

2.12. Western blotting

Proteins were separated by SDS–PAGE and electrotransferred to
nitrocellulose. Membranes were blocked for unspecific binding
with 5% non-fat milk in Tris-buffered saline containing 0.1% (v/v)
Tween 20 (TBST). Membranes were blotted with primary
antibodies (1:1000) at 4 8C overnight and incubated with
secondary antibodies linked to horseradish peroxidase (1:5000).
Bands were detected using ECL with exposure to Kodak film and
quantified by scanning densitometry. Protein content was
normalized to b-tubulin expression.

2.13. DRP-1 immunoprecipitation

Immunoprecipitation of DRP-1 was performed overnight using
2 mg of anti-DRP-1 antibody (Santa Cruz) on 600 mg of total
protein. DRP-1 was precipitated with Sepharose beads conjugated
to protein G (Santa Cruz), resolved by SDS–PAGE and phosphor-
ylation was assessed with an anti-phospho-DRP-1 antibody (Cell
Signaling, 1:2000).

2.14. Statistical analysis

Data are shown as mean � SEM of the number of independent
experiments indicated (n) or as a representative data of experiments
performed on at least three separate occasions with similar outcomes.
Univariate data comparisons were made by one-way ANOVA
followed by Dunnett or Tuckey tests as indicated. Statistical
significance was defined as P < 0.05.

3. Results

3.1. Palmitate induces mitochondrial fission in cardiomyocytes

Several reports have shown toxic effects of palmitate, ranging
from mitochondrial fragmentation and dysfunction [11] to cell
death [3,7]. However, the underlying mechanism is not fully
understood, and as such, we sought to evaluate whether palmitate
alters mitochondrial morphology and function in our conditions.
Fig. 1A shows mitochondrial fission caused by palmitate,
evidenced by a significant increase in the percentage of cells with



Fig. 1. Palmitate treatment induces mitochondrial fission. Cells were treated with palmitate (25 nM free, 0–24 h). A, Representative images of Mitotracker-Green-stained

mitochondria (400 nM, 30 min) observed under a confocal microscope. Scale bar: 20 mm. B, Percentage of cells showing a fragmented-mitochondria pattern (left), number of

mitochondria per cell (middle) and mean mitochondrial volume (right) were quantified (n = 6). C, Representative images of control and palmitate treated (3 h) cells

immunostained for FIS-1 (green, left), DRP-1 (red, middle) and merge (yellow, right). Scale bar: 20 mm. D, Colocalization was quantified using Mander’s coefficient for DRP-1

to FIS-1 (upper panel) and FIS-1 to DRP-1 (lower panel) at all time points (0–24 h, n = 3). *P < 0.05; **P < 0.01; ***P < 0.001 vs. control. Data were analyzed by Dunnette’s

following 1-way ANOVA. Bar graphs represent mean � SEM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the

article.)
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fragmented appearance and the number of mitochondria per cell,
accompanied by a significant reduction in mean mitochondrial
volume (Fig. 1B). This phenotype was established at 3 h of
treatment and persisted until 24 h. Since mitochondrial morphol-
ogy depends on the balance between mitochondrial fission and
fusion [8,9], the participation of the mitochondrial fission
machinery in palmitate treated cells was evaluated. We analyzed
colocalization of the fission proteins DRP-1 and FIS-1 by indirect
immunofluorescence. Palmitate significantly increased the
effective colocalization of DRP-1 to FIS-1 (Fig. 1C and D), whereas
no significant changes were observed for FIS-1 over DRP-1 as we
have previously reported [5]. To further explore the participation
of the mitochondria-shaping machinery, we performed Western
blots of the fission proteins DRP-1 and FIS-1, and the non-related
mitochondrial protein HSP70 as a marker of mitochondrial mass
(Fig. 2A and B). We observed no changes in any of these markers, or



Fig. 2. Palmitate does not alter the expression of the mitochondrial dynamics proteins. Cells were treated with palmitate (25 nM) for the indicated times and then total protein

extracts were collected. Representative Western blots and quantifications for the fission proteins DRP-1 (A) and FIS-1 (B), the fusion proteins OPA-1 (C) and MFN-2 (D) (n = 4)

are shown. Also the non-related mitochondrial protein HSP70 (A) is shown (n = 4). Bar graphs represent mean � SEM.
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in the levels of the fusion proteins OPA-1 and MFN-2 (Fig. 2C and
D). Taken together, these data suggest that palmitate induces
mitochondrial fragmentation by promoting the translocation of
the fission protein DPR-1 to the mitochondria.

3.2. Palmitate causes mitochondrial dysfunction at early time points

Prior to studying the effects of palmitate on mitochondrial
metabolism, we evaluated cell death in our conditions since
palmitate has been widely described to affect cell survival in
previous studies [3,32]. To this end, we first performed rough
measurements of necrosis and apoptosis, using flow cytometry-
based techniques, and found evidence of cell death at 24 h without
changes at shorter times (Fig. 3A and B). To further characterize the
type of cell death observed we measured specific markers for
necrotic and apoptotic death. As shown in Fig. 3C, palmitate
treatment significantly increased the release of LDH, a necrosis
marker, at 24 h only. Similarly, Fig. 3D indicates that cleaved
caspase-3 can be observed at 6 and 24 h, but only at later time
points it reached expression levels comparable to sorbitol
treatment, a known inductor of apoptosis in our model [33].
Taken together, these data suggest that palmitate induced necrotic
and apoptotic cell death, but only at 24 h of treatment. Thus, the
morphological effects described above were not due to increased
cell death at early time points. In order to avoid interference, we
next evaluated the metabolic parameters at 3 h of palmitate
treatment, a time sufficient to induce mitochondrial fission
without induction of cell death. We evaluated mitochondrial
membrane potential (Cmt), intracellular ATP, cellular oxygen
consumption rate (OCR) and total ROS levels (Fig. 4). Palmitate
induced a significant decrease in the intracellular ATP levels,
accompanied by a diminished OCR under basal and maximal
(uncoupled) respiration conditions. However, Cmt only decreased
after 24 h post treatment (without any changes at shorter times),



Fig. 3. Palmitate induces cardiomyocyte death at long incubation times. A, Cell viability was determined by PI incorporation on intact cells and analyzed by flow cytometry.

Representative histograms of the live (P2) and dead (P3) populations for control, palmitate-treated cells (25 nM) and cells treated with H2O2 (175 mM, 30 min) as positive

control (n = 4). B, DNA laddering (SubG1 population) on permeabilized cells stained with PI was measured by flow cytometry as a marker of apoptosis. Representative

histograms of the DNA fragmentation are shown for control and palmitate-treated cells (25 nM, n = 4). C, LDH release was measured in palmitate-treated cells (25 nM) using a

colorimetric-based commercial kit (n = 3). D, Cleaved caspase-3 was detected by Western blot. A representative blot (left panel) and quantification (right panel) are shown

(n = 5). Data points without bars were below detection level. Sorbitol (300 mM, 6 h) was used as positive control for apoptosis. **P < 0.01; ***P < 0.001 vs. control. Dunnette’s

post 1-way ANOVA. Bar graphs represent mean � SEM.
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which can be highly influenced by the cell death process occurring
under palmitate stimulation at longer time points. Although, a
decrease in Cmt would be expected to accompany the decrease in
OCR and ATP levels at 3 h, we did not observe it. This result is not
surprising considering the fact that mitochondrial membrane
potential is around +150 mV, and very close to equilibrium in the
close microenvironment of the mitochondria, which offers a pH
gradient of �0.5 pH units (30 mV) [34]. This means that only a
slight change in mitochondrial potential is needed to cause a
significant impact on OCR. In this same context, the measurement
of Cmt with TMRM can be not sensitive enough to detect the
small changes that can also be affecting mitochondrial dynamics
[35,36]. Finally, and similar to previous reports [3], we did not
observe changes in ROS production with palmitate (Fig. 4D).
Taken together, these results suggest that palmitate induces
mitochondrial dysfunction parallel to mitochondrial fission and
previous to cell death.

3.3. TMZ induces mitochondrial fusion in cardiomyocytes

Because TMZ may be a metabolic modulator in patients with
lipid handling alterations [37], and the controversy of its action
mechanism [22], we sought to evaluate its effects in our
lipotoxicity model. We first characterized TMZ effects alone, and
show in Fig. 5A that low TMZ concentrations induced mitochon-
drial fusion, evidenced by a significant decrease in the number of
mitochondria per cell with increased mean mitochondrial volume
(Fig. 5B) after 24 h of treatment. Interestingly, using a higher
concentration of TMZ (100 mM) we observed an increase in the
number of mitochondria per cell (Fig. 5B), suggesting a reversion of



Fig. 4. Palmitate treatment decreases metabolic parameters. A, Mitochondrial membrane potential was determined by TMRM staining (200 nM, 30 min) and flow cytometry.

The uncoupler CCCP (10 mM) was used as positive control for mitochondrial depolarization. Representative histograms (left) and quantifications (right) are shown for control

(0 h), palmitate-treated (25 nM, 3–24 h) and CCCP-treated cells (n = 4). B, Intracellular ATP was measured in palmitate-treated cells (25 nM free, 3 h) with a commercial kit.

Oligomicyn (10 mM, 1 h) is shown as a positive control for ATP drop (n = 6). C, Oxygen consumption rates were measured in basal and maximal (uncoupled) conditions for

control and palmitate-treated (3 h) cells using a Clark’s electrode (n = 3). D, Total cell reactive oxygen species (ROS) levels were measured by flow cytometry using CM-

H2DCFDA dye (n = 4). H2O2 was used as ROS positive control. *P < 0.05; **P < 0.01; ***P < 0.001 vs. control. Data were analyzed by Dunnette’s following 1-way ANOVA. Bar

graphs represent mean � SEM.
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the phenotype. To further explore the effects of TMZ, we evaluated
the expression levels of the mitochondrial fusion proteins OPA-1
(Fig. 5C) and MFN-2 (Fig. 5D), the non-related protein HSP70
(Fig. 5E) and the fission proteins DRP-1 and FIS-1 (Fig. 3F). We did
not observe changes in the abundance of any of these proteins at
any of the TMZ concentrations evaluated. However, changes in the
activity of any of these proteins due to post-translational
modifications cannot be excluded.

3.4. TMZ potentiates mitochondrial metabolism

To further describe TMZ effects, we studied mitochondrial
metabolism by measuring the aforementioned parameters (Cmt,
ATP levels, OCR, and ROS). Consistent with the morphologic data
(Fig. 5), 1 mM TMZ increased Cmt (Fig. 6A), intracellular ATP levels
(Fig. 6B), and both basal (Fig. 6C) and maximal OCR (Fig. 6D). The
higher concentration (100 mM), TMZ showed no changes relative to
the controls in any of these parameters. To deepen our understand-
ing of this metabolic potentiation, we also evaluated oligomycin-
insensitive OCR (proton leak, Fig. 6E) and ROS levels (Fig. 6F) with
1 mM TMZ. We found no significant differences in either of these
parameters, suggesting that the rise in basal and maximal OCR
result from increased mitochondrial activity. Additionally, no
changes in cell viability were observed in any of the TMZ treatment
conditions (data not shown). Taken together, the results in Figs. 5
and 6 suggest that a low concentration of TMZ induces mitochon-
drial fusion and potentiates mitochondrial metabolism.

3.5. TMZ protects cardiomyocytes from palmitate-induced

mitochondrial fission and dysfunction

Considering the positive effects of TMZ on mitochondrial
function and morphology, we decided to test if TMZ could protect
cardiomyocytes from palmitate-induced lipotoxicity. To account
for the time-lapse differences of TMZ and palmitate effects, cells
were pre-incubated with or without TMZ (1 mM, 24 h) and then
exposed to palmitate (3 h). We analyzed mitochondrial morphol-
ogy and metabolism. As described previously, palmitate induced
marked mitochondrial fission (Fig. 1), while TMZ alone had the
opposite effects (Fig. 5). Interestingly, pre-incubation with TMZ
(24 h) completely blunted palmitate effects and protected cells
from altered mitochondrial morphology (Fig. 7A and B). To explore
the mechanism of this protection, we assessed DRP-1 phosphor-
ylation state on Ser637, an inactivating phosphorylation site, by
immunoprecipitation [38]. Palmitate decreased DRP-1 phosphor-
ylation, consistent with increased mitochondrial fission through
DRP-1 activity (Fig. 1C), while TMZ prevented this effect (Fig. 7C).
When assessing mitochondrial metabolism, we found that TMZ
protected the cells from palmitate-induced ATP drop (Fig. 7D), and
both basal (Fig. 7E) and maximal OCR (Fig. 7F) reduction. In order
to further support these findings, we also included a secondary
experimental approach for OCR determination by using a
fluorescent oxygen probe. As shown in Fig. 7G and H, OCR
reduction by palmitate was also found to be prevented with TMZ.
Collectively, these results suggest that TMZ protects from
palmitate lipotoxicity by preserving mitochondrial integrity and
function.

To further characterize TMZ protective effects, we assessed the
possible intracellular fates of palmitate in the presence of TMZ.
First, we evaluated if TMZ alters the balance between lipid usage
and storage in cardiomyocytes. For this, we stained fixed cells with
the neutral-lipid specific dye LipidTOX and observed them under a
confocal microscope. As expected, control cells show few lipid
droplets, which were not affected by palmitate treatment (Fig. 8A),
consistent with the notion that palmitate is poorly incorporated
into fatty acid storage. Interestingly, TMZ alone greatly increased



Fig. 5. TMZ induces mitochondrial fusion at low concentrations. Cells were treated with TMZ (0–100 mM) for 24 h. A, Representative images of Mitotracker-Green-stained

mitochondria (400 nM, 30 min) observed under a confocal microscope. Scale bar: 10 mm. B, Number of mitochondria per cell (upper pannel) and mean mitochondrial volume

were quantified (lower pannel). *P < 0.05; **P < 0.01; ***P < 0.001 vs. control. ###P < 0.001 vs. 1 mM. Tuckey post 1-way ANOVA, n = 5. Representative Western blots for the

fusion proteins OPA-1 (C) and MFN2 (D), the mitochondrial protein HSP70 (E), and the fission proteins DRP-1 and FIS-1 (F) and their quantifications are shown (n = 3). Bar

graphs represent mean � SEM.
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the number and size of droplets compared to controls, and further
increased the area of lipid droplet in the presence of palmitate
(Fig. 8A), suggesting that TMZ acts favoring lipid accumulation.
Considering that palmitate is a preferential substrate for de novo

ceramide synthesis [4], we hypothesized that sequestering lipid
excess into lipid droplets could reduce ceramide production.
Accordingly, palmitate alone significantly increased sphinganine
(SPA) and C16 ceramide (Fig. 8B) production, two key inter-
mediates in the de novo ceramide synthesis pathway. The levels of
the ceramide degradation intermediary, sphingosine (SPH), and
the sphingolipid recycling metabolite, sphingosine 1-phosphate
(S1P), were not changed (Fig. 6B), suggesting induction of de novo

pathway in our conditions. To further explore the protection of
TMZ from palmitate toxicity, we performed immunofluorescence
analysis using a C16-specific antibody as ceramide production
readout, since this ceramide form was more affected by palmitate
treatment (no commercial antibody against SPA, SPH or S1P are
currently available). As expected, palmitate treatment significantly



Fig. 6. TMZ increases metabolic parameters at low concentrations. Cells were treated with TMZ (0–100 mM) for 24 h. A, Mitochondrial membrane potential was determined

by TMRM staining (200 nM, 30 min) and flow cytometry. CCCP is showed as a positive control for mitochondrial depolarization (n = 5). B, Intracellular ATP levels were

measured with a commercial kit (n = 6). Basal (C) and maximal uncoupled (D) oxygen consumption rates were determined with a Clark electrode. Proton leak (oligomycin-

insensitive) oxygen consumption rates (E) were measured in cells treated with 1 mM TMZ. ROS levels were determined by flow cytometry using CM-H2DCFDA dye (F). H2O2

was used as positive control for ROS. **P < 0.01; ***P < 0.001 vs. Control. ##P < 0.01 vs. 1 mM. Data were compared by Tuckey following 1-way ANOVA. Bar graphs represent

mean � SEM.
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augmented ceramide production evidenced by increased total
fluorescence to cell area ratio (Fig. 6C). This effect was completely
blunted by TMZ treatment, while TMZ alone had no effects on
ceramide production (Fig. 6C). These results suggest that TMZ
redirects intracellular lipid destination protecting the cells by
blocking the generation of toxic intermediates in conditions of
lipid excess. To our knowledge, these data corresponds to the first
description of TMZ effects on mitochondrial morphology and
ceramide synthesis in cardiomyocytes, expanding the intracellular
actions of this agent.

4. Discussion

The present study shows that palmitate induced mitochondrial
fission and dysfunction in neonatal cardiomyocytes, which can be
prevented by the b-oxidation inhibitor TMZ. Our data suggest that
TMZ induces the accumulation of lipids into lipid droplets, thus
sequestering the excess of palmitate in a metabolically neutral
reservoir, hindering the production of ceramides. These results
may expand our knowledge and comprehension of the action
mechanism of TMZ, a matter that is still controversial.

Due to the elevated metabolic rate of cardiomyocytes, the
possible relationship between mitochondrial dynamics, metabo-
lism and cardiac mechanical efficiency has become an interesting
subject of study. Our data show that palmitate induced mitochon-
drial fragmentation, by activating the mitochondrial fission protein
DRP-1, and mitochondrial dysfunction in neonatal cardiomyo-
cytes. In agreement with other studies [11,39], we did not observe
changes in the fusion proteins MFN2 or OPA1 induced by
palmitate. Recently, Jheng et al. [11] described that palmitate



Fig. 7. TMZ at low concentrations protects cardiomyocytes from the morphological and metabolic effects of palmitate. A, Cells were stained with MTG (400 nM) and observed

under a confocal microscope. Representative images and magnifications are showed for Control (left), palmitate- (middle left), TMZ- (middle right) and TMZ + palmitate-

treated cells (right). Scale bar: 20 mm. (B) Number of mitochondria per cell (upper panel) and mean mitochondrial volume (lower panel) were quantified (n = 3).
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toxicity is associated with mitochondrial fission and insulin
resistance in skeletal muscle [11], effects that can be both
prevented by inhibiting mitochondrial fission, specifically at
DRP-1 level [11]. Similarly, our data show that palmitate-induced
mitochondrial fission and dysfunction can be prevented when
mitochondrial morphology is preserved by TMZ. Although the
mechanism by which palmitate could activate mitochondrial
fission was not determined, we show evidence of DRP-1 activation
by decreased Ser637 phosphorylation. As mentioned above, DRP-1
phosphorylation is regulated by the antagonistic activities of PKA
and calcineurin, which can reduce or increase DRP-1 fission
activity, respectively [38]. Interestingly, cytosolic calcium levels
can regulate calcineurin activity. Although we did not evaluate
changes in calcium handling, it has been greatly described in b-
cells that palmitate can rapidly increase cytosolic calcium levels by
inducing calcium release from ER stores and extracellular Ca2+

influx [40,41]. Moreover, in isolated mitochondria there is
evidence to support the existence of a mitochondrial cyclosporin
A-insensitive pore that can be opened by palmitate. This pore leads
to mitochondrial depolarization, swelling, and Ca2+ release, which
can be prevented by Ca2+ uniporter inhibitors and Ca2+ chelators
[42]. This evidence suggests that Ca2+ can play an important role in
palmitate toxicity. Another possibility could be related to the
production of lipid intermediaries from palmitate, which is a
known preferential substrate for the de novo synthesis of
ceramides [4]. In this line, our group has previously shown that
ceramides induce mitochondrial fission in cardiomyocytes by
activating the fission protein DRP-1 [5]. Similarly, it has been
previously shown, by others and us, that ceramides decrease
mitochondrial function and metabolic activity [4,6]. Interestingly,
our previous work showed that ceramides can induce apoptosis
and necrosis in cultured cardiomyocytes by a mechanism involving
increased Ca2+ influx, mitochondrial network fragmentation and
loss of the mitochondrial Ca2+ buffer capacity [6]. It is tempting to
speculate that ceramide production could be one of the mecha-
nisms by which palmitate induces mitochondrial fission, dysfunc-
tion and cell death in our model.

Palmitate, and other saturated fatty acids, are known to induce
cell death in several models, including cardiomyocytes [4–6,43]
through a mechanism that has not been completely elucidated.
Ceramide production has been proposed to mediate palmitate-
induced cell death, since ceramides have toxic effects [4,6,43]. We
found evidence of both necrosis and apoptosis by palmitate
treatment, together with increased ceramide production. Howev-
er, it is unclear if the increase in cell death was caused specifically
by palmitate or ceramides in our conditions, and it has been
previously reported that palmitate-induced death can occur
independently of the production of ceramides in certain conditions
[43].

To date, there is no information relating TMZ to changes in
mitochondrial dynamics. We found that TMZ at low concentra-
tions induced marked mitochondrial fusion, without changes in
the expression levels of several mitochondrial dynamics proteins
assessed. However, it is generally thought that the control of
mitochondrial morphology mostly relies on the activity, rather
than the mass, of the mitochondria shaping proteins [8,9]. DRP-1
has received most of the attention due to several post-translational
modifications described that can regulate its activity as a fission
protein [44]. DRP-1 Ser637 phosphorylation is regulated by protein
kinase A (PKA) and the phosphatase calcineurin (CN) [38].
Increased Ser637 phosphorylation inactivates DRP-1 and inhibits
(C) Representative immunoprecipation of DRP-1 and Western blot of pDRP-1 (Ser637) on

maximal OCR (F, n = 3) were determined in Control, TMZ-, palmitate- and TMZ + palmitat

a fluorescent probe (n = 4) as a secondary method. *P < 0.05; **P < 0.01; ***P < 0.001 vs. C

Bar graphs represent mean � SEM.
mitochondrial fission, while dephosphorylation causes the oppo-
site. Herein we describe that TMZ blunts palmitate-induced
dephosphorylation of DRP-1 on Ser637. On the one hand, this
finding corroborates our immunofluorescence data, further
suggesting that palmitate fission occurs through activation of
DRP-1; on the other hand, it also provides a novel molecular
mechanism for the morphological effects and the protection
induced by TMZ. However, determining the specific pathway
involved was beyond the scope of this study.

The metabolic effects of TMZ have been extensively studied in
different models of hypoxia. It has been described that TMZ
decreases the activity of complex I of the mitochondrial electron
transport chain [15], decreasing oxygen consumption [45], ROS
production [16], and increasing mitochondrial integrity [17],
probably by decreasing the opening of the mitochondrial
permeability transition pore and subsequent apoptosis [20].
However, our findings point in the opposite direction. We found
that TMZ potentiated mitochondrial metabolism, by increasing
Cmt, OCR, and ATP levels. This seems rather counterintuitive for a
drug that should inhibit free fatty acid oxidation in a cell that is
highly dependent on b-oxidation. However, it should be consid-
ered that in our culture conditions both oxygen and glucose were
in abundance for the cells, thus TMZ could generate a metabolic
shift and potentiate glucose metabolism through the mitochon-
drial pathway, accounting for the augmented mitochondrial
activity. Interestingly, TMZ has been shown to increase the
intra-mitochondrial calcium concentration [46], which could
potentiate mitochondrial metabolism and ATP synthesis by
favoring the activity of several citric acid cycle dehydrogenases
[47]. In fact, in animal models, it has been shown that
administration of TMZ increases the mitochondrial affinity for
ADP and also the creatine kinase activity. Although MacInnes et al.
[22] described that TMZ does not inhibit the 3-CAT enzyme in the
heart.

To our surprise, we found a differential effect of TMZ on
mitochondrial morphology and function. At low concentration
(1 mM) it induced mitochondrial fusion and increased metabolic
activity. However, increasing the concentration did not result in
augmented effects and mitochondrial morphology and function
were comparable to those of control cells at 100 mM TMZ.
Although the concentration range tested was in accordance to
other studies in the literature [48–50], these results are puzzling
and further studies are needed to determine the cause of this
difference.

When assessing intracellular destination of lipids in our
conditions we found no increase in lipid accumulation in
palmitate-treated cells, consistent with the notion that cardio-
myocytes have a limited lipid storage capacity. However, in the
presence of TMZ, the number and area of lipid droplets was
significantly increased in comparison to controls.

There is some evidence that TMZ could inhibit CPT1 [13], thus
decreasing the incorporation of free fatty acids to mitochondria at
the rate-limiting step of b-oxidation and possibly promoting FFA
esterification. Furthermore, a recent clinical trial showed that TMZ
promoted glucose oxidation by increasing the rate of muscle FFA
esterification in obese patients [51]. Similarly, Bucci et al. [52]
described, also in obese patients, that TMZ reduced cardiac free
fatty acid oxidation by decreasing the intracellular-derived
contribution to total free fatty acid oxidation, without altering
the extracellular-derived free fatty acid contribution. These data
suggest that TMZ can alter fatty acid utilization in skeletal muscle
 the indicated conditions (n = 3). Intracellular ATP levels (D, n = 6) and basal (E) and

e-treated cells. Additionally, basal (G) and maximal (H) OCR were determined using

ontrol. #P < 0.05; ##P < 0.01; ###P < 0.001 vs. Palmitate. Tuckey post 1-way ANOVA.



Fig. 8. TMZ increases palmitate accumulation in neutral lipid droplets and blocks palmitate-induced ceramide synthesis. Cells were treated with or without TMZ, palmitate or

a combination of both. A, Neutral lipid droplets were stained using LipidTOX and observed under a confocal microscope (left panels). Number of lipid droplets per cell (upper
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and heart, supporting our data of increased lipid accumulation.
However, it should be noted that neonatal cardiomyocytes could
behave very different than adult cardiomyocytes. Nonetheless,
evidence of protection by esterification of palmitate excess can be
found in other models. In hepatocytes, palmitaoleate increased
free fatty acid esterification and protected the cells from palmitate-
induced apoptosis [32]. Together, these data argue in favor of the
protection from palmitate lipotoxicity induced by the sequestra-
tion of palmitate excess in esterified pools.

Over the last decades, changes in mitochondrial morphology
have been linked to several cardiovascular and metabolic diseases.
However, we still lack an integrated model in which mitochondrial
dynamics has been incorporated in normal cardiac physiology.
Nonetheless, mitochondrial dynamics are thought to play a crucial
role in metabolic flexibility, and there is consensus that the
alterations in mitochondrial morphology participate in the
progression of cardiovascular diseases [8]. The development of
new therapeutic interventions targeted to the manipulation of
mitochondrial dynamics could be a relevant contribution to the
actual asset for treating these diseases.
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