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Embeddings of the Virasoro Algebra and Black Hole Entropy
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We consider embeddings of the Virasoro algebra into other Virasoro algebras with different cen
charges. A Virasoro algebra with central chargec (assumed to be a positive integer) and zero mod
operatorL0 can be embedded into another Virasoro algebra with central charge one and zero m
operatorcL0. We point out that this provides a new route to investigate the black hole entropy probl
in 2 1 1 dimensions. [S0031-9007(99)08600-7]
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Three-dimensional gravity was put forward by Dese
Jackiw, and ’t Hooft [1] as an interesting toy model fo
gravitational physics. It was then argued in [2] (see als
[3]) that it defines a soluble and finite quantum field
theory. Questions such as what are the microscopic
degrees of freedom giving rise to the Bekenstein-Hawkin
entropy in three dimensions should then have an answ
However, despite interesting proposals [4,5] it is clea
that the answer to this question is not yet availabl
Even more, the difficulties which arise from trying to
provide a consistent quantum description of the black ho
entropy have led to the suggestion that Einstein gravi
represents a sort of thermodynamical description for th
gravitational phenomena and it thus makes no sense
attempt to quantize it (see Ref. [6] and references therei
In the loop representation approach to quantum gravit
successful computations for the black hole entropy, u
to a numerical factor, have been achieved (see Refs.
and [8]).

Our main tool in analyzing the three-dimensional blac
hole entropy is the discovery of Brown and Henneaux [9
that the asymptotic symmetry group of three-dimension
anti–de Sitter (adS) space is generated by two copies
the Virasoro algebra with central charge [9]

c ­
3l
2G

(1)

and, hence, is the two-dimensional conformal group. He
G is Newton’s constant; we parametrize the negativ
cosmological constant asL ­ 21yl2 and seth̄ ­ 1. In
the semiclassical regimeG ! 0, c is large. The2 1 1
black hole [10] is asymptotically anti–de Sitter and thu
the conformal group acts on it in a similar form. However
globally, adS and the black hole differ since the latter
obtained from the former by identification of points. Thes
identifications reduce the exact killing symmetries from
SOs2, 2d to SOs2d 3 R. For this reason, acting on the
black hole, the Virasoro algebra reads [11]

fLn, Lmg ­ sn 2 mdLn1m 1
c
12

n3dn1m , (2)

having a one dimensional subalgebra generated byL0. The
same holds for the other copyL̄n. We shall call (2) the Ra-
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mond Virasoro algebra. The more usual Neveau-Schw
form of the Virasoro algebra is obtained from (2) by shif
ing the zero mode asL0 ­ LNS

0 2 cy24. The above con-
vention, appropriate to periodic boundary conditions in th
spinor field, is natural in the supergravity version of th
superconformal algebra [11,12]. The black hole mass a
angular momenta are given in termsL0 andL̄0 as

Ml ­ L0 1 L̄0, J ­ L0 2 L̄0 (3)

with no added constants. With these conventions, anti–
Sitter space hasJ ­ 0 andMl ­ 2cy12. ForM $ 0 the
associated metric represents a black hole [10], while t
particle solutions studied in [13] have2cy12 , lM , 0.

An important open question in2 1 1 adS gravity is what
is the conformal field theory (CFT) whose energy mome
tum tensor generates thec ­ 3ly2G Virasoro algebra. At
the classical level (and up to some global issues), this t
ory is described by a Liouville field [14] (see also [12]
which has two copies of the Virasoro algebra (Ln, L̄n) with
the correct value ofc. Since2 1 1 gravity has no other
degrees of freedom, one would expect that the2 1 1 black
hole entropy is associated with states in quantum Liouvi
theory with a given value ofL0, L̄0. The number of such
states turns out to be proportional to the black hole area,
with a wrong power of Newton’s gravitational constantG.
Note that this can happen because in adS3 gravity there are
two length scales, the cosmological radiusl and the Planck
length parameterlp ­ G. See Ref. [15] for a first discus-
sion on black hole entropy and the conformal algebra, a
see Ref. [16] for a recent review.

A striking observation made in [5] (see also [17]) is tha
if the boundary CFT satisfies the following two conditions
(i) TrqL0 q̄L̄0 is modular invariant (withq ­ exps2pitd and
Tr denotes both the character for a given representation
the sum over representations) and (ii)L0 $ 2cy24, L̄0 $

2cy24 [note that L0 is the Ramond-Virasoro operato
satisfying (2)], then the degeneracy of states for a giv
value of 2L0 ­ lM 1 J and 2L̄0 ­ lM 2 J give rise
exactly to the Bekenstein-Hawking entropy of a black ho
of massM and angular momentaJ. An example of a CFT
satisfying these two conditions is a set ofc free bosons
whose diagonal energy momentum tensor has a cen
© 1999 The American Physical Society
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charge equal toc and satisfy both (i) and (ii). However,
Liouville theory fails to have the right lower bound on
L0, L̄0 [18] and does not give the right degeneracy [16].

The failure of Liouville theory to provide the right
counting has led many authors to conclude that the mic
scopic origin of the black hole entropy needs an addition
structure (probably string theory) not seen by the grav
tational field, which would represent only an expectatio
value for the true quantum fields. Specifically, in the co
text of the adS-CFT conjecture [19–21], it has been su
gested in [6] that the quantum CFT is related to Liouvill
theory by an expression of the formkTCFTl ­ TLiouville.
Incidentally, it is worth mentioning here that the adS-CF
conjecture has been used to compute the central cha
of TCFT [22,23] and agreement with the Brown-Henneau
value (1) is found.

Further evidence for a string theory description of th
black hole was presented in [24], where a string propag
ing in the adS background was studied. A formula for th
spacetime conformal generators was given in terms of
string currents. The spacetime central charge in this a
proach is associated with the winding of the world she
current in spacetime. Since the string theory is unita
[for SRs2, Rd string theories, see Ref. [25] and reference
therein], the corresponding spacetime CFT is expected
give rise to the right degeneracy. This, to our knowledg
has not been carried out in detail.

Whether string theory is the only solution to this prob
lem or not is not yet clear. However, recent developmen
in the subject have made it clear that the microscopical d
scription of the three-dimensional black hole entropy r
quires more degrees of freedom than those arising fro
a naive analysis of the classical boundary dynamics.
counter example to this statement is Carlip’s [4] origin
calculation which requires only an affine SOs2, 2d algebra,
arising in a natural way in2 1 1 gravity [26], plus some
boundary conditions. The main problems with that pr
posal seems to be the large number of negative-norm sta
being counted and the physical meaning of the bounda
conditions.]

In this paper we present a new route to attack this pro
lem. We shall add a set of new degrees of freedom to
classical dynamics which, upon quantization, will accou
correctly for the Bekenstein-Hawking entropy. These ne
degrees of freedom will have a simple geometrical inte
pretation although their fundamental quantum origin is n
yet known to us. We shall first show our main results an
then discuss their significance and possible interpretatio

Let Qn sn [ Zd be a set of operators satisfying th
(Ramond) Virasoro algebra with central charge equ
to 1,

fQn, Qmg ­ sn 2 mdQn1m 1
1
12

n3dn1m . (4)

Irreducible and unitary representations for this algebra a
known and are uniquely classified by a highest weight sta
jhl with conformal weightsQ0 1 1y24djhl ­ hjhl. The
ro-
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shift 1y24 appears here becauseQ0 is the Ramond Virasoro
operator entering in (4).

For integer values of the central chargec, the Virasoro
algebra (2) is a subalgebra of (4) (see Ref. [27] a
references therein for an extensive discussion on
point). Define the generatorsLn by

Ln ­
1
c

Qcn, n [ Z, sc [ Nd . (5)

For c . 1 the Ln’s are a subset of theQn ’s. Computing
the commutator of twoLn’s we obtain

fLn, Lmg ­
1
c2 fQcn, Qcmg

­
1
c2

"
csn 2 mdQcsn1md 1

c3n3

12
dcsn1md

#

­ sn 2 mdLn1m 1
c
12

n3dn1m , (6)

as desired. Note that the central chargec of (2) needs
to be an integer because otherwise (5) would not m
sense. It goes without saying that, if we had started w
central chargeq in (4), the Ln’s defined in (5) would
have central chargeqc. This raises an ambiguity in the
possible embeddings of (2) into (4). In our application
black hole physics we shall favor theq ­ 1 case because
it gives the right degeneracy in a siple and natural for
We expect, however, that a deeper understanding of
meaning of the embedding at the level of the gravitatio
variables will provide a better justification for this choic

Before going to the black hole application of th
result, let us mention some consequences of the ab
construction [27]. Start with the algebra (4) with centr
chargeq ­ 1y2 (Ising model) and choosec ­ 2. The
above construction means that the Ising model ha
Virasoro subalgebra with central charge equal to
This, of course, can be extended to other situations
may provide unexpected relations between the vari
conformal field theories [28].

The application of the above result to the black ho
problem is direct. We extend the black hole asympto
algebra (2) by adding new degrees of freedom (n
generators) in the way described above such that we p
from (2) to (4). We now look for unitary representation
of (4). The number of statessrd for a given value ofQ0
grows as

rsQ0d , exps2p

q
Q0y6 d . (7)

Note that, since theQ0s have central charge equal t
one, this formula is correct (for largeQ0). Now, since
by constructionQ0 ­ cL0 [see (5)] the formula (7) does
reproduce the right density of states when identifying t
values of L0 and L̄0 with the macroscopic black hole
parametersM andJ [5].

It is instructive to see how the above mechanism app
in the Euclidean canonical formalism. The Euclide
2031
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black hole has the topology of a solid torus [15] whos
boundary is a torus with a modular parameter

t ­
b

2p

µ
V 1

i
l

∂
, (8)

whereb andV are, respectively, the black hole temper
ture and angular velocity [29,30]. (This definition oft

differs from the one used in [29] in the factor2p.) The
gravitational partition function, under some appropria
boundary conditions and considering only a boundary
infinity, can then be expressed in terms of the charac
[14,29]

Zftg ­ Tr exps2pitL0 2 2pit̄L̄0d . (9)

whereL0 is the zero mode Virasoro operator in (2).
The expected behavior in the semiclassical Gibbon

Hawking (GH) approximation forZ is (see [31] for a
recent discussion)

ln ZGHsbd ­
p2l2

2Gb
, (10)

where we have setV ­ 0 (no angular momentum) for
simplicity. This follows from evaluating the black hole
free energy2bF ­ 2bM 1 S with M ­ r2

1ys8Gl2d,
S ­ 2pr1ys4Gd, andb ­ 2pl2yr1.

The question of the degeneracy of states can n
be reformulated as to whether the partition function (
reproduces or not this semiclassical behavior.

If Zftg defined in (9) was modular invariant with
L0, L̄0 $ 2cy24, and c given in (1), then one can see
directly that Zftg would behave exactly as (10) [32]
This is nothing but the canonical version of the resu
obtained in [5]. The trouble is that forc . 1, either
looking at representations of the Liouville theory or th
Virasoro algebra (2) itself, it is not possible to fulfil both
conditions. Indeed, (9) does not show the behavior (1
The trace in (9) needs to be taken on a bigger Hilb
space; more degrees of freedom are necessary.

Let us take the full algebra generated by theQ0s, of
which (2) is a subalgebra, and compute the trace o
representations of (4) with central charge one. We u
(5) and write

ZQft̂g ­ TrQ exps2pit̂Q0 2 2pi ˆ̄tQ̄0d . (11)

with t̂ ­ tyc. We have thus replaced the Virasoro cha
acter (ch) with central chargec and modular parameter
t, with a different character with central charge one a
modular parametertyc. In symbols,

chsc, td ! chs1, t̂ ­ tycd . (12)

The character (11) can be computed exactly. Aft
an appropriate sum over zero modes (see below),
find [33]

ZQft̂g ­
A

Imst̂d1y2jhst̂dj2
(13)
2032
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which is invariant under modular mappings acting o
t̂. A is a constant which does not depend ont. The
asymptotic behavior of (13) can be determined eith
by using the well-known asymptotic expansions for th
Deddekind function or by looking at (11) and usin
modular invariance, as done in [32]. In any case, o
finds

ln ZQ ,
ip

6t̂
(14)

which, in terms oft, reproduces exactly the Gibbons
Hawking approximation (10). We then see a comple
analogy between the relationsQ0 ­ cL0 (microcanonical)
and t̂ ­ tyc (canonical) which encode the addition o
the new degrees of freedom. In particular, note th
the semiclassical approximationsQ0 large andt̂ small
are controlled by the central chargec, without imposing
any conditions overL0, L̄0 or t. This means that the
asymptotic behaviors (7) and (10) are actually univers
for all values ofM andJ since the semiclassical condition
c ¿ 1 ensures bothQ0 large andt̂ small [34].

It is important to mention here that the exact result (1
for the partition function arose after an integration ove
zero modes (see [33]). This integration is actually n
necessary to have the right semiclassical limit. Indee
for each representation with conformal weighth, the
character approaches (10) for smallb. We have chosen
to perform the integration overh in order to find a
modular invariant partition function, which is likely to
be an important property of the black hole dynamic
Making the integral over the conformal dimensions
also a statement on the spectrum of the associated C
From the geometrical point of view, we know that positiv
values ofL0 1 L̄0 represent black holes, while2cy12 ,

L0 1 L̄0 , 0 give rise to conical singularities. The state
considered in the computation of (13) haveQ0 1 1y24 ­
h 1 N , and we have integrated over all positive value
of h. This meansQ0 $ 21y24. In terms of L0 this
implies L0 $ 21ys24cd. Thus, the modular invariant
partition function (13) does contain states correspondi
to the particles studied in [13]. However, curiously, no
all particle masses are allowed but only the small regi
21ys12cd , L0 1 L̄0 , 0. In particular, anti–de Sitter
space withL0 1 L̄0 ­ 2cy12 is not included.

The issue of modular invariance brings into the sce
another important point. The boundary of the black ho
is a torus with a modular parametert, and one could have
expected the partition function to be modular invaria
under modular mappings acting ont. However, we have
found thatZ is invariant under the modular group actin
on t̂ ­ tyc. This is not surprising since all we have don
is use the identitytL0 ­ t̂Q0 and compute the trace ove
representations ofQn. [This is summarized in (12).] If
correct, this scaling of the modular parameter should hav
precise meaning to be uncovered. In particular, one wou
like to know whether the addition of the new generator
giving rise to (4) and̂t, could be understood in terms o
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the gravitational variables themselves, up to some rescalin
or duality transformations, or if a more sophisticated
mechanism such as introducing string degrees of freedo
is necessary.

In summary, we have shown that a Virasoro algebr
with central chargec (c: integer) can be understood as
a subalgebra of another Virasoro algebra with centra
charge one. We have thus imposed the quantizatio
condition c [ N, wherec is the central charge (1), and
have extended the Brown-Henneaux conformal algeb
by adding new generators. The new conformal algebr
reproduces in a natural way the semiclassical aspects
the 2 1 1 black hole thermodynamics. An important
open question not addressed here is the uniqueness
this approach. The embeddings of the Virasoro algebr
studied here are of course not unique, although it is no
clear to us that other embeddings of (2) will give rise to
the right entropy. At any rate, a more detailed calculatio
of other semiclassical quantities such as decay rates [3
in theQ theory should test its uniqueness and correctnes
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