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Embeddings of the Virasoro Algebra and Black Hole Entropy
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We consider embeddings of the Virasoro algebra into other Virasoro algebras with different central
charges. A Virasoro algebra with central chargéassumed to be a positive integer) and zero mode
operatorL, can be embedded into another Virasoro algebra with central charge one and zero mode
operatorcL,. We point out that this provides a new route to investigate the black hole entropy problem
in 2 + 1 dimensions. [S0031-9007(99)08600-7]

PACS numbers: 04.70.Dy

Three-dimensional gravity was put forward by Deser,mond Virasoro algebra. The more usual Neveau-Schwarz
Jackiw, and 't Hooft [1] as an interesting toy model for form of the Virasoro algebra is obtained from (2) by shift-
gravitational physics. It was then argued in [2] (see alsdng the zero mode aky, = L)° — ¢/24. The above con-
[3]) that it defines a soluble and finite quantum field vention, appropriate to periodic boundary conditions in the
theory. Questions such as what are the microscopicalpinor field, is natural in the supergravity version of the
degrees of freedom giving rise to the Bekenstein-Hawkinguperconformal algebra [11,12]. The black hole mass and
entropy in three dimensions should then have an answeangular momenta are given in terthg andL, as
However, despite interesting proposals [4,5] it is clear _ _
that the answer to this question is not yet available. Ml =1Lo+ Lo, J=Lo— Lo 3)
Even more, the difficulties which arise from trying to . . . .
provide a consistent quantum description of the black hol&/ith no added constants. With these conventions, anti—de
entropy have led to the suggestion that Einstein gravity!iie! SPace has = 0 andMl = —c/12. ForM = 0the
represents a sort of thermodynamical description for th@SSociated metric represents a black hole [10], while the
gravitational phenomena and it thus makes no sense ffrticle solutions studied in [13] haver/12 < IM < 0.
attempt to quantize it (see Ref. [6] and references therein). AN important open question i + 1 adS gravity is what
In the loop representation approach to quantum gravity)s the conformal field theory (CFT) whose energy momen-

successful computations for the black hole entropy, ufum tensor generates the= 3//2G Virasoro algebra. At

to a numerical factor, have been achieved (see Refs. [-}(Te classical level (and up to some global issues), this the-
r

and [8]). y is described by a Liouville field [14] (see also [12])
Our main tool in analyzing the three-dimensional black"/Nich has two copies of the Virasoro algebig (L,,) with

hole entropy is the discovery of Brown and Henneaux [9]t€ CorTect value of. Since2 + 1 gravity has no other

that the asymptotic symmetry group of three-dimensionaf €9"€€S of fr(_aedom, one WOL."d expect thatthe 1 blgck .
anti—de Sitter (adS) space is generated by two copies le entropy is associated with states in quantum Liouville

the Virasoro algebra with central charge [9] theory with a given value oLQ, Lo. The number of such
states turns out to be proportional to the black hole area, but

c = 3L 1) with a wrong power of Newton’s gravitational constant
2G Note that this can happen because insagi@vity there are

and, hence, is the two-dimensional conformal group. Her&V0 length scales, the cosmological radied the Planck

G is Newton’s constant; we parametrize the negativd®ngth paramete, = G. See Ref. [15] for a first discus-
cosmological constant as = —1/12 and seti = 1. In  Sionon black hole entropy and the conformal algebra, and
the semiclassical regimé — 0, c is large. The2 + 1  S€e Ref. [16] for a recent review. _

black hole [10] is asymptotically anti—de Sitter and thus,_ A Striking observation made in [5] (see also [17]) is that,
the conformal group acts on itin a similar form. However, if the boundary CFT satisfies the following two conditions,
globally, adS and the black hole differ since the latter is(l) Tr* " " is modular invariant (witly = exp(2i7) and
obtained from the former by identification of points. These!r denotes both the character for a given representation and
identifications reduce the exact killing symmetries fromthe sum over representations) and {if) = —c/24, Lo =
SQO(2,2) to SO2) x M. For this reason, acting on the —c/24 [note thatL, is the Ramond-Virasoro operator

black hole, the Virasoro algebra reads [11] satisfying (2)], then the degeneracy of states for a given
c value of 2Ly = IM + J and 2Ly = IM — J give rise
[Lpy L]l = — m)Lyyym + . 138, 1ms (2) exactly to the Bekenstein-Hawking entropy of a black hole

of massM and angular momenta An example of a CFT
having a one dimensional subalgebra generatdd,byThe  satisfying these two conditions is a set ofree bosons
same holds for the other cogy,. We shall call (2) the Ra- whose diagonal energy momentum tensor has a central
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charge equal te and satisfy both (i) and (ii). However, shift1/24 appears here becauggis the Ramond Virasoro
Liouville theory fails to have the right lower bound on operator entering in (4).
Lo, Lo [18] and does not give the right degeneracy [16]. For integer values of the central chargethe Virasoro
The failure of Liouville theory to provide the right algebra (2) is a subalgebra of (4) (see Ref. [27] and
counting has led many authors to conclude that the microreferences therein for an extensive discussion on this
scopic origin of the black hole entropy needs an additionapoint). Define the generatofs, by
structure (probably string theory) not seen by the gravi- 1
tational field, which would represent only an expectation Ln="—"0Qcn n€Z (c EN). (5)
value for the true quantum fields. Specifically, in the CONEor ¢
text of the adS-CFT conjecture [19-21], it has been SU0fe ¢
gested in [6] that the quantum CFT is related to Liouville
theory by an expression of the forficrr) = TLiouville- [L,,L,] = iz [Qens Ocm]
Incidentally, it is worth mentioning here that the adS-CFT ¢
conjecture has been used to compute the central charge 3.3
of Tcrr [22,23] and agreement with the Brown-Henneaux — i[c(n — 1) Qeuim + — 5C(n+m)}
value (1) is found. c? 12
Further evidence for a string theory description of the
black hole was presented in [24], where a string propagat- = (n — m)Lpsm + < 138, m (6)
ing in the adS background was studied. A formula for the 12
spacetime conformal generators was given in terms of thas desired. Note that the central chargef (2) needs
string currents. The spacetime central charge in this ago be an integer because otherwise (5) would not make
proach is associated with the winding of the world sheegense. It goes without saying that, if we had started with
current in spacetime. Since the string theory is unitarycentral chargeg in (4), the L,’s defined in (5) would
[for SR(2, N) string theories, see Ref. [25] and referenceshave central charggc. This raises an ambiguity in the
therein], the corresponding spacetime CFT is expected tpossible embeddings of (2) into (4). In our application to
give rise to the right degeneracy. This, to our knowledgeplack hole physics we shall favor thke= 1 case because
has not been carried out in detail. it gives the right degeneracy in a siple and natural form.
Whether string theory is the only solution to this prob-We expect, however, that a deeper understanding of the
lem or not is not yet clear. However, recent developmentgneaning of the embedding at the level of the gravitational
in the subject have made it clear that the microscopical devariables will provide a better justification for this choice.
scription of the three-dimensional black hole entropy re- Before going to the black hole application of this
quires more degrees of freedom than those arising frorfesult, let us mention some consequences of the above
a naive analysis of the classical boundary dynamics. [Aconstruction [27]. Start with the algebra (4) with central
counter example to this statement is Carlip’s [4] originalchargeq = 1/2 (Ising model) and choose = 2. The
calculation which requires only an affine &) algebra, above construction means that the Ising model has a
arising in a natural way i2 + 1 gravity [26], plus some Virasoro subalgebra with central charge equal to 1.
boundary conditions. The main problems with that pro-This, of course, can be extended to other situations and
posal seems to be the large number of negative-norm statg¥y provide unexpected relations between the various
being counted and the physical meaning of the boundargonformal field theories [28].
conditions.] The application of the above result to the black hole
In this paper we present a new route to attack this probproblem is direct. We extend the black hole asymptotic
lem. We shall add a set of new degrees of freedom to thalgebra (2) by adding new degrees of freedom (new
classical dynamics which, upon quantization, will accountgenerators) in the way described above such that we pass
correctly for the Bekenstein-Hawking entropy. These newfrom (2) to (4). We now look for unitary representations
degrees of freedom will have a simple geometrical interof (4). The number of statdg) for a given value 0fQ
pretation although their fundamental quantum origin is nogrows as
yet known to us. We shall first show our main results and
then discuss their significance and possible interpretation. p(Qo) ~ exp2myQo/6). ()
Let 0, (n € Z) be a set of operators satisfying the Note that, since thed’s have central charge equal to
(Ramond) Virasoro algebra with central charge equabne, this formula is correct (for larg8,). Now, since

> 1 theL,’s are a subset of th@,’s. Computing
ommutator of twd.,,’s we obtain

to 1, by constructionQy = cL [see (5)] the formula (7) does
(00, O] = (1 — M)Qnim + 1 n38,.m. (4) reproduce the right density of states when identifying the
12 values of Ly and Ly with the macroscopic black hole

Irreducible and unitary representations for this algebra arparameterds andJ [5].
known and are uniquely classified by a highest weight state It is instructive to see how the above mechanism applies
|h) with conformal weight(Qy + 1/24)|h) = h|h). The in the Euclidean canonical formalism. The Euclidean
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black hole has the topology of a solid torus [15] whosewhich is invariant under modular mappings acting on

boundary is a torus with a modular parameter 7. A is a constant which does not depend on The
B ; asymptotic behavior of (13) can be determined either
= (Q + 7), (8) by using the well-known asymptotic expansions for the
v

Deddekind function or by looking at (11) and using
where 8 and(Q) are, respectively, the black hole tempera-modular invariance, as done in [32]. In any case, one
ture and angular velocity [29,30]. (This definition of finds ,

differs from the one used in [29] in the fact®tr.) The InZy ~ L (14)
gravitational partition function, under some appropriate 67

boundary conditions and considering only a boundary awhich, in terms of7, reproduces exactly the Gibbons-
infinity, can then be expressed in terms of the charactdriawking approximation (10). We then see a complete

[14,29] analogy between the relatiof% = cL, (microcanonical)
7171 = Tr exo(2mitLa — 2miFLa). 9 and # = 7/c (canonical) which encode _the addition of
L7] A2mirLo mitlo) © the new degrees of freedom. In particular, note that
whereL is the zero mode Virasoro operator in (2). the semiclassical approximatiort®, large and# small

The expected behavior in the semiclassical Gibbonsare controlled by the central charge without imposing
Hawking (GH) approximation foiZ is (see [31] for a any conditions ovet,, Ly or 7. This means that the

recent discussion) asymptotic behaviors (7) and (10) are actually universal
w22 for all values ofM andJ since the semiclassical condition
InZgu(B) = 2GB° (10) ¢ > 1 ensures botl®, large and+ small [34].

It is important to mention here that the exact result (13)
where we have sef) = 0 (no angular momentum) for for the partition function arose after an integration over
simplicity. This follows from eva_luating the black hole ;er0 modes (see [33]). This integration is actually not
free energy—BF = —BM + S with M = r1/(8GI’), necessary to have the right semiclassical limit. Indeed,
S =2mr/(4G), andB = 27 */r,. for each representation with conformal weight the

The question of the degeneracy of states can nOWnaracter approaches (10) for small We have chosen
be reformulated as to whether the partition function (9)q perform the integration oveh in order to find a
reproduces or not this semiclassical behavior. _ modular invariant partition function, which is likely to

If Z[r] defined in (9) was modular invariant with pe an important property of the black hole dynamics.
Lo, Lo = —c/24, and c given in (1), then one can see \Making the integral over the conformal dimensions is
directly that Z[7] would behave exactly as (10) [32]. also a statement on the spectrum of the associated CFT.
This is nothing but the canonical version of the resultsgrgm the geometrical point of view, we know that positive
obtained in [5]. The trouble is that for > 1, either \3jyes ofL, + L, represent black holes, whilec/12 <
looking at representations of the Liouville theory orthey 4+ 7, <o give rise to conical singularities. The states
Virasoro algebra (2) itself, it is not possible to fulfil both ¢gnsidered in the computation of (13) ha@g + 1/24 =
conditions. Indeed, (9) does not show the behavior (10), + N, and we have integrated over all positive values
The trace in (9) needs to be taken on a bigger Hilberbf ;. This meansQ, = —1/24. In terms of Ly this
space; more degrees of freedom are necessary. implies Ly = —1/(24c). Thus, the modular invariant

Let us take the full algebra generated by #és, of  partition function (13) does contain states corresponding
which (2) is a subalgebra, and compute the trace ovep the particles studied in [13]. However, curiously, not
representations of (4) with central charge one. We usg|| particle masses are allowed but only the small region
(5) and write —1/(12¢) < Lo + Lo < 0. In particular, anti—de Sitter

Zo[#] = Tro exp2mi#Qy — 2mizQy) . (11) Space \(vithLo + Ly = —c_/12 is not incI_uded..

) ] The issue of modular invariance brings into the scene
with # = 7/c. We have thus replaced the Virasoro char-gnother important point. The boundary of the black hole
acter (ch) with central charge and modular parameter js a torus with a modular parameterand one could have
7, with a different character with central charge one anchypected the partition function to be modular invariant
modular parameter/c. In symbols, under modular mappings acting en However, we have

chic, ) — ch(1,% = 7/c). (12) found thatZ is invgriant undgr_the modular group acting
on% = 7/c. Thisis not surprising since all we have done

The character (11) can be computed exactly. Afters use the identityL, = #Qo and compute the trace over
an appropriate sum over zero modes (see below), weepresentations of,. [This is summarized in (12).] If

find [33] correct, this scaling of the modular parameter should have a
. A precise meaning to be uncovered. In particular, one would
Zo[?] = FOLLCE (13)  like to know whether the addition of the new generators,

giving rise to (4) and?, could be understood in terms of
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