VALORIZACIÓN BAJO INCERTIDUMBRE DE MINAS A CIELO ABIERTO CON DOS PLANTAS DE PROCESO

MATÍAS ANDRES SIÑA ZEPEDA

Tesis para optar al grado de Magister en Ciencias de la Ingeniería

Profesor Supervisor:
JUAN IGNACIO GUZMÁN

Santiago de Chile, Marzo, 2017
© 2017, Matías Siña
VALORIZACIÓN BAJO INCERTIDUMBRE DE MINAS A CIELO ABIERTO CON DOS PLANTAS DE PROCESO

MATÍAS ANDRES SIÑA ZEPEDA

Tesis presentada a la Comisión integrada por los profesores:

JUAN IGNACIO GUZMÁN
GONZALO CORTÁZAR
JAIME CASASSUS
EDUARDO AGOSÍN

Para completar las exigencias del grado de Magister en Ciencias de la Ingeniería

Santiago de Chile, Marzo, 2017
A mi familia y amigos
AGRADERCIMIENTOS

En primer lugar quisiera agradecer al profesor Juan Ignacio Guzmán por su confianza, tiempo y apoyo a lo largo de toda la investigación. Trabajar junto a él ha sido fundamental para mi formación profesional.

Quisiera agradecer también a cada uno de los miembros de la Comisión por el interés mostrado en la investigación y por ayudar a mejorar la calidad de esta a través de sus comentarios.

Finalmente, quisiera agradecer a Nicole, mi familia y amigos por su compañía y apoyo incondicional durante todos estos años.
<table>
<thead>
<tr>
<th>Sección</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATORIA</td>
<td>ii</td>
</tr>
<tr>
<td>AGRADECIMIENTOS</td>
<td>iii</td>
</tr>
<tr>
<td>INDICE GENERAL</td>
<td>4</td>
</tr>
<tr>
<td>INDICE DE TABLAS</td>
<td>vii</td>
</tr>
<tr>
<td>INDICE DE FIGURAS</td>
<td>viii</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>1 INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Objetivos</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Alcances</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Estructura</td>
<td>3</td>
</tr>
<tr>
<td>2 ANTECEDENTES PRELIMINARES</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Minería a cielo abierto</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Planificación minera</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Leyes de corte</td>
<td>6</td>
</tr>
<tr>
<td>3 REVISIÓN BIBLIOGRÁFICA</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Valorización mediante opciones reales</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Modelos para el precio de los commodities</td>
<td>8</td>
</tr>
<tr>
<td>4 FORMULACIÓN DEL PROBLEMA</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Caso determinístico</td>
<td>12</td>
</tr>
</tbody>
</table>
4.2 Caso estocástico .. 12

5 MODELOS PARA EL PRECIO del commodity ... 13
 5.1 Notación .. 13
 5.2 Modelo sin reversión ... 14
 5.3 Modelo con reversión .. 15
 5.4 Discusión .. 17

6 MODELO DE VALORIZACIÓN PARA UN PERIODO .. 18
 6.1 Notación .. 18
 6.2 Valorización de la opción .. 19
 6.2.1 Caso I .. 20
 6.2.2 Caso II ... 22
 6.2.3 Caso III ... 23
 6.2.4 Caso IV .. 25
 6.2.5 Caso V ... 26
 6.3 Análisis de sensibilidad de la opción ... 27
 6.3.1 Caso I .. 27
 6.3.2 Caso II ... 28
 6.3.3 Caso III ... 28
 6.3.4 Caso IV .. 28
 6.3.5 Caso V ... 29
 6.4 Discusión .. 29

7 MODELO DE VALORIZACIÓN PARA MÚLTIPLES PERIODOS 30
 7.1 Notación .. 30
 7.2 Variables de decisión .. 31
 7.3 Restricciones .. 31
 7.4 Función objetivo .. 32
 7.4.1 Caso I .. 32
7.4.2 Caso II .. 32
7.4.3 Caso III ... 33
7.4.4 Caso IV ... 33
7.4.5 Caso V ... 33

7.5 Discusión .. 34

8 CASO DE ESTUDIO .. 35
8.1 Representación ficticia ... 35
8.2 Resultados .. 36
8.3 Análisis de sensibilidad .. 39

9 CONCLUSIONES .. 44

BIBLIOGRAFIA .. 45
Tabla 8-1: Parámetros utilizados en los modelos para el precio.. 35
Tabla 8-2: Parámetros utilizados en el modelo de valorización .. 36
Tabla 8-3: Sensibilidad a la volatilidad (caso sin reversión) .. 40
Tabla 8-4: Sensibilidad a la volatilidad (caso con reversión) .. 40
Tabla 8-5: Sensibilidad a la tasa de interés (caso sin reversión) .. 41
Tabla 8-6: Sensibilidad a la tasa de interés (caso con reversión) .. 41
Tabla 8-7: Sensibilidad al precio actual (caso sin reversión) .. 42
Tabla 8-8: Sensibilidad al precio actual (caso con reversión) .. 42
INDICE DE FIGURAS

Figura 2-1: Tareas de la planificación minera en una mina a cielo abierto 5
Figura 4-1: Función de beneficio de la mina para distintos precios 10
Figura 4.2: Diseño de fases para una mina a cielo abierto ficticia.......................... 11
Figura 8-1: VAN sin incertidumbre y reversión en el precio (σ=0%) 37
Figura 8-2: VAN sin incertidumbre y con reversión en el precio (σ=0%) 37
Figura 8-3: VAN con incertidumbre y sin reversión en el precio (σ=40%) 38
Figura 8-4: VAN con incertidumbre y reversión en el precio (σ=40%) 38
RESUMEN

En esta tesis se desarrolla un modelo para valorizar minas a cielo abierto con dos plantas de procesamiento bajo incertidumbre en el precio del commodity. El modelo se basa en la teoría de las opciones reales y en la flexibilidad para decidir si el mineral se procesará o enviará al botadero en el momento que se extrae. Además, permite maximizar el valor actual neto de la mina mediante el uso de la tasa y la secuencia de extracción como variables de decisión. Se empleó un ejemplo numérico para ilustrar el modelo y cómo la incertidumbre en el precio afecta el diseño de una operación minera. El principal resultado que se obtuvo es que se puede aumentar de forma significativa el valor de una mina mediante un diseño que considera dos plantas de procesamiento en vez de una.

Palabras Claves: Opciones reales, planificación minera, incertidumbre, leyes de corte
This thesis develops a real option model for valuing open pit mines with two processing plants under commodity price uncertainty. The model considers the flexibility in order to decide if ore will be processed or sent to the waste dump when it is extracted. Additionally, it enables to maximize the net present value of the mine through the use of the extraction rate and the mining sequence as decision variables. A numerical example is used to illustrate the model and the effect that price uncertainty has in the design of a mining project. The main result obtained is that an open pit mine can significantly enhance its value under a design that considers two processing plants instead of one.

Keywords: Real options, mine planning, uncertainty, cut-off grades
1 INTRODUCCIÓN

La actividad minera consiste en la extracción, procesamiento y comercialización de un recurso mineral de naturaleza finita y heterogénea. Sus características son que es intensiva en el uso de capital, tiene tiempos de inversión prolongados, se desarrolla en un enclave geográfico fijo (esto es, donde se encuentra el yacimiento) y presenta niveles de productividad decrecientes en el tiempo. Para valorizar una operación minera es necesario realizar un inventario de recursos y reservas, seleccionar la envolvente económica, diseñar la secuencia de extracción, definir las leyes de corte por proceso y escoger las capacidades de procesamiento. No obstante, se deben además considerar las distintas fuentes de incertidumbre y flexibilidad presentes en cada una de estas tareas (Inthavongsa et al., 2016).

Las fuentes de incertidumbre en la minería se clasifican según si son de carácter interno o externo a la organización (Guzmán, 2011). Las principales fuentes de incertidumbre son el recurso mineral a explotar y el precio del commodity. El recurso mineral es una fuente de incertidumbre interna debido a que corresponde a una interpretación geológica que se realiza en base a sondajes y estimaciones geoestadísticas. Por otro lado, el precio del commodity es una fuente de incertidumbre externa debido a que depende del equilibrio entre la oferta y la demanda. Es importante destacar que en la actualidad existen herramientas para modelar ambas fuentes de incertidumbre.

Las opciones reales otorgan a las organizaciones flexibilidad para responder ante distintas fuentes de incertidumbre. Algunas de las opciones reales que existen en las operaciones mineras a cielo abierto son la opción de aumentar o reducir la capacidad de producción, la opción de abandonar o retomar la operación y la opción de generar un acopio de mineral para procesarlo en el futuro. La metodología de las opciones reales permite valorizar de forma correcta una operación minera debido a que considera el valor de su flexibilidad bajo incertidumbre.
En este trabajo se busca desarrollar un modelo para valorizar minas a cielo abierto con dos plantas de proceso bajo incertidumbre en el precio del *commodity*. El modelo se basa en la opción real para decidir si el mineral se procesará o enviará al botadero en el momento que se extrae. Por otro lado, el trabajo se enfoca en obtener soluciones analíticas que puedan complementarse con algoritmos ya existentes dentro de la planificación minera y en cuantificar el beneficio que otorga utilizar un modelo de valorización bajo incertidumbre en el precio del *commodity*.

1.1 Objetivos

El objetivo general de la investigación es desarrollar un modelo para valorizar minas a cielo abierto con dos plantas de procesamiento bajo incertidumbre en el precio del *commodity*.

Los objetivos específicos se enumeran a continuación:

- Obtener la secuencia y la tasa de extracción óptimas bajo incertidumbre.

- Cuantificar la mejora económica que conlleva considerar incertidumbre en el precio del *commodity*.

1.2 Alcances

Los alcances en los cuales se enmarca la tesis son los siguientes:

- Operación minera a cielo abierto.

- Flexibilidad para escoger el destino al cual se enviará el mineral en el momento que se extrae.
1.3 Estructura

La estructura de la tesis es la siguiente:

- Capítulo 1: Se introducen el tema, los objetivos y los alcances de la investigación.

- Capítulo 2: Se presentan los antecedentes preliminares sobre los cuales se contextualiza la tesis.

- Capítulo 3: Se desarrolla una revisión bibliográfica sobre las opciones reales y los modelos para el precio de los commodities.

- Capítulo 4: Se presenta la formulación general del problema y se describe el modelo de valorización.

- Capítulo 5: Se describen los dos modelos estocásticos que se utilizaron para caracterizar el precio de un commodity.

- Capítulo 6: Se desarrolla el modelo de valorización para el caso en que el mineral se extrae en un solo periodo.

- Capítulo 7: Se desarrolla el modelo de valorización para el caso en que el mineral se extrae en múltiples periodos.

- Capítulo 8: Se propone un caso de estudio numérico para ilustrar cómo se puede utilizar el modelo de valorización.

- Capítulo 9: Se desarrollan las principales conclusiones sobre el trabajo y las futuras líneas de investigación.
2 ANTECEDENTES PRELIMINARES

2.1 Minería a cielo abierto

Una operación minera corresponde al conjunto de labores requeridas para explotar un yacimiento. Los métodos de explotación se clasifican según si las labores se desarrollan sobre o bajo la superficie y su elección se basa en criterios técnicos y económicos. Dentro de los criterios técnicos se encuentran la ubicación del yacimiento, su topografía, sus dimensiones y su mineralogía. Por otro lado, dentro de los criterios económicos se encuentran los costos de explotación, los costos de inversión, el riesgo y la rentabilidad del negocio. La empresa elegirá cual método emplear también en base a su nivel de experiencia en cada uno de estos y a la legislación vigente donde se encuentra la operación. El método de explotación no es excluyente en el tiempo y existe la posibilidad de que ocurra una transición desde un método superficial a uno subterráneo o viceversa. Además, existen yacimientos en los cuales es óptimo el desarrollo de ambos métodos de forma simultánea.

La minería a cielo abierto es un método de explotación superficial que se caracteriza por tener bajos costos de operación e inversión, una selectividad limitada y tiempos de capitalización menores en comparación a los métodos subterráneos. Lo anterior conlleva a que sea uno de los métodos más utilizados para explotar yacimientos superficiales y de baja ley. La extracción del mineral en este método se desarrolla por medio de fases de explotación cuyo objetivo es permitir una extracción operativa que maximice la rentabilidad de la mina. Los destinos a los cuales una mina a cielo abierto puede enviar el mineral son la planta de procesamiento y el botadero. Se enviará a la planta la mena que corresponde al mineral con una concentración del commodity que permite obtener un beneficio positivo. Por otro lado, se enviará al botadero la ganga que corresponde al mineral con una concentración del commodity que no permite obtener un beneficio positivo.
2.2 Planificación minera

La planificación minera es un proceso iterativo conformado por distintas tareas que tiene como objetivo maximizar el valor de la operación. En las minas a cielo abierto las principales tareas que se llevan a cabo se detallan en la Figura 2-1 (Rubio, 2011).

Figura 2-1: Tareas de la planificación minera en una mina a cielo abierto

La primera tarea de la Figura 2-1 consiste en obtener el modelo geológico del yacimiento. Este se elabora en base a la información de una campaña de sondaje y permite desarrollar el modelo de bloques en tres dimensiones. El modelo de bloques contiene información sobre la distribución de leyes, el tipo de mineral y las propiedades geotécnicas en cada sector del yacimiento. Para obtener el modelo valorado del yacimiento se utiliza la información del modelo de bloques y se consideran parámetros técnicos y económicos asociados a la extracción y procesamiento del mineral. El modelo valorado permite definir las reservas con las que cuenta la operación y así utilizar algoritmos como el de Lerchs y Grossman (1965) para hallar las dimensiones y ubicación del rajo óptimo. El rajo óptimo se utiliza para obtener el programa de producción mediante un diseño de fases. Finalmente, es posible valorizar la mina en base a los resultados de las tareas anteriores.
2.3 Leyes de corte

Existen varios tipos de leyes de cortes que se utilizan en el proceso de la planificación minera. Las más utilizadas son la ley de corte marginal, la ley de corte planta, la ley de corte equivalente y la ley de corte por proceso. La ley de corte marginal es la ley para la cual se obtiene un beneficio nulo al procesar el mineral (Asad, Qureshi & Jang, 2016). Por otro lado, la ley de corte planta es la ley sobre la cual se procesará el mineral. Es importante notar que esta es mayor o igual a la ley de corte marginal debido a que existe un costo de oportunidad asociado a postergar la extracción del mineral con una mayor concentración. La ley de corte equivalente es análoga a la ley de corte marginal pero se utiliza cuando el mineral contiene sub-productos. En consecuencia, corresponde a la combinación de leyes entre el producto principal y los sub-productos para el cual el beneficio de procesar el mineral es nulo. Finalmente, la ley de corte por proceso se utiliza cuando existen distintos métodos para procesar el mineral.

Las leyes de corte permiten decidir en base a criterios técnicos y económicos el destino al cual se enviará el mineral en el momento que se extrae. Los avances que se han realizado en la elaboración de políticas de leyes de corte óptimas son extensos y se basan en la metodología desarrollada por Lane (1988). Dicha metodología propone que las leyes de corte óptimas deben maximizar el valor actual neto (VAN) de la mina en función de su VAN remanente. Es importante notar que esta metodología es similar a encontrar la secuencia y la tasa de extracción óptimas ya que en ambas se busca maximizar el VAN de la operación. No obstante, en la metodología de las leyes de corte óptimas se utiliza la distribución de leyes del yacimiento. El uso de esta distribución limita la valorización de la mina debido a que no considera las restricciones operacionales a las cuales se encuentra sujeta la exposición del mineral. En consecuencia, conlleva a resultados que no son operativos cuando la ley del yacimiento cambia de forma significativa con la profundidad.
3 REVISIÓN BIBLIOGRÁFICA

3.1 Valorización mediante opciones reales

El origen del término opción real se debió a la analogía que existe entre una opción financiera de compra y un proyecto de inversión (Myers, 1977). Las opciones reales son una herramienta útil en la evaluación de proyectos debido a que permiten incorporar el valor de la flexibilidad bajo incertidumbre. Al igual que las opciones financieras, otorgan el derecho y no la obligación a realizar una acción en el futuro en base al valor de una variable que es en esencia incierta (Trigeorgis, 1996). Sin embargo, se diferencian de las opciones financieras en que consideran como subyacente un activo tangible propio de una organización. Algunos de los métodos que se han utilizado para valorizar opciones reales son: i) ecuaciones diferenciales parciales (Black & Scholes, 1973), ii) métodos binomiales (Cox, Ross & Rubinstein, 1979) y iii) simulaciones de Monte Carlo (Cortázar & Schwartz, 1998).

Las opciones reales han sido utilizadas por varios autores para valorizar proyectos pertenecientes a la industria minera (Savolainen, 2016). Brennan y Schwartz (1985) fueron uno de los primeros en valorizar un proyecto minero bajo incertidumbre en el precio del commodity. Consideraron el caso de una mina ficticia que cuenta con la opción de abrir, cerrar y abandonar la operación. McDonald y Siegel (1986) valorizaron un proyecto que cuenta con la opción de diferir su inversión a lo largo de un horizonte de tiempo infinito. Paddock, Siegel y Smith (1988) valorizaron la concesión de un pozo de petróleo sin explotar que cuenta con las opciones de ser explorado y desarrollado en etapas distintas. Cortázar y Casassus (1998) resolvieron mediante métodos numéricos el valor de una mina de cobre que cuenta con las opciones de expandir su capacidad de producción y de abrir, cerrar y abandonar la operación. Finalmente, Cortázar y Schwartz (1998) valorizaron un pozo de petróleo sin explotar que cuenta con la opción de diferir su inversión a lo largo de un horizonte de tiempo finito.
Es importante notar que la mayoría de la literatura que estudia la valorización de proyectos mineros mediante el uso de opciones reales considera de forma exclusiva fuentes de flexibilidad estratégica. No obstante, muchas operaciones mineras a cielo abierto cuentan con fuentes de flexibilidad operacional que pueden contribuir de forma significativa al valor del negocio. En este trabajo se consideró la flexibilidad operacional que tiene una mina a cielo abierto para decidir si el mineral se procesará o enviará al botadero en el momento que se extrae. Esta opción real es similar a una opción financiera de compra debido a que la mina procesará el mineral solo si el precio del commodity permite obtener un beneficio positivo. Por otro lado, si la mina no puede obtener un beneficio positivo enviará el mineral al botadero. El valor de la opción descrita depende del nivel de incertidumbre que existe en el precio del commodity. En consecuencia, para valorizarla se requiere un modelo estocástico que caracterice el comportamiento del precio del commodity en función del tiempo.

3.2 Modelos para el precio de los commodities

El precio de un commodity se comporta de forma distinta al de un activo financiero debido a que se encuentra asociado a un proceso productivo. La teoría del almacenaje desarrollada por Kaldor (1939), Working (1948), Telser (1958) y Brennan (1958) propone que se percibe un beneficio implícito al almacenar un commodity. El beneficio se denomina en la literatura como “retorno por conveniencia” y en conjunto con la tasa de interés libre de riesgo y el costo de almacenaje definen la curva de precios en los contratos de futuros. Working (1948) propone que el retorno por conveniencia permite explicar la razón por la cual a veces esta curva es decreciente. Por otro lado, Kaldor (1939) plantea que el retorno por conveniencia no es constante en el tiempo y que depende del nivel de inventarios. Finalmente, Telser (1958) y Brennan (1958) hacen una investigación empírica que corrobora la existencia de una correlación negativa entre el nivel de inventarios del commodity y su retorno por conveniencia.
Los modelos para el precio de los *commodities* se pueden clasificar según el número de factores de riesgo que consideran. Brennan y Schwartz (1985) propusieron un modelo de un factor en el cual el retorno por conveniencia y la tasa de interés libre de riesgo son constantes en el tiempo. Gibson y Schwartz (1990) desarrollaron un modelo de dos factores en el que se considera un proceso de reversión en el retorno por conveniencia. Schwartz (1997) propuso un modelo similar al anterior y lo extendió al considerar como tercer factor la tasa de interés libre de riesgo. Además, propuso un modelo de un factor que considera un proceso de reversión en el precio. En un trabajo más reciente Schwartz y Smith (2000) desarrollaron un modelo de dos factores en el que el precio sigue un proceso de reversión a un valor de largo plazo que es estocástico. Se demuestra en este trabajo que el modelo es equivalente al desarrollado por Gibson y Schwartz (1990). Finalmente, es importante destacar el modelo de tres factores desarrollado por Cortázar y Schwartz (2003). Este modelo es similar al modelo de tres factores desarrollado por Schwartz (1997) pero presenta una formulación más intuitiva y considera como tercer factor el retorno de largo plazo en el precio del *commodity*.

Una propiedad que presentan los modelos para el precio de los *commodities* es que se pueden emplear bajo las probabilidades reales o ajustadas por riesgo. Las probabilidades reales describen el comportamiento real que tiene el precio de un *commodity* en función del tiempo. Por otro lado, las probabilidades ajustadas por riesgo describen el comportamiento que el precio de un *commodity* debe tener para que no existan oportunidades de arbitraje. Para valorizar derivados del precio de un *commodity* por lo general se utilizan las probabilidades ajustadas por riesgo debido a que bajo estas probabilidades la tasa de descuento es igual a la tasa de interés libre de riesgo (Schwartz, 1998). No obstante, es importante notar que el valor del derivado es el mismo bajo las probabilidades reales si se utiliza la tasa de descuento correcta para esa medida de probabilidad.
4 FORMULACIÓN DEL PROBLEMA

Se consideró una mina a cielo abierto con dos plantas de proceso y la flexibilidad para decidir si el mineral se procesará o enviará al botadero en el momento que se extrae. Cada planta de procesamiento tiene una función de beneficio \(\pi_{i=1,2} \) que permite recuperar un porcentaje del commodity contenido en el mineral. Por otro lado, el botadero (WD, por sus siglas en inglés) es donde se envía el mineral sin valor económico. La decisión de procesar o enviar al botadero el mineral depende de la ley \(g \) y del precio del commodity en el momento que se extrae \(S_{t=T} \). En consecuencia, la función de beneficio \(\pi \) de la mina por unidad de mineral es:

\[
\pi(g, S_{T}) = \max(\pi_1(g, S_{T}), \pi_2(g, S_{T}), 0)
\]

(4.1)

El problema que presenta la ecuación 4.1 es que bajo incertidumbre en el precio del commodity el destino óptimo para el mineral puede cambiar en el tiempo. Esto se debe a que para un determinado precio \(S^* \) el beneficio del primer proceso es mayor que el del segundo, como se ilustra en la Figura 4-1.

![Diagrama](image)

Figura 4-1: Función de beneficio de la mina para distintos precios
El modelo de valorización fue desarrollado para el caso en que el mineral se extrae en uno y en múltiples periodos. En el primer caso se valoriza la opción real (V) para decidir si el mineral se procesará o enviará al botadero en el momento que se extrae. Por otro lado, en el segundo caso se valoriza el VAN de la mina a cielo abierto (J) en base al valor de la opción real. La diferencia entre ambos casos es que en el segundo se considera la tasa (q) y la secuencia de extracción (ϕ) como variables de decisión. La secuencia de extracción se encuentra en notación vectorial ya que corresponde al orden en que se consumen las fases en las que se divide la mina. En la Figura 4-2 se ilustra un diseño de fases para una mina a cielo abierto ficticia.

Figura 4-2: Diseño de fases para una mina a cielo abierto ficticia

Para facilitar el cálculo del VAN se consideró que la tasa y la secuencia de extracción se mantienen constantes en el tiempo. En consecuencia, se puede conocer cuánto se demora en agotar cada fase (T_{ϕ_1=1,...,N}) y cómo cambia su ley (g_{ϕ_1=1,...,N}) en función del tiempo. Además, se consideró que la mina se demora una cierta cantidad de tiempo (T_{ϕ0}) antes de comenzar a extraer el mineral.
4.1 Caso determinístico

Cuando no existe incertidumbre en el precio del commodity el valor de la opción real \(V_d \) corresponde a la función de beneficio de la mina descontada por la tasa de interés libre de riesgo \(r \) y multiplicada por la cantidad de mineral a extraer:

\[
V_d(g, T) = e^{-rT}\pi(g, S_T)q
\]

(4.2)

Por otro lado, si no existen restricciones operacionales el VAN de la mina en el caso determinístico \(J_d \) es:

\[
J_d = \max_{\Phi, q} \sum_{i=1}^{N} \left(\int_{T_{\Phi_{i-1}}}^{T_{\Phi_i}} V_d(g_{\Phi_i}, T) \,dT \right)
\]

(4.3)

4.2 Caso estocástico

Cuando existe incertidumbre en el precio del commodity el valor de la opción real \(V_e \) se puede calcular mediante una valorización neutral al riesgo en la cual la tasa de descuento es igual a la tasa de interés libre de riesgo (Björk, 1998):

\[
V_e(g, T) = e^{-rT}E[\pi(g, S_T)]q
\]

(4.4)

El VAN de la mina en el caso estocástico \(J_e \) se obtiene reemplazando la ecuación 4.4 en la 4.3:

\[
J_e = \max_{\Phi, q} \sum_{i=1}^{N} \left(\int_{T_{\Phi_{i-1}}}^{T_{\Phi_i}} V_e(g_{\Phi_i}, T) \,dT \right)
\]

(4.5)
5 MODELOS PARA EL PRECIO DEL COMMODITY

En este capítulo se describen dos modelos estocásticos para el precio de un commodity en función del tiempo. Se consideró que existe un mercado completo y sin oportunidades de arbitraje para utilizar los modelos bajo las probabilidades ajustadas por riesgo.

5.1 Notación

La notación y el significado de las distintas variables empleadas en el desarrollo de este modelo son las siguientes:

- r: Tasa de interés libre de riesgo (%/tu).
- σ: Volatilidad en los retornos del commodity (%/tu).
- γ: Retorno por conveniencia del commodity (%/tu).
- μ: Media de reversión del commodity (mu/eur).
- λ: Premio por riesgo de mercado (%).
- κ: Velocidad de reversión en el precio del commodity (%).

La notación es general ya que se consideraron unidades monetarias (mu), unidades de extracción (eu) y unidades de tiempo (tu).
5.2 Modelo sin reversión

Este modelo es propuesto en Brennan y Schwartz (1985) y permite modelar el precio de los commodities que no siguen un proceso reversión como es el caso del oro (Casassus & Collin-Dufresne, 2005). El proceso de difusión para el precio del commodity bajo las probabilidades ajustadas por riesgo se describe en la siguiente ecuación:

\[
\frac{dS}{S} = (r - \gamma)dt + \sigma dZ
\] \hspace{1cm} (5.1)

Con,

\[
dZ \sim N(0, dt)
\] \hspace{1cm} (5.2)

La distribución de probabilidad del logaritmo natural del precio se obtiene en base a la ecuación 5.1 y el lema de Itô (Øksendal, 1998):

\[
\ln(S_T) \sim N \left(\ln(S_0) + \left(r - \gamma - \frac{\sigma^2}{2} \right)T, \sigma^2 T \right)
\] \hspace{1cm} (5.3)

En consecuencia, el valor esperado y la varianza del precio son:

\[
E[S_T] = S_0 e^{(r-\gamma)T}
\] \hspace{1cm} (5.4)

\[
\text{Var}[S_T] = S_0^2 e^{2(r-\gamma)T} (e^{\sigma^2 T} - 1)
\] \hspace{1cm} (5.5)

La ventaja de modelar el precio del commodity como una distribución de probabilidad log-normal es que existen ecuaciones cerradas para la función de probabilidad acumulada y el valor esperado condicional:
\[
\text{Pr}(S_T \leq X) = N\left(\frac{\ln \left(\frac{X}{S_0} \right) - (r - \gamma - \frac{\sigma^2}{2}) T}{\sigma \sqrt{T}} \right) \tag{5.6}
\]

\[
E[S_T|Y \geq S_T \geq X] = S_0 e^{(r - \gamma)T} \frac{N(\sigma \sqrt{T} - a_0) - N(\sigma \sqrt{T} - b_0)}{N(b_0) - N(a_0)} \tag{5.7}
\]

Con:

\[
a_0 = \frac{\ln(X) - \ln(S_0) - \left(r - \gamma - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \tag{5.8}
\]

\[
b_0 = \frac{\ln(Y) - \ln(S_0) - \left(r - \gamma - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \tag{5.9}
\]

5.3 Modelo con reversión

Este modelo es propuesto en Schwartz (1997) y permite modelar el precio de los *commodities* que siguen un proceso de reversión como es el caso del petróleo y el cobre (Casassus & Collin-Dufresne, 2005). El proceso de difusión para el precio del *commodity* bajo las probabilidades ajustadas por riesgo se describe en la siguiente ecuación:

\[
\frac{dS}{S} = \kappa[\bar{\mu} - \ln(S)]dt + \sigma dZ \tag{5.10}
\]

Con:

\[
\bar{\mu} = \ln(\mu) - \lambda \tag{5.11}
\]
La distribución de probabilidad del logaritmo natural del precio se obtiene en base a la ecuación 5.10 y el lema de Itô (Schwartz, 1997):

\[
\ln(S_T) \sim N \left(\mu^* = \ln(S_0) e^{-\kappa T} + (1 - e^{-\kappa T}) \left(\bar{\mu} - \frac{\sigma^2}{2\kappa} \right), \sigma^* = (1 - e^{-2\kappa T}) \frac{\sigma^2}{2\kappa} \right) \quad (5.12)
\]

En consecuencia, el valor esperado y la varianza del precio cuando el tiempo tiende a infinito son:

\[
\lim_{T \to \infty} E[S_T] = \mu e^{-\lambda \frac{\sigma^2}{4\kappa}} \quad (5.13)
\]

\[
\lim_{T \to \infty} \text{Var}[S_T] = \mu^2 e^{-2\lambda \frac{\sigma^2}{2\kappa}} \left(\frac{\sigma^2}{\kappa} - 1 \right) \quad (5.14)
\]

Las fórmulas para la función de probabilidad acumulativa y el valor esperado condicional del precio son similares a las del modelo anterior:

\[
\Pr(S_T \leq X) = N \left(\frac{\ln(X) - \mu^*}{\sigma^*} \right) \quad (5.15)
\]

\[
E[S_T|Y \geq S_T \geq X] = e^{\mu^* + \frac{\sigma^2}{2}} \frac{N(\sigma^* - c_0) - N(\sigma^* - d_0)}{N(d_0) - N(c_0)} \quad (5.16)
\]

Con:

\[
c_0 = \frac{\ln(X) - \mu^*}{\sigma^*} \quad (5.17)
\]

\[
d_0 = \frac{\ln(Y) - \mu^*}{\sigma^*} \quad (5.18)
\]
5.4 Discusión

En este capítulo se describieron dos modelos estocásticos para el precio de un commodity en función del tiempo. Ambos modelos permiten obtener fórmulas cerradas para la función de probabilidad acumulada y el valor esperado condicional del precio debido a que presentan una distribución log-normal. En el primer modelo no se considera un proceso de reversión a un valor de largo plazo por lo que el valor esperado y la varianza del precio aumenta de forma indefinida en función del tiempo. Por otro lado, en el segundo modelo se considera un proceso de reversión por lo que el valor esperado y la varianza del precio tienden a un valor constante. Se optó por utilizar modelos de un solo factor para mantener la mayor simplicidad posible en el modelo de valorización. No obstante, la metodología utilizada puede ser extendida a modelos más sofisticados (de tres o más factores), aunque posiblemente en su resolución haya que depender de métodos numéricos.
6 MODELO DE VALORIZACIÓN PARA UN PERIODO

En este capítulo se valoriza la opción real que tiene una mina a cielo abierto para decidir si el mineral se procesará o enviará al botadero en el momento que se extrae. Se consideró por simplicidad que la extracción del mineral corresponde a un costo hundido.

6.1 Notación

La notación y el significado de las variables empleadas en este modelo son:

- **V**: Valor de la opción real (mu).
- **q**: Tasa de extracción de la mina (eu/tu).
- **q_i**: Tasa de procesamiento de la planta i-ésima (eu/tu).
- **π_i**: Función de beneficio de la planta i-ésima (mu/eu).
- **T**: Fecha de extracción del mineral (tu).
- **X_i**: Precio de corte marginal de la planta i-ésima (mu/eu).
- **S^*: Precio de corte entre las dos plantas (mu/eu).
- **R_i**: Recuperación de la planta i-ésima (%).
- **K_i**: Costo de procesamiento de la planta i-ésima (mu/eu).
- **g**: Ley del mineral (%)
La notación es general ya que se consideraron unidades monetarias (mu), unidades de extracción (eu) y unidades de tiempo (tu).

6.2 Valorización de la opción

Se consideró el caso de una mina que puede escoger enviar el mineral a dos plantas de procesamiento distintas o al botadero. Cada planta tiene la siguiente función de beneficio:

\[
\pi_i = SR_i g - K_i
\]

(6.1)

En consecuencia, el precio que se requiere para obtener un beneficio nulo al procesar el mineral en cada una de las plantas es:

\[
X_i = \frac{K_i}{R_i g}
\]

(6.2)

Por otro lado, el precio de corte se obtiene al igualar la ecuación 6.1 para los parámetros de cada una de las plantas:

\[
S^* = \frac{K_1 - K_2}{(R_1 - R_2) g}
\]

(6.3)

Las ecuaciones 6.2 y 6.3 se utilizan para valorizar la opción real en conjunto con la relación que existe entre la tasa de extracción de la mina y las tasas de procesamiento de ambas plantas.
6.2.1 Caso I

El primer caso es cuando la tasa de extracción de la mina es el cuello de botella del proceso:

\[q \leq \min(q_1, q_2) \] \hspace{1cm} (6.4)

En consecuencia, el valor de la opción real se puede formular de la siguiente manera:

\[
V_1(g, T) = e^{-rT}(E[S_T|S_T \geq S^*]R_1g - K_1) \Pr(S_T \geq S^*)q
+ e^{-rT}(E[S_T|S^* > S_T \geq X_2]R_2g - K_2)\Pr(S^* > S_T \geq X_2)q
\] \hspace{1cm} (6.5)

El valor de la opción real cuando el precio del *commodity* no sigue un proceso con reversión se obtiene mediante el uso de las ecuaciones 5.6, 5.7 y 6.5:

\[
V_i^a(g, T) = [S_0e^{-\gamma T}N(d_1) - S^*e^{-rT}N(d_2)]q(R_1 - R_2)g
+ [S_0e^{-\gamma T}N(d_3)R_2g - K_2e^{-rT}N(d_4)]q
\] \hspace{1cm} (6.6)

Con:

\[
d_1 = \frac{\ln \left(\frac{S_0}{S^*} \right) + \left(r - \gamma + \frac{\sigma^2}{2} \right)T}{\sigma\sqrt{T}} \hspace{1cm} (6.7)
\]

\[
d_2 = \frac{\ln \left(\frac{S_0}{S^*} \right) + \left(r - \gamma - \frac{\sigma^2}{2} \right)T}{\sigma\sqrt{T}} \hspace{1cm} (6.8)
\]
De forma análoga, cuando el precio del commodity sigue un proceso con reversión el valor de la opción real se obtiene mediante el uso de las ecuaciones 5.15, 5.16 y 6.5:

\[
\begin{align*}
V^b_t(g, T) &= e^{-rT} \left[\exp \left(\frac{\mu^* + \sigma^*}{\sigma} \right) N(c_1) - S^* N(c_2) \right] q(R_1 - R_2) g \\
&+ e^{-rT} \left[\exp \left(\frac{\mu^* + \sigma^*}{\sigma} \right) N(c_3) R_2 g - K_2 N(c_4) \right] q
\end{align*}
\]

(6.11)

Con:

\[
\begin{align*}
c_1 &= \ln \left(\frac{1}{\sqrt{T}} \right) + \mu^* + \sigma^* \\
c_2 &= \ln \left(\frac{1}{\sqrt{T}} \right) + \mu^* \\
c_3 &= \ln \left(\frac{1}{\sqrt{T}} \right) + \mu^* + \sigma^* \\
c_4 &= \ln \left(\frac{1}{\sqrt{T}} \right) + \mu^*
\end{align*}
\]

(6.12-6.15)
6.2.2 Caso II

El segundo caso es cuando las tasas de procesamiento de ambas plantas pueden ser el cuello de botella del proceso:

\[q \geq q_1 + q_2 \] \hspace{1cm} (6.16)

En consecuencia, el valor de la opción real se puede formular de la siguiente manera:

\[V_{II}(g, T) = e^{-rT}(E[S_T|S_T \geq X_1]R_1g - K_1)Pr(S_T \geq X_1)q_1 \]
\[+ e^{-rT}(E[S_T|S_T \geq X_2]R_2g - K_2)Pr(S_T \geq X_2)q_2 \] \hspace{1cm} (6.17)

El valor de la opción real cuando el precio del commodity no sigue un proceso con reversión se obtiene mediante el uso de las ecuaciones 5.6, 5.7 y 6.17:

\[V_{II}^a(g, T) = [S_0e^{-\gamma T}N(d_5)R_1g - K_1e^{-rT}N(d_6)]q_1 \]
\[+ [S_0e^{-\gamma T}N(d_3)R_2g - K_2e^{-rT}N(d_4)]q_2 \] \hspace{1cm} (6.18)

Con:

\[d_5 = \frac{\ln\left(\frac{S_0}{X_1}\right) + \left(r - \gamma + \frac{\sigma^2}{2} \right)T}{\sigma \sqrt{T}} \] \hspace{1cm} (6.19)
\[d_6 = \frac{\ln\left(\frac{S_0}{X_1}\right) + \left(r - \gamma - \frac{\sigma^2}{2} \right)T}{\sigma \sqrt{T}} \] \hspace{1cm} (6.20)
De forma análoga, cuando el precio del commodity sigue un proceso con reversión el valor de la opción real se obtiene mediante el uso de las ecuaciones 5.15, 5.16 y 6.17:

\[
V_{II}^b(g, T) = e^{-rT}\left[\exp\left(\frac{\mu^* + \sigma^* t}{2}\right)N(c_5)R_1g - K_1 N(c_6)\right] q_1 + e^{-rT}\left[\exp\left(\frac{\mu^* + \sigma^* t}{2}\right)N(c_3)R_2g - K_2 N(c_4)\right] q_2
\]

Con:

\[
c_5 = \frac{\ln\left(\frac{1}{X_1}\right) + \mu^* + \sigma^* t}{\sigma^*}
\]

\[
c_6 = \frac{\ln\left(\frac{1}{X_1}\right) + \mu^*}{\sigma^*}
\]

6.2.3 Caso III

El tercer caso es cuando la tasa de procesamiento de la segunda planta o la tasa de extracción pueden ser el cuello de botella del proceso:

\[
q_2 < q < q_1
\]

En consecuencia, el valor de la opción real se puede formular de la siguiente manera:
El valor de la opción real cuando el precio del \textit{commodity} no sigue un proceso con reversión se obtiene mediante el uso de las ecuaciones 5.6, 5.7 y 6.25:

\[
V_{III}^a(g, T) = \left[S_0 e^{-\gamma T} N(d_1) - S^* e^{-\gamma T} N(d_2) \right] q_2 R_1 - R_2 \]
\[
+ \left[S_0 e^{-\gamma T} N(d_5) R_1 - K_1 e^{-\gamma T} N(d_6) \right] (q - q_2)
\]
\[
+ \left[S_0 e^{-\gamma T} N(d_3) R_2 - K_2 e^{-\gamma T} N(d_4) \right] q_2
\]

De forma análoga, cuando el precio del \textit{commodity} sigue un proceso con reversión el valor de la opción real se obtiene mediante el uso de las ecuaciones 5.15, 5.16 y 6.25:

\[
V_{III}^b(g, T) = e^{-\gamma T} \left[\exp \left(\mu^* + \frac{\sigma^2}{2} \right) N(c_1) - S^* N(c_2) \right] q_2 (R_1 - R_2)
\]
\[
+ e^{-\gamma T} \left[\exp \left(\mu^* + \frac{\sigma^2}{2} \right) N(c_5) - K_1 N(c_6) \right] (q - q_2)
\]
\[
+ e^{-\gamma T} \left[\exp \left(\mu^* + \frac{\sigma^2}{2} \right) N(c_3) - K_2 N(c_4) \right] q_2
\]
6.2.4 Caso IV

El cuarto caso es cuando la tasa de procesamiento de la primera planta o la tasa de extracción pueden ser el cuello de botella del proceso:

\[q_1 < q < q_2 \] \hspace{1cm} (6.28)

En consecuencia, el valor de la opción real se puede formular de la siguiente manera:

\[
V_{IV}(g,T) = e^{-rT}(E[S_T|S_T \geq S^*]R_1g - K_1)\text{Pr}(S_T \geq S^*)q_1 + e^{-rT}(E[S_T|S_T \geq S^*]R_2g - K_2)\text{Pr}(S_T \geq S^*)(q - q_1) + e^{-rT}(E[S_T|S^* > S_T \geq X_2]R_2g - K_2)\text{Pr}(S^* > S_T \geq X_2)q
\] \hspace{1cm} (6.29)

El valor de la opción real cuando el precio del commodity no sigue un proceso con reversion se obtiene mediante el uso de las ecuaciones 5.6, 5.7 y 6.29:

\[
V_{IV}^3(g,T) = [S_0e^{-\gamma T}N(d_1) - S^*e^{-rT}N(d_2)]q_1(R_1 - R_2)g + [S_0e^{-\gamma T}N(d_3)R_2g - K_2e^{-rT}N(d_4)]q
\] \hspace{1cm} (6.30)

De forma análoga, cuando el precio del commodity sigue un proceso con reversion el valor de la opción real se obtiene mediante el uso de las ecuaciones 5.15, 5.16 y 6.29:

\[
V_{IV}^5(g,T) = e^{-rT}\left[\exp\left(\mu^* + \frac{\sigma^2}{2}\right)N(c_1) - S^*N(c_2) \right]q_1(R_1 - R_2)g + e^{-rT}\left[\exp\left(\mu^* + \frac{\sigma^2}{2}\right)N(c_3)R_2g - K_2N(c_4) \right]q
\] \hspace{1cm} (6.31)
6.2.5 Caso V

Finalmente, el quinto caso es cuando se cumple la siguiente relación:

$$\max(q_1, q_2) < q < q_1 + q_2 \quad (6.32)$$

En consecuencia, el valor de la opción real se puede formular de la siguiente manera:

$$V_V(g, T) = e^{-rT}(E[S_T|S_T \geq S^*]R_1g - K_1)Pr(S_T \geq S^*)q_1$$
$$+ e^{-rT}(E[S_T|S^* > S_T \geq X_1]R_1g - K_1)Pr(S^* > S_T \geq X_1)(q - q_2)$$
$$+ e^{-rT}(E[S_T|S_T \geq S^*]R_2g - K_2)Pr(S_T \geq S^*)(q - q_1)$$
$$+ e^{-rT}(E[S_T|S^* > S_T \geq X_2]R_2g - K_2)Pr(S^* > S_T \geq X_2)q_2 \quad (6.33)$$

El valor de la opción real cuando el precio del *commodity* no sigue un proceso con reversión se obtiene mediante el uso de las ecuaciones 5.6, 5.7 y 6.33:

$$V_V^a(g, T) = [S_0 e^{-rT}N(d_1) - S^* e^{-rT}N(d_2)](q_1 - q + q_2)(R_1 - R_2)g$$
$$+ [S_0 e^{-rT}N(d_5)R_1g - K_1 e^{-rT}N(d_6)](q - q_2) \quad (6.34)$$
$$+ [S_0 e^{-rT}N(d_3)R_2g - K_2 e^{-rT}N(d_4)]q_2$$

De forma análoga, cuando el precio del *commodity* sigue un proceso con reversión el valor de la opción real se obtiene mediante el uso de las ecuaciones 5.15, 5.16 y 6.33:
$V_T^b(g,T) = e^{-rT} \left[\exp \left(\mu^* + \frac{\sigma^*}{2} \right) N(c_1) - S^*N(c_2) \right] (q_1 - q + q_2)(R_1 - R_2) g$

$+ e^{-rT} \left[\exp \left(\mu^* + \frac{\sigma^*}{2} \right) N(c_3)R_1 g - K_1N(c_6) \right] (q - q_2)$

$+ e^{-rT} \left[\exp \left(\mu^* + \frac{\sigma^*}{2} \right) N(c_3)R_2 g - K_2N(c_4) \right] q_2$

(6.35)

6.3 Análisis de sensibilidad de la opción

Las soluciones anteriores se pueden utilizar para estudiar la sensibilidad de la opción real con respecto al precio del commodity:

$$\Delta = \frac{\partial V}{\partial S}$$

(6.36)

La ecuación 6.36 se conoce como el delta de la opción y se utiliza para replicar de forma dinámica su valor. Los resultados que se obtuvieron para los distintos casos se muestran a continuación.

6.3.1 Caso I

El delta de la opción para el modelo sin y con reversión en el precio se obtiene en base a la ecuación 6.6 y 6.11 respectivamente:

$$\Delta_i^a = e^{-\nu T}(N(d_1)(R_1 - R_2) + N(d_3)R_2)gq$$

(6.37)

$$\Delta_i^b = \exp \left(\mu^* + \frac{\sigma^*}{2} - (r + \kappa)T \right) \left(\frac{N(c_1)(R_1 - R_2) + N(c_3)R_2}{S_0} \right) gq$$

(6.38)
6.3.2 Caso II

El delta de la opción para el modelo sin y con reversión en el precio se obtiene en base a la ecuación 6.18 y 6.21 respectivamente:

\[
\Delta_{II}^a = e^{-\gamma T}(N(d_5)R_1q_1 + N(d_3)R_2q_2)g \\
\Delta_{II}^b = \exp\left(\mu^* + \frac{\sigma^2}{2} - (r + \kappa)T\right)\left(\frac{N(c_5)R_1q_1 + N(c_3)R_2q_2}{S_0}\right)g
\]

(6.39)

(6.40)

6.3.3 Caso III

El delta de la opción para el modelo sin y con reversión en el precio se obtiene en base a la ecuación 6.26 y 6.27 respectivamente:

\[
\Delta_{III}^a = e^{-\gamma T}(N(d_1)(R_1 - R_2)q_2 + N(d_5)R_1(q - q_2) + N(d_3)R_2q_2)g \\
\Delta_{III}^b = \exp\left(\mu^* + \frac{\sigma^2}{2} - (r + \kappa)T\right) \\
\cdot \left(\frac{N(c_1)(R_1 - R_2)q_2 + N(c_5)R_1(q - q_2) + N(c_3)R_2q_2}{S_0}\right)g
\]

(6.41)

(6.42)

6.3.4 Caso IV

El delta de la opción para el modelo sin y con reversión en el precio se obtiene en base a la ecuación 6.30 y 6.31 respectivamente:

\[
\Delta_{IV}^a = e^{-\gamma T}(N(d_1)(R_1 - R_2)q_1 + N(d_3)R_2q)g
\]

(6.42)
El delta de la opción para el modelo sin y con reversión en el precio se obtiene en base a la ecuación 6.34 y 6.35 respectivamente:

\[
\Delta^a_V = e^{-\gamma T}(N(d_1)(R_1 - R_2)(q_1 - q + q_2) + N(d_5)R_1(q - q_2) + N(d_3)R_2q_2)g \tag{6.44}
\]

\[
\Delta^b_V = \exp\left(\mu^* + \frac{\sigma^*}{2} - (r + \kappa)T\right)
\cdot \left(\frac{N(c_1)(R_1 - R_2)(q_1 - q + q_2) + N(c_5)R_1(q - q_2) + N(c_3)R_2q_2}{S_0}\right)g \tag{6.45}
\]

6.3.5 Caso V

El delta de la opción para el modelo sin y con reversión en el precio se obtiene en base a la ecuación 6.34 y 6.35 respectivamente:

\[
\Delta^a_V = e^{-\gamma T}(N(d_1)(R_1 - R_2)(q_1 - q + q_2) + N(d_5)R_1(q - q_2) + N(d_3)R_2q_2)g \tag{6.44}
\]

6.4 Discusión

En este capítulo se valorizó la opción real que tiene una mina a cielo abierto con dos plantas de procesamiento para decidir si el mineral se procesará o enviará al botadero en el momento que se extrae. Además, se obtuvieron fórmulas para cuantificar la sensibilidad de la opción real con respecto a cambios en el precio del commodity. El procedimiento empleado consistió en utilizar la función de probabilidad acumulada y el valor esperado condicional del precio. Finalmente, es importante notar que la opción real desarrollada puede ser utilizada para maximizar la tasa y la secuencia de extracción de la mina debido a que su valor depende de la fecha en la cual se extrae el mineral.
7 MODELO DE VALORIZACIÓN PARA MÚLTIPLES PERIODOS

En este capítulo se valoriza el VAN de una mina a cielo abierto con dos plantas de proceso bajo incertidumbre en el precio del commodity. Los supuestos que se consideraron son que la tasa y la secuencia de extracción son constantes en el tiempo.

7.1 Notación

La notación y el significado de las distintas variables empleadas son las siguientes:

- **J**: VAN de la mina (mu).
- **N**: Número de fases de extracción.
- **ϕ**: Secuencia de extracción de las fases.
- **Ω**: Conjunto de secuencias de extracción factibles.
- **Q_{ϕi}**: Mineral inicial contenido en la fase i-ésima (eu).
- **q_{ϕi}^{+/-}**: Tasa de extracción máxima/mínima (eu/tu).
- **g_{ϕi}**: Ley del mineral en la fase i-ésima (%).
- **T_{ϕi}**: Tiempo requerido para agotar la fase i-ésima (tu).
- **T_{ϕ0}**: Tiempo requerido para iniciar la extracción del mineral (tu).

La notación es general ya que se consideraron unidades monetarias (mu), unidades de extracción (eu) y unidades de tiempo (tu).
7.2 Variables de decisión

Las variables de decisión son la secuencia (ϕ) y la tasa de extracción (q) de la mina:

$$\phi \in \mathbb{Z}^N$$ \hspace{1cm} (7.1)

$$q \in \mathbb{R}$$ \hspace{1cm} (7.2)

La secuencia de extracción corresponde al orden en el cual se extraen las fases y la tasa de extracción a la velocidad a la cual se agota la mina. Ambas variables de decisión permanecen constantes en el tiempo.

7.3 Restricciones

Las restricciones que se consideraron fueron las siguientes:

$$T_{\phi_i} = T_{\phi_{i-1}} + \frac{Q_{\phi_i}}{q}$$ \hspace{1cm} (7.3)

$$\phi \in \Omega$$ \hspace{1cm} (7.4)

$$q^- < q < q^+$$ \hspace{1cm} (7.5)

La primera restricción permite conocer el momento en el cual se agota cada fase. La segunda restricción corresponde al conjunto de secuencias de extracción factibles. Finalmente, la tercera restricción indica el valor mínimo y máximo que puede tener la tasa de extracción de la mina.
7.4 Función objetivo

La función objetivo depende de la relación que existe entre la tasa de extracción y las tasas de procesamiento de ambas plantas.

7.4.1 Caso I

Cuando el proceso que limita a la mina es la tasa de extracción la función objetivo es:

\[J_1 = \max_{\Phi,q} \sum_{i=1}^{N} \left(\int_{T_{\phi_{i-1}}}^{T_{\phi_{i}}} V_{1}(g_{\phi_{i}}, T) \, dT \right) \] \hspace{1cm} (7.6)

Se puede utilizar en la ecuación 7.6 el valor de la opción real para el modelo sin o con reversión en el precio del commodity.

7.4.2 Caso II

Cuando las tasas de procesamiento de ambas plantas limitan a la mina la función objetivo es:

\[J_{II} = \max_{\Phi,q} \sum_{i=1}^{N} \left(\int_{T_{\phi_{i-1}}}^{T_{\phi_{i}}} V_{II}(g_{\phi_{i}}, T) \, dT \right) \] \hspace{1cm} (7.7)

Se puede utilizar en la ecuación 7.7 el valor de la opción real para el modelo sin o con reversión en el precio del commodity.
7.4.3 Caso III

Cuando la tasa de procesamiento de la segunda planta o la tasa de extracción limitan a la mina la función objetivo es:

$$J_{III} = \max_{\Phi, q} \sum_{i=1}^{N} \left(\int_{T_{\phi i-1}}^{T_{\phi i}} V_{III}(g_{\phi i}, T) \, dT \right)$$

(7.8)

Se puede utilizar en la ecuación 7.8 el valor de la opción real para el modelo sin o con reversión en el precio del commodity.

7.4.4 Caso IV

Cuando la tasa de procesamiento de la primera planta o la tasa de extracción limitan a la mina la función objetivo es:

$$J_{IV} = \max_{\Phi, q} \sum_{i=1}^{N} \left(\int_{T_{\phi i-1}}^{T_{\phi i}} V_{IV}(g_{\phi i}, T) \, dT \right)$$

(7.9)

Se puede utilizar en la ecuación 7.9 el valor de la opción real para el modelo sin o con reversión en el precio del commodity.

7.4.5 Caso V

Cuando las tasas de procesamiento de ambas plantas juntas son mayores que la tasa de extracción pero por separadas son menores la función objetivo de la mina es:
Se puede utilizar en la ecuación 7.10 el valor de la opción real para el modelo sin o con reversión en el precio del commodity.

7.5 Discusión

En este capítulo se propuso un modelo para valorizar minas a cielo abierto cuando el mineral se extrae en múltiples periodos. Se consideró que las variables de decisión del modelo son la secuencia y la tasa de extracción. Ambas variables se encuentran sujetas a restricciones operacionales y se mantienen constantes en el tiempo. En consecuencia, la función objetivo del modelo es equivalente a una integral de la opción real. Es importante destacar que la función objetivo del modelo no cuenta con una solución cerrada pero puede ser evaluada de forma numérica con facilidad. Esto se debe a que se conocen las fórmulas para el valor de la opción real cuando el mineral se extrae en un periodo.

\[
J_V = \max_{\phi,q} \sum_{i=1}^{N} \left(\int_{T_{\phi_{i-1}}}^{T_{\phi_{i}}} V_{\phi_{i},T} \, dT \right)
\]

(7.10)
8 CASO DE ESTUDIO

En este capítulo se utiliza un caso de estudio para ilustrar el modelo de valorización.

8.1 Representación ficticia

Se realizó una representación ficticia de una mina a cielo abierto que puede utilizar dos plantas para procesar el mineral. Por simplicidad se asumió que la ley del mineral es constante y que no existen restricciones en las tasas de procesamiento. Además, se consideró que existen tres configuraciones de procesamiento para valorizar la mina. La primera configuración (Mina A) considera ambas plantas, la segunda configuración (Mina B) la segunda y la tercera configuración (Mina C) la primera. En la Tablas 8-1 y 8-2 se ilustran los parámetros utilizados en los modelos para el precio del commodity y de valorización.

Tabla 8-1: Parámetros utilizados en los modelos para el precio

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>120</td>
<td>(mu/eu)</td>
</tr>
<tr>
<td>r</td>
<td>10</td>
<td>(%)</td>
</tr>
<tr>
<td>γ</td>
<td>10</td>
<td>(%)</td>
</tr>
<tr>
<td>σ</td>
<td>40</td>
<td>(%)</td>
</tr>
<tr>
<td>μ</td>
<td>120</td>
<td>(mu/eu)</td>
</tr>
<tr>
<td>κ</td>
<td>10</td>
<td>(%)</td>
</tr>
<tr>
<td>λ</td>
<td>0</td>
<td>(%)</td>
</tr>
</tbody>
</table>
Tabla 8-2: Parámetros utilizados en el modelo de valorización

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Mina A</th>
<th>Mina B</th>
<th>Mina C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta 1</td>
<td>Si</td>
<td>No</td>
<td>Si</td>
</tr>
<tr>
<td>Planta 2</td>
<td>Si</td>
<td>Si</td>
<td>No</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>g_{ϕ_1}</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Q_{ϕ_1}</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>q^+</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>q^-</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>T_{ϕ_0}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R_1</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>R_2</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>K_1</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>K_2</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>X_1</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>X_2</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>S^*</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

8.2 Resultados

Se utilizaron los parámetros de las Tablas 8-1, y 8-2 en las ecuaciones 6.6, 6.11 y 7.6 para estimar el VAN de la mina. Por otro lado, la tasa óptima de extracción se obtuvo de forma gráfica. Los resultados para el caso sin y con incertidumbre en el precio del commodity se pueden apreciar en las Figuras 8-2, 8-3, 8-4 y 8-5.
Figura 8-1: VAN sin incertidumbre y reversión en el precio ($\sigma=0\%$)

Figura 8-2: VAN sin incertidumbre y con reversión en el precio ($\sigma=0\%$)
Figura 8-3: VAN con incertidumbre y sin reversión en el precio ($\sigma=40\%$)

Figura 8-4: VAN con incertidumbre y reversión en el precio ($\sigma=40\%$)
Se puede apreciar de las Figuras 8-1 y 8-2 que la Mina A y la Mina B tienen el mismo valor cuando no existe incertidumbre en el precio del commodity. Esto se debe a que la Mina A utilizará solo la segunda planta para procesar el mineral. Otro aspecto importante a destacar es que la tasa óptima de extracción es igual a la tasa máxima operativa cuando la función de beneficio de la mina es mayor a cero. Esto se debe a que el beneficio que obtiene la mina por procesar el mineral decae de forma exponencial en el tiempo. Por otro lado, cuando la función de beneficio de la mina es igual a cero la tasa de extracción no afecta el valor de la mina debido a que no se procesa el mineral en ningún momento. Finalmente, se debe notar que los resultados son idénticos para ambos modelos del precio debido a los parámetros que se utilizaron.

Las Figuras 8-3 y 8-4 muestran que cuando existe incertidumbre en el precio del commodity la Mina A tiene un VAN mayor que la Mina B y la Mina C. Esto se debe a que en el caso estocástico ambas plantas de proceso pueden ser utilizadas en función del precio del commodity en el tiempo. No obstante, es importante destacar que la tasa óptima de extracción es mayor cuando se considera un proceso de reversión en el precio. Esto se debe a que la varianza en el precio del commodity es menor en este modelo. En consecuencia, tiene menos valor para la mina postergar la extracción del mineral mediante la elección de una tasa de extracción menor.

8.3 Análisis de sensibilidad

Se realizó un análisis de sensibilidad para estudiar el efecto que tiene la volatilidad, la tasa de interés libre de riesgo y el precio actual del commodity en el VAN y la tasa óptima de extracción. Los resultados para el caso con y sin un proceso de reversión en el precio se detallan en las Tablas 8-3, 8-4, 8-5, 8-6, 8-7 y 8-8.
Tabla 8-3: Sensibilidad a la volatilidad (caso sin reversión)

<table>
<thead>
<tr>
<th>Valores óptimos</th>
<th>σ = 60</th>
<th>σ = 40</th>
<th>σ = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_1</td>
<td>573,0</td>
<td>384,7</td>
<td>209,1</td>
</tr>
<tr>
<td>q</td>
<td>11,1</td>
<td>10,5</td>
<td>15,4</td>
</tr>
<tr>
<td>Mina B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_1</td>
<td>365,4</td>
<td>280,8</td>
<td>201,0</td>
</tr>
<tr>
<td>q</td>
<td>15,4</td>
<td>16,7</td>
<td>40,0</td>
</tr>
<tr>
<td>Mina C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_1</td>
<td>532,3</td>
<td>331,3</td>
<td>122,1</td>
</tr>
<tr>
<td>q</td>
<td>10,0</td>
<td>8,3</td>
<td>6,7</td>
</tr>
</tbody>
</table>

Tabla 8-4: Sensibilidad a la volatilidad (caso con reversión)

<table>
<thead>
<tr>
<th>Valores óptimos</th>
<th>σ = 60</th>
<th>σ = 40</th>
<th>σ = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_1</td>
<td>502,1</td>
<td>347,0</td>
<td>201,1</td>
</tr>
<tr>
<td>q</td>
<td>20,0</td>
<td>18,2</td>
<td>28,6</td>
</tr>
<tr>
<td>Mina B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_1</td>
<td>305,4</td>
<td>248,7</td>
<td>195,3</td>
</tr>
<tr>
<td>q</td>
<td>28,6</td>
<td>28,6</td>
<td>40,0</td>
</tr>
<tr>
<td>Mina C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_1</td>
<td>345,5</td>
<td>208,3</td>
<td>65,3</td>
</tr>
<tr>
<td>q</td>
<td>18,2</td>
<td>14,3</td>
<td>10,5</td>
</tr>
</tbody>
</table>
Tabla 8-5: Sensibilidad a la tasa de interés (caso sin reversión)

<table>
<thead>
<tr>
<th>Valores óptimos</th>
<th>$r = 15$</th>
<th>$r = 10$</th>
<th>$r = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>476,0</td>
<td>384,7</td>
<td>303,4</td>
</tr>
<tr>
<td>q</td>
<td>9,5</td>
<td>10,5</td>
<td>13,3</td>
</tr>
<tr>
<td>Mina B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>327,4</td>
<td>280,8</td>
<td>239,4</td>
</tr>
<tr>
<td>q</td>
<td>13,3</td>
<td>16,7</td>
<td>22,2</td>
</tr>
<tr>
<td>Mina C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>427,3</td>
<td>331,3</td>
<td>243,7</td>
</tr>
<tr>
<td>q</td>
<td>8,3</td>
<td>8,3</td>
<td>9,5</td>
</tr>
</tbody>
</table>

Tabla 8-6: Sensibilidad a la tasa de interés (caso con reversión)

<table>
<thead>
<tr>
<th>Valores óptimos</th>
<th>$r = 15$</th>
<th>$r = 10$</th>
<th>$r = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>305,7</td>
<td>347,0</td>
<td>412,2</td>
</tr>
<tr>
<td>q</td>
<td>25,0</td>
<td>18,2</td>
<td>13,3</td>
</tr>
<tr>
<td>Mina B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>231,3</td>
<td>248,7</td>
<td>277,2</td>
</tr>
<tr>
<td>q</td>
<td>40,0</td>
<td>28,6</td>
<td>20,0</td>
</tr>
<tr>
<td>Mina C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>174,0</td>
<td>208,3</td>
<td>260,7</td>
</tr>
<tr>
<td>q</td>
<td>18,2</td>
<td>14,3</td>
<td>10,5</td>
</tr>
</tbody>
</table>
Tabla 8-7: Sensibilidad al precio actual (caso sin reversión)

<table>
<thead>
<tr>
<th>Valores óptimos</th>
<th>$S_0 = 140$</th>
<th>$S_0 = 120$</th>
<th>$S_0 = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>542,1</td>
<td>384,7</td>
<td>255,2</td>
</tr>
<tr>
<td>q</td>
<td>13,3</td>
<td>10,5</td>
<td>8,3</td>
</tr>
<tr>
<td>Mina B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>410,9</td>
<td>280,8</td>
<td>179,3</td>
</tr>
<tr>
<td>q</td>
<td>28,6</td>
<td>16,7</td>
<td>10,5</td>
</tr>
<tr>
<td>Mina C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>462,6</td>
<td>331,3</td>
<td>224,9</td>
</tr>
<tr>
<td>q</td>
<td>10,0</td>
<td>8,3</td>
<td>7,4</td>
</tr>
</tbody>
</table>

Tabla 8-8: Sensibilidad al precio actual (caso con reversión)

<table>
<thead>
<tr>
<th>Valores óptimos</th>
<th>$S_0 = 140$</th>
<th>$S_0 = 120$</th>
<th>$S_0 = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>495,8</td>
<td>347,0</td>
<td>231,7</td>
</tr>
<tr>
<td>q</td>
<td>28,6</td>
<td>18,2</td>
<td>13,3</td>
</tr>
<tr>
<td>Mina B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>377,4</td>
<td>248,7</td>
<td>154,1</td>
</tr>
<tr>
<td>q</td>
<td>40,0</td>
<td>28,6</td>
<td>16,7</td>
</tr>
<tr>
<td>Mina C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J_I</td>
<td>297,2</td>
<td>208,3</td>
<td>142,4</td>
</tr>
<tr>
<td>q</td>
<td>18,2</td>
<td>14,3</td>
<td>11,1</td>
</tr>
</tbody>
</table>
Los resultados de las Tablas 8-3 y 8-4 permiten estudiar el efecto que tiene la volatilidad en el VAN y la tasa óptima de extracción cuando no existen restricciones de capacidad en las plantas de procesamiento. Se aprecia que una mayor volatilidad conlleva a un mayor VAN en ambos modelos para el precio del commodity. Esto se debe a que la función de beneficio de la opción real es convexa. En consecuencia, su valor esperado aumenta con una mayor volatilidad. Finalmente, es importante notar que la tasa óptima de extracción disminuye con una mayor volatilidad si la función de beneficio de la mina es mayor a cero (Mina B) y aumenta si esta es igual a cero (Mina C).

Los resultados de las Tablas 8-5 y 8-6 permiten estudiar el efecto que tiene la tasa de interés libre de riesgo en el VAN y la tasa óptima de extracción cuando no existen restricciones de capacidad en las plantas de procesamiento. Se aprecia que una mayor tasa de interés conlleva a un mayor VAN y una menor tasa óptima de extracción cuando no se considera un proceso de reversión en el precio. Esto se debe a que aumenta la probabilidad de que el mineral pueda ser procesado con un beneficio mayor en el futuro. Por otro lado, es importante notar que ocurre lo opuesto cuando se considera un proceso de reversión en el precio del commodity. Esta diferencia se explica debido a que el modelo con reversión en el precio no considera a la tasa de interés libre de riesgo en el proceso de difusión.

Finalmente, los resultados de las Tablas 8-7 y 8-8 permiten estudiar el efecto que tiene el precio actual en el VAN y la tasa óptima de extracción cuando no existen restricciones de capacidad en las plantas de procesamiento. Se aprecia que un mayor precio conlleva a un mayor VAN y una menor tasa óptima de extracción en ambos modelos para el precio del commodity. Esto se debe a que aumenta la probabilidad de que el mineral pueda ser procesado en el momento de su extracción. En consecuencia, resulta beneficioso para la mina adelantar su extracción mediante el uso de una tasa de extracción mayor. No obstante, es importante notar que la tasa óptima de extracción presenta una mayor sensibilidad en el modelo que considera un proceso de reversión en el precio.
9 CONCLUSIONES

En esta tesis se desarrolló un modelo para valorizar minas a cielo abierto con dos plantas de procesamiento bajo incertidumbre en el precio del commodity. El modelo se basa en la teoría de las opciones reales y en la flexibilidad para escoger el destino al cual se enviará el mineral en el momento que se extrae. Además, permite maximizar el VAN de la mina mediante el uso de la tasa y la secuencia de extracción como variables de decisión. Se empleó un ejemplo numérico en el cual la ley del mineral es constante para ilustrar el modelo de valorización. El principal resultado que se obtuvo es que se puede aumentar de forma significativa el valor de una mina a cielo abierto mediante un diseño que considera dos plantas de procesamiento en vez de una.

El modelo de valorización propuesto representa un aporte a la literatura que estudia el uso de las opciones reales en el contexto de la industria minera por diversos motivos. En primer lugar, permite cuantificar el valor adicional que otorga incorporar una segunda planta de proceso en el diseño de una mina a cielo abierto bajo incertidumbre en el precio del commodity. Por otro lado, permite estudiar la sensibilidad en su valor con respecto a cambios en la volatilidad, la tasa de interés libre de riesgo y el valor actual del precio. Finalmente, permite valorizarla bajo distintos cuellos de botella que se originan de la relación que existe entre la tasa de extracción de la mina y las tasas de procesamiento de ambas plantas.

Algunas de las extensiones que se le pueden realizar al modelo de valorización son: i) considerar una tasa de extracción dinámica en el tiempo, ii) considerar sub-productos contenidos en el mineral, iii) incluir la opción de suspender de forma temporal la operación y iv) considerar la opción de generar acopios de mineral. Además, el modelo puede ser utilizado para analizar cómo la flexibilidad para escoger el destino al cual se enviará el mineral en el momento que se extrae afecta la decisión de inversión de una operación minera a cielo abierto.
BIBLIOGRAFÍA

