EVALUACIÓN DE LA MADUREZ DE LOS PRINCIPIOS LEAN EN PROYECTOS DE CONSTRUCCIÓN

URIEL BENJAMÍN SOTO BECERRA

Tesis para optar al grado de
Magister en Ciencias de la Ingeniería

Profesor Supervisor:
LUIS FERNANDO ALARCÓN CÁRDENAS

Santiago de Chile, Diciembre, 2016
© 2016, Uriel Benjamín Soto Becerra
EVALUACIÓN DE LA MADUREZ DE LOS PRINCIPIOS LEAN EN PROYECTOS DE CONSTRUCCIÓN

URIEL BENJAMÍN SOTO BECERRA

Tesis presentada a la Comisión integrada por los profesores:

LUIS FERNANDO ALARCÓN CÁRDENAS
PAZ ARROYO RIQUELME
RODRIGO CALDERÓN GONZÁLEZ
JUAN CARLOS MUÑOZ ABOGABIR

Para completar las exigencias del grado de Magister en Ciencias de la Ingeniería

Santiago de Chile, Diciembre, 2016
AGRADECIMIENTOS

Agradezco a Dios por darme la oportunidad de vivir una experiencia incomparable y poner en este camino a cada una de las personas que me ayudaron a crecer profesional y personalmente.

Agradezco a mi familia, profesores, amigos y a cada persona que compartió la experiencia de vida que está detrás de esta tesis. Gracias por haber estado ahí, con todo su apoyo, comprensión y motivación para mejorar día con día.
ÍNDICE GENERAL

DEDICATORIA.. ii

AGRADECIMIENTOS .. iii

INDICE DE TABLAS ... vii

INDICE DE FIGURAS ... viii

RESUMEN .. ix

ABSTRACT .. x

1. INTRODUCCIÓN... 1
 1.1 Antecedentes Generales .. 1
 1.2 Justificación de la Investigación .. 4
 1.3 Pregunta de Investigación .. 5
 1.4 Objetivos de la Investigación ... 6
 1.5 Metodología de Investigación ... 6
 1.6 Alcance de la Investigación ... 8
 1.7 Descripción de la Tesis .. 10

2 MARCO CONCEPTUAL .. 13
 2.1 Lean .. 13
 2.2 Lean Construction ... 16
 2.3 Principios Lean Construction ... 19
 2.4 Implementación de Lean Construction ... 24
 2.5 Madurez y Modelos de Madurez ... 30
 2.5.1 Madurez .. 30
 2.5.2 Modelos de Madurez .. 32
 2.6 Modelos de Madurez para Lean Construction .. 34

3 DIAGNÓSTICO DE LA IMPLEMENTACIÓN DE LEAN CONSTRUCTION 37
 3.1 Metodología del Diagnóstico ... 39
 3.2 Resultados del Diagnóstico ... 40
 3.2.1 Filosofía .. 40
 3.2.2 Cultura ... 41
Anexo L: Validación del Modelo de Madurez – Expertos 127
Anexo M: Validación del Modelo de Madurez – Implementadores 131
Anexo N: Modelo de Madurez para el Desarrollo de los Principios Lean
Construction... 133
ÍNDICE DE TABLAS

Tabla 2-1: Diferencias entre la Producción Tradicional y la Producción Lean 14
Tabla 2-2: Principios Lean .. 20
Tabla 2-3: Diferencias entre la Industria Manufacturera y la Construcción 21
Tabla 2-4: Definición de Principios Lean Construction y prácticas asociadas 23
Tabla 2-5: Beneficios de Lean Construction ... 25
Tabla 2-6: Madurez de los Procesos y de las Practicas Lean Construction 31
Tabla 3-1: Guía de investigación ... 38
Tabla 3-2: Metodología de investigación para el diagnóstico de Lean Construction 39
Tabla 4-1: Definición del alcance del modelo de madurez................................. 49
Tabla 4-2: Definición del diseño del modelo de madurez 50
Tabla 4-3: Niveles de madurez .. 51
Tabla 4-4: Componentes del modelo de madurez .. 53
Tabla 5-1: Estudio de Caso 1 .. 70
Tabla 5-2: Estudio de Caso 2 .. 75
Tabla 6-1: Resultados obtenidos para los objetivos de la investigación 79
ÍNDICE DE FIGURAS

Figura 1-1: PIB e Inversión en la construcción en Chile ... 2
Figura 1-2: Productividad Total de Factores en Chile .. 3
Figura 1-4: Metodología de investigación ... 7
Figura 1-5: Estructura de la tesis .. 11
Figura 2-1: Fundamento Producción Lean ... 15
Figura 2-2: Triángulo Lean - GEPUC ... 18
Figura 2-3: Principios Lean Construction ... 22
Figura 2-4: Desarrollo organizacional al implementar Lean Construction 27
Figura 2-5: Sostenibilidad de los beneficios al implementar Lean Construction 28
Figura 2-6: Niveles de Madurez CMM ... 33
Figura 3-1: Transformación Lean ... 44
Figura 4-1: Etapas de Desarrollo del Modelo de Madurez 48
Figura 4-2: Niveles de madurez – Principios Lean Construction 54
Figura 4-3: Niveles de madurez – Prácticas Lean Construction 55
Figura 4-4: Modelo de Madurez para el Desarrollo de los Principios Lean Construction ... 59
RESUMEN

La industria de la construcción es un sector cada vez más exigente y competitivo, lo cual ha provocado que muchas empresas busquen maneras de mejorar sus procesos. La adopción de Lean Construction y sus herramientas asociadas, es una de ellas. Sin embargo, algunos implementadores reportan una falta de sostenibilidad en el tiempo de las prácticas Lean, por tal motivo es esencial entender este fenómeno y brindar a las empresas estrategias que apoyen la interiorización de la filosofía Lean en sus proyectos. Evaluar la madurez que presentan los Principios Lean representa una estrategia para orientar y controlar el cambio Lean en las organizaciones. A través del establecimiento de una base conceptual, un diagnóstico de la forma en cómo se implementa Lean Construction y la generación de un modelo de madurez para el desarrollo de los Principios Lean y sus prácticas asociadas, se establece un marco de trabajo para guiar a las empresas en la implementación de la filosofía Lean en los proyectos de construcción. La aplicación del marco de trabajo para el desarrollo de la madurez de los Principios Lean permite a las organizaciones tener un fundamento para integrar Lean Construction a través de la generación de planes de acción estratégicos.

Palabras Claves: Lean Construction, Principios Lean, Madurez, Modelo de Madurez.
ABSTRACT

The construction industry is an increasingly demanding and competitive sector, which has caused many companies to look for ways to improve their processes. The adoption of Lean Construction and its associated tools is one of them. However, some implementers report a lack of sustainability over time in Lean practices, so it is essential to understand this phenomenon and provide strategies that support the internalization of the Lean philosophy in construction projects. Assess the maturity of the Lean Principles represents a strategy to guide and control Lean change in organizations. Through the creation of a conceptual basis, a diagnosis of how Lean Construction is implemented and the generation of a maturity model for the development of the Lean Principles and their associated practices, a framework is established to guide companies in the implementation of Lean philosophy in construction projects. Applying the framework to develop Lean Principles maturity enables organizations to have a foundation to integrate Lean Construction through generating strategic action plans.

Keywords: Lean Construction, Lean Principles, Maturity, Maturity Model.
1. INTRODUCCIÓN

La industria de la construcción tanto local como globalmente se muestra como un sector cada vez más exigente y competitivo. Día a día las empresas se enfrentan a dificultades como son la baja productividad, calidad deficiente de los productos y desviaciones en términos de plazos y presupuestos, entre otros. Estos problemas se unen a las necesidades que surgen dentro de las organizaciones de obtener una mayor rentabilidad, satisfacer al cliente y generar valor. Buscando dar solución a estas problemáticas, muchas organizaciones han observado los beneficios que se obtienen al implementar Lean Construction y han iniciado un camino de transformación, desarrollando una filosofía de gestión, metodologías de trabajo y una cultura organizacional orientada a la mejora en los procesos. Sin embargo, la implementación de Lean Construction trae consigo dificultades y problemas organizacionales que evitan que los resultados disten mucho de las expectativas. Es por esta razón que resulta conveniente tener mecanismos que permitan implementaciones más estables con mayores posibilidades de éxito, que procuren su sostenibilidad a lo largo del tiempo y que tengan como fundamento lo siguiente (Alarcón, 2014):
- Tener una filosofía impulsada por los Principios Lean, con una visión a largo plazo.
- Desarrollar tecnologías y métodos que apoyen la implementación de la filosofía Lean.
- Creación de una cultura organizacional que facilite a las personas la interiorización de la filosofía Lean.

1.1 Antecedentes Generales

El sector de la construcción en Chile está conformado por las actividades de edificación habitacional, edificación no habitacional y obras de ingeniería tanto pública como privada para la construcción de infraestructura. Los productos que genera el sector
de la construcción son altamente heterogéneos, debido a la diversidad de las características físicas y al requerimiento de recursos empleados para su elaboración. Hoy en día las organizaciones que componen este sector enfrentan un desafío ante la competencia global existente, la mejora de su productividad, la cual representa un motor clave en el crecimiento económico de un país (Abdel-Wahab & Vogl, 2011; Chia et al., 2012; Yan y Chunlu, 2010). El fenómeno de la productividad en el sector de la construcción presente en Chile se puede abordar desde diferentes perspectivas. Una primera instancia es por medio del producto interno bruto (PIB), junto con la inversión en el sector de la construcción (Figura 1-1). El análisis radica en que ambos indicadores muestran un comportamiento similar, mostrando una disminución a partir del año 2011 y reflejándose en una baja en la producción, inquietando a las empresas constructoras. Sin embargo, a partir del segundo trimestre del 2014 el PIB y las inversiones muestran un repunte y una tendencia positiva, permitiendo visualizar un impulso para el sector de la construcción.

Figura 1-1: PIB e Inversión en la construcción en Chile

(Banco Central de Chile, 2015; Cámara Chilena de la Construcción, 2015)
Otra forma utilizada para medir la productividad en la industria de la construcción es mediante el uso la productividad total de factores (PTF) (Crawford & Vogl, 2006), donde el trabajo (horas trabajadas efectivas), el capital y el crecimiento de la producción brindan un indicador. La realidad chilena muestra que la productividad en la última década se encuentra con indicadores negativos, esto comparado con países desarrollados donde los niveles tienden a ser positivos, esto indica que existe un gran problemática por atender y contrarrestar la falta de productividad en la industria.

Figura 1-2: Productividad Total de Factores en Chile

(UAI-CORFO, 2014)

En conjunto, el análisis de la inversión, el PIB y la PTF en el sector de la construcción en Chile, reflejan que existe un bajo nivel de productividad aunado con la disminución de los recursos y la producción. Esto provoca que las empresas constructoras reaccionen y visualicen la mejora en el rendimiento de sus procesos productivos. La implicación de lo anterior, impulsa cada vez más a las organizaciones a mirar a Lean Construction como una forma para lograr la mejora deseada. Muchas de estas organizaciones han enfocado sus esfuerzos en optimizar el uso de todos sus recursos, mediante una eficiente planificación y control de proyecto, ya que ven esto como la principal barrera en Chile para mejorar la productividad en la construcción.
(Corporación de Desarrollo Tecnológico, 2016). Esta necesidad se traduce en una búsqueda de alternativas más eficientes respecto de los métodos de planificación tradicional, por parte de las empresas. Es así que se ha optado por la implementación de herramientas con un fundamento Lean, tal es el caso del Sistema Last Planner®, el cual es una ayuda para optimizar la programación de la producción y un medio para adoptar conceptos y conductas relacionadas con la filosofía Lean (Fauchier & Alves, 2013; Fayek & Mohamed, 2013; Hamzeh & Bergstrom, 2010).

1.2 Justificación de la Investigación

En el año 2014, el Centro de Excelencia en Gestión de la Producción de la Pontificia Universidad Católica de Chile (GEPUC), organización enfocada a la Investigación, el Desarrollo y la innovación, a través del denominado Grupo Colaborativo “Construyendo Excelencia” generó una línea de investigación para atender la inquietud y preocupación de un grupo de empresas constructoras chilenas, las cuales han implementado metodologías de mejoramiento de la producción inspirados en Lean Construction y tienen la necesidad de evaluar el por qué algunas de las prácticas o herramientas desarrolladas en sus proyectos no consiguen ser sostenibles en el tiempo. En particular, la cuestión a investigar se enfocó en el Sistema Last Planner®, debido a que se reportaba que la aplicación de la herramienta funcionaba durante el 70-80% del proyecto, pero su efecto decía a medida que se llega a la parte final de las obras. Esta problemática local, mostró ser similar a los casos reportados en otras partes del mundo (Pekuri et al. 2012). Considerando lo anterior, se inició una investigación en las empresas del Grupo Colaborativo, teniendo como propósito realizar un diagnóstico de la forma en cómo la industria chilena de la construcción desarrolla las prácticas y las herramientas Lean (Concha, 2015; Marin, 2015). Los hallazgos del diagnóstico permitieron identificar diversas barreras relacionadas con la adopción de la filosofía Lean y el cambio cultural (Salvatierra et al., 2015).
La siguiente etapa en la línea de investigación de GEPUC era generar estrategias para sostener las prácticas Lean exitosas y generar cambios en la cultura organizacional. Siguiendo el axioma propuesto por Alarcón (2015) “Tecnologías sin Filosofía y sin sustento cultural no es Lean”, se optó por desarrollar una estrategia considerando las falencias en la adopción de la filosofía Lean, como una de la causa raíz del problema de la falta de sostenibilidad de las prácticas Lean. Es así que surgió la necesidad de definir y comprender como es el proceso de adopción de la filosofía Lean en el tiempo. Teniendo definido lo que refiere a la filosofía Lean y buscando su sostenibilidad se analizó la cita adaptada de Thomson (1904), “Lo que no se define, no se puede medir. Lo que no se mide, no se puede mejorar. Lo que no se mejora, se degrada siempre.”. De esta cita se visualiza que existe un vacío por llenar en torno a Lean Construction, la forma de medir el proceso de adopción y madurez de la filosofía Lean.

Con fundamento en lo anterior, se determina enfocar la investigación hacia la evaluación, el desarrollo y la interiorización de los Principios Lean a nivel de proyecto, al ser estos la idea fundamental que rige el pensamiento Lean y permite una transformación cultural, además de la utilización sostenible de nuevas herramientas.

1.3 Pregunta de Investigación

Considerando como base los antecedentes expuestos y la problemática que se aborda en esta investigación heurística, se busca dar respuesta a la siguiente pregunta:

¿Cómo evaluar el nivel de madurez que presentan los Principios Lean en los proyectos de construcción, para poder identificar oportunidades de mejora y establecer las bases de planes de acción estratégicos para desarrollar Lean Construction en las organizaciones?
1.4 **Objetivos de la Investigación**

El objetivo general que se busca con la realización de la investigación es:
Desarrollar un marco de trabajo que apoye a las empresas constructoras en la realización de un diagnóstico sobre el estado de madurez de los Principios Lean que se presentan en sus proyectos, para ayudar a generar estrategias que permitan interiorizar la filosofía Lean y darle sostenibilidad en el tiempo.

Los objetivos específicos en este estudio son:
1. Integrar un marco conceptual entre los Principios Lean, la evaluación de su madurez y su desarrollo en proyectos de construcción.
2. Diagnosticar la implementación de los Principios Lean en proyectos de construcción.
3. Generar un modelo de madurez para el desarrollo de los Principios Lean y sus prácticas asociadas en proyectos de construcción.
4. Evaluar el estado de madurez de los Principios Lean y sus prácticas asociadas en proyectos de construcción, para establecer las bases de un plan de desarrollo estratégico.

1.5 **Metodología de Investigación**

En el contexto de una investigación cualitativa, en la cual se busca la comprensión de una realidad considerada desde sus aspectos particulares y vista a partir de la lógica y el sentir de los involucrados (Quintana, 2006), la metodología a seguir se visualiza como un diagrama secuencial, dividido en varias tareas por hacer, las cuales se vinculan directamente con los objetivos específicos y se llevan a cabo a través de diversos métodos de investigación. Tanto para la realización de las tareas como para los métodos de investigación, se hace en todo momento una revisión bibliográfica para fundamentar la investigación (Figura 1-4).
Como primera tarea de la metodología, se integra un marco conceptual que orienta la investigación, por medio de una revisión bibliográfica. Se abarca el estado del arte de tópicos como Lean Construction y sus Principios, la madurez y las herramientas para su evaluación, además de todo aquel tema que tenga alguna significancia en la investigación. Asimismo, se revisan las definiciones conceptuales y operativas de todos aquellos conceptos vinculados con la investigación.

La segunda tarea, es la realización de un diagnóstico de la implementación de los Principios Lean en proyectos de construcción, donde se identifican los factores éxito y las barreras que influyen en el desarrollo de Lean Construction. Se llevan a cabo estudios de caso, para poder captar la situación real que existe en torno a las prácticas Lean. La adquisición de información se realiza a diferentes niveles dentro de la organización con el propósito de comparar realidades y entender de mejor manera el fenómeno que ocurre al desarrollar Lean Construction. Esto se realiza a través de
entrevistas estructuradas a niveles gerenciales de las empresas, para después integrar un focus group entre implementadores Lean. Después se continua con encuestas a niveles operativos y visitas a terreno donde se puede observar de manera directa cómo se practica la filosofía Lean, las percepciones de los trabajadores en obra y cuáles son algunas de las herramientas basadas en Lean utilizadas. Por último, y habiendo analizado las visitas a terreno se realiza una encuesta organizacional, la cual se aplica a los diferentes niveles de la organización, y la cual recaba las evidencias con mayor significancia en el desarrollo de Lean Construction.

Para la tercera tarea se genera un Modelo de Madurez, partiendo de los parámetros y evidencias de la literatura, además de los resultados del diagnóstico. Se visualiza cada Principio Lean y sus prácticas asociadas, junto con las evidencias clave y las características que definen cada nivel de madurez. Aquí se realiza un análisis cualitativo del contenido, el constructo y el criterio, considerando el juicio de expertos y entrevistas con implementadores de la filosofía Lean, con el propósito de validar el modelo.

Con un modelo de madurez validado y que muestra de manera adecuada lo que se podría esperar en el desarrollo de los Principios Lean Construction, se aplica a algunas empresas constructoras (Grupo Colaborativo “Construyendo Excelencia” - GEPUC), con el propósito de obtener un diagnóstico del estado de madurez que se tiene en los proyectos en relación con la implementación de la filosofía Lean. Cada evaluación sienta la base para desarrollar planes estratégicos para el desarrollo de los Principios Lean.

1.6 Alcance de la Investigación

Partiendo del análisis de la problemática que justifica el desarrollo de esta investigación, habiendo determinado los objetivos a lograr y siguiendo un enfoque cualitativo, el alcance se basa en los diferentes tipos de estudios que se realizan ya sea
exploratorio, descriptivo, correlacional y/o explicativo (Hernández, Fernández & Baptista, 2010).

Primeramente la investigación tiene un alcance exploratorio, pues se inicia con el estudio del problema de la sostenibilidad de las prácticas Lean Construction en el tiempo, desde un contexto particular ofrecido por las empresas que conforman el Grupo Colaborativo “Construyendo Excelencia”, ligado a GEPUC. Es así que se genera una serie de conceptos, los cuales sirven para familiarizarse con el fenómeno que existe y sienta las bases para iniciar un estudio descriptivo.

El alcance descriptivo de la investigación se establece a través de los estudios de caso definidos por los proyectos de construcción de cada empresa sujeta a análisis, además de la recolección de datos significativos que permiten describir las características en cómo se desarrollan los Principios Lean y como se manifiesta en la falta de sostenibilidad de las prácticas y las herramientas Lean. La información obtenida sirve para continuar con un estudio correlacional.

El alcance correlacional se sigue para determinar la correspondencia que existe entre dos o más conceptos definidos en el estudio. Es aquí donde el desarrollo de los Principios Lean en los proyectos de construcción, visualizado por su evaluación en términos de madurez da sentido a la investigación.

Continuando con un análisis más estructurado de las variables de los Principios de Lean Construction y el desarrollo de su madurez, se pueden declarar las diversas características que evidencian cada estado de madurez en la práctica de cada principio, determinando así el alcance explicativo que sigue la investigación.

Habiendo explicado el fenómeno, es posible brindar una solución a la problemática planteada, la cual se busca mediante el desarrollo de un marco de trabajo
que sirve para evaluar y desarrollar los Principios Lean Construction. Este marco se basa en un modelo de madurez, el cual permite generar un diagnóstico de cómo se practican los Principios Lean en los proyectos de construcción, estableciendo así las bases para un plan de acción estratégico que ayude a desarrollar Lean Construction hasta un estado sostenible.

Entendiendo cada alcance y lo que representa para la investigación, se puede tener una visión particular, donde el desarrollo de los Principios Lean Construction y sus prácticas asociadas son la base para obtener los beneficios relacionados con la filosofía Lean. Es así como el marco de trabajo desarrollado puede ser utilizado para apoyar la implementación de herramientas y el cambio cultural en las organizaciones que ya han iniciado un cambio Lean, y en aquellas que no han decidido tomar un enfoque Lean, les brinda una visión clara y sencilla del camino a seguir en la implementación de los Principios Lean en los proyectos de construcción.

1.7 Descripción de la Tesis

La estructura de la tesis se conforma de 6 capítulos vinculados directamente con los objetivos específicos establecidos para la investigación (Figura 1-5).
A continuación se presentan los capítulos de la tesis:

- **Capítulo 1**: El contenido es una parte introductoria al planteamiento de la investigación, donde se da a conocer el contexto sobre el cual se basa su desarrollo a través de los antecedentes generales y la justificación. Asimismo se plantea el problema de la investigación de acuerdo a la pregunta que guía el estudio, los objetivos y la definición de los alcances. Además se indica la metodología de investigación, compuesta por las tareas y los métodos a emplear para obtener los datos para conformar la investigación.

- **Capítulo 2**: Se aborda el marco conceptual, el cual es la base teórica que enmarca la investigación, brindando así un entendimiento de conceptos relevantes para el
desarrollo del estudio, estableciendo los avances en las materias y limitaciones existentes como lo son para la filosofía Lean, Lean Construction y sus Principios, la madurez y las herramientas para su evaluación.

- Capítulo 3
 Se presenta la metodología, los resultados y el análisis del diagnóstico generado para entender cómo la industria chilena de la construcción desarrolla las prácticas y las herramientas Lean.

- Capítulo 4
 Se desarrolla la metodología llevada a cabo para la creación del “Modelo de Madurez para el Desarrollo de los Principios Lean”.

- Capítulo 5
 Contiene los casos de estudio seleccionados, los cuales sirven como ejemplo de la aplicación y desarrollo del modelo de madurez.

- Capítulo 6
 Se presentan los aportes que se generaron con la investigación, incorporando recomendaciones que sirvan como complemento a los avances conseguidos y que permitan ampliar el cuerpo de conocimiento en torno a Lean Construction.
2 MARCO CONCEPTUAL

En el presente capítulo se establece una base teórica, con los conceptos que guían la investigación, buscando mantener un lenguaje común que permite una mejor comprensión del estudio. Lo anterior se logró a partir de la revisión de la literatura y la integración de investigaciones existentes que abordan temáticas relacionadas con la filosofía Lean y sus principios, su enfoque desde la industria de la construcción, la forma en cómo se lleva la implementación de Lean Construction. Además, se integró el entendimiento del concepto de madurez junto con sus evidencias y su evaluación a través de la aplicación de modelos de madurez. Es así que se logró identificar problemáticas, avances y limitaciones a considerar en cada etapa de la investigación, logrando al final una contribución al desarrollo de la teoría y un progreso en la práctica en torno a Lean Construction.

2.1 Lean

Lean es un concepto que surge a partir del estudio realizado por Jhon Krafcik en el Instituto Tecnológico de Massachusetts (MIT) en 1988, en el cual se intentó entender y describir el sistema de producción en la Compañía Toyota liderado por Taiichi Ohno (Krafcik, 1988; Ohno, 1988). El Sistema de Producción Toyota (TPS) se distinguía por la fabricación de automóviles con una clara ventaja competitiva sobre las más importantes compañías del sector en términos de calidad, costo y tiempo, gracias a la continua identificación y eliminación de desperdicios, así como la maximización del valor para el cliente (Womack et al., 1990). De esta forma inicio el desarrollo de una nueva filosofía de producción denominada Producción Lean, cuya adopción e implementación se extendió por diversas industrias, buscando cambiar el enfoque de la producción convencional (Tabla 2-1).
Tabla 2-1: Diferencias entre la Producción Tradicional y la Producción Lean

(Campero & Alarcón, 2008)

<table>
<thead>
<tr>
<th></th>
<th>Producción Convencional</th>
<th>Producción Lean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objeto</td>
<td>Afecta a la producción y servicios.</td>
<td>Afecta a todas las actividades de la empresa.</td>
</tr>
<tr>
<td>Alcance</td>
<td>Control.</td>
<td>Gestión, asesoramiento y control.</td>
</tr>
<tr>
<td>Modo de Aplicación</td>
<td>Imposición.</td>
<td>Por convencimiento y participación.</td>
</tr>
<tr>
<td>Metodología</td>
<td>Detectar y corregir.</td>
<td>Prevenir.</td>
</tr>
<tr>
<td>Responsabilidad</td>
<td>Encargado de calidad.</td>
<td>Compromiso de todos los miembros de la empresa.</td>
</tr>
<tr>
<td>Clientes</td>
<td>Ajenos a la empresa.</td>
<td>Internos y externos.</td>
</tr>
<tr>
<td>Conceptualización de la Producción</td>
<td>La producción consiste de conversiones (actividades). Todas las actividades agregan valor al producto.</td>
<td>La producción consiste de conversiones y flujos. Hay actividades que agregan valor y actividades que no agregan valor al producto.</td>
</tr>
<tr>
<td>Control</td>
<td>Costo de las actividades.</td>
<td>Costo, tiempo y valor de los flujos.</td>
</tr>
<tr>
<td>Mejoramiento</td>
<td>Implementación de nueva tecnología.</td>
<td>Reducción de las tareas de flujo, y aumento de la eficiencia del proceso con mejoras continuas y tecnología.</td>
</tr>
</tbody>
</table>

Los conceptos que guían la Producción Lean fueron esquematizados por Womack y Jones (1996) (Figura 2-1). El esquema establece como base para la implantación de la filosofía Lean la estabilidad de los procesos, tener operaciones estandarizadas, la mejora continua (Kaizen) y la nivelación en la producción (Heijunka). En los pilares se tienen las herramientas Lean, las cuales son representadas por “Just in Time” (el producto correcto, en la cantidad correcta y en el momento correcto) y “Jidoka” (uso de técnicas para detectar y corregir los defectos de la producción utilizando para ello los procedimientos y mecanismos necesarios que nos avisen de las anomalías). Por último se tienen los objetivos que se buscan alcanzar con la Producción Lean como lo son: el desarrollar los procesos con una mejor calidad, reducir los costos y tener tiempos de ciclo más cortos.
Asimismo, la Producción Lean refiere a un proceso de eliminar desperdicios con la meta de crear valor, basado en los siguientes conceptos fundamentales (Womack & Jones, 1996):

1. Valor: Identificar y especificar de manera precisa el valor (en función del cliente) asociado a un determinado producto.
2. Cadena de Valor: Identificar la secuencia de generación de valor.
3. Flujo: Encontrar la manera óptima en que debe ocurrir la secuencia de generación de valor y luego garantizar y controlar que fluya.
4. Pull: La producción se configura siempre a partir de un requerimiento.
5. Perfección: Todas las acciones en la producción son tendientes a la búsqueda de la perfección.
Los desperdicios (pérdidas) refieren a todas aquellas actividades que no agregan valor a los ojos del cliente y en general se consideran las siguientes (Ohno, 1988; Liker, 2004):

- Sobreproducción
- Tiempo de espera
- Transporte innecesario
- Sobre-procesamiento o procesamiento incorrecto
- Exceso de inventario
- Movimientos innecesarios
- Productos defectuosos
- Desaprovechamiento de la creatividad del empleado

2.2 Lean Construction

Desde principios de la década de 1990 Lean Construction ha surgido como un concepto desarrollado a partir de la filosofía Lean practicada en la industria manufacturera y adaptado al rubro de la construcción. El propósito de su implementación es el de lograr mejoras y ventajas competitivas, desarrollando formas adecuadas de gestión, utilizando diferentes metodologías y herramientas de trabajo, y fomentando una nueva cultura para la empresa y sus colaboradores. Es de este modo que Lean Construction ha generado un gran interés tanto para la industria como para la academia, creando un debate acerca de lo que es Lean Construction. Lean Construction se ha definido de diferentes maneras, considerando una gama de enfoques, herramientas y técnicas. Algunos de los paradigmas que guían la teoría y la práctica de Lean Construction son:

- Lauri Koskela (1992): Una nueva filosofía de construcción basada en tres aspectos: una producción compuesta por flujos y conversiones, una serie de
principios para el diseño, control y mejora de flujos, y la utilización de diversas metodologías y herramientas para la producción.

- Koskela et al. (2002): Forma de diseñar sistemas de producción para minimizar el desperdicio de materiales, tiempo y esfuerzo con el fin de generar la máxima cantidad posible de valor.

- Diekmann et al. (2004): Proceso continuo de eliminación de residuos, cumpliendo o superando todas las necesidades de los clientes, enfocándose en todo el flujo de valor y persiguiendo la perfección en la ejecución de un proyecto construido.

- Constructing Excellence (2004): Filosofía basada en los conceptos de la fabricación Lean. Se trata de la gestión y mejora en el proceso de construcción para entregar de manera rentable lo que el cliente necesita.

- AGC of America (Kenig, 2011): Conjunto de ideas, practicadas por individuos en la industria de la construcción, basadas en la búsqueda integral de mejoras continuas destinadas a minimizar los costos y maximizar el valor para los clientes en todas las dimensiones de la construcción y el medio ambiente: la planificación, el diseño, la construcción, la puesta en operación, las operaciones, el mantenimiento, el salvamento y el reciclaje.

- Nesensohn (2014): Filosofía de gestión para la construcción y el diseño, inspirado en el Sistema de Producción Toyota (TPS) y su interpretación como la producción y el pensamiento Lean, con un enfoque en la creación y entrega de valor al cliente
final, el respeto a las personas, la reducción de residuos, la creación de un flujo de trabajo constante, la práctica de mejoras continuas y el aprendizaje.

- Lean Construction Institute (2014): Gestión de la producción para la ejecución de un proyecto, una nueva manera de diseñar y construir. Lean Construction se extiende desde los objetivos de un sistema de producción sin perdidas - maximizar el valor y minimizar los desperdicios - hasta las técnicas específicas, y la aplicación en un nuevo proceso de realización de un proyecto.

- Centro de Excelencia en Gestión de la Producción – GEPUC (Salvatierra et al., 2015): Integración de los conceptos Lean en el sector de la construcción, con un enfoque que engloba la filosofía, la cultura y la tecnología y/o herramientas. (Figura 2-2)

Figura 2-2: Triangulo Lean – GEPUC

(Salvatierra et al., 2015)
Analizando cada una de las definiciones y su enfoque se puede considerar que existen dos diferentes interpretaciones sobre Lean Construction. Una interpretación es la que refiere a la aplicación de teorías de producción en los proyectos de construcción y la otra interpretación considera una teoría de gestión (planificación-ejecución-control).

Para el contexto y el propósito de esta investigación se adoptó el punto de vista integrador para Lean Construction establecido por Salvatierra et al. (2015), considerando como fundamento el desarrollo de la Filosofía y en particular el de los Principios Lean, para poder establecer y mantener un sistema social reflejado en la Cultura y la aplicación de la Tecnología (herramientas) en proyectos de construcción.

2.3 Principios Lean Construction

Un principio se define como una norma o idea fundamental que rige el pensamiento o la conducta (Real Academia Española, 2014). Entendiendo lo que un principio representa y buscando interiorizar la filosofía Lean en el contexto particular que representa la construcción, es esencial determinar y entender cuáles son estos Principios que orientan la forma de realizar los proyectos de una manera Lean.

Partiendo del fundamento de la Producción Lean generado desde el Sistema de Producción Toyota, implementadores como Womack y Jones (1996), junto con McInnes (2002) propusieron una serie de principios con ideales Lean enfocados a la industria manufacturera. Por otro lado, Koskela (1992) hizo lo propio considerando las peculiaridades y diferencias que representa la industria de la construcción (Tabla 2-2).
Tabla 2-2: Principios Lean

<table>
<thead>
<tr>
<th>Principios Lean</th>
<th>Manufactura</th>
<th>Construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identificar el Valor.</td>
<td>1. Reducción de desperdicios.</td>
<td>1. Reducir o eliminar las actividades que no agregan valor.</td>
</tr>
<tr>
<td>2. Mapear la Cadena de Valor.</td>
<td>2. Calidad / Mejora continua.</td>
<td>2. Incrementar el valor del producto.</td>
</tr>
<tr>
<td>3. Crear el Flujo.</td>
<td>3. Reducción de los tiempos de espera.</td>
<td>3. Reducir la variabilidad.</td>
</tr>
<tr>
<td>4. Establecer el sistema Pull.</td>
<td>4. Reducción del costo total.</td>
<td>4. Reducir el tiempo de ciclo.</td>
</tr>
<tr>
<td>5. Buscar la Perfección.</td>
<td>5. Uso de métricas para asegurar el mejoramiento.</td>
<td>5. Simplificar los procesos.</td>
</tr>
</tbody>
</table>

A partir del estudio realizado por Diekmann et al. (2004) se desarrollaron los “Principios Lean Construction”. El estudio constó de una síntesis de los ideales propuestos por Womack y Jones (1996), McInnes (2002) y Koskela (1992), la identificación de los principios más relevantes en los proyectos de construcción, un análisis de las diferencias de los principios propuestos entre la industria manufacturera y la construcción (Tabla 2-3), la experiencia de implementadores Lean, la observación de conductas Lean en terreno y el mapeo de los procesos constructivos más relevantes.
Tabla 2-3: Diferencias entre la Industria Manufacturera y la Construcción
(Diekmann et al., 20014)

<table>
<thead>
<tr>
<th>Principios Lean</th>
<th>Diferencias entre la Industria Manufacturera y la Construcción</th>
</tr>
</thead>
</table>
| **Eliminación de Desperdicios** | - La secuencia de producción es discrecional en gran medida.
- El flujo de material no es el estado estacionario y las líneas de suministro son diferentes en diferentes ubicaciones del proyecto.
- Los lugares y cantidades de almacenamiento de materiales de construcción varían para cada tarea dentro del proyecto.
- La construcción puede cambiar el tiempo de ejecución sumando o restando recursos.
- La construcción es el ritmo de los recursos, y la fabricación suele ser una máquina de ritmo.
- La construcción es afectada por el clima. |
| **Estandarización** | - La construcción tiene una organización fluida a nivel de proyecto.
- La configuración del entorno en la construcción cambia constantemente. En la manufactura es más fácil mantener sistemas de gestión visual.
- En la construcción la gente se mueve a través del producto, mientras que en la manufactura el producto que se mueve a través de la gente.
- La construcción tiene una relación de cambio de oferta más difícil, incluyendo diferentes proveedores y contratistas en diferentes regiones geográficas.
- En la construcción hay maneras alternativas de hacer cada tarea. Los métodos de producción están en manos de los constructores.
- El típico proyecto de construcción es considerado un prototipo, es un producto único. La manufactura genera productos en serie. |
| **Cultura / Personas** | - En la construcción, la alta rotación del personal resulta en menos oportunidades para la formación y capacitación.
- Los trabajadores de la construcción son artesanos, mientras que la manufactura, son profesionales especializados.
- Los requisitos de producción, el acceso y los horarios se rigen por múltiples contratos. |
| **Enfoque al Cliente** | - Los constructores no controlan toda la cadena de suministro.
- Las empresas constructoras más grandes controlan solamente el 1 por ciento del mercado, mientras que en la manufactura los fabricantes más grandes pueden controlar el 20 por ciento o más.
- Los propietarios están mucho más involucrados en las características del producto (configuración, costo, programación y proceso).
- En la construcción, la responsabilidad del éxito se comparte entre el constructor y el consumidor del producto. |
| **Mejoramiento Continuo / Calidad** | - Hay una alta rotación en la industria de la construcción.
- La capacidad de desarrollar un programa de seguimiento de calidad es limitada en la construcción.
- El tiempo de producción en la construcción se mide en horas en contraste con la manufactura donde se mide en minutos o segundos. |

Los “Principios Lean Construction” que fueron propuestos, validados y aprobados por destacados expertos Lean junto con profesionales de la construcción, se organizaron y representaron de una forma comprensible a través de una rueda (Figura 2-3), concepto similar al presentado por Tapping et al. (2002). La rueda presenta 5 principios principales, los cuales se dividen en 16 sub-principios, que para la
investigación se consideran como prácticas asociadas, con el propósito de entenderlos como la aplicación de los ideales Lean Construction.

Figura 2-3: Principios Lean Construction

(Diekmann et al., 2004)
Cada uno de los principios y sus prácticas asociadas representa un pilar en el desarrollo del pensamiento y el comportamiento en torno a Lean Construction, por tal motivo el saber exactamente su significado y el contexto en el que se aplica, ayuda a una comprensión integral de cada uno. Es así, que la definición clara, exacta y precisa de cada concepto es establecido conforme a las características establecidas por Diekmann et al. (2003, 2004), complementándola con algunas ideas relacionadas en la literatura y el contexto de los proyectos de construcción (Tabla 2-4).

Tabla 2-4: Definición de Principios Lean Construction y prácticas asociadas

(Elaboración propia)

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminación de Desperdicios</td>
<td>Eliminación o reducción de todo aquello que no agrega valor.</td>
</tr>
<tr>
<td>Optimización del Sistema de Producción</td>
<td>Mejoramiento del proceso de producción y los elementos que lo componen, el cual se desarrolla con la entrada de recursos, la transformación y la obtención de un producto terminado para su entrega.</td>
</tr>
<tr>
<td>Optimización del Contenido de Trabajo</td>
<td>Mejoramiento del tiempo total del ciclo de producción, incluyendo las actividades que agregan valor y las que no añaden valor.</td>
</tr>
<tr>
<td>Gestión de la Cadena de Suministro</td>
<td>Proceso de planificar y gestionar todas las actividades necesarias para el suministro, la adquisición, la conversión y la administración en el sistema de producción, coordinando e integrando los recursos y las diversas partes involucradas en el proceso, con el fin de lograr una producción Just In Time (JIT).</td>
</tr>
<tr>
<td>Optimización de la Programación de la Producción</td>
<td>Mejoramiento en la forma de secuenciar el trabajo, planificando los recursos para lograr cumplir con los objetivos de tiempo, costo y calidad.</td>
</tr>
<tr>
<td>Estandarización</td>
<td>Práctica de crear, comunicar, mantener y mejorar los procedimientos de trabajo con base en reglas y secuencias establecidas.</td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>Información en tiempo real y en el lugar sobre el estado del trabajo y el cumplimiento de estándares, mediante ayudas visuales sencillas y eficaces que permiten a los empleados conocer su desempeño y su influencia en los procesos.</td>
</tr>
<tr>
<td>Definición de los Procesos de Trabajo</td>
<td>Establecimiento y comprensión de guías claras y detalladas para la ejecución de los procesos de trabajo de forma repetible, eliminando la variación en la producción, los errores y la suposición.</td>
</tr>
<tr>
<td>Organización del Lugar de Trabajo</td>
<td>Aseguramiento de que el entorno de trabajo es un espacio ordenado, limpio y organizado, en el cual las herramientas y los materiales estén dispuestos para una mayor eficiencia, productividad, seguridad y correcta ejecución de los procesos de producción.</td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td>Valoración de la gente y creación de una cultura que permita un beneficio mutuo cumpliendo los objetivos organizacionales y personales.</td>
</tr>
<tr>
<td></td>
<td>Desarrollo de las competencias de las personas y promoción de su participación, para lograr su motivación, su compromiso y el uso de sus competencias en beneficio de la organización.</td>
</tr>
<tr>
<td>Compromiso</td>
<td>Obligación contraída de todos los niveles de la organización hacia la consecución de una meta.</td>
</tr>
</tbody>
</table>
Las definiciones de los Principios Lean Construction y las prácticas asociadas representan una orientación y base para un cambio Lean, permitiendo el desarrollo de una filosofía, generar una cultura e implementar una serie de herramientas.

2.4 Implementación de Lean Construction

Los beneficios que se logran al seguir los Principios Lean han generado que su aplicación se extienda a muchas áreas productivas, como lo es la industria de la construcción, donde muchas organizaciones han iniciado un camino de transformación Lean (Tabla 2-5). Las organizaciones han desarrollado una filosofía de gestión para alcanzar los objetivos estratégicos establecidos, utilizando metodologías y herramientas.
de trabajo, junto con el fomento de una nueva cultura para la empresa y sus colaboradores. Sin embargo, en la práctica el poder alcanzar y visualizar los objetivos deseados relacionados con Lean Construction requiere de mucho esfuerzo por parte de los involucrados. El lograr una implementación Lean exitosa y sostenible, significa superar una serie de dificultades y barreras organizacionales.

Tabla 2-5: Beneficios de Lean Construction

<table>
<thead>
<tr>
<th>Beneficios de Lean Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mejor cumplimiento del presupuesto</td>
</tr>
<tr>
<td>Reducción de tiempos de ejecución</td>
</tr>
<tr>
<td>Mayor utilidad y reducción de costos</td>
</tr>
<tr>
<td>Mayor productividad</td>
</tr>
<tr>
<td>Mejora de la seguridad</td>
</tr>
<tr>
<td>Mayor calidad en la construcción</td>
</tr>
<tr>
<td>Mayor satisfacción del cliente</td>
</tr>
<tr>
<td>Colaboración efectiva</td>
</tr>
<tr>
<td>Mejor gestión del riesgo</td>
</tr>
</tbody>
</table>

La implementación de Lean en proyectos de construcción es un cambio que debe basarse en el establecimiento de sus principios y su institución como la idea fundamental que rige el pensamiento y la conducta en la organización. La adopción de la filosofía Lean en una organización representa un extenso camino que debe seguirse (Diekmann et al., 2004; Liker, 2004). Es un proceso a largo plazo en el cual se deben desarrollar progresivamente las capacidades específicas necesarias en torno a los Principios Lean Construction, a través de estrategias planificadas y alineadas con los objetivos de la empresa, asegurándose que se adoptan de forma adecuada y brinden los beneficios esperados de manera sostenible.
Muchas organizaciones han iniciado la transformación Lean en los proyectos de construcción a través de la aplicación de diversas herramientas como lo son el Sistema Last Planner®, Value Stream Mapping y la modelación virtual (BIM). Sin embargo en la mayoría de los casos las aplicaciones no han logrado todo su potencial o no se mantienen en el tiempo debido a que en la etapa de implementación se presentan factores de tipo organizacional que lo impiden (Alarcón et al., 2005). Para entender esta problemática es conveniente visualizar cómo se desarrolla una organización, la cual es un sistema capaz de reaccionar en el entorno que le rodea para poder mantener un funcionamiento para cumplir con el propósito de su creación de forma viable (Tejeida, 2005).

Toda organización desde el primer momento de su existencia está sujeta a la entropía, es decir, a cierto grado de desorden en el sistema. Este concepto parte de la Ley de la Entropía, la cual establece que todas las formas de organización se mueven hacia la desorganización, restando capacidad para ejercer las funciones que se fijaron en su formación. Desde la perspectiva de una organización industrial este fenómeno se puede apreciar en varios aspectos, entre los que se puede mencionar la imposibilidad para cumplir los objetivos y metas planeados, pérdida de competitividad, de calidad, de ventas, de credibilidad y de algunos otros más. Para contrarrestar los efectos de la entropía y permitir el desarrollo de la organización, el proceso lo tiene que iniciar y conducir los elementos que administran la organización o por agentes externos, tomando recursos de su entorno, permitiendo dar identidad y orden a la organización. Los recursos pueden ser: procesos más eficientes, tecnología de innovación, recursos humanos altamente calificados, procesos de mejora continua y nuevas formas de gestión (Liker y Franz, 2011).

Cada organización en la industria de la construcción con el paso del tiempo ha experimentado la necesidad de modificar sus sistemas de producción para hacer frente a la entropía natural que se produce y evita que no se obtengan los beneficios en los
proyectos, es decir, no se logren con el tiempo, el costo y la calidad esperados. No obstante, muchas organizaciones han optado por implementar la filosofía Lean por medio de diversas herramientas para impulsar el desempeño en los proyectos. Sin embargo un rendimiento más elevado significa que se tienen nuevos sistemas y procedimientos que requieren mayor disciplina y un mayor esfuerzo para mantenerlo. Es en este punto donde debe desarrollarse una gestión Lean lo suficientemente fuerte para contrarrestar la entropía aumentada. Si dicha gestión se realiza sin un sustento en la filosofía Lean (Principios Lean Construction), sin un cambio de hábitos y con una visión a corto plazo los beneficios alcanzados se disiparán, produciendo la pérdida de recursos valiosos (Figura 2-4).

![Diagrama de Desarrollo organizacional al implementar Lean Construction](Adaptado de Liker & Franz, 2011)

Figura 2-4: Desarrollo organizacional al implementar Lean Construction

(Adaptado de Liker & Franz, 2011)
En contraste, el mantenimiento de los beneficios para la organización es una búsqueda constante de los procedimientos adecuados para contrarrestar la entropía. Esto implica impulsar la gestión Lean con base en el desarrollo de la filosofía, la creación de una cultura y una visión a largo plazo, teniendo como factor de cambio a las personas y su desarrollo. Sin embargo, día a día las condiciones de las organizaciones y de los proyectos cambian, lo que hoy es un logro, mañana se convierte en una práctica estancada u obsoleta. Por tal motivo, el desarrollo organizacional debe centrarse en el establecimiento continuo de metas aún más altas de lo logrado, satisfaciendo las necesidades reales de la organización, permitiendo así superar prejuicios e interiorizar un pensamiento Lean, donde la mejora continua es el motor de cambio (Figura 2-5).

Figura 2-5: Sostenibilidad de los beneficios al implementar Lean Construction

(Adaptado de Liker & Franz, 2011)
Para entender el propósito y la dirección general hacia donde tiene que ir la organización, se requiere la observación y la comprensión entre el estado ideal del sistema y la condición actual, teniendo en cuenta el nivel de entropía. La evaluación de la entropía representa un indicador del estado del sistema, el cual puede ser usado para evaluar la capacidad de la organización para mantenerse en un estado diferenciado, lo que le permite asegurar su sostenibilidad en el largo plazo. Sin embargo la entropía es difícil de interpretar, entender o visualizar (Martínez et al., 2014), por lo que es necesario generar herramientas para apoyar la evaluación de sistemas complejos y dinámicos como lo son las organizaciones en la industria de la construcción, los cuales poseen múltiples propósitos.

Para las organizaciones que han buscado en Lean Construction un medio para mejorar su producción, el desarrollo organizacional debe ser un proceso sistémico de cambio planificado (Alarcón et al., 2005), donde se deben considerar medios para mantener activa a la organización para alcanzar sus metas. Considerando como base fundamental de la transformación el desarrollo de los Principios Lean Construction, mismos que son factores de éxito y sostenibilidad del sistema organizacional, se tiene que visualizar el grado en que cada uno de los factores se desarrolla y aplica sistemáticamente, es decir, entender la capacidad que posee la organización para aplicar los principios. Sin embargo, los estados ideales sostenibles representan metas grandes, que a primera vista parecen difíciles de conseguir, por eso es conveniente fraccionarlas, manteniendo una secuencia lógica, con logros intermedios más fáciles de visualizar. Esta evaluación ayuda a contrarrestar los estados de entropía, identificar y controlar la brecha existente entre un estado ideal sostenible y la condición actual, además permite definir los alcances de las cuestiones a mejorar y a emprender, esto en resumen, es la medición de la madurez que se presenta en cada principio.
2.5 Madurez y Modelos de Madurez

2.5.1 Madurez

Definir el concepto de madurez, es importante para evitar inconsistencias y confusiones en su aplicación, ya que incluso dentro campos con la experiencia en su aplicación, el concepto adoptado de madurez genera dudas y tiene diferentes interpretaciones. Según la Real Academia Española. (2014) el concepto de madurez es “Dicho de una persona o de una cosa: Que ha alcanzado un estado de desarrollo adecuado para su utilización, funcionamiento o empleo”. Para Cooke-Davies (2005) “la madurez es un nivel comparativo de avance que una organización ha logrado con respecto a cualquier proceso o conjunto de actividades”. Asimismo PM Solutions (2008) considera que ”la madurez es el nivel de sofisticación que tienen las prácticas y los procesos de gestión de proyectos de la organización”. Es así que partiendo de la idea básica de madurez y su aplicación, el concepto ha llegado a ser utilizado para entender cierto grado de desarrollo en diferentes aspectos, como lo es la madurez de la organización, la madurez del proyecto y la madurez del proceso (Maier et al., 2009; Nasensohn, 2014).

Sin embargo, el conocer el estado de madurez de una organización, proceso o proyecto implica un gran elemento de subjetividad (Andersen & Jessen, 2003), por lo que es necesario brindar cierto nivel de objetividad para poder entenderlo y manejarlo. Para cumplir con lo anterior, se han desarrollado los modelos de madurez, los cuales son entendidos como herramientas de medición que se desarrollan para evaluar la madurez de los procesos y sus prácticas.

De acuerdo con (Cooke-Davies, 2005) “no existe una comprensión común ni definición del concepto de madurez o su desarrollo en la mayoría de los modelos de madurez”. Pero realizando un razonamiento basado en la existencia de atributos
semejantes entre la madurez y los modelos de madurez vistos en la práctica ayuda a tener una mejor comprensión del concepto. Siguiendo esta analogía, Yimam (2013) aborda la madurez en dos dimensiones. La primera es a través de la adquisición de la capacidad de emplear prácticas, técnicas, métodos e instrumentos más avanzados y eficaces, según proceda para alcanzar las metas en los procesos (madurez de la práctica); la otra es a través de la sistematización, estandarización y refinamiento continuo y mejora de la práctica general de una comprensión más profunda de las relaciones y funcionalidades de las prácticas, es decir, el grado de institucionalización de los procesos que se están realizando (madurez del proceso).

El desarrollo de la madurez de los Principios Lean Construction se puede integrar con ambas dimensiones, la madurez de la práctica junto con la madurez de los procesos (Tabla 2-6). Desde este enfoque la madurez que presentan las organizaciones en la adopción de los principios permite que se vayan involucrando cada una de las prácticas, logrando así una mejora de la capacidad de la organización.

Tabla 2-6: Madurez de los Procesos y de las Prácticas Lean Construction

(Elaboración propia)
2.5.2 Modelos de Madurez

Un modelo de madurez se entiende como conjunto estructurado de elementos (buenas prácticas, herramientas de medición y criterios de análisis), que permite identificar las características de los procesos, visualizar su evolución (nivel de madurez), comparar con estándares, reconocer debilidades y fortalezas, pudiendo establecer procesos sistemáticos de mejora continua (Claros, 2012).

El desarrollo de los modelos de madurez tiene su origen en el paradigma de la calidad desarrollado por Deming, Juran y Crosby: “Los productos de calidad son el resultado de procesos de calidad” (Chrissis, Konrad, & Shrum, 2003). Esta idea fue planteada por Crosby (1979) en el Quality Management Model Grid, en el cual se mostraba el comportamiento habitual de una organización a través de cinco etapas evolutivas. A partir del trabajo de Crosby, Watts Humphrey en 1986 desarrolló el Capability Maturity Model (CMM) en el Software Engineering Institute (SEI) de la Universidad Carnegie Mellon, a requerimiento del Gobierno Federal de Estados Unidos (Paulk et al., 1993). El CMM consistió en la evaluación de procesos vinculados con el desarrollo de software, por medio de un cuestionario el cual sirvió para identificar las áreas donde los procesos requieran de mejoras, es decir, se determinó la madurez de los procesos en curso y los temas críticos que deberían abordarse con medidas de mejora. La estructura del modelo se dividió en 5 niveles de madurez, el cual es el camino de mejoramiento en donde se evalúan las capacidades que permiten el desarrollo de las organizaciones (Figura 2-6).
Del uso del CMM y su evolución, surgió el CMMI® (Capability Maturity Model Integration), este modelo de madurez es un conjunto de buenas prácticas para que las organizaciones mejoren sus procesos, comparando sus capacidades y operaciones e identificando brechas de desempeño. (CMMI Institute, 2016). A partir del desarrollo de ambos modelos, el uso de modelos de madurez se popularizó, provocando su aplicación y adaptación para gestionar diversos procesos en diferentes industrias (de Bruin, et al. 2005; Becker et al., 2009; Santana et al., 2007; The Institute of Internal Auditors, 2013).

La estructura de los modelos de madurez se pueden clasificar según Fraser et al. (2002) en tres tipos:

1. Modelos estilo CMM – Técnica formal y compleja basada en el uso de cuestionarios con escalas Likert, listas de verificación y observación, en el cual las entrevistas son un método de evaluación (Maier et al., 2012).
2. Cuadros de madurez – Técnica de diagnóstico y de mejora más simple y menos compleja (Maier et al., 2012). El método de evaluación es a través de una matriz que contiene textos descriptivos con las características básicas de los procesos (Hammer, 2007).

Figura 2-6: Niveles de Madurez CMM

(Paulk et al., 1993)
3. Híbridos y cuestionarios tipo Likert – Técnica más compleja que combina escalas de Likert que se ilustran en una matriz de madurez (Fraser et al., 2002).

2.6 Modelos de Madurez para Lean Construction

La implementación efectiva de Lean Construction requiere de varios cambios y un pensamiento a largo plazo para lograr una transformación sostenible. Sin embargo, esta transformación requiere de grandes esfuerzos, por lo que resulta primordial para su logro recurrir a herramientas de apoyo y control (Meiling et al., 2012). Existen en la literatura diversas herramientas de análisis desarrolladas y utilizadas para una transformación organizacional desde diferentes enfoques en torno a Lean Construction, las cuales ayudan a evaluar la forma en cómo se desarrolla la filosofía, la cultura y las herramientas Lean (Anexo A). Los modelos de madurez son una herramienta que brinda información y un conocimiento del estado actual, las fortalezas y debilidades y una visión clara del estado deseado respecto al desarrollo de Lean Construction, pudiendo priorizar los esfuerzos de mejora y planificarlos de manera estratégica.

Para entender y visualizar la evolución y el desarrollo de modelos de madurez creados hasta ahora por instituciones, investigadores y profesionales relacionados con Lean Construction. Se realizó una comparación sistemática, integral y objetiva a través de nueve variables de comparación:

- Autor: Persona o personas que han producido la herramienta.
- Año: Fecha de publicación de la fuente.
- Objetivo: Principal enfoque de la herramienta.
- Fundamento: Principios en los que se apoya la herramienta.
- Factores: Elementos a evaluar.
- Evaluación Cualitativa: Análisis de los elementos reflejado explícitamente.
- Evaluación Cuantitativa: Análisis de los elementos reflejado numéricamente.
- Indicadores: Número de cuestionamientos por definir.
• Resultado: Forma de mostrar la evaluación.

De la revisión y las comparaciones realizadas se pueden observar puntos en común entre los modelos de madurez, sin embargo no se puede llegar a generalizar una sola problemática a resolver, debido a que cada modelo maneja enfoques diferentes y una variabilidad en sus alcances. Sin embargo se puede analizar diversas cuestiones para entender el estado del arte en cuestiones relacionadas con Lean Construction y los modelos de madurez, entendiendo conceptos como mejora continua, eliminación de desperdicios, estandarización, enfoque al cliente y cultura.

El punto en común para la mayoría de las herramientas de evaluación en torno al desarrollo Lean en proyectos de construcción, es que proponen mediciones cualitativas definiendo una serie de niveles (4, 5 o 6 estados de madurez) con características propias para el grado de desarrollo en cada aspecto a evaluar. Además se identifican mediciones cuantitativas basadas en cuestionarios con escalas Likert, junto con listas de verificación y observación, para poder dar una calificación para la madurez alcanzada. Sin embargo el grado de complejidad para realizar dichas evaluaciones varía enormemente, pues depende mucho del alcance de cada herramienta.

Por otro lado, se observa una falta de conocimientos relacionados con la madurez y su evaluación, ya que muchas de estas herramientas no son entendidas como modelos de madurez, siendo que cumplen con las características para serlo. Asimismo, se identifica que la mayoría de las herramientas hasta ahora diseñadas se centran en la medición de los efectos de implementar Lean Construction y sus herramientas, dejando de lado el apoyo a la transformación hacia una mayor interiorización y adopción de los Principios Lean mediante la medición de la brecha entre el estado actual y el estado ideal sostenible.
Con el análisis de las herramientas de evaluación en torno a Lean Construction, surge la oportunidad de realizar un aporte simplificando la forma de apreciar la madurez de los Principios Lean, identificando evidencias de las prácticas asociadas y proponiendo un estado ideal con un enfoque a la sostenibilidad de Lean Construction.

Considerando el establecimiento de este marco conceptual, se construye una justificación adecuada para realizar esta investigación, la cual aumenta la base teórica que permitirá apoyar a la implementación exitosa y sostenible de Lean Construction.
3 DIAGNÓSTICO DE LA IMPLEMENTACIÓN DE LEAN CONSTRUCTION

Para conocer y determinar el estado en el que se encuentra las prácticas Lean implementadas en los proyectos de construcción, se consideró realizar una investigación con una muestra de empresas constructoras pertenecientes al Grupo Colaborativo “Construyendo Excelencia” ligado a GEPUC. Se optó por un estudio cualitativo para poder cumplir con dos objetivos, el primero era poder representar las perspectivas y los puntos de vista de los participantes del estudio, contextualizándolo y considerando las condiciones particulares que se presentan, logrando colectar, integrar y presentar la información desde una diversidad de formas de evidencia (Yin, 2011); y el segundo era para poder generalizar el fenómeno en estudio (Merrian, 2009; Yin, 2011). El estudio se realizó principalmente mediante entrevistas estructuradas y observaciones, apoyándose en cierta medida de encuestas para poder visualizar de una manera cuantitativa la forma en cómo se desarrolla Lean Construction, permitiendo con esto un entendimiento más claro de la situación real existente en cada organización y una visión general de la forma en cómo se desarrolla la filosofía Lean en las empresas constructoras.

Para la realización del diagnóstico, partiendo de la opinión de expertos consultores de GEPUC, se generó una guía con una serie de conceptos relacionados con la filosofía, cultura y tecnología Lean Construction, con el propósito de enfocar la metodología de investigación y considerar la mejor forma de recabar información necesaria para los objetivos del estudio (Tabla 3-1).
Tabla 3-1: Guía de investigación

(Centro de Excelencia en Gestión de la Producción – GEPUC, 2014)

<table>
<thead>
<tr>
<th>Lean Construction</th>
<th>Aspecto a Investigar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filosofía</td>
<td></td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td>- Definición del concepto de valor y sus características desde el punto de vista del cliente</td>
</tr>
<tr>
<td>Estandarización</td>
<td>- Definición de los procesos de trabajo.</td>
</tr>
<tr>
<td>Mejora Continua / Calidad</td>
<td>- Medición y aprendizaje de los procesos. - Sentido de responsabilidad con la calidad por parte de los trabajadores.</td>
</tr>
<tr>
<td>Eliminación de Desperdicios</td>
<td>- Optimización del sistema de producción, el contenido del trabajo, la programación y la cadena de suministro.</td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td>- Capacitación, compromiso organizacional e involucramiento del personal en todo nivel.</td>
</tr>
<tr>
<td>Cultura</td>
<td></td>
</tr>
<tr>
<td>Colaboración</td>
<td>- Trabajo en equipo con metas en común, involucrando a todos los participantes del proyecto desde el inicio.</td>
</tr>
<tr>
<td>Respeto – Confianza</td>
<td>- Respeto y confianza para escuchar y dar opiniones dentro del equipo de trabajo.</td>
</tr>
<tr>
<td>Empoderamiento – Motivación</td>
<td>- Compromiso gerencial para el desarrollo y empoderamiento del recurso humano, brindando oportunidades y herramientas.</td>
</tr>
<tr>
<td>Transparencia</td>
<td>- Visualización de los procesos, para detectar problemas y posibles soluciones.</td>
</tr>
<tr>
<td>Comunicación</td>
<td>- Definición de los canales de comunicación y los planes para compartir la información.</td>
</tr>
<tr>
<td>Liderazgo</td>
<td>- Motivación hacia el equipo de trabajo, promoviendo la implementación Lean con base en sus competencias, su credibilidad y la validación que le da su equipo de trabajo.</td>
</tr>
<tr>
<td>Dirección</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Definición de objetivos y estrategias para alcanzarlos en la implementación de Lean en los proyectos. - Soporte gerencial en todas las áreas de la organización. - Involucramiento de todos los participantes del proyecto y su compromiso con la mejora continua de los procesos. - Capacitación a todo nivel de los conceptos Lean y su implementación.</td>
</tr>
<tr>
<td>Tecnología</td>
<td></td>
</tr>
<tr>
<td>Herramientas</td>
<td>- Sistema Last Planner - Target Value Design - Modelación Virtual (BIM) - Value Stream Mapping - PDCA - 6S - Just In Time - A3 - Jidoka - Diagramas de Causa-Raíz - ¿Por qué? - Kaizen - Kitting - Gemba</td>
</tr>
</tbody>
</table>
3.1 Metodología del Diagnóstico

La metodología de investigación para diagnosticar el estado de las implementaciones y otros aspectos relacionados con el desarrollo de Lean Construction en los proyectos de construcción se presenta en la Tabla 3-2. Se pude apreciar cada etapa y cada método utilizado para obtener una serie de datos relevantes y concisos, visualizando la realidad que viven las empresas en torno a la implementación de Lean desde diferentes perspectivas. Este estudio se realizó a través de un equipo multidisciplinario (2 consultores Lean, 1 psicólogo y 3 estudiantes), el cual fue el encargado de realizar cada tarea, analizar los resultados y darlos a conocer.

Tabla 3-2: Metodología de investigación para el diagnóstico de Lean Construction

(Salvatierra et al., 2015)

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Objetivo</th>
<th>Participantes</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Entrevista Gerencial</td>
<td>Identificar el estado de la participación gerencial en el desarrollo de aspectos Lean en la empresa.</td>
<td>31 participantes Gerencia General Gerencia de Operaciones Gerencia de Proyectos Gerencia de RRHH Implementadores</td>
<td>10 entrevistas estructuradas con los gerentes de la empresa con duración promedio de 2 horas. Preguntas abiertas para conocer el desarrollo de la implementación de la filosofía Lean en la empresa. (Anexo B)</td>
</tr>
<tr>
<td>2 Focus Group</td>
<td>Identificar las experiencias en la implementación de LPS en proyectos de construcción.</td>
<td>25 Implementadores 1 – 10 Años de experiencia</td>
<td>2 Focus Group para colectar información relacionada con la implementación Lean y sus herramientas en proyectos de la organización. (Anexo D)</td>
</tr>
<tr>
<td>3 Visitas a Terreno</td>
<td>Visualizar la implementación, el uso de herramientas y aspectos culturales. Validar la información obtenida de la Entrevista Gerencial y el Focus Group.</td>
<td>144 participantes</td>
<td>11 Visitas a proyectos para la observación en terreno y en la reunión de planificación, de las prácticas Lean mediante la aplicación de encuestas a los participantes y el llenado de un listado de prácticas, herramientas y aspectos culturales visualizados. (Anexo F – Anexo H)</td>
</tr>
<tr>
<td>4 Encuesta Organizacional</td>
<td>Contrastar la información obtenida en etapas anteriores y obtener una visión global de la implementación Lean entre los diferentes niveles de la organización.</td>
<td>533 participantes Gerentes Administradores de Obra Jefes de Obra</td>
<td>7 encuestas organizacionales con 53 cuestionamientos a ser evaluados con base a una escala Likert, para analizar la implementación Lean y los aspectos relacionados al desarrollo de sus principios. (Anexo J)</td>
</tr>
</tbody>
</table>
3.2 Resultados del Diagnóstico

La información recolectada a través de cada etapa para el diagnóstico de la implementación Lean en los proyectos de construcción, su análisis en conjunto y la perspectiva de los expertos involucrados, representó la evidencia que revela la situación en particular que se tiene en cada organización, desde la realidad de cada involucrado a diferente nivel organizacional (Anexo C, Anexo E, Anexo G, Anexo I y Anexo K).

Por medio del diagnóstico se pudo identificar la forma en cómo se desarrollan los aspectos de filosofía, cultura y tecnología Lean en los proyectos. Se pudo detectar los principales desafíos asociados a las implementaciones de la filosofía Lean, los aspectos claves en la cultura de la organización que afectan el desarrollo de las prácticas y las buenas prácticas o aciertos que se tienen al utilizar las herramientas asociadas con Lean Construction.

3.2.1 Filosofía

En relación al enfoque de Filosofía Lean y la forma en cómo se evidencia dentro de las empresas constructoras y sus proyectos, se puede dar las siguientes aseveraciones con base en los datos obtenidos (Salvatierra et al., 2014):

- La mayoría de los entrevistados y encuestados coinciden en que seguir la filosofía Lean es necesaria y central dentro de los proyectos para mejorar los procesos y obtener una serie de beneficios.
- No es posible visualizar una alineación en el desarrollo de la filosofía Lean y sus herramientas, por parte de las empresas y su personal tanto en niveles gerenciales como operativos.
- Falta de conocimientos de los conceptos, las herramientas, ventajas y visión Lean.
• El personal tiende a confundir la filosofía Lean con las herramientas que se implementan (Sistema Last Planner®).

• Falta de capacitación y entrenamiento de los conceptos Lean, en todo nivel organizacional, tanto en las entrevistas como en las encuestas en terreno se muestra que cerca del 50% de los participantes reconoce haber recibido dicha formación.

• En terreno el uso de las herramientas no se asocia con la filosofía Lean y sus principios.

• Desde la encuesta organizacional se visualiza que no existe un reconocimiento y entendimiento de los conceptos, herramientas y ventajas de Lean.

• Las evidencias de estandarización, eliminación de desperdicios y mejora continua dan muestra de que existe poco desarrollo en estos aspectos.

• Existe una visión a corto plazo sobre la implementación de Lean Construction, limitada a la duración del proyecto.

3.2.2 Cultura

En lo que respecta al aspecto de Cultura, las diferentes etapas del diagnóstico permitieron encontrar lo siguiente (Salvatierra et al., 2014):

• Desde la gerencia y en terreno se considera el liderazgo y la motivación como parte esencial del cambio Lean.

• La alta rotación de personal, el regreso a las prácticas tradicionales en caso de premuras en el tiempo y la dificultad de coordinar equipos de trabajo grandes y heterogéneos, dificulta la obtención de los resultados esperados a través de las practicas Lean.

• A nivel gerencial se considera a la motivación como un factor muy importante en el proceso de cambio hacia la filosofía Lean.
En la encuesta organizacional los aspectos culturales son de mucha relevancia considerando la motivación, el respeto y el liderazgo como factores de gran importancia. Asimismo, la alta evaluación a consideraciones del trabajo en equipo es muestra de la colaboración y la participación existente en los proyectos.

3.2.3 Tecnología

Para la parte de Tecnología y la manera en como se ha implementado en las diferentes empresas de construcción, se obtuvo la siguiente información (Salvatierra et al., 2014):

- Se verifica que el Sistema Last Planner® es una herramienta que se utiliza en todas empresas y en la mayoría de sus proyectos.
- Tanto a nivel gerencial como en posiciones de terreno existe baja implementación y aplicación de otras herramientas Lean.
- La implementación del Sistema Last Planner® no se realiza con todos sus componentes.
- En terreno se puede visualizar que se tiene un limitado uso de herramientas de gestión visual.

3.3 Análisis de los Resultados del Diagnóstico

Habiendo realizado el diagnóstico de la implementación de Lean Construction en las diferentes empresas constructoras, se pudieron identificar diferentes barreras que no permiten un desarrollo exitoso y sostenible de la filosofía Lean, mismas que concuerdan con diversos autores. Los principales desafíos encontrados son (Wandahl, 2014):

- Falta de conocimiento y comprensión de los conceptos Lean (Cerveró-Romero et al., 2013; Friblick et al., 2009; Funk, 2015; Kalsaas et al., 2009;
McGraw-Hill Construction, 2013; Salvatierra et al., 2015; Sarhan & Fox, 2013; Sayer & Anderson, 2012; Viana et al., 2010).

- Falta de formación y capacitación (Brady et al., 2009; Cano & Rivera, 2015; Cerveró-Romero et al., 2013; Jara et al., 2009; Mossman, 2009; Porwal et al., 2010, Salvatierra et al., 2015; Sayer & Anderson, 2012).
- Principios Lean Construction parcialmente aplicados (Ahiakwo et al., 2013; Porwal et al., 2010).
- Implementación aislada de herramientas Lean (Picchi & Granja, 2004; Lindhard & Wandahl, 2013; Salvatierra et al., 2015).
- Resistencia al cambio (McGraw-Hill Construction, 2013; Salvatierra et al., 2015; Sarhan & Fox, 2013; Sayer & Anderson, 2012; Viana et al., 2010).
- Falta de madurez de la organización (Chesworth et al., 2010; Salvatierra et al., 2015).
- Problema cultural (AlSehaimi et al., 2009; Cano & Rivera, 2015; Cerveró-Romero et al., 2013; Nasensohn et al., 2012; Salvatierra et al., 2015; Sayer & Anderson, 2012 Sarhan & Fox, 2013).
- Falta de desarrollo de competencias en torno a Lean Construction (Funk, 2015; Salvatierra et al., 2015).

Las barreras encontradas representan un reto para las empresas constructoras que buscan obtener los beneficios que se producen al tratar de integrar la filosofía Lean en sus proyectos. Es fundamental iniciar la transformación y mantener una gestión Lean, a través de estrategias que ayuden a las organizaciones a romper paradigmas contra la mejora continua, impulsando con esto la interiorización de la filosofía Lean Construction de manera sostenible en el tiempo (Figura 3-1).
Figura 3-1: Transformación Lean

(Adaptado de Alfra Consulting, 2015)

Analizando cada uno de los desafíos y lo que implica en la adopción adecuada de Lean Construction, se puede entender que la causa raíz de la problemática radica en la comprensión de la filosofía Lean y en particular de sus principios, pues son estos los ideales que dirigen un cambio cultural y la adopción de nueva tecnología (herramientas). Por tal motivo, una propuesta para ayudar a dejar de lado estos obstáculos e iniciar un desarrollo de los Principios Lean en los proyectos de construcción, es a través de un modelo de madurez, el cual sirva como una herramienta que cumpla con lo siguiente:

- Ser una base de conocimiento formal sobre lo que significa la filosofía Lean con fundamento en los Principios Lean Construction. El cual permita desarrollar e integrar la filosofía, con la cultura y las herramientas Lean.

- Ser un medio comprensible, sencillo y práctico para evaluar el estado de madurez que guardan los Principios Lean en los proyectos de construcción. Permitiendo identificar la forma en cómo se llevan a cabo los procesos, reconociendo debilidades y fortalezas, para poder establecer objetivos y estrategias sistemáticas de mejora continua.
- Ser una guía en el proceso de cambio, tanto personal como organizacional, brindando certeza a través de la información contenida, ofreciendo un panorama de lo esperado en torno al desarrollo de los Principios Lean Construction.
- Ser una pauta para el desarrollo de competencias y capacidades del personal involucrado en la implementación de Lean Construction.
4 MODELO DE MADUREZ PARA EL DESARROLLO DE LOS PRINCIPIOS LEAN CONSTRUCTION

El desarrollo de estrategias para la implementación exitosa de Lean Construction, tomando como fundamento el establecimiento de la filosofía Lean es un tema que requiere un proceso de transformación en las organizaciones, desde su cultura, los procesos que lleva a cabo y las personas que las constituyen. Para lograr tal fin es necesario iniciar un proceso de gestión del cambio y mejora continua, entendiendo esto como un desarrollo en términos de madurez, donde se conoce el estado en que se encuentran los principios Lean y la manera en cómo se evidencian en los proyectos. Sin embargo, en la industria de la construcción aún el concepto de madurez, su desarrollo y el uso de modelos de madurez para gestionar y apoyar los cambios con una perspectiva Lean son cuestiones que muestran un potencial de investigación y aplicación, debido a que aún existen vacíos y enfoques por abordar. Por lo tanto, es importante ayudar a las organizaciones en su transformación Lean, generando artefactos científicos que den soporte y guíen a las mismas en la interiorización de Lean Construction, con un enfoque al desarrollo de sus principios.

Del análisis comparativo de los modelos de madurez para Lean Construction (Anexo A), se pudieron detectar vacíos a cubrir a través de la creación de un nuevo modelo de madurez basándose en las siguientes evidencias:

- Las herramientas no brindan un apoyo hacia una mejor interiorización y adopción de los Principios Lean mediante la medición de la brecha entre el estado actual y el estado ideal sostenible, se basan en la evaluación del uso de herramientas y los efectos de su implementación.
- Las herramientas carecen de un alcance hacia la sostenibilidad de los principios y prácticas asociadas a Lean Construction.
- Existe cierta subjetividad a la hora de realizar evaluaciones cuantitativas basadas en escalas Likert, ya que se deja a criterio de los evaluadores y no se tiene claro las características que refieren a cada nivel.
- Las evidencias que identifican a cada estado de madurez no son registradas y consideradas para planear estrategias de mejora.

Con la intención de cubrir esos vacíos y apoyar a las empresas constructoras en su camino Lean, se desarrolló un modelo de madurez que cumple con los siguientes objetivos particulares:

- Ser un marco para visualizar y hacer conciencia del estado actual, el estado deseado y el desarrollo de mejoras continuas para interiorizar los principios Lean en cada proyecto de construcción.
- Ser punto de referencia para que las organizaciones puedan evaluar y comparar entre sus proyectos, el desarrollo de los principios Lean y sus prácticas asociadas.
- Ser una herramienta detallada de fácil entendimiento y aplicación, donde se establezca un lenguaje compartido y común para Lean Construction y la madurez de sus principios.

Así surgió el “Modelo de Madurez para el desarrollado de los Principios Lean Construction”, el cual es producto de la integración del conocimiento empírico en torno a Lean Construction, la información obtenida mediante el diagnóstico de la implementación de Lean Construction y la base teórica existente en la literatura.

El desarrollo del modelo de madurez propuesto, se fundamentó en un marco de trabajo estándar y una metodología aplicable para diferentes disciplinas, establecido por de Bruin et al. (2005) (Figura 4-1).
El marco de trabajo referido, busca generar un modelo que cumple con los tres propósitos de aplicación específicos (de Bruin et al., 2005, Becker et al. 2009, Maier et al. 2009).

1) **Modelo Descriptivo**: Sirve para brindar un diagnóstico, para entender a profundidad como es la situación que se tiene respecto a un criterio definido.

2) **Modelo Prescriptivo**: Sirve para identificar niveles deseables de madurez y brindar guías para el mejoramiento.

3) **Modelo Comparativo**: Sirve para realizar un benchmarking interno o externo.

Con el marco de trabajo sugerido, se desarrolló el modelo de madurez buscando cumplir con cada uno de los propósitos de aplicación específicos dentro del dominio que representa el desarrollo de los Principios Lean en proyectos de construcción.

4.1 Alcance del Modelo de Madurez

La primera etapa en el desarrollo del modelo de madurez es determinar lo que se pretende alcanzar con el mismo, es la decisión más importante para enfocar el modelo de madurez y establecer los límites que tendrá el modelo en su aplicación y uso (de Bruin et al., 2005, The Institute of Internal Auditors, 2013). Las decisiones a tomar en esta etapa,
sirven para guiar el modelo y determinar la especificidad y la extensión del modelo. Las decisiones a definir para iniciar el modelo de madurez son el enfoque y los participantes en el desarrollo (Tabla 4-1).

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enfoque</td>
<td>Dominio Específico</td>
</tr>
<tr>
<td>Participantes</td>
<td>Academia</td>
</tr>
</tbody>
</table>

Después de un análisis de la problemática sobre la falta de sostenibilidad de las prácticas Lean en el tiempo, los resultados obtenidos del diagnóstico de la implementación de Lean Construction y una revisión bibliográfica se decidió optar por darle un enfoque con un dominio específico, fundado en el desarrollo de los Principios Lean en proyectos de construcción. Para determinar cuáles serían los participantes en desarrollo del modelo, se eligieron académicos y profesionales, debido al entorno en el cual se establece la investigación, el cual es un vínculo Universidad-Industria enmarcado por GEPUC y el Grupo Colaborativo “Construyendo Excelencia” de empresas constructoras en Chile.

4.2 Diseño del Modelo de Madurez

La segunda etapa en el desarrollo del modelo de madurez es determinar su diseño o arquitectura. En particular, el diseño se hace incorporando las necesidades de los interesados, dando certeza de a quién va dirigido el modelo, el porqué de su aplicación, cómo debe ser aplicado, quién debe de involucrarse para su uso y qué se puede lograr a través de la aplicación del modelo. Lo anterior debe conseguirse manteniendo un diseño
que tenga un equilibrio entre mostrar adecuadamente la complejidad de la realidad y tener un modelo simple de entender (de Bruin et al., 2005). Las decisiones a tomar para determinar el diseño del modelo se presentan en la Tabla 4-2.

Tabla 4-2: Definición del diseño del modelo de madurez

(de Bruin et al., 2005)

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audencia</td>
<td>Interno</td>
</tr>
<tr>
<td></td>
<td>Externo</td>
</tr>
<tr>
<td>Ejecutivos – Gerentes</td>
<td>Auditor – Socios</td>
</tr>
<tr>
<td>Método de Aplicación</td>
<td>Autoevaluación</td>
</tr>
<tr>
<td></td>
<td>Asistencia de un tercero</td>
</tr>
<tr>
<td></td>
<td>Practicante Certificado</td>
</tr>
<tr>
<td>Conductores de la Aplicación</td>
<td>Requisito Interno</td>
</tr>
<tr>
<td></td>
<td>Requisito Externo</td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
</tr>
<tr>
<td>Consultados</td>
<td>Gerencia</td>
</tr>
<tr>
<td></td>
<td>Staff</td>
</tr>
<tr>
<td></td>
<td>Socios</td>
</tr>
<tr>
<td>Aplicación</td>
<td>1 Entidad / 1 Región</td>
</tr>
<tr>
<td></td>
<td>Entidades múltiples / Región única</td>
</tr>
<tr>
<td></td>
<td>Entidades múltiples / Región múltiple</td>
</tr>
</tbody>
</table>

Las decisiones tomadas en esta etapa partieron definiendo a quién iría dirigido el modelo de madurez y se enfocó hacia una instancia interna en cada organización, donde los ejecutivos, los gerentes y cada impulsor de la transformación Lean fueran los beneficiados al hacer uso del modelo. La siguiente decisión fue elegir el método de aplicación, para lo que se seleccionó la autoevaluación, por la razón de que la naturaleza de cada proyecto es particular y puede ser analizada de mejor manera por los mismos miembros que integran cada organización, generando así la necesidad de mejorar y convirtiéndose la aplicación del modelo en un requisito interno. Para definir quién sería consultado para evaluar la madurez y detectar las evidencias, se consideró al staff de los colaboradores con los conocimientos de la filosofía, la cultura y las herramientas Lean, con el juicio para señalar la forma en cómo se desarrollan los proyectos y con la autoridad e influencia en la toma de decisiones, pues con ellos la información pertinente sería obtenida fácilmente. Por último, se definió darle un alcance de aplicación en
múltiples entidades / múltiples regiones, ya que el contenido tiende a ser un reflejo general de cómo se presentan los Principios Lean Construction, independientemente de la organización que haga uso del modelo y su lugar de desarrollo.

Entre los modelos de madurez existentes, un principio de diseño común es representar la madurez como un conjunto de niveles donde cada nivel superior se sostiene de los requerimientos de cada nivel inferior. Esta configuración introducida con el Modelo de Madurez de Capacidades (CMM), representa la forma más popular de evaluar la madurez mediante una escala Likert de 5 niveles, en la cual cada nivel es distinto de otro, es bien definido, se indican con una etiqueta que define el estado y en conjunto muestran una progresión lógica de mejora (Chrissis et al., 2003; de Bruin et al., 2005; Paulk et al., 1993).

Para la configuración del diseño del modelo de madurez propuesto, se analizó y se tomó como base la estructura del CMM, pero proponiendo una configuración de 6 etapas de madurez, cuyos nombres y definiciones ayudan a comprender la realidad en cómo se presentan los principios Lean y las prácticas asociadas. Asimismo, la escala permite darse cuenta y asegura que cada nivel de madurez es la base para el siguiente nivel, lo que permite una mejora continua (Tabla 4-3).

Tabla 4-3: Niveles de madurez

(Elaboración propia)

<table>
<thead>
<tr>
<th>Nivel de Madurez</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel 0 Inexistente</td>
<td>No se presenta ninguna evidencia de la existencia de los principios y las prácticas Lean en el proyecto de construcción.</td>
</tr>
<tr>
<td>Nivel 1 Inicial</td>
<td>Primeros indicios del comienzo del desarrollo de los principios y las prácticas Lean en el proyecto de construcción.</td>
</tr>
<tr>
<td>Nivel 2 Formal</td>
<td>Definición de manera concreta y precisa de los principios y las prácticas Lean en el proyecto de construcción.</td>
</tr>
<tr>
<td>Nivel 3 Establecido</td>
<td>Institución de los principios y las prácticas Lean en el proyecto de construcción.</td>
</tr>
<tr>
<td>Nivel 4 Integrado</td>
<td>Constitución esencial y fundamental de los principios y las prácticas Lean en el proyecto de construcción.</td>
</tr>
<tr>
<td>Nivel 5 Sostenible</td>
<td>Mantenimiento en el tiempo de los principios y las prácticas Lean en el proyecto de construcción.</td>
</tr>
</tbody>
</table>
Continuando con el diseño del modelo y tomando en consideración la forma de analizar la madurez, de Bruin et al. (2005) expone dos enfoques. El primer enfoque muestra un estado de madurez "promedio", el cual proporciona una manera sencilla de comparar estados de madurez, sin embargo, no representa adecuadamente la madurez dentro de los dominios complejos de la realidad en estudio, proporcionando así poca orientación a una organización para mejorar su condición. El segundo enfoque para mostrar la madurez proporciona categorías adicionales con más detalle que permiten tener evaluaciones con una comprensión más profunda de sus fortalezas y debilidades relativas al dominio, orientando las estrategias de mejora y permitiendo la asignación de recursos de manera más eficiente.

El “Modelo de Madurez para el desarrollado de los Principios Lean Construction” abarca ambos enfoques en la forma de evaluar la madurez, tomando en consideración a los Principios Lean Construction como los componentes principales y a las prácticas Lean Construction como los subcomponentes (Tabla 4-4). Primeramente se estableció la realización de una evaluación “promedio” de la madurez constituida por los Principios Lean Construction, los cuales muestran de manera general y elemental como se presentan en el proyecto. Para después continuar con una evaluación de la madurez a través las categorías adicionales definidas por las prácticas Lean Construction asociadas a cada principio, pudiendo así brindar más detalle de cómo se ejecutan en los proyectos y permitiendo visualizar las mejoras para alcanzar cierto nivel de madurez en lo que cada proyecto considere necesario.
Tabla 4-4: Componentes del modelo de madurez

(Diekmann et al., 2004)

<table>
<thead>
<tr>
<th>Principio Lean Construction</th>
<th>Práctica Lean Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminación de Desperdicios</td>
<td>Optimización del Sistema de Producción</td>
</tr>
<tr>
<td></td>
<td>Optimización del Contenido de Trabajo</td>
</tr>
<tr>
<td></td>
<td>Gestión de la Cadena de Suministro</td>
</tr>
<tr>
<td></td>
<td>Optimización de la Programación de la Producción</td>
</tr>
<tr>
<td>Estandarización</td>
<td>Gestión Visual</td>
</tr>
<tr>
<td></td>
<td>Definición de los Procesos de Trabajo</td>
</tr>
<tr>
<td></td>
<td>Organización del Lugar de Trabajo</td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td>Compromiso Organizacional</td>
</tr>
<tr>
<td></td>
<td>Involucramiento del Personal</td>
</tr>
<tr>
<td></td>
<td>Capacitación</td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td>Optimización del Valor</td>
</tr>
<tr>
<td></td>
<td>Flexibilidad en los Recursos</td>
</tr>
<tr>
<td>Mejoramiento Continuo / Calidad</td>
<td>Medición</td>
</tr>
<tr>
<td></td>
<td>Aprendizaje Organizacional</td>
</tr>
<tr>
<td></td>
<td>Respuesta a Defectos</td>
</tr>
<tr>
<td></td>
<td>Prevención de Errores</td>
</tr>
</tbody>
</table>

4.3 Contenido del Modelo de Madurez

La tercera etapa en el desarrollo del modelo de madurez corresponde a la identificación de la información que necesita ser medida para realizar un análisis más conveniente de los resultados de madurez y mejorar la capacidad de presentar resultados, satisfaciendo las necesidades de los implementadores del modelo. Es importante considerar que cada elemento a evaluar en su madurez debe ser mutuamente excluyente y colectivamente exhaustivo en cada nivel (de Bruin, et al., 2005).

Para el modelo de madurez propuesto, los componentes fueron los Principios Lean Construction desarrollados por Diekmann et al. (1994), los 5 principios fundamentales y las 16 prácticas asociadas (Figura 2-3).
Para la configuración del modelo de madurez se establecieron cuadros de madurez al considerar esta técnica la más simple y menos compleja de entender (Maier et al., 2012). Los cuadros permiten identificar las características generales de los procesos (Hammer, 2007), a través de textos descriptivos en una estructura de matriz (Fraser et al., 2002.).

Primeramente se estructuraron los niveles relacionados con los Principios Lean, tomando como fundamento los conceptos definidos en el CMM y adaptándolos al alcance y la visión del proceso de desarrollo de los Principios Lean Construction. Estableciendo con esto una visión general del grado de institucionalización de los principios a nivel de proyecto (madurez del proceso) (Figura 4-2).

![Nivel de madurez – Principios Lean Construction](image)

Figura 4-2: Niveles de madurez – Principios Lean Construction

(Elaboración propia)

Posteriormente se estableció un cuadro de madurez más detallado para cada una de las prácticas asociadas a los Principios Lean Construction (Figura 4-3), con el fin de poder visualizar la capacidad adquirida en la ejecución de una práctica (madurez de la práctica). El cuadro se compone de indicadores del principio y la práctica asociada que corresponde, con sus respectivas definiciones (Tabla 2-4). Asimismo, el cuadro contiene dos instancias a poblar, la evolución que es la descripción del estado de madurez y las
evidencias que son la muestra visible y tangible de que se tiene cierto nivel de madurez. Para determinar qué información debería ser incluida en cada celda, se analizaron los modelos generados en torno a Lean Construction (Anexo A). A partir de los parámetros y los alcances establecidos por Diekmann et al. (2004) para cada práctica, se buscaron y organizaron cada uno de los contenidos que compartían el mismo sentido. Con esta selección de información se pudieron rescatar evidencias y elementos descriptivos comunes para el alcance de cada práctica. Sin embargo, al ser herramientas con diferentes enfoques y no tener una configuración similar, la categorización se realizó en base a un criterio propio, buscando mantener ese orden lógico de evolución esperado, desde un nivel existente hasta el estado ideal sostenible, lo anterior sabiendo que el modelo sería validado por expertos en la materia.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolución</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 4-3: Niveles de madurez – Prácticas Lean Construction
(Elaboración propia)

4.4 Validación del Modelo de Madurez

Antes de la aplicación del modelo de madurez la validación del contenido es esencial para saber si se cumple con los objetivos claves definidos y el propósito para el cual fue desarrollado. La validación del modelo se debe realizar en términos del
contenido, el criterio y el constructo (Gronlund, 1985; Wiersma, 1986). La validez de contenido se refiere al grado en que un instrumento refleja un dominio específico de lo que se mide. La validez de criterio establece la relación de un instrumento de medición comparándolo con algún criterio externo. Este criterio es un estándar con el que se juzga la validez del instrumento. La validez de constructo es probablemente la más importante sobre todo desde una perspectiva científica y se refiere al grado en que una medición se relaciona consistentemente con otras mediciones de acuerdo con hipótesis derivadas teóricamente y que conciernen a los conceptos (o constructos) que están siendo medidos.

Para validar si el modelo mide el nivel de madurez que tiene un Principio Lean en un proyecto de construcción, se pudo considerar la comparación con algún otro modelo generado, pero simplemente no se tiene referencia de alguno que en la práctica comparta el mismo alcance y propósito. Por lo tanto, la validación del modelo se hizo desde un enfoque empírico (Beecham et al., 2005), donde la consulta de expertos en Lean Construction a través de un cuestionario, permitió evaluar de manera cualitativa el contenido y el constructo, dejando la evaluación del criterio a la aplicación en proyectos de construcción, generando así estudios de caso, con los cuales se buscó identificar la utilidad del modelo de madurez.

Para la validación del contenido y el constructo del modelo de madurez, se decidió hacerlo a través de un juicio de expertos, al considerar que las observaciones experimentales están limitadas en el tema a investigar (Ding & Hershberger, 2002; Utkin, 2006). El juicio de expertos se define como una opinión informada de personas con trayectoria en el tema, que son reconocidas por otros como expertos cualificados en éste, y que pueden dar información, evidencia, juicios y valoraciones (Escobar & Cuervo, 2008).

La validación del contenido se fundamentó en los Principios Lean y las prácticas asociadas, propuestas por Diekmann et al. (2004). La validación del constructo se realizó
por medio de un cuestionario para ser respondido por un grupo de expertos con el conocimiento y la experiencia en Lean Construction (Anexo L). La elaboración del cuestionario partió con una prueba de control para verificar la comprensión del instrumento y la aplicación correcta. Teniendo un cuestionario confiable y entendible, y tomando en consideración la disponibilidad de los recursos, el cuestionario fue completado por 4 profesionales expertos en Lean Construction (implementadores, consultores e investigadores), obteniendo resultados que ayudaron a identificar errores y mejoras en el constructo del modelo de madurez, permitiendo con esto desarrollar un modelo confiable y con información que representa de buena manera la realidad en torno al desarrollo de los Principio Lean en un proyecto de construcción.

El criterio del modelo de madurez se validó por medio de la aplicación directa en 2 empresas constructoras pertenecientes al Grupo Colaborativo “Construyendo Excelencia” – GEPUC. La validación se realizó a través de profesionales encargados del desarrollo de la filosofía Lean en sus organizaciones, a los cuales se les presento el modelo y sus características, para después realizar la evaluación de la madurez en proyectos que consideraron representativos en torno al desarrollo de Lean Construction (Anexo M). Habiendo realizado la evaluación en cada proyecto, se entrevistó de manera semiestructurada a los responsables de aplicar el modelo, con el propósito de recabar información acerca de la utilidad del uso del modelo, su entendimiento, la viabilidad de su aplicación y desarrollo en los proyectos, así como comentarios generales sobre el instrumento. Para concluir la validación, los implementadores brindaron una serie de notas para evaluar el formato, la comprensión, la utilidad, la forma de autoevaluación y el uso que se le puede dar al modelo de madurez. Los resultados brindaron la certeza de que se había desarrollado una herramienta útil y aplicable para ayudar a la interiorización de la filosofía Lean en los proyectos de construcción, por medio de la evaluación de la madurez de los principios y las prácticas asociadas.
Habiendo obtenido la validación del contenido, el criterio y el constructo del modelo de madurez propuesto, se cumplió con los objetivos propuestos:

- Ser una herramienta de ayuda a las organizaciones que buscan desarrollar e integrar la filosofía, con la cultura y las herramientas Lean.
- Ser un medio comprensible, sencillo y práctico para evaluar el estado de madurez que guardan los Principios Lean en los proyectos de construcción.
- Ser un medio para identificar la forma en cómo se llevan a cabo los procesos, reconociendo debilidades y fortalezas, ayudando así a establecer las bases para un plan estratégico y sistemático de mejora continua.
- Ser una guía en el proceso de cambio, tanto personal como organizacional, brindando certeza a través de la información contenida, ofreciendo un panorama de lo esperado en torno al desarrollo de los Principios Lean Construction.
- Ser una pauta para el desarrollo de competencias y capacidades del personal involucrado en la implementación de Lean Construction.

4.5 Desarrollo del Modelo de Madurez

La etapa de desarrollo refiere a la disposición del modelo de madurez para su uso y verificar el grado de generalización que se tiene en cada aspecto a evaluar. En primera instancia el modelo se proporcionó a dos empresas que son parte del Grupo Colaborativo “Construyendo Excelencia” – GEPUC. La aplicación sirvió para validar las relaciones propuestas entre madurez y los Principios Lean en proyectos de construcción. Asimismo, se logró la aceptación de la herramienta por parte de las empresas y se pudo establecer una forma estandarizada de aplicación gracias a la herramienta de evaluación diseñada para desarrollar el modelo de madurez de forma adecuada (Anexo N) (Figura 4-4). La herramienta se complementó con una guía de evaluación, utilizando una hoja de cálculo para registrar las evidencias, los niveles de madurez y obtener los gráficos para ilustrar y presentar los resultados de la madurez de los principios y las prácticas.
asociadas. Además, se incluyeron los formatos de ayuda para el desarrollo de un plan estratégico. De esta forma se configuró lo que se considera un marco de trabajo, es decir, un conjunto estandarizado de conceptos, prácticas y criterios que permiten evaluar los Principios Lean Construction y establecer estrategias para su desarrollo.

Figura 4-4: Modelo de Madurez para el Desarrollo de los Principios Lean Construction

El contenido de la herramienta de evaluación es el siguiente:

- Introducción
- Modelo de Madurez para el Desarrollo de los Principios Lean Construction
 - Aplicación – Consideraciones
 - Principios Lean Construction
 - Prácticas Lean Construction
- Evaluación
- Plan Estratégico
- Herramientas y Conceptos Lean
- Glosario
- Bibliografía
4.6 Mantenimiento del Modelo de Madurez

La última etapa en el desarrollo de un modelo de madurez, tiene que ver con un continuo perfeccionamiento y actualización del modelo, para poder así seguir fomentando su uso, aceptación y mantenimiento en el tiempo (de Bruin, et al., 2005).

Para el modelo propuesto se consideró que su mantenimiento en el futuro, dependerá en gran medida de la difusión, uso y aceptación que tendrá. Se buscará dar seguimiento a la implementación del modelo en diferentes proyectos y empresas, particularmente aquellas pertenecientes al Grupo Colaborativo “Construyendo Excelencia” – GEPUC, recibiendo comentarios y sugerencias para mejorar los conocimientos contenidos y la comprensión del modelo, con el propósito de generar futuras versiones. Sin embargo, al ser una herramienta abierta al público, se deja a criterio del usuario el desarrollo particular de la herramienta y las mejoras, promoviendo así la adaptación del modelo a sus propias necesidades y objetivos, tomando en cuenta las características de cada organización.

4.7 Requerimientos de un Modelo de Madurez

Aunado a las etapas de desarrollo para modelo de madurez presentado por de Bruin et al. (2005), existen ciertos requerimientos que se deben cumplir al momento de generar un modelo de madurez, con el fin de darle un fundamento científico. Para tal efecto, un modelo de madurez debe ser entendido como un artefacto que sirve para resolver el problema de determinar la madurez (competencia, capacidad, nivel de sofisticación) que mantiene una organización para ciertos criterios y dominios definidos, al mismo tiempo de ser un apoyo para el mejoramiento de la madurez con base en su evaluación y la comparación (de Bruin et al., 2005, Becker et al. 2009).

Los criterios que deben de seguirse y documentarse en el proceso de diseño científico para el desarrollo de un modelo de madurez son (Becker et al. 2009):
1. Identificación de problemas relevantes
2. Definición del problema
3. Comparación con modelos de madurez existentes
4. Proceso iterativo
5. Evaluación iterativa
6. Procedimiento multi – metodológico
7. Presentación específica de resultados
8. Documentación científica

Con el propósito de fundamentar la generación de un modelo de madurez con una base científica se siguieron y analizaron los requerimientos propuestos por Becker et al. (2005).

• **Identificación de problemas relevantes**

El problema a considerar como fundamento para la realización de un modelo de madurez fue el desarrollo e interiorización de los Principios Lean en los proyectos de construcción. Esta problemática se estableció a partir de la preocupación de diversas empresas constructoras de contar con estrategias para sostener las prácticas Lean y de los resultados obtenidos del diagnóstico de la implementación de Lean Construction realizado en el marco de esta investigación. Analizando la información y los resultados, se llegó a considerar que el desarrollo de un modelo de madurez puede ser una forma de ayudar a entender de mejor manera el problema y apoyar en la solución de este.

• **Definición del problema**

El dominio del nuevo modelo de madurez se constituyó en el desarrollo de los Principios Lean Construction, tomando esto como una causa raíz del problema del sostenimiento de las prácticas Lean.
• **Comparación con modelos de madurez existentes**

Se partió realizando un importante análisis comparativo de modelos de madurez y herramientas de evaluación existentes relacionados con Lean Construction y su implementación (Anexo A). A través del análisis se identificó la necesidad de desarrollar y diseñar un nuevo modelo de madurez con un enfoque al desarrollo de los principios Lean en proyectos de construcción, procurando mantener de una forma comprensible y organizada los principios y las prácticas asociadas, facilitando la comunicación y el entendimiento de la filosofía Lean.

• **Proceso iterativo**

El desarrollo del modelo de madurez se hizo iterativamente, es decir, que se comenzó con una idea simple de lo que sería el modelo, la forma de cómo se presentarían sus componentes y la información que contendría. Para dar paso a una serie de mejoras en el diseño y en la información contenida. Los resultados de cada iteración se utilizaron como punto de partida para la siguiente iteración.

• **Evaluación iterativa**

Cada parte del modelo de madurez (constructo, contenido y criterio) fue evaluada iterativamente mediante una apropiada metodología científica (análisis cualitativos y estudios de caso), brindando una retroalimentación significativa y mejoras al modelo, consolidando así una herramienta adecuada para su aplicación, ya que muestra una aproximación a la realidad que representa la adopción de los Principios Lean en los proyectos de construcción.

• **Procedimiento multi – metodológico**

Para el desarrollo del modelo de madurez se emplearon una variedad de métodos de investigación como lo fueron los análisis cualitativos y los estudios de caso, los cuales fueron bien fundamentados y adaptados para obtener los resultados esperados en la investigación. De igual forma se aplicaron consultas con expertos, entrevistas con
implementadores Lean y visitas de terreno a proyectos de las empresas constructoras involucradas en el estudio, con el propósito de obtener información relevante que reflejara la realidad a evaluar por medio del modelo de madurez.

- **Presentación específica de resultados**

 La presentación del modelo de madurez se dirigió y se puso al alcance del grupo de usuarios específico (encargados del desarrollo de Lean Construction en los proyectos de construcción), para obtener los beneficios esperados con la aplicación. Teniendo en cuenta las condiciones de su aplicación y las necesidades de los usuarios, el modelo de madurez fue puesto a disposición de las empresas, las cuales seleccionaron a los colaboradores con los conocimientos de la filosofía, la cultura y las herramientas Lean, con el juicio para señalar la forma en cómo se desarrollan los proyectos y con la autoridad e influencia en la toma de decisiones que direccionan a la organización. El modelo se diseñó como un manual de autoevaluación y auto contenido, es decir, las cuestiones para su aplicación se incluyeron para dar mayor facilidad de uso (Anexo M).

- **Documentación científica**

 El proceso de diseño del modelo de madurez fue documentado como parte de la investigación y el desarrollo de la tesis. Se consideró cada paso en el desarrollo del modelo, registrando la forma en como se hizo, especificando los recursos utilizados, los métodos aplicados y los resultados obtenidos.

 Habiendo cumplido con cada uno los criterios definidos para fundamentar científicamente el modelo, se da certeza de que se desarrolló un instrumento fiable que cumple con los fines para los que fue creado.
5 APLICACIÓN DEL MODELO DE MADUREZ PARA EL DESARROLLO DE LOS PRINCIPIOS LEAN CONSTRUCTION

Habiendo desarrollado y validado el “Modelo de Madurez para el Desarrollo de los Principios Lean Construction” (Anexo M) y con el objetivo específico de evaluar la forma en cómo se evalúa el estado de madurez de los principios Lean y sus prácticas en proyectos de construcción, se consideró realizar estudios de caso a la par de la validación de criterio. Los estudios de caso se propusieron para entender, en sus respectivos contextos, la complejidad de la aplicación del modelo de madurez. Para tal efecto, se realizaron entrevistas semiestructuradas y visitas a terreno en 2 unidades de análisis, representadas por empresas constructoras pertenecientes al Grupo Colaborativo “Construyendo Excelencia” del Centro de Excelencia en Gestión de la Producción – GEPUC, las cuales han realizado esfuerzos para implementar la filosofía Lean y aplicar algunas de las herramientas relacionadas con Lean Construction.

5.1 Estudios de Caso

De acuerdo con Yin (2003) un estudio de caso debe ser realizado cuando:

a) El enfoque del estudio es responder el ¿Cómo? y ¿Por qué? del fenómeno.
b) No es posible manipular el comportamiento de los participantes en el estudio.
c) Se desea cubrir condiciones contextuales relevantes para el fenómeno.
d) Los límites no son claros entre el fenómeno y el contexto.

Con fundamento en lo anterior, se seleccionó el estudio de caso como el método apropiado para esta investigación cualitativa, además de tomar en cuenta las consideraciones presentadas por Hernández et al. (2010) y Yin (2003):
Requiere evaluarse con profundidad, buscando el entendimiento de su naturaleza, sus circunstancias, su contexto y sus cualidades, ajustándose a que el interés de esta investigación no es la generalización, sino la profundización.

Es útil para desarrollar procesos de intervención y generar recomendaciones o cursos de acción a seguir.

Aborda hechos contemporáneos y no se pueden controlar los eventos que se están investigando, satisfaciendo la necesidad de estudiar un tema de actualidad tal y como se presenta en la realidad.

Se optó por desarrollar estudios de caso descriptivos, los cuales son usados para describir una intervención o un fenómeno, considerando el contexto en el cual curren (Yin, 2003). Asimismo, se consideró realizar el estudio de caso del tipo múltiple, con el fin de poder explorar las diferencias dentro y entre los proyectos evaluados, además de realizar comparaciones para predecir resultados similares en los diferentes proyectos, o predecir resultados contrastantes sobre una base establecida (Yin, 2003).

La pregunta de investigación para orientar los casos de estudio fue:

¿Cómo los proyectos de construcción conciben el desarrollo de los Principios Lean Construction y la aplicación de un modelo de madurez?

Asimismo, para los casos de estudio se tomaron en consideración las siguientes proposiciones, basadas en los objetivos que se plantearon al momento de realizar el “Modelo de Madurez para el Desarrollo de los Principios Lean Construction”:

- Es una herramienta de ayuda a las organizaciones que buscan desarrollar e integrar la filosofía, con la cultura y las herramientas Lean.
- Es un medio comprensible, sencillo y práctico para evaluar el estado de madurez que guardan los Principios Lean en los proyectos de construcción.
- Es un medio para identificar la forma en cómo se llevan a cabo los procesos, reconociendo debilidades y fortalezas, ayudando así a establecer las bases para un plan estratégico y sistemático de mejora continua.

- Es una guía en el proceso de cambio, tanto personal como organizacional, brindando certeza a través de la información contenida, ofreciendo un panorama de lo esperado en torno al desarrollo de los Principios Lean Construction.

- Es una pauta para el desarrollo de competencias y capacidades del personal involucrado en la implementación de Lean Construction.

Para recabar los datos en los casos de estudio, se seleccionó el uso de la entrevista semiestructurada debido a las peculiaridades descritas por Díaz et al. (2013):

- Presenta un grado mayor de flexibilidad que la entrevista estructurada, partiendo de preguntas planeadas, pero con la posibilidad de ajustarse al contexto y a las características de los entrevistados.

- Reduce formalismos, motivando la participación del entrevistado, permitiendo aclarar términos, identificando ambigüedades y obteniendo respuestas más útiles.

- Mantiene la suficiente uniformidad para alcanzar interpretaciones acordes con los propósitos del estudio.

Cada una de las entrevistas semiestructuradas se hizo a nivel gerencial y con los responsables del desarrollo Lean en las organizaciones, con lo cual se pudo obtener información más completa y profunda de la realidad de cada organización, partiendo de un contexto general a un contexto particular evidenciado por cada proyecto analizado (Anexo M).

De igual manera se hicieron visitas a terreno en los proyectos para observar y recoger directamente algunas evidencias desde diferentes perspectivas significativas de
cómo se desarrollan los principios Lean y cómo se llevan a cabo sus prácticas asociadas. Las visitas se realizaron con la compañía de los encargados de la implementación Lean en las organizaciones, pudiendo analizar de manera superficial el sitio de la obra, las reuniones Last Planner®, además de los comportamientos, conductas, habilidades y acciones de algunos colaboradores.

Es importante resaltar que los resultados encontrados a través de la implementación del “Modelo de Madurez para el Desarrollo de los Principios Lean Construction”, no pueden generalizar la realidad que pasa en las empresas constructoras, al menos en el sentido probabilístico (Hernández et al., 2010). Por lo tanto, el valor de los resultados radica en el análisis de cada unidad básica de investigación, en este caso, cada uno de los proyectos de construcción estudiados.

5.1.1 Caso 1

La primera aplicación del “Modelo de Madurez para el Desarrollo de los Principios Lean Construction” se desarrolló en una empresa constructora e inmobiliaria con más de 40 años de experiencia, desarrollando proyectos de urbanización de extensas áreas, conjuntos habitacionales, edificación de altura, centros comerciales y edificios de oficina. La aplicación del modelo de madurez se inició con una entrevista semiestructurada a nivel gerencial (gerente y jefe de operaciones), con la cual se obtuvo el contexto general de cómo se ha implementado Lean Construction en su organización. La entrevista mostró que la compañía desde hace 4 años inicio una transformación Lean a través de esfuerzos para la implementación del Sistema Last Planner®, las 5S, el mapeo de procesos (VSM), kaizen y benchmarking. A lo largo de este tiempo la empresa ha generado material de formación entorno a los conceptos básicos y las herramientas implementadas. Además ha instaurado auditorias para controlar la aplicación de dichas herramientas y ha desarrollado diferentes estrategias para impulsar el cambio cultural Lean en la empresa (incentivos, imagen corporativa, capacitación, agentes de cambio).
Los beneficios que reportó la empresa a partir de la implementación de las herramientas es el orden en el desarrollo de los proyectos, aunque el impacto en el rendimiento no sea observado.

Las principales barreras en el cambio Lean que experimentan son:
- La empresa tiene constantemente cambios y los equipos se disuelven por lo que es difícil consolidar los conceptos Lean.
- Falta de visión a largo plazo.
- Resistencia al cambio de mentalidad.

Con un panorama general, se procedió a realizar una presentación del marco de trabajo basado en el “Modelo de Madurez para el Desarrollo de los Principios Lean Construction”, mostrando los alcances, las limitaciones y los beneficios relacionados con el modelo. En esta instancia se seleccionó el proyecto para el cual se aplicaría el modelo de madurez y la persona responsable para realizarla.

Al ser el modelo de madurez una herramienta en la cual el método de aplicación es la autoevaluación, se propuso aplicarlo manteniendo una postura de observador para poder obtener información de cómo es el proceso de implementación, registrando las observaciones generadas a partir del uso del modelo en los proyectos. Se realizó una visita de terreno a un proyecto residencial, en la cual se obtuvo una visión del contexto particular que existe en el proyecto.

El contexto particular muestra que es una obra de 57 casas de tipo residencial, con una duración de 1 año 5 meses. El avance de los trabajos es de un 70%. El equipo de trabajo ha estado junto por más de tres años y ha recibido capacitación en temas relacionados con Lean Construction. Last Planner es la herramienta para planificar los trabajos en terreno, sin embargo el control de la planificación es realizada por una instancia externa al proyecto. Las 5S solo se aplican a la bodega de materiales.
La visita se realizó con la compañía de los encargados de la implementación Lean en las organizaciones (jefe de operaciones y agentes de cambio), se pudo analizar de manera superficial el sitio de la obra, la reunión de Last Planner®, además de los comportamientos, conductas, habilidades y acciones de algunos colaboradores. De estas observaciones se generaron las evidencias necesarias para la evaluación de la madurez de los Principios Lean Construction y las prácticas asociadas. La evaluación la realizó el jefe de operaciones de forma autónoma (Tabla 5-1), siguiendo el instrumento diseñado para tal fin (Anexo N).

El análisis externo de la situación particular presente en el proyecto entorno al desarrollo de los Principios Lean Construction, permitió identificar los beneficios obtenidos de implementar Last Planner, el compromiso del nivel gerencial en el desarrollo de algunos principios Lean a través de la implementación de otras herramientas. Asimismo, se evidenció que los involucrados en el proyecto manejan un lenguaje común en torno a Last Planner, pero algunos conceptos Lean se desarrollan inconscientemente, lo que se refleja en niveles iniciales de muchas de las prácticas. Por otro lado, se visualizó la formalización de principios como la cultura/personas y la estandarización, gracias a los esfuerzos desarrollados en la empresa, pero se comentó que su implementación decae al momento de la ejecución de los trabajos.

Debido a que no se contaron con los recursos necesarios para aplicar el modelo de madurez en otros proyectos que realiza la empresa, no se pudo realizar un análisis general (benchmarking interno) para detectar aquellos factores de éxito a la hora de implementar los Principios Lean.

La percepción de la implementación del modelo de madurez se refleja en el siguiente comentario realizado por el jefe de operaciones al terminar la evaluación:

“El modelo no solo entrega una nota sino también un rumbo ya que permite visualizar de forma simple el estado de implementación e internalización de
los principios lean y por lo mismo también permite ver de forma sencilla cuales son aquellos puntos débiles para superar un nivel y pasar al siguiente”.

Tabla 5-1: Estudio de Caso 1

<table>
<thead>
<tr>
<th>Empresa 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluator</td>
<td>Jefe de Operaciones</td>
</tr>
<tr>
<td>Proyecto</td>
<td>Condominio Residencial</td>
</tr>
</tbody>
</table>

Contexto General

Empresa constructora e inmobiliaria con más de 40 años de experiencia, desarrollando proyectos de urbanización de extensas áreas, conjuntos habitationales, edificación de altura, centros comerciales y edificios de oficina. Desarrollo de Lean Construction a partir de la implementación del sistema Last Planner, las 5S, VSM, kaizen y benchmarking (4 años). La empresa ha instaurado auditorias para controlar la aplicación de dichas herramientas y ha desarrollado diferentes estrategias para impulsar el cambio cultural Lean en la empresa (incentivos, imagen corporativa, capacitación, agentes de cambio).

Los beneficios que reporta la empresa a partir de la implementación de las herramientas es el orden en el desarrollo de los proyectos, aunque el rendimiento no sea el correcto.

Las principales barreras en el cambio Lean que han experimentado son:
- La empresa tiene constantemente cambios y los equipos se disuelven por lo que es difícil consolidar los conceptos Lean.
- Falta de visión a largo plazo.
- Resistencia al cambio de mentalidad.

Contexto Particular

Proyecto de construcción de 57 casas de tipo residencial, con una duración de 1 año 5 meses. Avance de los trabajos de un 70%. El equipo de trabajo ha estado junto por más de tres años. Last Planner es la herramienta para planificar los trabajos en terreno, sin embargo el control de la planificación es realizada por una instancia externa al proyecto. Las 5S solo se aplican a la bodega de materiales.

<table>
<thead>
<tr>
<th>Nivel de Madurez</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inexistente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inicial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sostenible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prácticas Lean Construction</td>
<td></td>
</tr>
<tr>
<td>Eliminación de Desperdicios</td>
<td></td>
</tr>
<tr>
<td>Optimización del Sistema de Producción</td>
<td>1</td>
</tr>
<tr>
<td>Optimización del Contenido de Trabajo</td>
<td>1</td>
</tr>
<tr>
<td>Gestión de la Cadena de Suministro</td>
<td>1</td>
</tr>
<tr>
<td>Optimización de la Programación de la Producción</td>
<td>3</td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>2</td>
</tr>
<tr>
<td>Definición de los Procesos de Trabajo</td>
<td>1</td>
</tr>
<tr>
<td>Organización del lugar de Trabajo</td>
<td>2</td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td></td>
</tr>
<tr>
<td>Compromiso Organizacional</td>
<td>2</td>
</tr>
<tr>
<td>Involucramiento del Personal</td>
<td>2</td>
</tr>
<tr>
<td>Capacitación</td>
<td>2</td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td></td>
</tr>
<tr>
<td>Optimización del Valor</td>
<td>2</td>
</tr>
<tr>
<td>Flexibilidad en los Reques</td>
<td>0</td>
</tr>
<tr>
<td>Mejoramiento Continuo / Calidad</td>
<td></td>
</tr>
<tr>
<td>Medición</td>
<td>2</td>
</tr>
<tr>
<td>Aprendizaje Organizacional</td>
<td>1</td>
</tr>
<tr>
<td>Gestión de Defectos</td>
<td>1</td>
</tr>
<tr>
<td>Prevenimiento de Errores</td>
<td>1</td>
</tr>
</tbody>
</table>

Prácticas Lean Construction

<table>
<thead>
<tr>
<th>Prácticas Lean Construction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminación de Desperdicios</td>
<td></td>
</tr>
<tr>
<td>Last Planner es implementado. La empresa aborda la mejora del sistema de producción con planes de acción bien definidos y la optimización del contenido del trabajo en una planificación interactiva. Por otra parte las restricciones vinculan la gestión de la cadena de suministro y la optimización de la programación de la producción.</td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
</tr>
<tr>
<td>Las herramientas Lean hasta ahora desarrolladas poseen una estructura que contiene gestión visual, la cual se audita. La definición de procesos obedece a un mapa de procesos que se está articulando en forma incipiente. Se ha implementado las 5S solo en bodegas.</td>
<td></td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td></td>
</tr>
<tr>
<td>La empresa ha diseñado un sistema de inducción Lean respecto de los métodos y herramientas desarrollados en la organización.</td>
<td></td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td></td>
</tr>
<tr>
<td>La empresa desarrollo un Dashboard de Indicadores para controlar el estado global e integral del proyecto, asimismo el cierre de los proyectos se vinculan al aprendizaje organizacional a través de documentar lecciones aprendidas. El análisis de posventa permite la prevención de errores en proyectos futuros, sin embargo no se realiza bien.</td>
<td></td>
</tr>
</tbody>
</table>

Análisis Particular

El proyecto muestra los beneficios obtenidos de implementar Last Planner. Además, se visualiza el compromiso del nivel gerencial en el desarrollo de algunos principios Lean a través de la implementación de otras herramientas. Los involucrados en el proyecto manejan un lenguaje común en torno a Last Planner. Por otro lado se visualiza la formalización de principios como la cultura/personas y la estandarización, gracias a los esfuerzos desarrollados en la empresa, pero estos decaen al momento de la ejecución de los trabajos.

Análisis General

No se pudo realizar un análisis general, al no contar con las evaluaciones de los demás proyectos que realiza la empresa.
5.1.2 Caso 2

El segundo caso de estudio para analizar la aplicación del “Modelo de Madurez para el Desarrollo de los Principios Lean Construction” se desarrolló en una empresa constructora e inmobiliaria con 25 años de experiencia, especializada en el desarrollo de proyectos de edificación en altura, conjuntos habitacionales, infraestructura educativa y de salud. La aplicación del modelo de madurez se inició con una entrevista semiestructurada a nivel gerencial (dueño, gerente general, gerente de construcción, visitadores de obra), con la cual se obtuvo el contexto general de cómo se ha implementado Lean Construction en su organización. La entrevista mostró que la compañía desde hace 3 años inicio una transformación Lean a través de esfuerzos para la implementación del Sistema Last Planner®, para la cual se ha generado material de formación y control del uso de la herramienta implementada. La empresa ha desarrollado diferentes estrategias para impulsar el cambio Lean (comité de mejora, capacitación, agentes de cambio, lecciones aprendidas) y se encuentra en un proceso de reestructuración organizacional, donde se promueve la institucionalización de una visión Lean en los procesos de la empresa.

Los beneficios que reporta la empresa a partir de la implementación de la herramienta es el cumplimiento de los proyectos en tiempo y costo, la generación de compromisos confiables entre subcontratistas y proveedores, además de una mejor planificación de los trabajos.

Las principales barreras en el cambio Lean que han experimentado son:
- Integración de nuevos equipos.
- Resistencia al cambio por parte del personal.

Con un panorama general, se procedió a realizar una presentación del marco de trabajo basado en el “Modelo de Madurez para el Desarrollo de los Principios Lean Construction”, mostrando los alcances, las limitaciones y los beneficios relacionados...
con el modelo. En esta instancia se seleccionaron 3 proyectos en los cuales se aplicaría el modelo de madurez y las personas responsables para realizarla.

Se tuvo una postura de observador al momento de realizar la aplicación del modelo, se obtuvo información de cómo es el proceso de implementación y se registraron las observaciones generadas a partir del uso del modelo para cada proyecto.

La evaluación fue realizada por los encargados de implementar el Sistema Last Planner® en los proyectos, el gerente de construcción en 2 proyectos y el visitador de obra en un proyecto (Tabla 5-2).

El proyecto 1 presenta el siguiente contexto particular: Obra pública con un retraso en el programa de ejecución debido a los cambios en el diseño. Cambio de administrador de obra (1 mes atrás). Implementación de Last Planner deficiente desde su inicio al ser un equipo nuevo. Capacitación en el uso de A3. El visitador cuenta con una experiencia de 2 años en temas relacionados con Lean Construction y él es el encargado de dirigir las reuniones de Last Planner.

El proyecto 2 tiene el siguiente contexto particular: Obra privada (edificio de oficinas) con exigencia en el plazo de entrega. Uso exclusivo de Last Planner. Adaptación de los colaboradores externos al Sistema Last Planner. Equipo integrado en 2 proyectos anteriores y con capacitación en temas Lean de los profesionales de terreno. El gerente de construcción audita las reuniones de Last Planner, las cuales son lideradas por los encargados del proyecto (administrador de obra, jefe de terreno, jefe de oficina técnica).

El proyecto 3 tiene el siguiente contexto particular: Obra pública (edificio de oficinas) en una etapa inicial de los trabajos (3 meses). Equipo recién formado, en el cual los profesionales de terreno están en proceso de capacitación en torno a Lean
Construction y el uso de Last Planner. El gerente de construcción es el promotor de los beneficios de Lean Construction y dirige las reuniones de Last Planner.

Se realizaron análisis externos de la situación particular de cada proyecto, a partir del contexto particular, el registro de las evidencias en torno a los Principios Lean Construction y el diagnóstico generado a partir de la aplicación del modelo de madurez. El proyecto 1 muestra una serie de inconsistencias en la implementación de Last Planner. Al ser un equipo de reciente creación se encuentra en un proceso de aprendizaje en el uso de la herramienta. Existe una falta de liderazgo por parte del visitador para impulsar el cambio Lean. El proyecto 2 evidencia los beneficios obtenidos de implementar Last Planner, Además, se visualiza el compromiso del nivel gerencial en el desarrollo de algunos principios Lean. Los involucrados en el proyecto manejan un lenguaje común en torno a Last Planner. La forma de trabajo es ejemplo para otros proyectos. A pesar de que se tiene un nivel integrado para la programación de la producción, la organización tiene la incertidumbre si se mantendrán los beneficios al desarrollar partidas diferentes a las que hasta ahora se han controlado. Para el proyecto 3 claramente se identifica un equipo en etapa de formación, donde los beneficios de seguir la filosofía Lean y la implementación de herramientas como Last Planner están siendo demostrados con evidencias puntuales. Los resultados de la capacitación se hacen visibles semana a semana, pues se empieza a tener un mejor manejo de los conceptos y la herramienta Lean.

Después de la evaluación de cada uno de los proyectos, se generó un análisis general para entender en cierta medida la realidad organizacional, lo que se deduce en que la empresa se encuentra en una etapa inicial en la adopción de los Principios Lean, sin embargo se muestra que la implementación de Last Planner impulsa el desarrollo del principio “Eliminación de Desperdicios”. Por otro lado, se tiene un desarrollo incipiente en los demás aspectos, por lo que resulta una oportunidad de impulsar otros principios y aplicar nuevas herramientas.
La percepción de la implementación del modelo de madurez se refleja en los siguientes comentarios realizados por los implementadores del modelo de madurez:

“Se tiene el convencimiento de la utilidad y los beneficios que ofrece Lean Construction, pero el modelo facilita y deja claro el camino que debe de seguirse. Guía el camino, pues permite identificar con claridad en donde estamos en términos de la implementación de los principios. Además ayuda a establecer diferencias entre un nivel y otro, y de un proyecto a otro, pudiendo establecer diferencias, para ver hasta donde se puede llegar y que se puede hacer para lograrlo”.

“El uso de la herramienta tiene un gran potencial, para guiar a la organización en esta transformación Lean que está en proceso, pues algunos de estos principios están por ser establecidos en la misión, visión y objetivos estratégicos de la empresa. Y siendo así, el modelo guiará la implementación a nivel de proyecto. El modelo no solo entrega una nota sino también un rumbo ya que permite visualizar de forma simple el estado de implementación e internalización de los principios lean y por lo mismo también permite ver de forma sencilla cuales son aquellos puntos débiles para superar un nivel y pasar al siguiente”.

“El modelo brinda los parámetros claros para pasar de un nivel a otro, me permite pensar en lo que tengo que hacer y que prácticas se pueden implementar y desarrollar en los proyectos. Además, permite entender que significa el nivel de madurez que se tiene”.

“El modelo es una guía para el crecimiento de la empresa, para que se cumplan objetivos estratégicos, que van más allá de una mejora en un
indicador económico, ya que se involucran cuestiones de fondo que afectan a la producción”.

“Es una herramienta que da la posibilidad de comparar proyectos, determinar cuáles están bien o cuáles están mal, y analizar las causas de esto”.

Tabla 5-2: Estudio de Caso 2

<table>
<thead>
<tr>
<th>Empresa 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluador</td>
<td>Visor de Obra</td>
<td>Gerente de Construcción</td>
<td>Gerente de Construcción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proyecto</td>
<td>Centro de Salud</td>
<td>Edificio de Oficinas</td>
<td>Edificio de Oficinas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contexto General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Empresa constructora e inmobiliaria con 25 años de experiencia, especializada en el desarrollo de proyectos de edificación en altura, conjuntos habitacionales, infraestructura educativa y de salud.
 Desarrollo de Lean Construction a partir de la implementación del sistema Last Planner (3 años). La empresa ha generado material de formación y control del uso de la herramienta implementada y ha desarrollado diferentes estrategias para impulsar el cambio Lean en la empresa (comité de mejora, capacitación, agentes de cambio, lecciones aprendidas). Se encuentra en un proceso de reestructuración organizacional, donde se promueve una visión Lean en los procesos de la empresa.
 Los beneficios que reporta la empresa a partir de la implementación de la herramienta es el cumplimiento de los proyectos en tiempo y costo, la generación de compromisos confiables entre subcontratistas y proveedores, además de una mejor planificación de los trabajos.
 Las principales barreras en el cambio Lean que han experimentado son:
 - Integración de nuevos equipos.
 - Resistencia al cambio por parte del personal. | | | | | |
| **Contexto Particular** | | | | | |
| | Proyecto público con un retraso en el programa de ejecución debido a los cambios en el diseño. Cambio de administrador de obra. Implementación de Last Planner deficiente desde su inicio al ser un equipo nuevo. Capacitación en el uso de A3. El visitador cuenta con una experiencia de 2 años en temas relacionados con Lean Construction, el encargado de dirigir las reuniones de Last Planner. | | | | |
| | Proyecto privado con exigencia en el plazo de entrega. Uso exclusivo de Last Planner. Equipo integrado en 2 proyectos anteriores y con capacitación en temas Lean de los profesionales de terreno. El gerente de construcción audita las reuniones de Last Planner. | | | | |
| | Proyecto público en una etapa inicial de la obra (3 meses). Equipo recién formado, en el cual los profesionales de terreno están en proceso de capacitación en torno a Lean Construction y el uso de Last Planner. El gerente de construcción es el promotor de los beneficios de Lean Construction. | | | | |

<table>
<thead>
<tr>
<th>Nivel de Madurez</th>
<th>Incipiente</th>
<th>Inicial</th>
<th>Formal</th>
<th>Establecido</th>
<th>Integrado</th>
<th>Sostenible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principios Lean Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminación de Desperdicios</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mejoramiento Continuo / Calidad</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prácticas Lean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminación de Desperdicios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Sistema de Producción</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Contenido de Trabajo</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión de la Cadena de Suministro</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización de la Programación de la Producción</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td>Gestión Visual</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definición de los Procesos de Trabajo</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organización del Lugar de Trabajo</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compromiso Organizacional</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involucramiento del Personal</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitación</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Valor</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibilidad en los Recursos</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mejoramiento Continuo / Calidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprendizaje Organizacional</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respuesta a Defectos</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevención de Errores</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Análisis Particular

El proyecto muestra una serie de inconsistencias en la implementación de Last Planner. Al ser un equipo de reciente creación se encuentra en un proceso de aprendizaje en el uso de la herramienta. Existe una falta de liderazgo por parte del visitador para impulsar el cambio Lean. El proyecto muestra los beneficios obtenidos de implementar Last Planner, además, se visualiza el compromiso del nivel gerencial en el desarrollo de algunos principios Lean. Los involucrados en el proyecto manejan un lenguaje común en torno a Last Planner. La forma de trabajo es ejemplo para otros proyectos. A pesar de que se tiene un nivel integrado para la programación de la producción, la organización tiene la incertidumbre si se mantendrán los beneficios al desarrollar partidas diferentes a las que hasta ahora se han controlado. Claramente se identifica un equipo en etapa de formación, donde los beneficios de seguir la filosofía Lean y la implementación de herramientas como Last Planner están siendo demostrados con evidencias puntuales. Los resultados de la capacitación se hacen visibles semana a semana, pues se empieza a tener un mejor manejo de los conceptos y la herramienta Lean.

Análisis General

La empresa se encuentra en una etapa inicial en la adopción de los Principios Lean, sin embargo se muestra que la implementación de Last Planner impulsa el desarrollo del principio “Eliminación de Desperdicios”. Por otro lado, se tiene un desarrollo incipiente en los demás aspectos, por lo que resulta una oportunidad de impulsar otros principios.

5.2 Observaciones

Las observaciones generadas a partir de la aplicación del marco de trabajo validado a través de los estudios de caso son las siguientes:

- Existe una relación entre la primera evaluación general de la interiorización de los principios y las evaluaciones de las prácticas asociadas. Es decir, el desarrollo general de un Principio Lean Construction da un indicio de la madurez en que se encuentran sus prácticas.

- El involucramiento y el impulso de Lean Construction se genera a nivel gerencial, sin embargo existe una brecha para transmitirlo a niveles
operativos (agentes de cambio, visitadores de obra), los cuales no logran visualizar los beneficios relacionados con Lean Construction.

- El Sistema Last Planner® representa la herramienta más utilizada y permite la aplicación y desarrollo de conceptos y metodologías relacionadas con Lean Construction (Fauchier & Alves, 2013; Fayek & Mohamed, 2013; Hamzeh & Bergstrom, 2010).

- La implementación de los Principios Lean se encuentra mayoritariamente en etapas de madurez iniciales y de formalización, lo que refleja los primeros indicios en la adopción de la filosofía Lean.

- La identificación de las evidencias de madurez dentro de los proyectos representa el fundamento para impulsar mejorías, por lo tanto es de vital importancia realizarla a conciencia, documentarla y analizarla.

- La aplicación del marco de trabajo en cada proyecto de la empresa, permite identificar la singularidad que presenta cada uno en el desarrollo de los Principios Lean, pudiendo generar estrategias particulares para impulsar la capacidad de implementación de las prácticas asociadas.

- Con la evaluación de la madurez de cada proyecto es posible establecer un benchmarking interno para detectar buenas prácticas de implementación.

- La aplicación del marco de trabajo brinda información para dar respuesta a las siguientes preguntas ¿dónde estamos?, ¿qué tenemos que trabajar?, ¿dónde queremos estar? y ¿cómo llegamos allí? Las respuestas permiten desarrollar un plan estratégico (Aileron, 2015; Schilder, 1997), que ayude a interiorizar los Principios Lean Construction de una forma ordenada y sistemática.

- La generación de un plan estratégico debe surgir de cada empresa, analizando sus características propias, las metas que se quieren alcanzar y los recursos con los que se cuenta y las acciones que se pueden realizar.
6 CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

Con el propósito de dar una solución al problema de falta de sostenibilidad de las prácticas Lean Construction en el tiempo y enmarcado por la línea de investigación desarrollada por GEPUC, la cual busca generar estrategias para sostener las prácticas Lean exitosas y generar cambios en la cultura organizacional. Se analizaron diversas causa raíz de la problemática y se detectó falencias en la base filosófica que conduce una transformación Lean, esto dio fundamento para llevar a cabo un estudio a través del desarrollo de la madurez de los Principios Lean Construction. Con la orientación de la investigación se generó la siguiente pregunta:

¿Cómo evaluar el nivel de madurez que presentan los Principios Lean en los proyectos de construcción, para poder identificar oportunidades de mejora y establecer las bases de planes de acción estratégicos para desarrollar Lean Construction en las organizaciones?

La respuesta es que el nivel de madurez que presentan los Principios Lean en los proyectos de construcción pueden ser evaluados a través de un modelo de madurez, el cual ayuda a identificar oportunidades de mejora y a establecer las bases para diseñar planes de acción estratégicos para desarrollar Lean Construction, permitiendo así una transformación cultural y la utilización sostenible de herramientas.

Orientado por la respuesta anterior, la investigación se desarrolló y los resultados obtenidos demuestran que se cumplió con lo establecido en los objetivos que guiaron las actividades para la creación de un marco de trabajo que permitiera evaluar la madurez de los Principios Lean en los proyectos de construcción (Tabla 6-1).
Tabla 6-1: Resultados obtenidos para los objetivos de la investigación

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Desarrollar un marco de trabajo que apoye a las empresas constructoras en la realización de un diagnóstico sobre el estado de madurez de los Principios Lean que se presentan en sus proyectos, para ayudar a generar estrategias que permitan interiorizar la filosofía Lean y darle sostenibilidad en el tiempo.</td>
<td>Se desarrolló de un marco de trabajo validado para poder realizar un diagnóstico sobre el estado de madurez de los Principios Lean que se presentan en los proyectos de construcción, con el cual se establecen las bases para realizar un plan estratégico para la interiorización de los Principios Lean Construction.</td>
</tr>
<tr>
<td>Integar un marco conceptual entre los Principios Lean, la evaluación de su madurez y su desarrollo en proyectos de construcción.</td>
<td>A partir de la revisión bibliográfica se desarrollaron conceptos para dar una mayor claridad y entendimiento de los Principios Lean, lo que representa la madurez y los modelos de madurez y como todo se relaciona en el desarrollo de Lean Construction.</td>
</tr>
<tr>
<td>Diagnosticar la implementación de los Principios Lean en proyectos de construcción.</td>
<td>Se recogieron y analizaron datos para evaluar el problema que representa la implementación de los Principios Lean en proyectos de construcción. Los hallazgos fueron divididos en factores de filosofía, cultura y tecnología, donde las falencias en la formación filosófica Lean marcaron un precedente a tomar en cuenta.</td>
</tr>
<tr>
<td>Generar un modelo de madurez para el desarrollo de los Principios Lean y sus prácticas asociadas en proyectos de construcción.</td>
<td>Se desarrolló con base en la literatura una herramienta científica de evaluación denominada “Modelo de Madurez para el Desarrollo de los Principios Lean Construction”, la cual fue validada en su contenido, su criterio y su constructo por expertos e implementadores. El modelo integra los 5 Principios Lean y las 16 prácticas asociadas, identificando en ellos características y evidencias propias para cada nivel de madurez, desde un estado inexistente hasta un estado ideal sostenible.</td>
</tr>
<tr>
<td>Evaluar el estado de madurez de los Principios Lean y sus prácticas asociadas en proyectos de construcción, para establecer las bases de un plan de desarrollo estratégico.</td>
<td>Se realizaron 2 estudios de caso registrando la aplicación del marco de trabajo, pudiendo obtener datos relevantes en torno a la madurez de los Principios Lean y sus prácticas asociadas. Con la información recabada se caracterizó cada proyecto, con base en sus evidencias, permitiendo visualizar debilidades, fortalezas y oportunidades para desarrollar la madurez de los principios y las prácticas.</td>
</tr>
</tbody>
</table>

La investigación trajo consigo una contribución a la base teórico–práctica relacionada con Lean Construction. El aporte a la teoría se puede entender desde el desarrollo de teorías y comprensión innovadoras; nuevas integraciones y marcos; abordar nuevas preguntas; producir nuevas evidencias y perspectivas; y el desarrollo de
nuevas síntesis del trabajo existente (Johnston, 2008). La contribución de la investigación se muestra a través de la integración de un marco conceptual el cual incluye conceptos relacionados con los Principios Lean, la evaluación de su madurez y su desarrollo en proyectos de construcción. De igual forma se identificaron vacíos con respecto a la interiorización del fundamento filosófico de Lean Construction. Además, se integraron definiciones, evidencias y conocimientos en torno a la evolución de la madurez para los Principios Lean Construction y las prácticas asociadas, lo anterior a partir del análisis de las herramientas de evaluación ligadas a la implementación de Lean Construction.

Desde una perspectiva de la práctica, representada por los implementadores de Lean Construction vinculados con la investigación. Se contribuyó con una herramienta que ayuda a las empresas constructoras a guiar el desarrollo de los Principios Lean en sus proyectos, pudiendo medir el estado de madurez en que se encuentra y visualizando estados ideales. Facilitando así la planeación y la dirección estratégica de los esfuerzos en vías de implementar Lean Construction de manera sostenible en el tiempo.

Por otro lado, una serie de limitaciones relacionadas con el desarrollo de esta investigación tienen que ser considerados para entender de mejor manera el alcance y los resultados obtenidos:

- Lean Construction como área de conocimiento se encuentra en una fase exploratoria sobre su desarrollo y éxito, por lo que cualquier investigación representa un aporte a la base teórico–práctica de la materia.
- El marco de trabajo desarrollado se implementó en un contexto local.
- La validación del marco de trabajo se realizó en empresas que inician una transformación Lean, esto es una evidencia del estado en que se encuentra el desarrollo de Lean Construction en Chile.
- El marco de trabajo se configuró para mostrar una perspectiva de contratista en un proyecto de construcción, dejando fuera del alcance una
visión general de las empresas constructoras y un enfoque para algún otro rol en la construcción (dueño del proyecto, subcontratista, diseñador, proveedor y otros).

- La duración de la investigación permite percibir solo algunos indicios de los beneficios que trae consigo la utilización del marco de trabajo, ya que no se llegó a la creación de planes estratégicos para el desarrollo de Lean Construction y los cambios esperados se pueden visualizar en un largo plazo.

- La creación de un plan estratégico de desarrollo de los Principios Lean Construction, queda limitado a cada empresa, las cuales tomarán los resultados generados a partir de la aplicación del modelo de madurez para proponer un plan acorde a los recursos y las características propias de cada proyecto y empresa constructora.

En términos generales las siguientes conclusiones se pueden extraer de esta investigación:

- El estado del arte en relación a Lean Construction muestra un progreso en el desarrollo de herramientas para su implementación, sin embargo la mayoría se centran en la medición de los efectos de implementar Lean Construction y sus herramientas, dejando de lado el apoyo a la transformación hacia una mayor interiorización y adopción de los Principios Lean.

- La problemática que enfrentan las empresas constructoras de falta de sostenibilidad de sus prácticas Lean, tiene mucho que ver con la incorrecta adopción de su filosofía, según los datos encontrados a través del diagnóstico realizado. Esto da la oportunidad de buscar y proponer estrategias para brindar sustento a una transformación Lean. Es aquí donde el concepto de madurez puede ayudar a entender de mejor manera la forma en cómo evoluciona el proceso de adopción de Lean Construction.
- La propuesta del marco de trabajo fundamentado en el “Modelo de Madurez para el Desarrollo de Lean Construction” es un medio que permite a las organizaciones determinar el nivel de madurez que guarda la filosofía Lean en sus proyectos, guiando la interiorización de los principios con base en sus prácticas asociadas. Además, el marco de trabajo brinda de forma clara y sencilla, la pauta para la adopción de la filosofía Lean considerando las características y las evidencias que se presentan en los proyectos de construcción.

6.2 Recomendaciones

Continuando con la tendencia de desarrollar el conocimiento en torno a la implementación de Lean Construction y tomando como base los resultados obtenidos en esta investigación, se siembra la expectación de ampliar los alcances por lo que se recomienda:

- Validar el marco de trabajo considerando otros contextos a nivel global (empresas con una madurez comprobada en Lean Construction), con el propósito de extender el uso en otras regiones y generalizar en cierta medida el contenido.

- Impulsar y extender el uso del marco de trabajo, pudiendo así generar una mayor evidencia empírica que permita identificar los beneficios y las implicaciones que trae consigo el marco, corroborando así que el contenido muestra la realidad o en su defecto ser el medio para mejorar el marco propuesto.

- Aplicar el marco de trabajo en diferentes proyectos y documentar los resultados para poder corroborar con la práctica que el contenido muestra la realidad o en su defecto mejorar el marco propuesto.
- Recopilar lecciones aprendidas al aplicar el marco de trabajo, identificando las estrategias exitosas en el desarrollo de los Principios Lean Construction.

- Realizar un benchmarking con la información generada a partir de la aplicación del marco de trabajo en diferentes proyectos con contextos singulares.

- Integrar el marco de trabajo con algunas otras herramientas que tienen diferente enfoque para la implementación de Lean Construction.

- Complementar el marco de trabajo para que pueda definir el estado organizacional general a partir del resultado particular de cada proyecto evaluado.

- Ampliar el marco de trabajo para incluir otros roles dentro de la cadena de valor en un proyecto de construcción más allá del rol de contratista.
BIBLIOGRAFIA

ANEXOS
Anexo A: Modelos de Madurez para Lean Construction

<table>
<thead>
<tr>
<th>Autor</th>
<th>Año</th>
<th>Objetivo</th>
<th>Fundamento</th>
<th>Factores</th>
<th>Evaluación Cualitativa</th>
<th>Evaluación Cuantitativa</th>
<th>Indicadores</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autor</td>
<td>Año</td>
<td>Objetivo</td>
<td>Fundamento</td>
<td>Factores</td>
<td>Evaluación Cualitativa</td>
<td>Evaluación Cuantitativa</td>
<td>Indicadores</td>
<td>Resultado</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Autor</td>
<td>Año</td>
<td>Objetivo</td>
<td>Fundamento</td>
<td>Factores</td>
<td>Evaluación</td>
<td>Evaluación</td>
<td>Indicadores</td>
<td>Resultado</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Modelo sistemático de la madurez en la aplicación de Lean en la gestión de proyectos de construcción</td>
<td>Cano, S. y Rivera, L.</td>
<td>Modelo de Madurez para el Desarrollo de los Principios Lean Construction</td>
<td>Herramienta de evaluación basada en la articulación sistemática de los factores que contribuyen directamente a la creación de valor.</td>
<td>Barreras y Factores de Éxito en Lean Construction (Cano et al., 2015)</td>
<td>1. Personas - Educación y formación - Gerencia - Operación - Actitud y cultura</td>
<td>No definido</td>
<td>No definido</td>
<td>No definido</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Procesos de producción - Cadena de valor interna - Cadena de valor y gestión externa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Gestión de producción y procesos logísticos - Estructura organizacional - Cadena de suministro - Externalidades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Integración de la Gestión de la Cadenas de Suministro (SCM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5. Integración de la Gestión del Proceso de Producción (PMP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6. Integración de la Gestión de las Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40. Integración de la Gestión de la Cadenas de Suministro y Gestión del Proceso de Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo B: Entrevista Gerencial

Tiempo estimado: 90 min.

Nombre:
Profesión:
Edad:
Conocimiento lean o cursos:
Cargo:
Antigüedad en la empresa:

1) ¿Cuál fue el motivo para implementar métodos Lean en su organización?
 a. ¿Cómo fue la experiencia y quienes participaron en ella?

2) ¿Considera importante tener una planificación unificada en su método de trabajo?
 a. En caso de ser afirmativo cuales han sido las estrategias para crear esta planificación y que acciones ha realizado la Gerencia para llevarlo a cabo y mantenerlas en el tiempo?

3) ¿Qué herramientas propias de Lean conocen y/o cuáles tienen implementados?
 a. ¿En cuántos proyectos han aplicado las herramientas?
 b. Entre las implementaciones, cuáles fueron las más fáciles y difíciles de implementar.

4) Cuando se implementaron las herramientas Lean, se encontraron con resistencias al cambio en la organización (Por ejemplo: fue difícil que los trabajadores adaptaran los cambios en su forma de trabajo. Recibieron quejas o preguntas reiterativas hacer del objetivo de esta nueva forma de trabajo).
 a. Dado esas resistencias, cuáles han sido las estrategias utilizadas para afrontar las o que esperan realizar.

5) ¿Cómo consideran el estado actual de la implementación de la (s) herramienta Lean?
 a. ¿Qué ha funcionado y qué no, y por qué lo cree?

6) Existe algún manual de estandarización de procesos en la organización.

Si la respuesta es negativa preguntar como lo hacen.
 a. Cómo se creó dicho manual y quienes participaron en su creación.
 b. Cómo se transmite dicha estandarización a los trabajadores y existe algún mecanismo que regule su aplicación.
7) Como se asegura Gerencia que la información emitida llegó al destino o cumplió el objetivo que deseaban? (Por ejemplo al emitir algún comunicado como se aseguran de que lo recibieron todos los trabajadores)
 a. ¿Mediante qué medios recibe la Gerencia la información proveniente del resto de los trabajadores? S.
 b. Que nota de una escala 1 a 7, colocan a las vías de comunicación de gerencia a trabajadores y viceversa.

8) (Pregunta para Gerente de RRHH) Cómo se aplica la visión Lean en el proceso de selección de los nuevos candidatos y en los procesos de inducción y/o capacitación. M
 a. Han tenido que agregar competencias nuevas para la selección de persona para facilitar el uso de la herramienta LEAN.
 b. ¿Existe un diccionario de competencias?
 c. Han establecido inducciones o capacitaciones internas sobre la (s) herramientas Lean internamente como empresa?
 d. Como se aseguran que las competencias de las personas que interactúan con alguna herramienta (s) de LEAN, son las adecuadas? Utilizan evaluaciones de desempeño para eso?

9) (Pregunta a Gerente de Operaciones) Considera importante una planificación en los proyectos que se están llevando a cabo en la organización. M (Si la pregunta 5 fue contestada por el Gerente de operaciones, omitir esta pregunta)
 a. Cuáles han sido las herramientas o fases implementadas en la planificación de los proyectos. (PPC, CNC, plan semanal, 5s, ETC) M

10) (Pregunta a Gerente General puede ser a los otros Gerentes también) Para el cambio que se ha estado realizando en la Empresa (cambio de hacer las cosas con nuevas metodologías o herramientas), cuáles serían las competencias a modo general que desearían que tengan sus trabajadores (perfiles) P

11) Consideran que los métodos Lean son centrales para el crecimiento de la empresa o son entendidos como complementarios y solo aplicables para proyectos específicos. S

12) En sus reuniones Gerenciales, utilizan las herramientas Lean? (como por ejemplo: LPS o gestión de compromisos, responsables etc.). S
 a. Qué método utilizan y cómo es su implementación.

13) ¿Qué expectativas tienen con la investigación? ¿qué esperan recibir?
Anexo C: Resultados de la Entrevista Gerencial

Entrevista Gerencial: Motivo de Implementación Lean

Entrevista Gerencial: Conocimiento y/o Implementación de Herramientas Lean
Entrevista Gerencial: Barreras para la Implementación de Herramientas Lean

Entrevista Gerencial: Estrategias para la Implementación de Herramientas Lean
Entrevista Gerencial: Factores de Éxito en la Implementación de Herramientas Lean

Entrevista Gerencial: Razones de Fracaso en la Implementación de Herramientas Lean
Entrevista Gerencial: Estandarización de Procesos

Entrevista Gerencial: Medios para Transmisión de Estándares en los Procesos
Entrevista Gerencial: Medios de Comunicación con la Gerencia

Entrevista Gerencial: Medios de Comunicación en Terreno
Entrevista Gerencial: Integración de la Filosofía Lean en RRHH

Entrevista Gerencial: Integración de Competencias Lean en Procesos de Selección
Entrevista Gerencial: Capacitación en Aspectos Lean

Entrevista Gerencial: Planificación Gerencial
Entrevista Gerencial: Uso de Herramientas Lean a Nivel Gerencial

Entrevista Gerencial: Competencias para Impulsar la Implementación Lean
Entrevista Gerencial: Metodología Lean Pilar en la Empresa
Anexo D: Focus Group

<table>
<thead>
<tr>
<th>Preguntas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Estado actual de herramientas LEAN</td>
</tr>
<tr>
<td>- ¿Qué herramientas Lean tienen implementadas?</td>
</tr>
<tr>
<td>- ¿Cuál cree usted que fue el motivo por el que se está implementando los métodos Lean en su organización?</td>
</tr>
<tr>
<td>- ¿En cuántos proyectos han aplicado las herramientas?(Totalidad) ?Cuál es el beneficio de utilizar esta (s) herramientas?</td>
</tr>
<tr>
<td>2. Implementación</td>
</tr>
<tr>
<td>- ¿Contaron con el apoyo de gerencia en la implementación? (comunicación, explicación, inducción, capacitación etc.)</td>
</tr>
<tr>
<td>- Entre las implementaciones, cuáles fueron las más fáciles y difíciles de implementar y qué creen que lo dificulto o facilito? (resistencias, barreras y/o estrategias exitosas)</td>
</tr>
<tr>
<td>- ¿Han utilizado alguna estrategia propia / empresa para contrarrestar esas barreras?</td>
</tr>
<tr>
<td>- ¿Qué tanto incide las competencias del implementador con el éxito de la herramienta? (Liderazgos)</td>
</tr>
<tr>
<td>3. Comunicación</td>
</tr>
<tr>
<td>- ¿Existe algún manual de estandarización de procesos en la organización? Se rigen por este manual y existe algún mecanismo que regule su aplicación / Si no lo tienen consideración necesario la existencia de este u otro mecanismo?</td>
</tr>
<tr>
<td>- ¿Mediante que vías usted recibe y transmite información de parte de oficina central/Gerencia? ¿Cree que es la mejor vía? ¿Qué nota le pone? ¿Cómo le gustaría que fuera?</td>
</tr>
<tr>
<td>- ¿Cuál es la vía que usted utiliza para enviar y recibir información a los trabajadores de niveles más bajos? ¿creer que es efectiva su recepción?</td>
</tr>
<tr>
<td>4. Valor</td>
</tr>
<tr>
<td>- Si el día de mañana debe iniciar un nuevo proyecto y la Gerencia le da la opción de trabajar con cualquier herramienta, tomaría alguna herramienta LEAN o cree que otra le agregaría mayor valor. ¿Por qué?</td>
</tr>
</tbody>
</table>
Anexo E: Resultados del Focus Group

Generalidades
- 26 Participantes
- Un 50% de los participantes tiene conocimientos Lean (Curso/Diplomado)
- Promedio de años de experiencia en la aplicación de herramientas Lean: 2.9 años.
- Promedio de experiencia laboral: 7.7 años.
- 9 personas tiene sobre 10 años de experiencia laboral.

Estado actual de herramientas LEAN
- Todas las empresas aplican Last Planner, en promedio en un 70% de los Proyectos.
- Se implementa en menor medida VSM, 5’S, Mejora Continua, 4D.
- La mayoría cree que Last Planner fue implementando para mejorar la productividad de los proyectos.
- Poco conocimiento de otras herramientas.
- No se tiene una compresión unánime que es la filosofía Lean.

Implementación
- Al comienzo de las implementaciones se realizaron diversas capacitaciones e inducciones que a lo largo del tiempo han ido disminuyendo, las cuales se consideran siempre necesarias.

Comunicación
- Se cuenta con algunos manuales estandarizados para algunos procesos administrativos pero no se regula su aplicación.
- Existen diversos canales de comunicación (Tableros. Email, Teléfono), pero se debe trabajar en su efectividad.

Valor
- Pleno convencimiento de que LPS agrega valor (Personas, Proyecto, Empresa).
- Se volvería a implementar las herramientas Lean por ser útiles y necesarias.
- Se utilizaría LPS porque no se conocen más herramientas.
Barreras para la Implementación Lean

- Generar sentido en las personas: Convencer a las personas de la utilidad de la herramienta.
- Habilidades sociales: Capacidad de liderazgo, motivar a los equipos y fomentar el trabajo en equipo.
- Más apoyo: Contar con más apoyo de oficina central, supervisiones o procesos más estandarizados.
- Alineación estratégica: Perciben el interés de Gerencia que se utilice las herramientas, pero creen que las áreas principales (Oficina central) no están alineados en base a las herramientas o Lean.
- Comunicación: Creen que se puede mejorar el plan comunicacional de sus empresas, para así hacer más expedita el flujo de información.
Anexo F: Encuesta en Terreno

<table>
<thead>
<tr>
<th>Investigación Estrategias Lean Sostenibles en el Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptos Lean</td>
</tr>
<tr>
<td>Reconozco los conceptos que hay detrás de la filosofía Lean (Ejemplos: Valor, Flujo, Desperdicios, otro?)</td>
</tr>
<tr>
<td>Reconozco herramientas que apoyan la filosofía Lean</td>
</tr>
<tr>
<td>Reconozco las ventajas de una organización Lean</td>
</tr>
<tr>
<td>Reconozco una visión Lean en la organización</td>
</tr>
</tbody>
</table>

| **Cultura** |
| Altos mandos están comprometidos con las tareas que se realizan en terreno |
| Se desarrolla un ambiente grato de colaboración |
| Sientes confianza para dar tus opiniones en las reuniones.|
| La persona que lleva la reunión tiene habilidades de liderazgo |
| La persona a cargo de la reunión se preocupa de cuidar al equipo y sacar lo mejor de cada uno |

| **Estandarización** |
| Existen documentos (estándares o manuales) para entender mejor las metodologías |
| Existe la posibilidad de aportar y mejorar los manuales de procedimientos existentes |

| **Planificación** |
| Me siento parte de la reunión de planificación |
| Lo que aporto se toma en cuenta en la reunión de planificación |
| Considero que es importante la reunión planificación |
| Existe una reunión planificación colaborativa |

| **"Transparencia"** |
| Conozco mi rol en la organización |
| Conozco el estado actual de los procesos en el que estoy involucrado |
| ¿Conozco objetivos y estrategia del proyecto? |

| **Mejora continua** |
| Recibo retroalimentación positiva o negativa en las tareas que realicé |
| Existe una búsqueda constante de mejores formas de trabajar en el equipo |
| Me incentivan a proponer mejoras para el proyecto. |
Anexo G: Resultados de la Encuesta en Terreno

Encuesta en Terreno: Conceptos Lean

Encuesta en Terreno: Cultura
Encuesta en Terreno: Estandarización

Encuesta en Terreno: Planificación
Encuesta en Terreno: Transparencia

Encuesta en Terreno: Mejora Continua
Anexo H: Lista de Chequeo en Terreno

<table>
<thead>
<tr>
<th></th>
<th>PLAN MAESTRO (PM) y PLANIFICACIÓN POR FASES (PF)</th>
<th>S/N/N.O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>¿Existe un Plan Maestro?</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Difusión del Plan Maestro ¿Quiénes lo conocen?</td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Mandante(s)</td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>Equipo de Diseño ¿Quiénes?</td>
<td></td>
</tr>
<tr>
<td>1.2.3</td>
<td>Proveedores</td>
<td></td>
</tr>
<tr>
<td>1.2.4</td>
<td>Subcontratistas</td>
<td></td>
</tr>
<tr>
<td>1.2.5</td>
<td>Administrador de Obra</td>
<td></td>
</tr>
<tr>
<td>1.2.6</td>
<td>Jefe de Terreno</td>
<td></td>
</tr>
<tr>
<td>1.2.7</td>
<td>Jefe de Obra</td>
<td></td>
</tr>
<tr>
<td>1.2.8</td>
<td>Capataces (SUPERVISORES)</td>
<td></td>
</tr>
<tr>
<td>1.2.9</td>
<td>Prevencionista de Riesgo</td>
<td></td>
</tr>
<tr>
<td>1.2.10</td>
<td>Personal de Calidad</td>
<td></td>
</tr>
<tr>
<td>1.2.11</td>
<td>Personal de Bodega</td>
<td></td>
</tr>
<tr>
<td>1.2.12</td>
<td>Maestros Mayores</td>
<td></td>
</tr>
<tr>
<td>1.2.13</td>
<td>Otros ¿Cuáles?</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Realización de Planificación Interactiva (Phase Schedule)</td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>¿Existe un plan de Hitos?</td>
<td></td>
</tr>
<tr>
<td>1.3.2</td>
<td>Se identifica Planificación del tipo Pull en el programa Maestro</td>
<td></td>
</tr>
<tr>
<td>1.3.3</td>
<td>Seguimiento a la planificación interactiva</td>
<td></td>
</tr>
<tr>
<td>1.3.3.1</td>
<td>¿Los participantes conocen los Hitos principales del proyecto?</td>
<td></td>
</tr>
<tr>
<td>1.3.3.2</td>
<td>Conocimiento de partidas críticas (pertenecientes a la ruta crítica)</td>
<td></td>
</tr>
<tr>
<td>1.3.3.3</td>
<td>Metodología constructiva (se conoce)</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Posee registro de Implementación de sugerencias sobre Plan Maestro.</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Posee registro de Implementación de sugerencias sobre Planificación Interactiva (sim. a PPC)</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Participación de responsables directos en Planificación Interactiva</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LOOKAHEAD (LA)</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Existe un Plan Lookahead?</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Ejecución de LA (definición plazo y selección de actividades) ¿Quiénes participan?</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Lookahead (espacio de tiempo promedio con el cual se mira adelante)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Preparar LA: Detectar y levantar restricciones del programa (enfoque en compromisos relevantes, análisis de actividades); entregar información actualizada y a tiempo</td>
<td></td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Identificación de restricciones</td>
<td></td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Seguimiento de restricciones</td>
<td></td>
</tr>
<tr>
<td>2.3.1.4</td>
<td>Asignan compromisos en las instancias</td>
<td></td>
</tr>
<tr>
<td>2.3.1.5</td>
<td>Asignan acciones concretas en las instancias</td>
<td></td>
</tr>
<tr>
<td>2.3.1.6</td>
<td>Asignación de Responsables en las instancias</td>
<td></td>
</tr>
<tr>
<td>2.3.2</td>
<td>Seguir y gestionar la liberación de restricciones (confiabilidad)</td>
<td></td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Existe un indicador de liberación de restricciones semanales</td>
<td></td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Existe un indicador de confiabilidad por persona</td>
<td></td>
</tr>
<tr>
<td>2.3.3</td>
<td>Existe retroalimentación entre los involucrados</td>
<td></td>
</tr>
<tr>
<td>2.3.4</td>
<td>Esta Retroalimentación se realiza en forma oportuna (a tiempo)</td>
<td></td>
</tr>
<tr>
<td>2.3.5</td>
<td>Existe el concepto de Inventario de trabajo ejecutable (ITE)</td>
<td></td>
</tr>
<tr>
<td>2.3.6</td>
<td>Existe una gestión de las restricciones</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Implementación de sugerencias sobre LA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PLAN DE CORTO PLAZO O SEMANAL (PCP)</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Identificar y definir las actividades del plan de corto plazo</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Se Gestiona el compromiso durante la semana</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Se Designan responsables de actividad(es)</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Se Define la meta semanal de actividad y el logro de compromiso</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Medir y Analizar PPC</td>
<td></td>
</tr>
<tr>
<td>3.5.1</td>
<td>Medir el PPC</td>
<td></td>
</tr>
<tr>
<td>3.5.2</td>
<td>Relación PPC con otros indicadores tradicionales (PPC correlacionado con avance)</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Identificar Causas de No Cumplimiento (causa raíz)</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Definir e implementar soluciones para Causas de No Cumplimiento</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Se ha utilizado el Inventario de Trabajo Ejecutable</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Verificación del estado de los compromisos (Avance y Gestión)</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Participación de todos los Actores en el Plan de Corto Plazo (subcontratos, administrador, oficina técnica, jefes de terreno, UPS) (asistencia y cumplimiento del rol)</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Implementación de sugerencias sobre PCP</td>
<td></td>
</tr>
</tbody>
</table>

4	ASPECTOS GENERALES DE LA REUNIÓN
4.1	Publicar indicadores y resultados (ver claridad, sencillez, periodicidad, enfoque y potencia de información)
4.1.1	Cuáles formas de publicación de resultados se utilizan
4.1.1.1	Informes
4.1.1.2	Gestión Visual
4.1.1.3	Paneles de información (texto y gráficos)
4.1.1.4	Recordatorios (en oficina, u otro)
4.1.1.5	Pantallas
4.1.1.6	Mural de los trabajadores
4.1.1.7	Otros ¿Cuáles?
4.1.2	Indicadores que se publican
4.1.2.1	PPC (Porcentaje de Plan Completado)
4.1.2.2	CNC (Causas de No Cumplimiento)
4.1.2.3	PCR (Porcentaje de Cumplimiento del Restricción)
4.1.2.4	Curvas de Avance (Real Vs Programada)
4.1.2.5	Otros ¿Cuáles?

4.2	Aprendizaje y entendimiento de la metodología (sociabilización del sistema, lenguaje, principios y conceptos)
4.2.1	Existen nuevas interacciones entre actores del proyecto
4.2.2	La información entre actores es compartida
4.2.3	Existen nuevas instancias de retroalimentación del proceso
4.2.4	Existen documentos anexos a los cuales recurrir para comprender mejor la metodología (adicional al manual GEPUC)
4.2.5	Otras instancias donde se denotan un mayor conocimiento o manejo de la metodología
4.2.5.1	Lenguaje manejado ¿los actores adoptan conceptos lean a su lenguaje cotidiano?
4.2.5.2	Los empleados han analizado sus propias causas de No Cumplimiento
4.2.6	Mandos aguas abajo exigen liberación de restricciones para poder comprometerse
4.2.7	La mejora continua de los procesos ha pasado a ser parte de la reunión (verificando causas raíces, tomando acciones para que no se repitan causas)

4.3	Disposición de los actores frente a la implementación (motivación, actitud, apoyo gerencia, etc.)
4.3.1	Disponibilidad plena para el desarrollo de este tipo de planificación
4.3.2	Presencia de QUERER y DESEAR hacer bien el trabajo de planificación
4.3.3	Presencia de PODER hacer bien el trabajo de planificación

4.4	Empoderamiento y credibilidad del (los) facilitador(es) del sistema
4.4.1	Existe un líder claro para la reunión
4.4.2	El líder se asegura que se Distribuya el tiempo acorde a los temas a tratar
4.4.3	Existe un trabajo constante asociado a la búsqueda, al seguimiento, etc
4.4.4	Posee Credibilidad el líder
4.4.5	El líder se presenta como un agente motivador para compartir, colaborar y crear ambiente de confianza
4.4.6	Existe un equipo de trabajo asociado a liderar la implementación (ajuste de compromisos, seguimiento)

<p>| 5 | Cultura Lean |
| 5.1 | Colaboración (entre pares se ayuden en la reunión y se vea "bueno onda" en apoyarse más que en atacarse) |
| 5.2 | Respeto (se escuchen entre los UP'S, no se griten, que no sea mal ambiente) |
| 5.3 | Compromiso (ver si les cuesta o no hacer compromisos en fechas y cantidades para avances de obra) |</p>
<table>
<thead>
<tr>
<th>5.4</th>
<th>Confianza (Que puedan los Up’s puedan hablar de sus restricciones y puedan realmente comprometerse con lo que se PUEDE ejecutar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Motivación (Lleguen a la hora los Up’s, llegue todos los que fueron invitados a la reunión, que participen)</td>
</tr>
<tr>
<td>5.6</td>
<td>Liderazgo (El líder que sea escuchado que escuche, que respeten. Facilitador de la reunión)</td>
</tr>
</tbody>
</table>

6 Herramientas

<table>
<thead>
<tr>
<th>6.1</th>
<th>DI = Diagrama Ishikawa (Espina de Pescado para determinar las causas y tomar acciones)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>SPQ = 5 Por qué (Análisis de la causa Raíz de las CNC en la reunión)</td>
</tr>
<tr>
<td>6.3</td>
<td>6S = Ordenar, Limpiar, Clasificar, Estandarizar, Sostener, Safety. (Limpieza en general y lugares de acopio. Ver si existen delimitaciones, rótulos, etc.)</td>
</tr>
<tr>
<td>6.4</td>
<td>VM = Visual Management. (Gestión Visual (paneles))</td>
</tr>
<tr>
<td>6.5</td>
<td>PY = Poka-Yoke. (A prueba de errores (demarcaciones gasfitería, agua, etc))</td>
</tr>
<tr>
<td>6.6</td>
<td>K = Kanban. (Tarjeta con información de producción)</td>
</tr>
<tr>
<td>6.7</td>
<td>Kaizen = Mejora Continua. (Si se escuchan las mejoras de las personas, si hay buzones o tableros de sugerencias)</td>
</tr>
<tr>
<td>6.8</td>
<td>Kitting = agrupar herramientas y materiales de un proceso para su desarrollo. (Observar si se realizan Kit para las casas o departamentos de los diferentes materiales, paquetes con herramientas de trabajo.)</td>
</tr>
<tr>
<td>6.9</td>
<td>A3 (Visualizar si lo utilizan los mandos medios para comunicar información. Podría estar en paneles.)</td>
</tr>
<tr>
<td>6.10</td>
<td>BIM (Visualizar si se usan instrucciones de trabajo con BIM o si en la reunión de planificación muestran en avance con modelos 3D.)</td>
</tr>
<tr>
<td>6.11</td>
<td>Gemba (Ver si los mandos medios están en el Gemba (lugar de trabajo en donde ocurre el proceso productivo en cuestión))</td>
</tr>
<tr>
<td>6.12</td>
<td>Genchi Genbutsu (Ver si los mandos medios van al Gemba para supervisar o buscar mejoras o solucionar problemas.)</td>
</tr>
<tr>
<td>6.13</td>
<td>JIT (Ver si los materiales están disponibles cuando se requieren, si están a la mano, si las herramientas en bodega están a tiempo.)</td>
</tr>
<tr>
<td>6.14</td>
<td>Gráficos de Pareto (Ver si aparecen en los paneles o si los utilizan los mandos medios o en el análisis de restricciones o causas de no cumplimiento.)</td>
</tr>
<tr>
<td>6.15</td>
<td>Histogramas (Ver si aparecen en los paneles o si los utilizan los mandos medios o en el análisis de restricciones o causas de no cumplimiento.)</td>
</tr>
<tr>
<td>6.16</td>
<td>Mapas de procesos (Ver si es utilizado en los paneles para conocer mejor los procesos formales de la organización. Ver si aparecen en las instrucciones de trabajo para facilitar entendimiento de partida. Ver si lo utilizan mandos medios para conocer procesos operacionales o para mejorarlos (versión VSM de los mapas de proceso)).</td>
</tr>
</tbody>
</table>
Anexo I: Resultados de la Lista de Chequeo en Terreno

Visita a Terreno: Participantes en Reunión de Planificación
Fase

<table>
<thead>
<tr>
<th>Fase</th>
<th>Práctica</th>
<th>Promedio Implementación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Maestro</td>
<td>Plan Maestro-Fases</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Planificación Interactiva</td>
<td>27%</td>
</tr>
<tr>
<td>Plan Intermedio</td>
<td>Plan Intermedio-Lookahead</td>
<td>91%</td>
</tr>
<tr>
<td></td>
<td>Gestión de Restricciones (PCR)</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>Inventario de Trabajo Ejecutable (ITE)</td>
<td>36%</td>
</tr>
<tr>
<td>Plan Semanal</td>
<td>Plan Semanal</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>CNC</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>Solución CNC</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td>Reunión Semanal</td>
<td>100%</td>
</tr>
<tr>
<td>General</td>
<td>Estandarización de Procesos</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>Información Visual</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td>Espacio de tiempo promedio L.A. (Semanas)</td>
<td>3.7</td>
</tr>
</tbody>
</table>

![Graph showing implementation percentages](image)

Visita a Terreno: Implementación LPS
<table>
<thead>
<tr>
<th>Empresa</th>
<th>Proyecto</th>
<th>% Implementación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empresa 1</td>
<td>Proyecto 1</td>
<td>75%</td>
</tr>
<tr>
<td>Empresa 2</td>
<td>Proyecto 2</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Proyecto 3</td>
<td>67%</td>
</tr>
<tr>
<td>Empresa 3</td>
<td>Proyecto 4</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>Proyecto 5</td>
<td>67%</td>
</tr>
<tr>
<td>Empresa 4</td>
<td>Proyecto 6</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Proyecto 7</td>
<td>67%</td>
</tr>
<tr>
<td>Empresa 5</td>
<td>Proyecto 8</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Proyecto 9</td>
<td>42%</td>
</tr>
<tr>
<td>Empresa 6</td>
<td>Proyecto 10</td>
<td>83%</td>
</tr>
<tr>
<td>Empresa 7</td>
<td>Proyecto 11</td>
<td>67%</td>
</tr>
</tbody>
</table>

Promedio 60%

Visita a Terreno: Porcentaje de Implementación de LPS en los Proyectos

![Diagrama de barras mostrando la cultura Lean en terreno](attachment:diagrama.png)

Visita a Terreno: Cultura Lean en Terreno
Visita a Terreno: Reunión en Terreno

Visita a Terreno: Estandarización y Planeación
Visita a Terreno: Planificación

Visita a Terreno: Herramientas CNC
Visita a Terreno: Mejora Continua

Visita a Terreno: Herramientas Lean en Terreno
<table>
<thead>
<tr>
<th>Evidencias</th>
<th>N°</th>
<th>ÍTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajo en equipo</td>
<td>1</td>
<td>Las personas trabajan en equipo.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Creo que formo parte de un equipo de trabajo muy bueno.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Mi (s) jefe (s) nos incentiva siempre a trabajar unidos como un equipo de trabajo.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Conozco las capacidades y habilidades de mis compañeros. Creo que todos entendemos que nuestro trabajo afecte al de otros.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Cuando quiero comentar acerca de una idea nueva, siempre soy escuchado.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Las tareas o compromisos se completan gracias al trabajo en equipo.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Desarrollo de capacidades</td>
<td>8</td>
<td>La empresa se preocupa de capacitar constantemente a sus trabajadores.</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>A mí se me ha capacitado en Lean.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Cuando llegan personas nuevas se les hacen inducciones de Lean o Last Planner.</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>La empresa tiene claridad cuáles son nuestras fortalezas y debilidades y nos apoyan capacitándonos.</td>
</tr>
<tr>
<td>Prácticas de gestión</td>
<td>12</td>
<td>Es fácil coordinar proyectos/tareas entre las diferentes partes de la organización.</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Las metas están alineadas en todos los niveles de la empresa.</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Existe una misión clara por parte de la empresa que le da significado y dirección a nuestro trabajo.</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>En la misión de la empresa uno se da cuenta que hay aspectos Lean.</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Aquí hay apoyo y compromiso por parte de Gerencia y/o oficina central en Lean.</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Encuentro que la empresa tiene ganas de seguir creciendo con los conceptos Lean.</td>
</tr>
<tr>
<td>Mejora Continua</td>
<td>18</td>
<td>Aquí existe un proceso formal para la captación de sugerencias y oportunidades de mejora en todos los niveles de la organización.</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Generalmente hay resistencia a las iniciativas que surgen para realizar cambios.</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Aquí se nos permite mejorar los procesos o formas de trabajar.</td>
</tr>
<tr>
<td>5S</td>
<td>21</td>
<td>El proyecto o donde yo trabajo está generalmente limpio de materiales innecesarios/papeles y de basura.</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Aquí en la empresa promueven las 5S.</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Aquí es importante la organización, el orden y la limpieza.</td>
</tr>
<tr>
<td>Comunicación</td>
<td>24</td>
<td>Cuando hay algo importante que la empresa deba comunicar, siempre estoy enterado.</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Utilizamos canales formales de comunicación entre nosotros/en la empresa.</td>
</tr>
<tr>
<td>Lean</td>
<td>26</td>
<td>Reconozco los conceptos que hay detrás de la filosofía Lean.</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Reconozco las herramientas de mi empresa que apoyan a la filosofía Lean.</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Reconozco las ventajas de una organización Lean.</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>En mi empresa se detecta la causa raíz de los defectos, se analizan y se proponen siempre mejoras.</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Yo creo que las personas están motivadas en utilizar estas herramientas Lean.</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Aquí hay un ambiente grato.</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Hay un clima de respeto y confianza en donde yo trabajo.</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>La empresa siempre está promoviendo que usemos Last Planner.</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Mi jefe se preocupa de cuidar al equipo y saca lo mejor de cada uno.</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Tengo acceso a documentos para entender mejor las metodologías Lean.</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>La mayoría de los procedimientos internos se encuentran estandarizados.</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>La empresa miden (avance de proyecto, costo, cumplimiento de plazos) los resultados de utilizar algunas de las herramientas Lean.</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>Creo que todos tenemos claridad cuál es el valor para el cliente externo en relación al proyecto.</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>Hemos identificado cuales son las actividades que agregan valor en nuestro trabajo.</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Utilizamos un VSM (mapa de procesos) para identificar los procesos.</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>Se diferenciar entre un cliente interno y uno externo.</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>Identificamos los desperdicios e ineficiencias de nuestro trabajo.</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>Aquí se detecta la causa raíz de las CNC, se analizan y se proponen mejoras.</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>En reunión, las personas llegan preparadas con sus restricciones.</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>De repente nos auditán las reuniones, para ver si son efectivas.</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>Aquí se analiza tanto el plan semanal como el de mediano plazo.</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Los resultados siempre son mostrados en reunión, con indicadores y se explica.</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Existen tecnologías importantes en la empresa.</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>Se nota que la empresa tiene motivación para adquirir nuevas tecnologías para la empresa.</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Actualmente las tecnologías que utilizamos son efectivas.</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>Cuando llega tecnología nueva se nos enseña cómo utilizarlo.</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>Cómo evalúa la comunicación desde Gerencia hacia los trabajadores (siento el 7 la nota más alta)</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>Cómo evalúa la comunicación desde los trabajadores hacia Gerencia (siento el 7 la nota más alta)</td>
</tr>
</tbody>
</table>
Anexo K: Resultados de la Encuesta Organizacional

<table>
<thead>
<tr>
<th>Encuesta Organizacional</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajo en Equipo</td>
<td>4.15</td>
</tr>
<tr>
<td>Desarrollo de Capacidades</td>
<td>3.25</td>
</tr>
<tr>
<td>Prácticas de Gestión</td>
<td>3.60</td>
</tr>
<tr>
<td>Mejora Continua</td>
<td>3.60</td>
</tr>
<tr>
<td>5´S</td>
<td>3.60</td>
</tr>
<tr>
<td>Comunicación</td>
<td>3.80</td>
</tr>
<tr>
<td>Conocimientos Lean</td>
<td>3.50</td>
</tr>
<tr>
<td>Cultura</td>
<td>4.00</td>
</tr>
<tr>
<td>Estandarización</td>
<td>3.50</td>
</tr>
<tr>
<td>Valor</td>
<td>3.60</td>
</tr>
<tr>
<td>Planificación</td>
<td>3.40</td>
</tr>
<tr>
<td>Tecnología</td>
<td>3.65</td>
</tr>
</tbody>
</table>

Encuesta Organizacional: Resultados Generales
Anexo L: Validación del Modelo de Madurez – Expertos

<table>
<thead>
<tr>
<th>Experto 1</th>
<th>Investigador</th>
<th>10 años</th>
</tr>
</thead>
</table>

Validez

<table>
<thead>
<tr>
<th>Principios Lean Construction</th>
<th>Satisfactorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminación de Desperdicios</td>
<td>Satisfactorio</td>
</tr>
<tr>
<td>Gestión de la Cadena de Suministro</td>
<td>Satisfactorio</td>
</tr>
<tr>
<td>Optimización del Contenido de Trabajo</td>
<td>Satisfactorio</td>
</tr>
<tr>
<td>Optimización del Sistema de Producción</td>
<td>Satisfactorio</td>
</tr>
<tr>
<td>Optimización de la Programación de la Producción</td>
<td>Bueno</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estándarización</th>
<th>Bueno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definición de los Procesos de Trabajo</td>
<td>Bueno</td>
</tr>
<tr>
<td>Organización del Lugar de Trabajo</td>
<td>Bueno</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cultura / Personas</th>
<th>Bueno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compromiso Organizacional</td>
<td>Bueno</td>
</tr>
<tr>
<td>Involucramiento del Personal</td>
<td>Satisfactorio</td>
</tr>
<tr>
<td>Capacitación</td>
<td>Bueno</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enfoque al Cliente</th>
<th>Satisfactorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibilidad en los Recursos</td>
<td>Bueno</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mejoramiento Continuo / Calidad</th>
<th>Satisfactorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medición</td>
<td>Indicar el establecimiento de líneas base de desempeño. Incorporar la definición de metas a corto, mediano y largo plazo en relación al desempeño y los indicadores. Resaltar la importancia del benchmarking.</td>
</tr>
<tr>
<td>Aprendizaje Organizacional</td>
<td>La búsqueda de la causa raíz de los problemas es una tarea que debe de realizarse con la participación de todos los involucrados, es decir, se debe de generar un aprendizaje en conjunto.</td>
</tr>
<tr>
<td>Respuesta a Defectos</td>
<td>Bueno</td>
</tr>
<tr>
<td>PrevenCIÓN DE ErROS</td>
<td>Bueno</td>
</tr>
</tbody>
</table>

| Plan Estratégico | Satisfactorio |

<table>
<thead>
<tr>
<th>Validación</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Muy en desacuerdo</td>
<td>2 En desacuerdo</td>
<td>3 Neutral</td>
<td>4 De acuerdo</td>
<td>5 Muy de acuerdo</td>
</tr>
<tr>
<td>Generalidades</td>
<td>3</td>
<td>Definir ayudas visuales (escala de colores) para distinguir cada nivel de madurez.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El uso del vocabulario en el MM es comprensible.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La aplicación del MM es entendible.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La evaluación y la forma de visualizar los resultados ayudan a entender el nivel de madurez de los principios LC.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El MM es una herramienta que permite una autoevaluación para el desarrollo de los principios LC</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El MM ayuda a generar estrategias para buscar el desarrollo de la madurez de los principios y prácticas de LC en la organización</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comentarios Generales

- Incluir un glosario con términos difíciles de entender.
- Desarrollar las instrucciones de aplicación del Modelo de Madurez.
- La redacción de las evidencias debe ser objetiva e incluir cosas demostrables.
<table>
<thead>
<tr>
<th>** validar</th>
<th>Deficiente</th>
<th>Aceptable</th>
<th>Satisfactorio</th>
<th>Bueno</th>
<th>Excelente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principios Lean Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Sistema de Producción</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminación de Desperdicios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Contenido de Trabajo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión de la Cadena de Suministro</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definición de los Procesos de Trabajo</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organización del Lugar de Trabajo</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compromiso Organizacional</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involucramiento del Personal</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Valor</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibilidad en los Recursos</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mejoramiento Continuo / Calidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprendizaje Organizacional</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respuesta a Defectos</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevención de Errores</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan Estratégico

<table>
<thead>
<tr>
<th>validar</th>
<th>1 Muy en desacuerdo</th>
<th>2 En desacuerdo</th>
<th>3 Neutral</th>
<th>4 De acuerdo</th>
<th>5 Muy de acuerdo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalidades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El formato del MM es claro y simple de entender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El uso del vocabulario en el MM es comprensible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La aplicación del MM es entendible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La evaluación y la forma de presentar los resultados ayudan a entender el nivel de madurez de los principios LC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El MM es una herramienta que permite una autoevaluación para el desarrollo de los principios LC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El MM ayuda a generar estrategias para buscar el desarrollo de la madurez de los principios y prácticas de LC en la organización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comentarios Generales

- Muy buen modelo, creo que entrega claridad y que incentiva un correcto entendimiento de los principios. Creo que es algo largo y denso, podría no ser bien recibida para su aplicación.
<table>
<thead>
<tr>
<th>Experto 3</th>
<th>Ocupación: Consultor</th>
<th>Experiencia en Lean Construction: 6 años</th>
</tr>
</thead>
</table>

Validez

<table>
<thead>
<tr>
<th>Principios Lean Construction</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminación de Desperdicios</td>
<td>Optimización del Sistema de Producción</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimización del Contenido de Trabajo</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gestión de la Cadena de Suministro</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimización de la Programación de la Producción</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td>Gestión Visual</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td>Considerar la retroalimentación por parte de los clientes durante la realización de los procesos y al final de estos.</td>
</tr>
<tr>
<td></td>
<td>Definición de los Procesos de Trabajo</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organización del Lugar de Trabajo</td>
<td>Excelente</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td>Compromiso Organizacional</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Involucramiento del Personal</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td>Dificultad para visualizar las evidencias y la evaluación de las percepciones.</td>
</tr>
<tr>
<td></td>
<td>Capacitación</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td>Flexibilidad en los Recursos</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mejoramiento Continuo / Calidad</td>
<td>Medición</td>
<td>Bueno</td>
<td></td>
<td></td>
<td>Establecer una relación de los indicadores de la empresa con el uso y los resultados obtenidos al implementar herramientas Lean. Integrar todos los indicadores con los objetivos estratégicos.</td>
</tr>
<tr>
<td></td>
<td>Aprendizaje Organizacional</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respuesta a Defectos</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td>Revisión de la redacción del objetivo de la práctica para evitar confusión con la estandarización de procesos.</td>
</tr>
<tr>
<td></td>
<td>Prevención de Errores</td>
<td>Bueno</td>
<td></td>
<td></td>
<td>Integrar el concepto Poka-Yoke con el desarrollo de la práctica. Considerar la evaluación de los mecanismos generados para revisar su efectividad.</td>
</tr>
<tr>
<td>Plan Estratégico</td>
<td></td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generalidades

- El formato del MM es claro y simple de entender. 3
- El uso del vocabulario en el MM es comprensible. 4
- La aplicación del MM es entendible. 3
- La evaluación y la forma de visualizar los resultados ayudan a entender el nivel de madurez de los principios LC. 4
- MM es una herramienta que permite una autoevaluación para el desarrollo de los principios LC. 4
- MM ayuda a generar estrategias para buscar el desarrollo de la madurez de los principios y prácticas de LC en la organización. 4

Comentarios Generales

- Enfatizar en que los objetivos estratégicos de las empresas se pueden alcanzar a través de la filosofía Lean.
- Se debe mejorar y simplificar las descripciones para cada nivel de madurez.
- Establecer un resumen para mostrar los resultados obtenidos.
<table>
<thead>
<tr>
<th>Ocupación</th>
<th>Consultor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiencia en Lean Construction</td>
<td>10 años</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Validación</th>
<th>Bueno</th>
<th>Aceptable</th>
<th>Satisfactorio</th>
<th>Deficiente</th>
<th>Excelente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principios Lean Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminación de Desperdicios</td>
<td>Aceptable</td>
<td></td>
<td>Bueno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Sistema de Producción</td>
<td>Aceptable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Contenido de Trabajo</td>
<td></td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión de la Cadena de Suministro</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización de la Programación de la Producción</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definición de los Procesos de Trabajo</td>
<td></td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organización del Lugar de Trabajo</td>
<td></td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prácticas Lean Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultura / Personas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compromiso Organizacional</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involucramiento del Personal</td>
<td>Deficiente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitación</td>
<td>Deficiente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfoque al Cliente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización del Valor</td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibilidad en los Recursos</td>
<td></td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mejoramiento Continuo / Calidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición</td>
<td>Satisfactorio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprendizaje Organizacional</td>
<td></td>
<td>Bueno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respuesta a Defectos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previsión de Errores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan Estratégico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mucho en desacuerdo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>En desacuerdo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Neutral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>De acuerdo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Muy de acuerdo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generalidades

- El formato del MM es claro y simple de entender. 3
- El uso del vocabulario en el MM es comprensible. 3
- La aplicación del MM es entendible. 3
- La evaluación y la forma de visualizar los resultados ayudan a entender el nivel de madurez de los principios LC. 5
- El MM es una herramienta que permite una autoevaluación para el desarrollo de los principios LC. 4
- El MM ayuda a generar estrategias para buscar el desarrollo de la madurez de los principios y prácticas de LC en la organización. 4

Comentarios Generales

- El MM es una herramienta que permite una autoevaluación para el desarrollo de los principios LC.
- No es el desarrollo de LC, es el desarrollo del aprendizaje de las organizaciones.
Anexo M: Validación del Modelo de Madurez – Implementadores

Pontificia Universidad Católica de Chile
Escuela de Ingeniería
Departamento de Ingeniería y Gestión de la Construcción

Investigador: Uriel Benjamín Soto Becerra
Investigación: Evaluación de la Madurez de los Principios Lean en proyectos de construcción

Validación del Modelo de Madurez para el Desarrollo de los Principios Lean Construction

➢ **Sesión 1** (90 minutos)
 1. **Inicio** (60 minutos)
 - Presentación
 - Entrevista semiestructurada
 - Descripción del entrevistado
 - Ocupación
 - Experiencia Profesional en Lean Construction (años)
 - Tareas en torno a Lean Construction en la organización
 - Implementación Lean Construction en la organización
 - Conocimiento de la empresa (objetivos y plan estratégico)
 - Conocimiento Lean (filosofía y principios)
 - Propósito del cambio Lean
 - Desarrollo del cambio Lean (gestión)
 - Herramientas aplicadas
 - Beneficios obtenidos
 - Barreras confrontadas
 - Conocimiento de Modelos de Madurez

 2. **Presentación del Modelo de Madurez** (30 minutos)
 - Entrega y explicación de Modelo de Madurez

➢ **Sesión 2** (90 minutos)
 3. **Aplicación del Modelo de Madurez** (60 minutos)
 - Autoevaluación de los Principios Lean Construction

 4. **Validación** (30 minutos)
 - Entrevista semiestructurada
 - Validación
 - Utilidad
 - Entendimiento
 - Autoevaluación
 - Viabilidad de aplicación y desarrollo
 - Observaciones
<table>
<thead>
<tr>
<th>Implementador</th>
<th>Visitor de Obra</th>
<th>Gerente de Construcción</th>
<th>Jefe de Operaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiencia Lean Construcción</td>
<td>2 Años</td>
<td>3 Años</td>
<td>4 Años</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generalidades</th>
<th>Visitor de Obra</th>
<th>Gerente de Construcción</th>
<th>Jefe de Operaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>El formato del modelo de madurez es claro y simple de entender.</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>El uso del vocabulario en el modelo de madurez es comprehensible.</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>La evaluación y la forma de visualizar los resultados ayudan a entender el nivel de madurez de los principios LC.</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>El MM es una herramienta que permite una autoevaluación para el desarrollo de los principios LC.</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>El MM ayuda a generar estrategias para buscar el desarrollo de la madurez de los principios y prácticas de LC en la organización.</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Comentarios Generales

- El modelo parece ser alejado de la realidad de la construcción, ya que tiene un enfoque a procesos en la manufactura, los cuales pueden ser controlados. Lograr cambios a nivel de la construcción es casi imposible debido a que existen muchas variables por controlar.

- El modelo brinda los parámetros claros para pasar de un nivel a otro, me permite pensar en lo que tengo que hacer y que prácticas se pueden implementar y desarrollar en los proyectos. Además, permite entender que significa el nivel de madurez que se tiene.

- El modelo es una guía para el crecimiento de la empresa, para que se cumplan objetivos estratégicos, que van más allá de una mejora en un indicador económico, ya que se involucran cuestiones de fondo que afectan a la producción.

- El modelo es una guía para el crecimiento de la empresa, para que se cumplan objetivos estratégicos, que van más allá de una mejora en un indicador económico, ya que se involucran cuestiones de fondo que afectan a la producción.

- Es una herramienta que da la posibilidad de comparar proyectos, determinar cuáles están bien o cuáles están mal, y analizar las causas de esto.

- El plan estratégico debe desarrollarse a nivel gerencial con base en la realidad de los proyectos y a través de esta herramienta es posible dar evidencias para definir el rumbo de la empresa.

- Se tiene el convencimiento de la utilidad y los beneficios que ofrece Lean Construction, pero el modelo facilita y deja claro el camino que debe de seguirse. Guía el camino, pues permite identificar con claridad en donde estamos en términos de la implementación de los principios. Además ayuda a establecer diferencias entre un nivel y otro, y de un proyecto a otro, pudiendo establecer diferencias, para ver hasta donde se puede llegar y que se puede hacer para lograrlo.

- El uso de la herramienta tiene un gran potencial, para guiar a la organización en esta transformación Lean que está en proceso, pues algunos de estos principios están por ser establecidos en la misión, visión y objetivos estratégicos de la empresa. Y siendo así, el modelo guiará la implementación a nivel de proyecto.

- El modelo no solo entrega una nota sino también un rumbo ya que permite visualizar de forma simple el estado de implementación e internalización de los principios lean y por lo mismo también permite ver de forma sencilla cuales son aquellos puntos débiles para superar un nivel y pasar al siguiente.

- Debido a que no vincula directamente las herramientas mínimas a los principios y solo se nombran se debió efectuar una adaptación inicial para evaluar las obras. Ello necesariamente requiere que un profesional entendido en los lineamientos dentro de la organización comprenda y estudie el modelo para hacer la vinculación equivalente que permita la apropiada evaluación.

- El modelo de madurez debe desarrollar un panel que permita definir el estado organizacional a partir del resultado de cada proyecto evaluado, lo cual hoy solo está diseñado a nivel de cada proyecto individual. También se sugiere que albra las herramientas y consideraciones generales que éstas deben poseer para lograr los objetivos de nivel para cada uno de los principios.

- Se sugiere complementar el modelo actual con una metodología que permita observar en forma gráfica la agregación de resultados de empresa y no dejarlo solo a nivel de proyecto, de otro modo el modelo de madurez me parece que no está completo ya que puede existir proyectos muy buenos y otros de menor grado de implementación lo cual sin esto no resulta gestionable. Asimismo, el Principio de Cultura/Personas debe ser completado en la hoja de herramientas para servir de apoyo al desarrollo toda vez que no se detalla y claramente es relevante para el logro y sustentabilidad del cambio cultural que se pretende medir.
Anexo N: Modelo de Madurez para el Desarrollo de los Principios Lean Construction