UN ESQUEMA PARA EL ANALISIS DE LA DISTRIBUCION
DE BENEFICIOS DE PROYECTOS DE RIEGO *

JUAN ANTONIO ZAPATA **
AMMAR SIAMWALLA ***

ABSTRACT

Irrigation changes the income of the factors involved in the
production of certain crops by affecting the market of agricultural
inputs and outputs. The purpose of this paper is to explore some of
the economics involved in this process, analyzing irrigation as a tech-
nological progress which shifts the production function. For simpli-
city, a neutral technological change has been assumed in a one out-
put (rice) two factor (land and labor) model with a constant returns
to scale production function.

The analysis of the impact of irrigation on the returns to land
and labor requires the estimation of the change in the equilibrium
quantities and prices of the factors of production. Therefore, it is ne-
cesary to analyze the changes in the rice market, and in the land and
labor markets associated with the rice sector, with a three equations
model, i.e., demand-supply equilibrium in each of those three markets,
and estimate the change to a new equilibrium quantity consistent with
a change in the production function for rice, which in turn results in
shifts of the demand function for land and labor allocated to rice
and on the supply function of rice. The new equilibrium along those
functions will be determined at a certain set of prices and quantities
and it is precisely that change to the new equilibrium that this model
estimates.

Although the analysis of the neutrality or non-neutrality of irri-
gation is very important in determining the distribution of benefits
among factors of production, it is not a sufficient condition. There are
other elements to be taken into account. One is the effect of irrigation
on the output price so the elasticity of demand for output is a rele-

* Este artículo está basado en un trabajo desarrollado cuando los autores eran investi-
gadores del International Food Policy Research Institute IFPRI WP 79/1 Conf., Washington
D.C., marzo 1979, para el análisis del riego en arroz en el sudeste asiático, que formaba
parte del proyecto “Rice Policies in South East Asia”, de IFPRI - IFDC - IRRI. Los comen-
tarios de Víctor J. Elías, James Gavan y H. Gregg Lewis fueron muy importantes para el desa-
rollo de este enfoque.

** Profesor Instituto de Economía, Universidad Católica de Chile.

*** Research Fellow, International Food Policy Research Institute.
vant parameter. The second set of elements are the elasticities of
supply of the factors of production and the elasticity of substitution
among them. Even though irrigation may be neutral in the produc-
tion function, the proportional increases in the demand for factors
may encounter different supply elasticities and therefore the price
ratios and factor ratios change. This differential price change may
tend to be offset by the substitution of cheaper factors for more
expensive ones to the extent that they are substitutes in the produc-
tion process.

This article is based on a paper prepared by the authors at the
International Food Policy Research Institute (IFPRI WP 79/1 CONF.),
Washington D. C., March 1979, for the research project “Rice Policies
in South East Asia” (IFPRI-IFDC-IRRI).

Los proyectos de riego afectan la distribución del ingreso por dos con-
ceptos: uno, al contratar factores para la construcción del proyecto, y el otro,
como resultado de la obra misma, al afectar la oferta de agua y permitir el
riego. Aunque el primer concepto puede ser muy importante, este artículo
está enfocado al análisis del segundo.

Una vez completada la obra de riego los beneficios de un proyecto se dis-
tribuyen entre los diversos factores que intervienen en la producción y es,
precisamente, ese problema el que se analiza en este artículo, a través de lo
que ocurre en las cantidades y precios de factores, al introducir el riego en
una región agrícola.

Este análisis se realiza mediante el uso del modelo de un producto, dos
factores del tipo desarrollado por Allen e Hicks y aplicado para el caso de
precios mínimos en agricultura por Floyd\(^1\); para simplificar, se supone que
no se cobra el agua\(^2\).

El riego puede ser analizado como otro factor de producción; sin em-
bargo, decidimos desarrollar este modelo donde el riego es considerado como
comienzo tecnológico que desplaza la función de producción, puesto que la re-
geión para la cual se elaboró el modelo ya contaba con agricultura de secano,
y al no existir un mercado de agua, no fue posible introducir el riego como
uno de los factores en la función de producción.

El análisis económico de la introducción del riego como nueva tecnología
indica que debemos analizar el cambio que causa en la función de producción
y, por lo tanto, en las productividades marginales de los factores. Esto depen-
derá de la complementariedad o sustitución que exista entre el riego y los
otros factores de producción, para lo cual debemos preguntar si el riego aumenta
o disminuye la productividad marginal de un determinado factor. En general,
se espera que éste aumentará las productividades marginales.

\(^1\) R. C. D. Allen, Mathematical Analysis for economists (London 1938); John R. Hicks,
The Theory of Wages (London 1964); John R. Floyd, “The effects of Farm Price Supports
on the return to Land and Labor in Agriculture”, Journal of Political Economy (1965),
148-58.

\(^2\) Un análisis del elemento transferencia a través del precio del agua puede verse en
Juan A. Zapatá, “Obras de Riego y Subsidios a la Agricultura”, Revista de la Facultad de
Ciencias Económicas, Universidad Nacional de Cuyo, Argentina, 1968.
La próxima pregunta se refiere al grado de neutralidad del cambio tecnológico riego. Hay definiciones alternativas de neutralidad. Aquí elegimos el concepto de cambio tecnológico neutral de acuerdo a Hicks, que corresponde a aquel que aumenta las productividades marginales proporcionalmente, es decir, que a los mismos precios relativos, la razón de los factores permanecerá igual. Un cambio tecnológico no neutral, en el modelo de dos factores, aumentará la productividad marginal de uno de ellos proporcionalmente más que la del otro y, por lo tanto, cambiará la intensidad de uso a los mismos precios relativos de factores.

En un esquema simple, donde \(x = f(a, b) \) representa una función de producción, \(x \) representa la producción agrícola que recibe riego, y que en el caso de este estudio es el arroz, a representa tierra y \(b \) trabajo, y sí introducimos el factor \(\gamma \), que representa un cambio tecnológico, entonces:

\[
 x = \gamma f(a, b), \text{ cambio tecnológico neutral},
\]

\[
 x = f(\gamma a, b), \text{ cambio tecnológico que aumenta el factor tierra}.
\]

En este caso, \(\gamma \) representa el factor riego, que aumenta el nivel de producción como un cambio tecnológico y es expresado en términos del impacto en producción en lugar del volumen de agua o infraestructura de riego.

Aun cuando el análisis de neutralidad del riego es muy importante en la determinación de la distribución de los beneficios de riego, no es una condición suficiente. Hay, por lo menos, otros dos elementos importantes que deben tomarse en cuenta: uno es el efecto del riego en el precio del arroz, ya que puede ocurrir que un cambio tecnológico como éste, en el caso de una demanda inelástica por arroz, lleve al sector agrícola a un ingreso total menor, puesto que la disminución del precio no es totalmente compensada por el aumento en cantidad. Por lo tanto, la elasticidad de la demanda por el producto (arroz) es un parámetro relevante para analizar los efectos en los retornos a los factores de producción.

El segundo conjunto de elementos importantes que analizaremos en detalle son las elasticidades de oferta de los factores de producción y la elasticidad de sustitución entre ellos. Aun cuando el riego sea neutral en la función de producción, los aumentos proporcionales en la demanda de factores pueden enfrentar diferentes elasticidades de oferta y, por lo tanto, cambiar sus precios relativos y la proporción de uso. Las elasticidades de oferta son, por consiguiente, parámetros muy importantes para el análisis del impacto del riego en las cantidades usadas y los precios pagados por los factores de producción. Un factor cuya elasticidad de oferta es muy pequeña recibirá un aumento significativo en su precio y, por lo tanto, su ingreso aumentará sustancialmente. Esta diferencia de precios puede ser compensada si es posible sustituirla por factores más baratos en el proceso de producción. El mecanismo de compensación depende de la elasticidad de sustitución entre factores.

Si ella es alta, implica que un cambio en los precios relativos de factores cambiará sustancialmente las proporciones de uso, haciendo el proceso de producción más intensivo en los factores cuyos precios relativos sean menores.
EL MODELO

El análisis del impacto del riego en los retornos de tierra y trabajo requiere la estimación del cambio en cantidades y precio de equilibrio de los factores de producción. Por lo tanto, se analizan los cambios en el mercado de arroz y los mercados de tierra y trabajo de dicho producto. El modelo tiene entonces tres ecuaciones, esto es, el equilibrio de oferta y demanda en cada mercado, y se analiza el cambio a un nuevo equilibrio en estos tres mercados causado por un cambio en la función de producción, el que desplaza las funciones de demanda por tierra y trabajo y la oferta de arroz. Se supone en este modelo que el riego no afecta la demanda de arroz ni las ofertas de los factores.

El modelo se especifica para un cambio tecnológico neutral que afecta los productos marginales de ambos factores proporcionalmente y se define de la siguiente forma:

(1) \[x = \gamma f(a, b) \]

es la función de producción de retornos constantes a escala, donde \(x \) es la producción, \(a \) el factor tierra, \(b \) es el factor trabajo y \(\gamma \) es el impacto del riego en producción.

(2) \[x = \alpha P_x^{-\eta} \]

donde \(\eta > 0 \)

es la demanda por arroz, \(x \) es la cantidad demandada, \(P_x \) el precio, \(\eta \) la elasticidad precio y \(\alpha \) un parámetro que depende del ingreso y la población.

La demanda de servicios de tierra es:

(3) \[P_a = \frac{\partial x}{\partial a} P_x = \gamma f_a P_x \]

donde \(P_a \) es el precio de los servicios de la tierra, \(f_a \) es el producto marginal y \(P_x \) el precio de \(x \).

La oferta de servicios de la tierra es:

(4) \[\beta_a = P_a \]

donde \(a \) es la cantidad ofrecida de servicios de tierra y \(\beta_a \) es la elasticidad precio de oferta.

En el mercado de trabajo la demanda y oferta es la siguiente:

(5) \[P_b = \frac{\partial x}{\partial b} P_x = \gamma f_b P_x \]

(6) \[b = P_b \]
donde (5) es la demanda, \(f_b \) indica la productividad marginal del trabajo y (6) es la oferta con \(\beta_a \) la elasticidad precio de la oferta.

El equilibrio implica que demanda igual oferta en cada uno de los mercados.

(7) \[\gamma f(a, b) = \alpha P_x^{1/\beta_a} \]

(8) \[a^{-\gamma} = \gamma f_a P_x \]

(9) \[b^{-\gamma} = \gamma f_b P_x \]

Este equilibrio cambia cuando \(\gamma \) varía.

El modelo determina los precios y cantidades en cada uno de estos mercados, esto es, \(x, P_x, a, P_a, b, P_b \).

La estructura del modelo indica que un cambio en \(\gamma \) afectará a las seis variables y, por lo tanto, nuestra pregunta es cuán sensibles son cada una de estas variables a un cambio en \(\gamma \). Dicha sensibilidad se mide en las siguientes elasticidades:

\[
\begin{array}{ccccccc}
| \text{Ex} | \text{EP}_x | \text{Ea} | \text{EP}_a | \text{Eb} | \text{EP}_b | \\
| \text{E}_\gamma | \text{E}_\gamma | \text{E}_\gamma | \text{E}_\gamma | \text{E}_\gamma | \text{E}_\gamma |
\end{array}
\]

Las ecuaciones (7), (8), y (9) pueden ser transformadas en elasticidades, derivando las variables respecto a \(\gamma \) y definiendo las elasticidades.

\[
\begin{align*}
\frac{\text{EP}_x}{\text{E}_\gamma} &= \frac{\gamma}{P_x} \frac{\text{d}P_x}{\text{d}\gamma}, & \frac{\text{Ea}}{\text{E}_\gamma} &= \frac{\gamma}{a} \frac{\text{da}}{\text{d}\gamma}, & \frac{\text{Eb}}{\text{E}_\gamma} &= \frac{\gamma}{b} \frac{\text{db}}{\text{d}\gamma} \\
\end{align*}
\]

Usando algunas de las propiedades de la función de producción con retornos constantes a escala, y definiendo \(k_a \) y \(k_b \) para indicar la participación de cada factor en el producto, la solución al sistema es la siguiente\(^1\):

\[
\begin{align*}
\frac{\text{EP}_x}{\text{E}_\gamma} &= \frac{k_a (1 + \beta_a) (\sigma + \beta_b) + k_b (1 + \beta_b) (\sigma + \beta_a)}{k_a (\beta_b + \sigma) (\beta_a + \eta) + k_b (\beta_a + \sigma) (\beta_b + \eta)} \\
\frac{\text{Ea}}{\text{E}_\gamma} &= \frac{(\eta - 1) (\sigma + \beta_b)}{k_a (\beta_b + \sigma) (\beta_a + \eta) + k_b (\beta_a + \sigma) (\beta_b + \eta)} \\
\frac{\text{Eb}}{\text{E}_\gamma} &= \frac{(\eta - 1) (\sigma + \beta_a)}{k_a (\beta_b + \sigma) (\beta_a + \eta) + k_b (\beta_a + \sigma) (\beta_b + \eta)}
\end{align*}
\]

\(^1\) Ver anexo.
Un análisis de las expresiones (10), (11) y (12) muestra que dado que todos los parámetros han sido definidos positivos (ecuaciones (1) hasta (6)), entonces:

\[
\frac{E_p}{E_Y} < 0 \quad \text{para todos los valores, excepto } \eta = \infty
\]

\[
\frac{E_a}{E_Y} > 0 \quad \text{si } \beta_a > 0
\]

para todos los valores \(\eta > 1 \)

\[
\frac{E_b}{E_Y} > 0 \quad \text{si } \beta_b > 0
\]

El efecto en los precios de a y b puede ser estimado con las elasticidades de oferta (4) y (6) como:

\[
\frac{E_p}{E_Y} = \frac{E_a \cdot 1}{E_Y \cdot \beta_a}
\]

\[
\frac{E_p}{E_Y} = \frac{E_b \cdot 1}{E_Y \cdot \beta_b}
\]

(13)

\[
\frac{E_p}{E_Y} = \frac{(\eta - 1) (\sigma + \beta_b)}{k_a (\beta_b + \sigma) (\beta_a + \eta) + k_b (\beta_a + \sigma) (\beta_b + \eta)}
\]

(14)

\[
\frac{E_b}{E_Y} = \frac{(\eta - 1) (\sigma + \beta_a)}{k_a (\beta_b + \sigma) (\beta_a + \eta) + k_b (\beta_a + \sigma) (\beta_b + \eta)}
\]

Analizando las fórmulas (13) y (14) puede mostrarse que cuando la elasticidad de demanda del producto agrícola es superior a uno, el precio del factor con la menor elasticidad de oferta aumentará. Este aumento será mayor mientras menor sea la elasticidad de sustitución y mayor sea la elasticidad de oferta del otro factor. En el caso que \(\beta_b = \infty \) las expresiones (13) y (14) serán:

\[
\frac{E_p}{E_Y} = \frac{(\eta - 1)}{k_a (\beta_a + \eta) + k_b (\beta_a + \sigma)}
\]

(15)

\[
\frac{E_b}{E_Y} = 0
\]

(16)

El análisis de las fórmulas (11) a (14) permite apreciar la importancia de la elasticidad de demanda por el producto agrícola, la elasticidad de oferta de los factores y la elasticidad de sustitución, parámetros que en definitiva afectan la distribución de beneficios de proyectos de riego, aun en los casos en que la introducción del riego sea un cambio tecnológico neutral.
ANEXO

Derivando las ecuaciones (7), (8) y (9) respecto a γ, obtenemos:

\[(7') \quad f(ab) + \gamma f_a \frac{da}{d\gamma} + \gamma f_b \frac{db}{d\gamma} = - \alpha \gamma P_x \frac{dP_x}{d\gamma} \]

\[(8') \quad \frac{1}{\beta_a} \frac{(1/\beta_a) - 1}{a} \frac{da}{d\gamma} = f_a P_x + \gamma f_{aa} \frac{da}{d\gamma} P_x + \gamma f_{ab} \frac{da}{d\gamma} P_x + \gamma f_a \frac{db}{d\gamma} P_x \]

\[(9') \quad \frac{1}{\beta_b} \frac{(1/\beta_b) - 1}{b} \frac{db}{d\gamma} = f_b P_x + \gamma f_{bb} \frac{db}{d\gamma} P_x + \gamma f_{ba} \frac{da}{d\gamma} P_x + \gamma f_b \frac{db}{d\gamma} P_x \]

Este sistema de tres ecuaciones puede ser expresado en elasticidades, usando las siguientes propiedades de la función de producción con rendimientos de escala constante:

\[f_{aa} = - \frac{b}{a} \frac{f_a f_b}{\sigma f(ab)} \quad f_{ab} = \frac{f_a f_b}{\sigma f(ab)} \quad f_{bb} = - \frac{a}{b} \frac{f_a f_b}{\sigma f(ab)} \]

donde \(\sigma\) es la elasticidad de sustitución del factor b por el factor a. Definiendo la participación de a y b en el producto total como:

\[k_a = \frac{a \gamma f_a}{x} = \frac{af_a}{f(ab)} \quad k_b = \frac{b \gamma f_b}{x} = \frac{bf_b}{f(ab)} \]

donde \(k_a + k_b = 1\)

Transformando (7'), (8') y (9') en elasticidades, obtenemos el siguiente sistema:

\[(7'') \quad \frac{E_a}{E \gamma} + \frac{k_b}{E \gamma} + \frac{\eta EP_x}{E \gamma} = -1 \]

\[(8'') \quad \frac{1}{\beta_a} \frac{\frac{k_b}{E \gamma} - \frac{k_a}{E \gamma}}{\sigma E \gamma} - \frac{\frac{E_b}{E \gamma} - \frac{E P_x}{E \gamma}}{\sigma E \gamma} = 1 \]

\[(9'') \quad - \frac{\frac{E_a}{E \gamma} + \frac{\frac{k_a}{E \gamma}}{\beta_b}}{\sigma E \gamma} + \frac{\frac{1}{\beta_b} + \frac{\frac{k_a}{E \gamma}}{\sigma E \gamma}}{E \gamma} - \frac{EP_x}{E \gamma} = 1 \]

La solución de este sistema de tres ecuaciones y tres incógnitas da las fórmulas indicadas en (10), (11) y (12) en el texto.